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Minimization, Learning, and Conformance
Testing of Boolean Programs

Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan

University of Illinois at Urbana-Champaign, Urbana, IL, USA,
{kumar, madhu, vmahesh}@cs.uiuc.edu

Abstract. Boolean programs with recursion are convenient abstractions
of sequential, imperative programs. Recursive state machines (RSM)
serve as machine models for Boolean programs and are semantically
equivalent to pushdown automata. While pushdown automata cannot
be minimized, motivated by the special structure of RSMs, we define a
notion of modular VPA and show that for the class of languages accepted
by such automata, unique minimal modular VPA exist. Using this we ob-
tain approzimate minimization theorems for RSMs, where we show we
can construct RSMs that are at most k times the minimal RSM, where
k is the maximum number of parameters in a module. Our characteriza-
tion of the minimum RSM leads to an active learning algorithm (with a
minimally adequate teacher) for context free languages in terms of mod-
ular VPAs. We also present an algorithm that constructs complete test
suites for Boolean program specifications. Finally, we apply our results
for learning and test generation to perform model checking of black-box
Boolean programs.

1 Introduction

The abstraction-based approach to model-checking is based on building finite
models, say using predicates over variables, and subjecting the finite models to
systematic state-space exploration [1,2]. Recursion of control in programs leads
to models with recursion, which can be captured using pushdown automata. The
model of recursive state machines [3] is an alternate model, which is equivalent
in power but whose notation is closer to programs.

The class of visibly pushdown languages is defined as a subclass of context-
free languages, as the languages that can be accepted by pushdown automata
whose action on the stack is determined by the letter the automaton reads. Given
that a model of a program is naturally visibly pushdown (since we can make calls
and returns to modules visible), visibly pushdown languages are a tighter model
for Boolean programs. Moreover, the class of visibly pushdown languages enjoys
closure and decidability properties, making several problems like model-checking
pushdown program models against visibly pushdown specifications decidable [4,
5].

In this paper we reap more benefits from the visibly pushdown modeling of
programs, by showing that pushdown program models can be minimized, can be



learnt and tested for conformance, and subject to black-box checking, paralleling
results for finite-state models. We now outline these results.

In a recent paper [6], we showed that visibly pushdown languages have a con-
gruence based characterization. However, this congruence does not yield minimal
visibly pushdown automata, and in fact, unique minimally visibly pushdown au-
tomata do not exist in general. The main reason why the minimization result
fails is because when implementing functions in the automata model there are
two choices available. One option is to have function modules that “compute”
the value for multiple (or all the) parameters, and then let the caller decide
which result to pick when the function returns. The second option is for the
function to only “compute” the answer to the specific parameter with which it
was called.

In [6], we showed a minimization result for a special class of models. We
looked at visibly pushown machines with a modular structure (similar to re-
cursive state machines) which have the additional property that modules, when
called, compute the answers to all parameters and let the caller decide the right
answer on return. This results in modular, single-entry (i.e., the state the ma-
chine enters on function calls is the same, no matter what the parameter is)
machines. We showed that for any visibly pushdown language there is a unique
minimal modular single-entry machine.

The restriction to single-entry machines is awkward. First they do not corre-
spond to natural program models, as programs typically do not compute answers
to all parameters on function calls. Second, combining the computation for mul-
tiple parameters can often result requiring a lot more memory, which in the
context, of automata corresponds to larger number of states.

The first contribution of this paper is a minimization result of a variant of
modular VPAs that has multiple entry points in each module, corresponding to
the multiple parameters. This variant is inspired by the recursive state machine
model in two ways: (a) the parameters passed to modules are explicit and visible,
and (b) we demand that when a module is called, the state but not the parame-
ter is pushed onto the stack. Requiring that the parameter not be pushed onto
the stack is crucial in achieving a unique minimization result; since the program
does not “remember” the parameter it called the module with, it cannot choose
the result for a parameter from a combined result. Thus, we get minimal pro-
gram models that are more faithful to the semantics of programming languages.
Technically, if we allow automata models that are not complete (i.e., certain
transitions being disabled from certain states) then it is possible to encode the
parameter in the calling state. Thus our minimization result only applies to
complete models. However, we also show that any incomplete recursive state
machine models for programs can be translated into a canonical, complete, re-
cursive state machine model which is at most k times larger than the incomplete
model, where k is the maximum number of parameters in any module.

Next we look at the problem of learning modular VPA models for context
free languages. The learning model that we consider is one where the learning
algorithm is allowed to interact with a knowledgeable teacher who answers two



types of queries: membership queries, where the learner can ask whether a string
belongs to the target language, and equivalence queries, where the learner can
ask whether a hypothesis machine does indeed recognize exactly the target lan-
guage. Learning algorithms identifying machine models for formal languages in
such a learning framework have recently been extensively used in formal verifi-
cation in a variety of contexts (see [7—14] for some examples). However, all these
applications use algorithms that learn finite state models based on the algorithm
originally proposed by Angluin [15]. The reason for this is because known learn-
ing algorithms apply only to very limited push-down models: Chomsky Normal
Form grammars with known non-terminals [15] (which corresponds to knowing
all the states of a pushdown model and discovering only the transitions), and
deterministic one-counter machines [16,17].

Our main result in the context of the learning problem is that we can learn the
smallest complete, deterministic, modular VPA for a language in time which is
polynomial in the length of the longest counter-example provided by the teacher,
and the size of the smallest machine model. The algorithm is based on the
congruence based characterization of the minimum machine that we present in
this paper. We would like to contrast this learning algorithm with the implicit
one suggested by the results of [5,18]. The results in [5] show that associated
with every visibly pushdown language is the tree language of stack trees which is
regular. Thus, using Sakakibara’s algorithm [18] one could learn the deterministic
bottom-up tree automaton accepting the language of stack trees, and convert
that to obtain a visibly pushdown automaton for the language using the results
of [5]. There are two down-sides to using this approach. First, the resulting VPA
is non-deterministic, and one would need to pay the exponential cost in obtaining
a deterministic machine. Second, even the non-deterministic VPA obtained thus
has an awkward structure, as it may not be modular, or have one entry for each
parameter, that we expect of program models.

The number of membership and equivalence queries made by our learning
algorithm has the same dependence on the size of the minimal machine and
length of the longest counter-example as Angluin’s algorithm for learning finite
state machines. However there is one important difference. In the case of regular
languages, it is possible for a cooperative teacher to present counter-examples
that are linear in the size of the smallest deterministic finite automaton accept-
ing the language. For modular VPAs this is not the case; one can construct
examples where the shortest counter-example is exponential in the size of the
smallest modular VPA recognizing the language. However, we observe that the
counter-examples (even if long) are highly structured, and can be succinctly rep-
resented using an equation system. Our learning algorithm can be shown to have
the same running time even when the teacher presents such succinct counter-
examples, thus yielding a polynomial learning algorithm for such cooperative
teachers. Moreover, this result can be used to obtain a PAC learning algorithm
for modular-VPAs. The PAC learning model [19] is a weaker learning frame-
work, where the knowledgeable teacher is replaced by an oracle that samples
strings (based on any fixed probability distribution) and labels them as either



belonging to the language or not; the learning algorithm is required to identify
the concept “approximately” in polynomial time, using the sampling oracle. We
can show that one can PAC learn modular VPAs provided one has an oracle
that samples strings represented succinctly using the equational representation.
Because of lack of space we do not outline the PAC learning algorithm, but the
extension to this framework is standard based on our results on learning with a
knowledgeable teacher.

Next we study the problem of conformance testing modular VPAs. In this
framework, one is given a black-box implementation, whose internal transition
structure is assumed to be unknown. The specification is another machine, but
one whose transition structure is fully known. The objective in conformance
testing is to construct a sequence of test inputs (based on the specification) such
that if the implementation does not “conform” to the specification, then the
implementation gives a different output than the specification on the test. Typ-
ically the notion of “conformance” is taken to be language equivalence, though
weaker notions such as ioco have also been explored [20]. Since Moore’s seminal
work [21], there have been many algorithms to generate such test sequences;
major results are summarized in [22-25] . These algorithms construct complete
suites (i.e., guaranteed to catch all buggy implementations) when both the spec-
ification and the implementation are known to be finite state machines. Further,
these algorithms also assume that a prior bound on the number of states of the
implementation is known. We extend these results on conformance testing to
the case when the specification and implementation are modeled as complete
modular VPAs. The size of our test suite and the running time to construct the
test suite depend on the number of states in the unknown black-box implemen-
tation, and the construction of the test suite relies on our characterization of the
minimal modular VPA recognizing a language.

While our results on learning and conformance testing are of independent
interest since they extend previous results for finite state machines to pushdown
models, they can be combined in a useful manner to model check black-box
programs. Black Boxz Checking [11] is a framework to model check unknown
systems, by first learning the model of the system and then model checking the
constructed model. Whenever the learning algorithm asks a membership query
for a string (i.e., whether a certain behavior is exhibited by the system), we
simulate the black-box system on the behavior. When the learning algorithm
wants to ask an equivalence query, the black-box checking algorithm constructs
a conformance test based on the hypothesis, and checks whether the system
“conforms” to the hypothesis. If it does, then we have model of the system which
can be model checked. Otherwise, the conformance test is the witness to the
inequivalence of the model and the system. This framework of black-box checking
has been applied to construct finite state models, based on Angluin’s algorithm

! The references here only talk about algorithms to construct complete test suites,
which is the focus of this paper. There is also extensive work on constructing incom-
plete test suites that catch all bugs in the limit. But it is impossible to survey this
huge body of work.



and conformance testing for finite state machines. Our results on learning and
conformance testing can be combined in the same manner to now perform black
box checking of systems by constructing pushdown models.

The rest of the paper is organized as follows. We first introduce the model
of modular VPAs and RSMs, along with useful definitions and notation. In
Section 3 we present our results on the existence of unique, minimal, complete,
modular VPAs. Then (in Section 4) we show how our minimization results can
be used to construct approximately minimal RSM models for incomplete models.
After this we focus our attention exclusively on complete machines. Our learning
algorithm is presented in Section 5, while our conformance testing results are
presented in Section 6. Finally we conclude (Section 7) by showing how these
results can be combined to perform black-box checking.

2 Preliminaries

In this section, we define modular VPAs, and introduce some notation that we
will use in the rest of the paper.

We will model Boolean programs as modular VPAs by modeling each module
as a finite-state machine that also allows calls to and returns from other modules:
modules representing different procedures are modeled seperately, the usage of
stack is implicit in that when a call to a module occurs, the local state of the
module is pushed into the stack automatically, but neither the name of the called
module nor the parameter passed is stored in the stack.

Let us fix M, a finite set of modules, with mo € M as the initial module. For
each m € M, let us fix a nonempty finite set of parameters P,,, with P,,,, = {po}.

A call ¢ is a pair (m,p) where m € M \ {mo} and p € P,,, and denotes the
action calling the module m with parameter p (we won’t allow the initial module
to be called except at the beginning, and hence (myg, pp) will not be a call). Let
Yean denote the set of all calls. Let us also fix a finite set of internal actions X,
and let X = {r} be the alphabet of returns, containing the unique symbol r.

Let X = (Ecalla Eint; Eret) and let X = Yoo U Xing U Yres.

~

Definition 1 (Modular VPAs). A modular VPA over (M, { Py} mer, mo, %)
is a tuple ({Qm,{¢% }pePp s Om tmen, F) where for each m € M

— Qm 15 a finite set of states. We assume that form #m', QmNQm = 0. Let
Q = U,err @m denote the set of all states.

— For each parameter p € Py, ¢b, is a state associated with p; we will call this
the entry associated with the call (m,p).
(Note that we do not insist that qP, be different from qﬁ;, when p £ p'.)

— O = (072, 010, 0ty ) is a triple of transition relations, one for calls, one for
internals and one for returns, where

i 6(7‘,7;11 g {((L (n,P);Q£) | q € Qm; (nap) € Ecall};

o 6171?1; g {(Q7a>q’) | (bq, € Qm;a € Eint};



o 0% C{(a,q,d") | d',d" € Qm,q € Q};

— F C Qg is the set of final states.

Notation: We write ¢ M} % to mean (q, (n,p),qt) € 0™y, ¢ = ¢' to mean

(g,a,q") € 87, and ¢ KN q" to mean (q,q',q") € 0/%,.

Semantics: A stack is a finite sequence over @; let the set of all stacks be
St = Q*. A configuration is any pair (g,0) where ¢ € ), and o € St. Let Conf
denote the set of all configurations, along with the special configuration cg.
The configuration graph of a modular VPA is (V, E) where V = Conf and
FE is the smallest set of Y-labeled edges that satisfies:
(Initial edge) ¢ {mospo), (g, ,€) € E.
(Int(ell'na)l edges) If (¢,0) € V (¢ € Qn) and (g,a,q') € &7, then (¢,0) =
q,0)€E.
(Call edges) If (¢,0) € V and ¢ M) gk, then (g,0) M (g%, 0q) € E.
(Re(tllllrn)edges) If (¢,0q") € V (¢ € Qn),and (q,¢',¢") € 6™, then (¢,0q") =
q',o0) € E.
(Note that ¢" and ¢’ belong to the same module m.)

A run of A on a word u is a path in the configuration graph on u. Let p :
Conf x X* — 29°" be the function where p(conf,u) is the set of configurations
reached at the end of all runs from conf on u in the configuration graph. An
accepting run of A on wu is a run from the initial configuration ¢y that ends in
a configuration whose state is in the final set F. A word u is accepted by A if
there is an accepting run of A on u, i.e. if p(co,u) N (F x St) # 0. The language
of A, L(A), is defined as the set of words u € X* accepted by A.

Let WM be the set of well-matched words over & , i.e, the set of all words
generated by the grammar: S — ¢SrS (for each ¢ € Yean), S — aS (for each
a € Ying), and S — e¢. We will denote by w,w’, w;, ... words in WM. Note that
a modular VPA accepts only words that are in {(mo,po)}. WM (since the final
states are in module myg, and the initial symbol (mg, po) is not considered a call).

A word u reaches state g in A if (¢,0) € p(co,u) for some o € St. Note that
if ¢ belongs to module m, then u = uq(m, p)w for some p € P, and w € WM.
We say that (m,p)w is an access string for state ¢ in A.

A (complete) modular VPA is said to be deterministic if its transition relation
is deterministic, i.e. for each m € M:

— Vg € Qm,a € Xing, there is at most one ¢’ such that (¢, a,q") € 6% ; and

int»?

- Vg € Q,q € Qn, there is exactly one ¢" such that (¢,¢’,q") € ™.

Note that transitions on calls are always deterministic since the target state is
always the unique entry state associated with the call.

A modular VPA is said to be complete if a transition of every label is enabled
from every state, i.e. for each m € M,



— for each ¢ € @y, and (n,p) € Tean, (¢, (n,p),qh) € Oy
— for each ¢ € Q,, and a € X, ¢’ such that (¢,a,q’) € 6 ; and

int?

— for each ¢ € Q and ¢' € @y, 3¢" such that (¢,¢',q") € o7,

A recursive state machine (RSM) is a modular VPA with no final states
set and where every word that has a run on it can be completed to a well-
matched word. More precisely, the language defined by an RSM is the set of
words u such that there is a path in the configuration graph from the initial
configuration, and we require that for every u € L(R), there is some word w €
({(mo,po)}. WM) N L(R), such that u is a prefix of w.

Let MR be the set of all words with “matched-returns”, i.e. where every
return has a matching call, i.e. MR = {u € ¥* | Jv € X*,uv € WM}. It is easy
to see then that the language of an RSM consists of words in (mqg,po). MR.

The definition of modular VPAs above has been chosen carefully with final
states only in the initial module, and disallowing calls to the initial module. Note
that if we did allow final states in non-initial modules, then complete VPAs are
less powerful than incomplete ones. For example, if u(m,p) is accepted by a
complete VPA, then u'(m,p) is also accepted by it. An incomplete VPA can
disallow the call after u’ and hence reject u'(m,p). However, incomplete VPAs
are too ill behaved in the sense that we can encode parameters into the state
being pushed at a call in an incomplete VPA leading minimization results to
fail. The focus on complete VPAs is a subtle and tricky restriction that allows
our minimization result to go through.

Sections 3, 5, and 6 will consider only complete modular VPAs, and show the
minimization, learning and conformance testing results for them. In Section 4
we show how to handle (incomplete) RSMs by using the results for complete
machines. In particular, we show how RSMs can be minimized up to a factor
based on the number of parameters in each module.

3 Minimization of complete modular VPAs

In this section, we will show that for any complete modular VPA A, there exists
a unique minimal deterministic modular VPA that accepts the same language as
A does. As a corollary, it will follow that deterministic complete modular VPAs
are as powerful as non-deterministic complete ones.

Theorem 1. If A is a complete modular VPA, then there exists a unique min-
imal complete modular VPA A" such that L(A") = L(A).

Proof. Let A = ({Qm,{d% }pepr,,, Om}men, F) and let L(A) = L.
For every m € M, we define an equivalence relation ~,, on P,, x WM which
depends on L (and not on A) as:

(p1,w1) ~m (P2, w2) ff Yu,v € X% u(m,p1)wiv € L iff u(m,p2)wsv € L

Note that ~,, is a congruence in the sense that if (py,w;1) ~m (p2,ws), then
for any well-matched word w, (p1,wiw) ~um (P2, waw).



Now, ~, has only finitely many equivalence classes. We show in fact that it
has at most 2/9m| equivalence classes (note that although ~,, is based only on
L, we bound the number of classes using A). For (p,w) € Py, x WM, let Ry
be the set of states reached by A starting in ¢?, and running on w. Then it is
easy to observe that if Ry, w;, = Rpy w,, then (p1,w1) ~u, (P2, ws2), which gives
the bound on the number of classes.

Define the modular VPA A4 = ({Qm, {(jﬁl}pepm,gm}meM,(jo,ﬁ') as follows:
for each m € M, Qm = {[(p,w)]m | p € Pm,w € WM}, and for each p € Py,

@, = [(p, €)]m, and the transition relation d,, = (6™,,8™, ™) is defined as:

1. call: Sgll([(p,w)]m,(m’,p’)) = [(p/, €)]m for all (m',p') € Xean. In other
words P, = [p, €]m.-

2. internal: 6, ([(p, w)]m, @) = [(p, wa)]m, for all a € Tin

3. veturns 32 (107, )l [0 0)lm) = (0!, )" )]

The final states are F' = {[(po, w)]m, | (Mo, po)w € L}

The internal transitions are well-defined since ~,, relations are congruences
with respect to well-matched words. Similarly, it can easily be shown that the
return transitions are also well defined. It is easy to establish the invariant that
on any input u = (mo, po)wo(m1, p1)wi (M2, p2)ws . .. (Mp, pp)wy, A reaches the
unique configuration

([(pnv wn)]mm [(pl): wO)]mo [(plv wl)]m1 [(p27 wQ)]mz s [(pn—la wn—l)]mn—l)

It then follows that A accepts L.

The above shows that every complete modular VPA can be determinized.
Now, let A be a deterministic complete modular VPA accepting L. We will show
that there is a homomorphism from the modules of A to those of /1, which would
prove A is the unique minimal deterministic complete modular VPA accepting
A.

For each m € M, we define the equivalence relation =, on (P, x WM) as
follows:

(p1,w1) R (P2, w2) iff p((q,p,i,e),wl) = p((q,p,f,e),wz)

Since the configuration reached after reading a well-matched word will have
its stack empty, ~,, clearly has finite index for every m € M.

Next, we show that for any m € M, =, refines ~,,. Let (p1,w1) ~m,
(p2,w2). Let uw € X*. Since p((¢8t,€),w1) = p((g82,€),ws), it follows that
p(co,u(m,p1)wr) = p(co,u(m,p2)ws) (where ¢y is the special initial config-
uration). Hence for any v, u(m,p)wiv € L iff u(m,p)wsv € L, and hence
(p7 wl) ~m (p7 ’11}2).

Thus, for each m € M, there is a well-defined function h,, such that for all
p € Py and w € WM, hy([(p,w)]~,.) = [(p,w)]~,,. Let h be the union of all
hm,m € M. It is easy to verify that h is a homomorphism from A to A, and
hence A is minimal. O



Let A be a complete modular VPA. For distinct states g1, g2 in module m of A
with access strings (m, p1)w; and (m, p2)ws respectively, a pair of strings (u,v)
is a distinguishing test for {q1, q2} if exactly one of u(m, p1)wiv and u(m, p2)wyv
isin L(A). By the above theorem, for a minimal complete modular VPA A, there
is a set D of distinguishing tests such that for every module m and distinct states
1, g2 in module m of A, there is a distinguishing test (u,v) € D for {q1,¢2}. We
call such a set D a complete set of distinguishing tests.

4 Minimization of recursive state machines

While the notion of complete modular VPAs leads to unique minimal machines,
languages accepted by RSMs do not have unique minimal models (see Figure 1
in Appendix A).

However, using minimization of complete modular VPAs, we can minimize
recursive state machines up to a factor & of the minimal size possible, where k is
bound by the maximum number of parameters in any module of the RSM. First,

let us show that recursive state machines can be faithfully modeled as complete
modular VPAs.

Lemma 1. Let R = ({Qm,{d, }pepr,.,0mtmenm) be an RSM and let k be the
mazimum number of parameters for any module. Then there exists a complete
modular VPA A such that L(A) = {w € WM | Vv < w,v € L(R)}. ? Further,
the size of A is at most k times R, and A is deterministic if R is deterministic.

Lemma 2. Let R be an RSM, and let A be the complete minimal deterministic
automaton such that L(A) = {w € WM |Yv < w,v € L(R)}. Then there exists
an RSM R’ with the at most the number of states in A, such that L(R") = L(R).

Proofs of the above lemmas are deferred to Appendix A.
Using the results of the previous section and the lemmas above, we can show:

Theorem 2. Gwen an RSM R, we can compute in polynomial time an RSM
R that accepts the same language, such that if R’ is any RSM accepting L(R),
then R has at most k times the number of states R’ has.

Proof. Take R and complete it, minimize it, and then incomplete it to get R.If
R’ is another RSM accepting the same language as R does, then its completion
results in the same language as the completion of R, and is at most & times size
of R'. Since R was obtained using incompletion of a minimal machine (and the
incompletion process only removes states), the result follows.

5 Learning complete modular VPAs

We will now consider the problem of exactly learning a target context free lan-
guage L (over (M, { Py }menm,mo, X)) by constructing a complete, modular VPA

2 < denotes the prefix relation on words.



for L from examples of strings in L and those not in L. In our learning model,
we will assume that the learning algorithm is interacting with a knowledgeable
teacher (often called a minimally adequate teacher) who assists the learner in
identifying L. We can think of the teacher as an oracle who answers two types
of queries from the learner

Membership Query The learning algorithm may select any string = and ask
whether x is a member of L.

Equivalence Query In such a query, the algorithm submits a hypothesis RSM
A. If L = L(A) then the teacher informs the learning algorithm that it has
correctly identified the target language. Otherwise, in response to the query,
the learner receives a counter-ezample well-matched string x € (L'\ L(A)) U
(L(A) \ L). No assumptions are made about how the counter-example is

chosen. In particular the counter-example z maybe picked adversarially.

Our goal is to design an algorithm that identifies L in time which is polynomial
in the size of the smallest modular VPA recognizing L and the length of the
longest counter-example presented to it.

The algorithm that we present is very similar to the learning algorithm for
regular languages due to Angluin [15]. However our presentation is closer in
spirit to the algorithm due to Kearns and Vazirani [26]. There are two reasons
for following the Kearns-Vazirani approach. First, the resulting algorithm is more
efficient in terms of running time and space. But more importantly, the Kearns-
Vazirani based approach is easier to understand and makes the connections to a
congruence based characterization of modular VPAs explicit.

5.1 Overview of algorithm

Let A be the smallest, complete, deterministic, modular VPA that recognizes
the target language L and let size(A) be the number of states of A. Recall from
Theorem 1, that the states of A correspond to the equivalence classes of ~,,.
The main idea behind the learning algorithm will be to progressively identify
the equivalence classes of ~,,; the construction of the VPA A from ~,, will be
the same as that outlined in Theorem 1.

The learning algorithm will proceed in phases. During the execution, the
algorithm will maintain equivalence relations (not necessarily a congruence) =,
on P, x WM such that if (pi,w1) ~m (p2,ws2) then (p1,wi) =m (p2,w2). In
other words, ~,, will always be a refinement of =,,. The algorithm will also
ensure that if (mg,po)w; € L and (mo,po)ws & L then (po,w1) Zm, (Do, ws).
Further the equivalence =, itself will be maintained implicitly using a data
structure called a classification forest, such that deciding if (p1,w1) =, (P2, w2)
is efficient; this is formally stated next. A classification forest is very similar to a
classification tree, introduced by Vazirani and Kearns. Readers unfamiliar with
the Vazirani-Kearns data structure are referred to the Appendix.

Proposition 1. Given (p1,w1) and (p2,w=2), (p1,w1) = (P2, w2) can be de-
cided using O(size(A)) membership queries.
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In addition to maintaining the equivalence relation =,,, the algorithm will
maintain a representative (p,w) for each equivalence class [(p,w)]m, of =p,- In
what follows we will denote the representative of [(p, w)]n, by rep([(p, w)]m). In
particular, the algorithm will ensure that (po, €) is always among the representa-
tives. In each phase of the algorithm, these representatives will be used to con-
struct a hypothesis machine A. A module m will have one state corresponding to
each representative rep([(p, w)];, ). The transitions are naturally determined by
the relation =, as follows. On a call symbol (m, p), every state has a transition to
the state rep([(p, €)]m). On an internal symbol a, a state (p,w) = rep([(p, w)]m)
has a transition to the state rep([(p, wa)],,). Finally on a return with (p;,w;) =
rep([(p1,w1)]m, ) on top of the stack, the state (p2,w2) = rep([(p2, w2)]m,) has
a transition to the state rep([(p1, w1 (ma, p2)war)]m, ). Observe that since =, is
not necessarily a congruence, the machine A depends on the representatives cho-
sen. Finally, by using special data structures, this machine can be constructed
efficiently from =,, and the representatives; the details are in the Appendix.

In each phase, the algorithm will construct the hypothesis machine A based
on the current =, and representatives. It will then ask an equivalence query with
the machine A. If the query has a positive answer, the learning algorithm will stop
and one can show that in this case =,,,=~,,, and that A is exactly the machine A.
On the other hand the equivalence oracle may present a counter example string
w. For prefix x = y(m, p)w; of w, where (m,p) is the last unmatched call in z,
the machine A reaches the state p(co, ) while the machine A reaches a state
corresponding to the equivalence class of (p, w;) with respect to ~,. Now since
exactly one out A and A accepts w, and strings in L are not equivalent (w.r.t
=,,) to strings not in L, we know that (po,w’) Zm, (Po,w), where (po,w’') =
p(co, w). Further since (po, €) is a state of module myg, we know that there must be
a shortest prefix z = y(m, p)w; (of w) such that p(co,y) Zm (p,w1). Let z = za.
The main observation is that because the machines A and A are deterministic,
the string z identifies a new equivalence class of ~,, that was merged under the
relation =, to class associated with the state p(co, z). The algorithm therefore
adds z to the representatives, refines the equivalence relation =, to ensure that
p(co,z) and z belong to different classes, and proceeds to the next phase. The
way the equivalence relation =,, is refined depends crucially on the way it is
represented, and guarantees that ~,, will continue to be a refinement of =,.

The overall algorithm is thus as follows. The algorithm starts with a hypothe-
sis machine, where each module has exactly one state; thus (p1,w1) = (P2, w2)
for any pp,p2, w1, ws. In each phase the algorithm asks an equivalence query
with the current hypothesis, and uses the answer to refine the equivalence =,,
by identifying one more equivalence class of ~,,. This process repeats until the
algorithm has identified all the equivalence classes of ~,,,. This algorithm can be
implemented efficiently and this is the main theorem of this section.

Theorem 3. Let L be a language accepted by a complete, deterministic VPA
and let A be the smallest modular VPA accepting L. The learning algorithm
identifies A by making at most size(A) calls to the equivalence oracle, and
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O(size(A)(size(A) + n)) calls to the membership oracle, where n is the length
of the longest counter-ezample returned by the equivalence oracle.

5.2 Cooperative Teacher

In the previous section, we showed that the running time of the learning algo-
rithm for modular VPAs depends on the length of the counter-example returned
in response to an equivalence query. In fact, the dependency on the length of the
counter-example is exactly the same as in the case of learning regular languages.
However, there is one important difference.

For the case of regular languages, a cooperative teacher can always find a
counter-example of length at most size(A) in response to an equivalence query.
Thus, the overall running time of the algorithm is guaranteed to be polynomial in
size(A) provided the equivalence oracle is helpful. This is, however not the case
for VPAs. The shortest counter-example that one may provide in response to
an equivalence query maybe as long as 2°*¢(4), Thus, even with a cooperative
teacher, the algorithm in the previous section will not run in time which is
polynomial in size(A).

There is, however, one form of cooperative teacher who can assist in learning
the target VPA fast. Observe that even though the shortest counter-example
maybe long, it is typically highly structured and has a very small, succinct rep-
resentation. Consider an equation system {z; = t;}% |, where x; is a variable
and #; is a well-matched string over X' U {z1,...x;_1}. The variable zj, in such
an equation system represents a string over WM that can be obtained by pro-
gressively solving for z; for increasing values of i, by replacing solutions for
Z1,-.-Ti—1- It can be shown that there is an equation system of size at most
size(A) that represents a counter-example to any equivalence query. Further,
given a counter-example represented by an equation system (instead of explic-
itly), we can process the counter example using linearly many (in the size of
the equation system) membership queries to discover a new state in the hypoth-
esis machine. The details are a straightforward extension of the ideas already
presented, and are skipped in the interests of space.

6 Conformance testing

We now describe the setting for conformance testing. We are given a specification
machine S and a “black-box” implementation machine T that are both deter-
ministic complete modular VPAs over (M, { P, } e, Zint, Zret). The task is to
test whether or not 7 is equivalent to S, i.e. L(Z) = L(S). In order to achieve
this, we make the following assumptions:

1. S is minimized and has n states;

2. T is equivalent to a deterministic complete modular VPA that has at most
N states;

3. T does not change during the testing experiment.
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Note that assumption 1 can be made with no loss of generality, since the
specification S is known, and can hence we can assume it is minimized. Assump-
tion 2 is necessary in order to guarantee that every state of the implementation
is explored. The need for assumption 3 is obvious.

A sample over X is a pair (T, T7), where T+, T~ are finite subsets of
X*. A modular VPA A is consistent with sample (T+,T~) if T+ C L(A) and
T- C L(A).

Definition 2. A conformance test for (S,Z) is a sample (T, T~) over X such
that S is consistent with (T, T™) and, for any T satisfying the above assump-
tions, T is consistent with (T, T7) if and only if L(T) = L(S).

In the context of finite-state automata with output, a conformance test is
defined as a single input sequence z such that L(Z) = L(S) if and only if 7
and S produce identical outputs on input z. Further, it is necessary to assume
that the underlying directed graphs of S and Z are strongly connected, in order
to ensure that every state can be explored. In the context of modular VPAs,
some states may only be reachable together with certain stack configurations.
Hence, it is necessary to assume that the underlying (infinite) configuration
graph is strongly connected. To simplify matters, we assume that we can “reset”
both the specification & and the implementation Z to their respective initial
configurations. This decomposes the single input into a set of tests, which we
call a sample.

Let Qs (the states of S) be {q1,¢2,...,qn}, with access strings (mq,p;)w,
(ma, p2)ws, ..., (My, pn)w, respectively, and let the set of final states of S be
Fs. Assume without loss of generality that the access string for every entry
state g, of S is (m,p), and that q1 = ¢5? . Let Q7 (the set of states of Z) be
{G1,G2,-.- ,q4n}, let g1 = Gk, and let the set of final states of Z be Fr.

Since S is minimized and has n states, for Z to be equivalent to S it is
necessary for Z to have at least n distinct states. Using the fact that S, be-
ing minimized, has a complete set of distinguishing tests, we construct a sam-
ple (T,F,T, ) such that any modular VPA consistent with it has at least n
states. Let D be a complete set of distinguishing tests for S. Hence, for ev-
ery distinct pair of states g¢;,q; in module m, there is a distinguishing test
(uij,vij) € D for {g;,q;}. For every i = 1,... ,n, let D; = (J;{(usj,vij)}. Define
To = Ui {u(m;, pi)w;v | (u,v) € D;}. Let Ty" = ToNL(S) and Ty, = Tp \ L(S).
The following lemma is easy to prove.

Lemma 3. If T is consistent with (T;, Ty ), then

1. for every i # j, (mi,pi)w; and (mj,p;j)w; are access strings for distinct
states of T (hence N > n)

2. there are access strings {x;}N., for all states of I, where x; = (m;, p;)w; for
it =1,...,n and for i > n, x; is of one of the following forms: x; = ya,
where a € Xing; or x; = yzr, where y,z € {x1,Za,... ,x;—1} and z # x1.

Note that every access string z; of Z is of the form (m,p)w for some m €
M,p € P,,,w € WM. Assume without loss of generality that for each i, x; is
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an access string for ¢;. If Z is equivalent to S, it is necessary that for each i, x;
is an access string of a final state of Z if and only if z; is an access string of a
final state in S. We define a sample (T}, 7;") such that 7 is consistent with this
sample if this condition holds.

Define h : Q7 = Qs as follows: h(§;) = g; iff x; is an access string for ¢; in
S. Define Ty = {x; | i=1,... ,N}. Let T}V = Ty N L(S) and T, = Ty \ L(S).
We immediately have the following lemma:

Lemma 4. If T is consistent with (T;",T"), then for every 1 <i <n, §; € Fr
iff h(qi) € Fs.

Our goal is to design a sample (T, T ™) such that if Z is consistent with it,
then L(Z) = L(S). In view of Lemma 4, it is enough to construct a sample such
that if Z is consistent with it, then for every u € MR, h(§;) —s h(q;) whenever
lji i>1 (jj. Define

To = U {uz;av | a € Ziy, (u,v) € Dj where h(g;) s ¢}
n ~ h(q;

Ts = U; joy {uzjzirv | (u,v) € Dy, where h(g;) ), S k)
It is not hard to see that if 7 is consistent with (T2 N L(S),T> \ L(S)), then for
every a € iy, h(Gi) s h(qg;) whenever §; L g;- Similarly, it can be show that
if 7 is consistent with (75 N L(S),T5 \ L(S)), then h(g;) M)g h(qr) whenever
di ﬂm dr- Finally, since we had assumed that the access string for each entry
state ¢?, of S was (m,p) and z; = (m,p) for some 1 < j < n, it follows that

h(gk,) = ¢,. Hence, h(g;) M)s h(gk,) whenever §; M)I GF,. The following

Theorem now follows.
Theorem 4. LetT = ToUT,UToUT;. If T is consistent with (TNL(S), T \ L(S)),
then L(Z) = L(S)

Proof. By the above observations, for any string u € MR, it follows by induction
on the length of u that h(q;) —s h(g;) whenever g; S ¢;. Now Lemma 4 implies
that L(Z) = L(S). O

By the above Theorem, a conformance test (7,7 ~) for (S,Z) can be con-
structed given a complete set of distinguishing tests D for S, and a set of access
strings for all states of Z. We show how these requirements can be met.

6.1 Constructing a complete set of distinguishing tests

Lemma 5. If S is a minimized deterministic complete modular VPA with at
most n states, a complete set of distinguishing tests D can be constructed effec-
tively.

The proof of the above lemma is deferred to Appendix C. Let 2 = XU {z;}};.
The following lemma is a simple corollary to Lemma 5.

Lemma 6. A complete set of distinguishing tests D for S can be represented as
(72‘) strings in 2%, each of length O(n?), where n is the number of states of S.
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6.2 Constructing access strings

Let (2 be as defined above, and let 2' = QU{z,+1,...,zn}. By Lemma 3,if 7 is
consistent with (TO+ , Ty ), there is a system of N —n equations, each representable
by O(1) symbols in §2', describing the set of access strings for all states in Z.

N- .
There are at most (N|X| + N2)" " such systems of equations, at least one of
which describes a correct set of access strings for Z. Assuming | Y| is a constant,
a set of access strings for Z can be represented in O(nlogn + N2>(N=7) Jog N)
space.

7 Black Box Checking

Our learning algorithm, along with our algorithm to generate conformance tests,
can be used in a powerful way to model checking black-box programs whose
structure is unknown. Black-box checking was first introduced in [11], and in
this framework one assumes that while the structure of the system is unknown,
it can be simulated to see if it exhibits certain behaviors. The main idea is
to use a machine learning algorithm to construct a model of the program and
then use the constructed machine model for verification. Our learning algorithm
requires a teacher to answer both membership and equivalence queries. So in
order to use our learning algorithm to construct a model of the program, we
will need to find a way to answer these queries. Membership queries correspond
to whether a certain sequence of steps is executed by the system; thus they
can be answered by simulating the system. Equivalence queries are handled by
constructing a conformance test. We assume that an a priori upper bound on the
size of the model of the program is known. When the learning algorithm builds
a hypothesis machine, we construct a conformance test using the hypothesis
as the specification and the program as the implementation. If the program
behaves the same way as the constructed hypothesis, then we have constructed
a faithful model of the program. One the other hand, if the program differs from
the hypothesis, then the conformance test gives us the counter-example needed
for the learning algorithm to refine its hypothesis. Thus, using the learning and
testing algorithms presented here, we can perform black-box checking of recursive
programs.
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A Minimization of recursive state machines

Lemma 1. Let M R = ({Qm,{¢% }pepr,,,Om tmen) be an RSM and let k be the
mazimum number of parameters for any module. Then there exists a complete
modular VPA A such that L(A) = {w € WM | Vv < w,v € L(R)}. 3 Further,
the size of A is at most k times R, and A is deterministic if R is deterministic.

Proof. Build an automaton by making one copy of g € @,, for each parameter
p: let the state-space hence for each m hence be @), X Py,. Now, the entry state
for (m,p) will be (¢2,,p), and hence all entry states are different. Intuitively,
the state in the called modules remember the parameter that was passed to the
module when it was called. Change return edges so as to return to appropriate
states (i.e. on popping (g,p), the return edge must go to a state of the form
(¢’,p)). This transformation does not change the language of the RSM.

Now, let us complete the RSM. Introduce a dead-state dead,, for each m €
M. whenever there is an internal or return edge missing, throw in an edge that
goes to the appropriate dead-state of the module. Note that on calls, we cannot
go to the dead state, but must go to the entry of the module called. However,
since the new automaton will accept only well-matched words, this is alright and
we will transition to a reject state when the call returns and hence effectively
disable the call. Finally, if the call to (m’,p") is disallowed from (q,p), then
remove all transitions from states (¢',p') in module m' that pop (¢, p) and throw
in a return transition that pops (¢, p) and goes to state dead,,. Note that if the
call-edge from (q,p) is taken, then at the corresponding return the automaton
would reach the dead-state and hence reject all runs on well-matched words that
take this call-transition.

It is easy to see that the resulting automaton satisfies the requirements of
the lemma.

Lemma 2. Let R be an RSM, and let A be the complete minimal deterministic

automaton such that L(A) = {w € WM | Yv < w,v € L(R)}. Then there exists
an RSM R' with the at most the number of states in A, such that L(R') = L(R).

3 < denotes the prefix relation on words.
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Proof. We will remove edges from A in order to construct R'. The removal of
edges may make some states unreachable, and these states can of course be
removed as well from R’. We will assume that the states in A are of the form
[P, w]m, as defined in the minimization construction in the last section.

Construct R’ by removing all useless transitions. A transition is useless if
there is no word in L(A) that is accepted such that the run on the word uses
the transition. We will show that L(R') = L(R).

L(R) C L(R') is clear, as if u € L(R), then by definition of RSMs, we know
that there is a v such that wv € WM N L(R), and hence uv € L(A). The run
of A on uv will make sure that all transitions that constitute the run on u are
useful. Hence none of them will be removed and R’ will have a run on wu.

For the converse, assume the contrary, i.e. there is a word in L(R') that is not
in L(R). Choose such a minimal word, that is a word such that all its prefixes
are in L(R). We will consider cases depending on the last letter in this word.
Let u(m,p)w € L(R) and u(m,p)wa € L(R') \ L(R),

Internal/Call: a € X}, U X,

A (and R') on the word u(m, p)w reaches a configuration of the form ([p, w]y,, o).
Since the transition from [p,w],, on a is present in R', it must be use-
ful. Hence there must be a word u'(m,p )w'av’ € L(A), such that R’ on
u'(m,p")w’ reaches the same state [p, w],,. But then this state must be the
same as [p’, w'];,. So we know (p,w) ~p, (p',w’).
Since u'(m, p')w'av’ € L(A), it follows that u'(m, p)wav’ € L(A), and hence
u'(m,p)wa € L(R). But if RSM R accepts u'(m, p)wa and accepts u(m, p),
then it must accept u(m, p)wa (after the run on u(m,p) in R, we can follow
the run for wa as in the run for u'(m,p)wa, since wa does not have any
unmatched returns and hence doesn’t look at the stack. This refutes the
assumption.

Return: a =r

Since a = r, we know that (m,p) # (mo,po). Now, let the state reached
in A after u be ¢g. The state A reaches reading u(m,p)w is [p,w],,. Since
u(m, p)wr € L(R'), we know that the transition on the final r from the state
[p, w];, popping ¢ is useful. Hence there must be a word u'(m,p")w'rv’ €
L(A) such that R’ on u' reaches ¢ and on u'(m,p")w’ reaches the state
[p, W], which must be the same state as [(p', w')m]. So (p,w) ~p, (p',w").
Since u'(m, p')w'rv' € L(A), it follows that u'(m, p)wrv’ € L(A), and hence
u'(m,p)wr € L(R). But if RSM R accepts u'(m, p)wr and accepts u(m, p),
then it must accept u(m, p)wr (after the run on u(m,p) in R, we can follow
the run for w as in the run for u'(m, p)wa, and then execute r since the return
edge popping ¢ is indeed enabled). This again refutes the assumption.

Figure 1 shows two non-isomorphic RSMs that are minimal and accept the
same language.
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Fig. 2. Two non-isomorphic minimum-state RSMs

Figure 2 shows that there is a language L for which the smallest modular
VPA accepting L (shown on the left) is smaller than any k-module SEVPA
accepting L.

B The Learning Algorithm for VPAs

We will now describe in detail the learning algorithm for modular VPAs. Recall
that the problem we are investigating is that of exactly learning a target context
free language L (over (M, { Py, }men; Mo, X)) by constructing a complete, mod-
ular VPA for L from examples of strings in L and those not in L. In our learning
model, we assume that the learning algorithm is interacting with a knowledge-
able teacher (often called a minimally adequate teacher) who assists the learner

19



in identifying L. We can think of the teacher as an oracle who answers two types
of queries from the learner

Membership Query The learning algorithm may select any string = and ask
whether x is a member of L.

Equivalence Query In such a query, the algorithm submits a hypothesis RSM
A.If L = L(A) then the teacher informs the learning algorithm that it has
correctly identified the target language. Otherwise, in response to the query,
the learner receives a counter-ezample well-matched string z € (L\ L(A)) U
(L(f/l\) \ L). No assumptions are made about how the counter-example is
chosen. In particular the counter-example z maybe picked adversarially.

Our goal is to design an algorithm that identifies L in time which is polynomial
in the size of the smallest modular VPA recognizing L and the length of the
longest counter-example presented to it.

The algorithm that we present is very similar to the learning algorithm for
regular languages due to Angluin [15]. However our presentation is closer in
spirit to the algorithm due to Kearns and Vazirani [26]. There are two reasons
for following the Kearns-Vazirani approach. First, the resulting algorithm is more
efficient in terms of running time and space. But more importantly, the Kearns-
Vazirani based approach is easier to understand and makes the connections to a
congruence based characterization of modular VPAs explicit.

B.1 Overview of algorithm

Let A be the smallest, complete, deterministic, modular VPA that recognizes
the target language L and let size(A) be the number of states of A. Recall from
Theorem 1, that the states of A correspond to the equivalence classes of ~,,.
Recall that we said that the learning algorithm proceeds in phases, where in
each phase it constructs a hypothesis machine, asks an equivalence query, and
based on the counter-example returned in response to the equivalence query it
changes the hypothesis machine for the next phase. The hypothesis machine
is constructed based on two pieces of information that the learning algorithm
maintains. First it maintains an equivalence relation =,, which is always guar-
anteed to be coarser than ~,,. Second, it maintains representatives for each
equivalence class of =,,. In the next section, we will outline how =,, and the
representatives are dynamically maintained, thereby completely describing the
learning algorithm in detail.

B.2 Details of the algorithm

As outlined before, the algorithm maintains an equivalence relation =,, and
a set of representatives of each equivalence class in a special data structure
called classification forest. Let S = J,, o5 Sm be the representatives. So S, is
a collection of pairs (p,w) which are representatives of the current equivalence
relation =,,,. We can also thing of S,,, be the states of A that have been discovered
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so far. In order to witness the fact that the elements of .S,,, correspond to different
equivalence classes of ~,,, the algorithm also maintains a set of distinguishing
tests Dy = U,enr Dm- Thus, Dy, consists of pairs (u,v). Each such pair is
said to distinguish (p;,w;) and (p2,ws) if exactly one out of u(m,p;)wiv and
u(m, p2)wyv is in the language L. The representatives S and distinguishing tests
D are maintained in a data structure called classification forest, which together
with the operation of sifting, identifies the equivalence relation =,.

Classification Forest. A forest F = {Tp,}menm is a collection of binary trees Ty,
one for each module m. Each internal node in T3, is labeled by a test from D,,
and each leaf is labeled by a string S,,,. The tree T}, is constructed as follows.
The root is labeled by some test d = (u,v) € D,,. We will place in the left
subtree all (p,w) € Sy, such that u(m,p)wv ¢ L and in the right subtree all
(p,w) € Sy, such that u(m,p)wv € L. We recurse this construction at the left
and right children until each (p,w) € Sy, is at its own leaf. Observe that a pair
(p1,w1), (p2,w2) € Sy, is distinguished by the test labeling their least common
ancestor. Our algorithm will dynamically maintain this forest F as it proceeds.

Sifting. We will now describe an operation called sifting that will play an im-
portant role in our algorithm. Consider (p,w) € P,, x WM. We can “sift” (p, w)
down the tree T}, in the classification forest F by making a series of membership
queries as follows. Starting at the root, if we are at an internal node labeled by
test (u,v) then we move to left child if u(m,p)wv ¢ L and otherwise we move
to the right child. We continue recursively in this fashion until we reach a leaf
and we return the label (p',w’) of reached leaf. Thus, sifé((p,w),T,,) returns a
string (p',w') € Sy, such that (p, w) agrees with (p',w') on the tests in D,,. The
number of membership queries made by sift((p,w), Ty,) is equal to the depth of
tree Tp, which is at most | Sy,

Defining the equivalence =,,. The classification forest data structure and the
sift operation naturally define an equivalence relation =, as follows.

(P1,w1) = (P2, we) M sift((pr, w1), Trm) = sift((p2,w2), Trn)

The main feature of this equivalence relation is that ~,, is a refinement of =,,.
This is formally stated and proved next.

Proposition 2. Let F = {T}, }mem be a classification forest, and let (p1,w), (p2,w2) €
Py x WM. If (p1,w1) ~m (p2,ws) then sift((pr,w:), Tin) = sift((p2, w2), Tin)

Proof. The proposition follows from the definition of ~,, in the proof of Theo-
rem 1 that (p1,w;) and (p2,wz) are equivalent if they behave identically on all
distinguishing tests (of that kind that appear in D). Thus, they will follow the
same path in T}, and reach the same leaf node.

Thus the goal of the algorithm is to refine =, until it is the same as ~,.
Our representation allows one to also decide equivalence very efficiently.
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Proposition 3. Given (p1,w1) and (p2,w=2), (p1,w1) =m (p2,w2) can be de-
cided using O(size(A)) membership queries.

Proof. Follows from the observation that sifting O(|S,,|) time. Since S,, has
exactly one representative per equivalence class of =,,, which is coarser than
~m, the proposition holds.

Constructing Hypothesis A. A classification forest F = {Tm}mem naturally
defines a modular VPA A. Each state of A will correspond to an equivalence
class of =,,, with the representative of the class from S, being used to define
the transitions. Formally, A = ({Qm, {¢% }pep,., Om }men, F') where

For each (p,w) € Sp,, we will have state (p,w) € Qp, of A

- qrp;z = Slﬁ((pa 6)7Tm)

For a state (p,w) € Qm, oz ((p,w), (m',p)) = sift((p', €), Tin')

— o ((p,w), a) = sift((p,wa), Ty,), where a € Zing

- 6;&((1)7 ’U}), (p,> w,)) = Siﬂ((pla w,(m)p)wr)) Tm’)) where (p’> wl) € Qm’

— F = Qm,NL. We will ensure (e, €) is the distinguishing test labeling the root
of Tp,,. Thus, F is just all the access strings in the right subtree of T,,,.

Observe that the transition structure of A can be very different from that of A
and A might accept a totally different language. Further A can be constructed
by making at most O(|F||X|) calls to the membership oracle.

Initial Classification Forest. The initial classification forest F = {T)n}menm is
such that T, for every m is tree with only one node (which is also the leaf).
For m # my, the node is labeled by the string (p, €), where p is some parameter
in P, (the choice of which p does not matter). In T}, the node is labeled with
(po,€). The machine A associated with this machine has exactly one state in
each module, which serves as the entry point for every parameter. All internal
transitions will be self loops, while on returns the machine will go to the unique
state of the calling module.

Processing Counter-examples Having defined the initial classification forest and
hypothesis, the only thing left for us to outline is how the algorithm uses the
counter-examples obtained in response to an equivalence query to discover a
new state of A and maintain the classification forest. As mentioned earlier, we
will ensure that (except for the initial forest) the root of T),, will be labeled
by test (e,€). This ensures that no state of A at any point during the learning
ever corresponds to a subset of states containing both an accepting state and
a non-accepting state of A. In addition, S,, will have (po,€) as a string. This
means the initial state of A will be known.

Before describing the procedure for processing a counter-example formally,
let us look at the intuition behind it. Recall that p(co, =) denotes that state

reached by machine A after reading . Similarly, let us denote by p4(co,z) the
label of the state reached by A after reading . Consider w a counter-example
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to the equivalence of A and A. Let us look at the execution of 4 and A on w.
Since exactly one out of A and A accept w and because in the partition induced
by a classification forest an accepting state and non-accepting state are never
equivalent, it must be the case that p?(co,w) and p?(cy,w) belong to different
equivalence classes. Further, we know that the initial state of A is a known state,
and so the execution of A and A on w begins in the same equivalence class. Thus,
it must be the case that there is a shortest prefix y of w such that p“(cp,y) and
p?(co,y) belong to different subsets in the partition induced by F. Let y = za
for some a € X'. Now since the machines A4 and A are deterministic, even though
pA(co,z) and p?(co,z) are equivalent, it must be the case that p(co,z) and
pA(co,z) are different states of A. Thus we have discovered a new state of A
whose access string is y. A distinguishing test for p*(co,z) and p*(co,z) can
also be constructed based on the test that distinguishes p(co,y) and p?(co,y).

To describe the counter-example processing precisely, we also need to consider
the boundary cases of when T}, for a module is a single leaf node (as is the case
initially) and that introduces some additional cases to consider. For a string
T = 21%2- -y (z; € X) and 1 < i < j < n, we will denote by z[i, j] the
substring #;;41 - - - ;. The recursive procedure update() defined in Figure B.2
processes the counter-example w. We assume that it takes as arguments the
counter-example w, indices ¢ and j such that w[i,j] € WM is the substring we
need to process, and module m inside which we examine the execution wli, j].
Initially we call update(w, 1, |w|,mp). A loose analysis shows that a counter-
example can be processed by making O(Jw|) membership queries.

update(w, i, j, m)

If T, is tree with a single leaf node then
Replace the leaf labeled by (p,€) by root labeled (w[1,i — 1], w[j, n])
with two children labeled with (p,€) and wli, j — 1]

Else
let k1 be the smallest number such that w[i + 1,k1] € WM and sift(Trm, w[i, k1]) # p”(
let wi + 1, k2] be the longest WM strict prefix of w[i + 1, k1]; so sift(Tm, w[i, k2]) = p® (co, wl[i, k2])
If kz = kl -1 (i.e., U)]c1 € Eint) then

Replace the node labeled p”(co,w[i, k2]) with an internal node and two leaves.

Co,w[i,kl])

The leaves are labeled by p”(co, wli, k2]) and w[i, k»].

The distinguishing test labeling the new internal node is (u,wy, v) where

(u,v) is the test that distinguishes sift(Tn, w[i, k1]) from p?(co, wli, k1))
Else

Let w[ks + 1, k1] be of the form (m’,p)w'r

Call update(w, k> + 1,k1,m')

Fig. 3. Procedure to update classification forest
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Overall Algorithm. The algorithm starts by constructing the initial classification
forest F and the associated hypothesis A. It then makes an equivalence query
on A. The counter-example returned is then used to update the forest, construct
a new machine, and make another call to the equivalence oracle on the new
machine. This process is repeated until the equivalence query succeeds.

Complezxity Analysis. The main loop of the algorithm (that makes calls to the
equivalence oracle) will be executed size(A) number of times because in each iter-
ation we discover a new state of A. Further at any point |F| is at most O(size(A)).
Thus each iteration of the main loop makes at most O(size(A) + n) calls to the
membership oracle, where n is the length of longest counter-example returned by
the equivalence oracle. This the total running time is O(size(A)(size(A) + n)).

Theorem 5. Let L be a language accepted by a complete, deterministic VPA
and let A be the smallest modular VPA accepting L. The learning algorithm
identifies R by making at most size(A) calls to the equivalence oracle, and
O(size(A)(size(A) + n)) calls to the membership oracle, where n is the length
of the longest counter-ezample returned by the equivalence oracle.

C Conformance Testing

Lemma 5. If S is a minimized deterministic complete modular VPA with at
most n states, a complete set of distinguishing tests D can be constructed effec-
tively.

Proof. Note that (u,v) is a distinguishing test for distinct states g;,g; in the
same module m of § iff one of the following conditions holds:

1. v =€, in which case m = myg, v = € and exactly one of {¢;,q;} is in Fs; or

2. v = av' for some a € Y, in which case (u,v') is a distinguishing test for
{qr, @}, where ¢; % g and ¢; = q; or

3. v = (m/,p)wrv’ for some (m',p) € Yean and w € WM, in which case there
is a state ¢ € Q. (M’ # mp) with access string (m/, p)w such that ¢ L gk
and ¢ N q, and (u,v") is a distinguishing test for {qx,q }; or

4. v = rv' and u = u/(m', p)w, in which case there is a state ¢ € Qs (m' # myg)
with access string (m', p)w such that ¢; % ¢, and ¢; = ¢, and (u',v") is a
distinguishing test for {qx, q}-

We will use the above characterization of distinguishing tests to construct D.
For every m € M and p € P, let

Winp ={q € Qm | 3w € WM such that (m,p)w is an access string for ¢}

Define the directed graph Gs = (V, E) where the vertex set V = |J,,cps @m X
Qm, and the edge set E is defined as the smallest set such that (¢;,q;) —
(qk, @) € E whenever ¢; € Wi pis @5 € Winpis @k € Wt pis @t € Wi p, and one
of the following conditions holds:
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Type 1 edge: m = m’ and ¢; — ¢ and q; 2 ¢ for some a € Xiyy; or
Type 2 edge: m = m' and 3g € Wy, , such that ¢ 2 gr and ¢ &, qr; or
Type 3 edge: p;, = p; = p' and ¢ € Wy, ,» such that ¢; 4y qr and q; L aq.

Note that for every ¢;,q; € Qm, such that ¢; € Fs and ¢; ¢ Fs, (e,€) is
a distinguishing test for {g;,q;}. Further, if (u,v) is a distinguishing test for
{gk, @} and e = (¢;,¢;) = (gx,q) is an edge in E, then

1. (u,av) is a distinguishing test for {g;, g;}, if e is an edge of type 1 above;

2. (u, (m",p)wpr 4rv) is a distinguishing test for {g;, ¢;}, if e is an edge of type
2 above;

3. (u(m',p")wy 4, rv) is a distinguishing test for {¢;,¢;}, if e is an edge of type
3 above.

Hence, a distinguishing test for {g;,g;} can be found effectively by determin-
ing a path from (g;, ¢;) to a vertex (gx, ¢;) in G's such that exactly one of {qx, ¢}
is in Fs. Determining such a path for every pair of distinct states within each
module yields a complete set of distinguishing tests D.
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