
InformatIon and Control SyStemS:
mathematICal modelIng 

49Technology audiT and producTion reserves — № 4/2(36), 2017, ©  Riznyk V., Solomko M.

ISSN 2226-3780

numerical values of the analytical calculations obtained 
during the research.
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планирование маршрутов полета Беспилотных 
летательных аппаратов путем решения Задачи 
коммивояжера

Рассмотрены методы решения задачи коммивояжера для 
планирования маршрутов полета беспилотных летательных 
аппаратов и проанализированы результаты работы. Показа-
но, что метод усредненных коэффициентов решает задачу 
оптимально по критерию расстояния, использование которого 
обеспечивает минимальные эксплуатационные расходы полета 
беспилотных летательных аппаратов и дает существенный вы-
игрыш (5–10 %) в сравнении с другими методами.
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рут, планирование маршрутов, беспилотные летательные ап-
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mInImIZatIon of Boolean funCtIons 
By ComBInatorIal method

Розглянуто поширення принципу мінімізації за допомогою алгебричних перетворень на метод 
мінімізації з використанням комбінаторної блок-схеми з повторенням. Математичний апарат 
блок-схеми з повторенням дає більше інформації стосовно ортогональності, суміжності, одно-
значності блоків комбінаторної системи, якою є власне таблиця істинності заданої функції, 
тому застосування такої системи мінімізації функції є більш ефективним.

ключові  слова: булева функція, метод мінімізації, мінімізація логічної функції, блок-схема 
з повторенням, мінтерм.

riznyk V., 
solomko m.

1.  Introduction

The problems and shortcomings of the known methods 
for minimizing Boolean functions are associated with a rapid 

growth in the amount of computation, which results in an 
increase in the number of computational operations, and, 
consequently, in the increase in the number of variables 
of the logical function.
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The following methods for minimizing Boolean func-
tions are known [1–5]:

– Blake-Poretsky method;
– Nelson method;
– Karnaugh map method;
– Quine method;
– Quine-McCluskey method;
– Veitch diagram method;
– method of algebraic transformations;
– Petrik method;
– Roth method;
– a method of minimizing functions in bases YES-NO 
and OR-NOT (Schaeffer and Pierce basis);
– method of undetermined coefficients;
– hypercube method;
– functional decomposition method;
– heuristic algorithm for Espresso minimization.
The Boolean function f x xn( ,..., )1  that describes the 

operation of a logical device can be realized with the help 
of a disjunctive normal form (DNF), which in this case 
describe the scheme of the corresponding logical device. 
The problem of minimizing DNF is one of the multiex-
tremal logical-combinatorial problems and is reduced to 
optimal reduction of the number of logical elements of 
the gate system without loss of its functionality.

Functions with a large number of variables (more than 
16 variables) can be minimized only in a certain sense, 
not guaranteeing the achievement of the optimal solution 
with the help of the heuristic Espresso algorithm, which 
today is documented by the world standard [6].

The result of minimizing the Boolean function depends 
on the speed of computing device, its reliability and ener-
gy savings. Since Espresso minimization algorithm does 
not guarantee optimal minimization of Boolean function 
with increasing number of variables, the search for new 
minimization methods remains relevant. Carrying out the 
minimization of the logical function is one of the central 
and practically important problems that arises during de-
velopment of the computing attachments. 

2.   the object of research and   
its technological audit

The object of research is the problem of minimizing the 
Boolean function by a combinatorial method – a block-
diagram with repetition. Since the block-diagram with 
repetition is actually the truth table of this function, it 
allows concentrating the minimization principle within the 
function calculation protocol. The tabular organization of 
the mathematical apparatus of the repetition block-diagrams 
also makes it possible to obtain more information about 
the orthogonality, contiguity, uniqueness of truth table 
blocks (combinatorial system). Equivalent transformations by 
graphic images, in their properties have a large information 
capacity, capable of effectively replacing verbal procedures 
of algebraic transformations, in particular using the library 
of submatrices. This efficiency of the combinatorial method 
makes it possible to carry out manual minimization of 4, 
5-bit Boolean functions without difficulty.

The graphical properties of the combinatorial method 
make it possible to obtain a minimal function by several 
variants of the search, reduces the search, the search for 
the function becomes more definite, and, consequently, 
the complexity of the minimization algorithm decreases.

The complexity of the search algorithm by the com-
binatorial method is O(n) and is linear – the execution 
time of the algorithm with increasing bit depth of the 
function n grows linearly.

Combinatorial method allows automation by its protocol 
and is able to support aggregated minimization systems 
by combining with other apparatus of other methods for 
minimizing Boolean functions.

The disadvantages of the combinatorial method of manual 
minimization are associated with the growth of the num-
ber of variables (more than seven or eight) of the logical 
function. Minimizing a function with a large number of 
variables requires updating the library of submatrices on 
which the figurative calculus of the combinatorial method 
is based.

3.  the aim and objectives of research

The aim of research is development of a method for 
minimizing a logical function, using a combinatorial device 
of a block-diagram with repetition and establishing the 
properties of such method.

To achieve this aim, it is necessary to solve the fol-
lowing tasks:

1. To establish the adequacy of using a combinatorial 
block-diagram device with repetition to create a method 
for minimizing the Boolean function.

2. To determine the properties of the apparatus of 
a combinatorial method for minimizing Boolean functions, 
in particular, to represent the apparatus of figurative cal-
culus for equivalent transformations of conjunctors.

3. To determine the verification of the combinatorial 
method and obtain an estimate of the complexity of the 
algorithm for finding the minimal function by a combi-
natorial method.

4. To conduct a comparable analysis of the performance 
and quality of minimization of Boolean functions obtained 
by the combinatorial method, with examples of minimizing 
the function by other methods.

4.   research of existing solutions   
of the problem

In [7], the conditions of logical minimization of the 
Boolean function represented in DNF are considered. If 
the function satisfies the following conditions, then to 
simplify it, the classical Quine-McCluskey minimization 
algorithm is applied, which allows automation. It is noted 
that the number of function variables for the program 
code is limited by the computer’s memory.

In [8], generalized rules for simplifying the conjunc-
tors in a polynomial set-theoretic format are considered, 
based on the proposed theorem for various initial condi-
tions for the transformation of a pair of conjunctors, the 
gemming distance between which can be arbitrary. These 
rules can be useful for minimizing in the polynomial set-
theoretic format arbitrary logical functions of n variables. 
The effectiveness of the proposed rules is demonstrated by 
examples of minimization of functions borrowed from the 
work of well-known authors for the purpose of comparison. 
Given the comparative examples, the proposed rules give 
grounds for confirming the expediency of applying them 
in the procedures for minimizing any logical function of 
n variables in polynomial form.
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In [9], a simple and systematic method for minimizing 
a logical function is proposed. The method consists in 
reducing the truth table from N variables N–1, N – from 
1 to N–2, and so on in a sequence until all variables are 
exhausted with built-in all possible simplifications, after 
each reduction. The obtained resultant expression for F 
will be minimal.

In [10], an algorithm and program for minimizing com-
binational logic functions up to 20 variables is presented, 
but the number of variables is limited only by the memory 
of the computer system. The algorithm is based on the 
sequential clustering of terms, beginning with the grouping  
of terms with one change. The clustering algorithm ends 
when the variables can no longer be grouped. This al-
gorithm is analogous to the Quine-McClusky algorithm, 
but it is more simplistic, since it eliminates a number 
of actions necessary for implementation of the Quine-
McCluskey algorithm

In [11], a discussion is presented on the role of the 
autosymmetry degree of variables in a Boolean function 
and why it deserves attention on minimizing a logical 
function. The regularity of the variables of a Boolean 
function can be expressed by the degree of autosym-
metry, which in the end gives a new tool for effective 
minimization.

In [12], the method of logical-minimized image com-
pression, which depends on the logical function, is dem-
onstrated. The minimization process treats neighboring 
pixels of the image as separate minterms representing  
a logic function and compresses 24-bit color images using 
the function minimization procedure. The compression 
ratio of such method is on average 25 % larger than the 
existing methods of image compression.

The paper [13] demonstrates how to increase the ef-
ficiency of minimizing a logical function by applying M-
terms. It is noted that implementation of the method is 
possible for any number of variables.

Work [14] demonstrates the use of a genetic algorithm 
for selecting side objects of the procedure for minimizing 
a logical function using the Karnaugh map.

A new heuristic algorithm is proposed in [15] for maxi-
mum minimization of Boolean functions. Graphic data 
is used to implement the proposed algorithm. There are 
also some conditions for achieving the maximum level of 
minimization of the Boolean function.

In [16], the optimal simplification of Boolean func-
tions by means of Karnaugh maps is considered, using 
the object-oriented minimization algorithm. Analysis of 
the performance of the proposed algorithm is presented.

In contrast to [7–16], in this paper, the object of 
solving the problem of minimizing a Boolean function is 
a combinatorial block-diagram with repetition, which al-
lows to concentrate the minimization principle within the 
truth table of a given function. The peculiarities of the 
combinatorial method consist in greater informativeness 
of the process of solving the problem in comparison with 
the algebraic method of minimizing the function, due to 
tabular organization and the introduction of figurative 
calculus apparatus. In this regard, the procedure for mini-
mizing the function becomes more tangible, and, therefore, 
more reliable, simplified. Combinatorial method allows its 
automation and is able to support aggregated minimiza-
tion systems by combining with other apparatus of other 
methods for minimizing Boolean functions.

5.  methods of research

5.1.  minimization  of  Boolean  functions  by  means  of 
an  acyclic  graph.  To minimize the function that simu-
lates the operation of a logical device is possibly using  
the method in which an acyclic graph is used [17]. 
To do this, two arcs are drawn from the initial vertex  
of G (the root of the graph): the left arc corresponds 
to the value of the variable x j ,  and the right – vari-
able x j .  From each vertex of the first and subsequent 
levels, two arcs are drawn again according to the same 
rule, where each vertex forms two child vertices of the 
lowest level. Thus, from each vertex of the i-th level, 
two arcs are drawn, where the left arcs correspond to 
the direct value of the variable, and the right ones to 
the inverted one. The number of such entries is equal 
to the number of variables entering the created min-
term (and, consequently, the number of levels of the 
acyclic graph) (Fig. 1).

x1 ¬x1

y

x2 x2
¬x2¬x2

x3
¬x3¬x3 x3 ¬x3 x3 ¬x3 x3

m7               m6    m5                 m4    m3                m2 m1                   m0

fig. 1. The acyclic graph G for a function of three variables Y

It can be seen from Fig. 1 that each path in this graph 
from a finite vertex (in this case from the third level)  
to the root of the graph (to 0-level) identifies a certain min-
term: m x x x0 1 2 3= ,  m x x x1 1 2 3= ,…, m x x x7 1 2 3= .

In the general case, each logical function can be rep-
resented by an acyclic graph of the form:

G M X= { }, ,

where M m m mk= { }1 2, ,..., , X x x x x x xn n= { }1 1 2 2, , , ,..., , .

The acyclic graph G with n levels is to be decomposed 
into components G G G Gi n1 2, ,..., ...,.  in order to identify the 
possibility of gluing the i-th variable according to the 
dependence:

G x G x Gi i i i i∨ = .

The minterms, which values are equal to one on the 
graph G, are denoted by black circles (Fig. 1).

The division of the acyclic graph G must begin from 
the terminal vertices to the root of the graph. For exam-
ple, for the graph in Fig. 1:

G M x x3 3 3 3= ∨( ){ }, ,

G M x x M m m m m2 2 2 2 2 0
2

1
2

2
2

3
2= ∨( ){ } = { }, , , , , ,  (1)

G M x x M m m1 1 1 1 1 0
1

1
1= ∨( ){ } = { }, , , . 
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For the n-th variable:

G M x x M m m mn n n n n
n n

n
n= ∨( ){ } = { }, , , ,..., . 0 1

Analyzing the system of equations (1) obtained by 
dividing the acyclic graph into three (n = 3) components, 
it is easy to see that the process of minimizing the perfect 
disjunctive normal form (PDNF) of a Boolean function 
reduces to passing the path from a finite vertex of the 
third level to the root of the graph. PDNF minimization 
of a Boolean function is accomplished by gluing variables 
at appropriate levels.

The acyclic graph G for a function:

Y x x x x x x x x x x x x= + + +1 2 3 1 2 3 1 2 3 1 2 3

is shown in Fig. 1. Black minterm is shaded, from which 
the function Y actually consists. As a result of the separa-
tion of graph G, at the 3-rd level the gluing procedure will 
pass between the variables of minterms m m7

3
8
3−  – get x x1 2 .  

For variable of minterm m5  gluing will take place at the 
2-nd level – get x x1 3. For variable of minterm m2  gluing  
will take place at the 1-st level – get x x2 3 . In the end 
we find a minimized function:

Y x x x x x x= ∨ ∨1 2 1 3 2 3.  (2)

The function (2) satisfies the given truth table (Table 1).

table 1

The truth table of a logical function Y x x x x x x x x x x x x= + + +1 2 3 1 2 3 1 2 3 1 2 3

No. x1 x2 x3 Y No. x1 x2 x3 Y

0 0 0 0 0 4 1 0 0 0

1 0 0 1 0 5 1 0 1 1

2 0 1 0 0 6 1 1 0 1

3 0 1 1 1 7 1 1 1 1

5.2.  Combinatorial  method  for  minimization  of  Boolean 
functions.  The concept of Boolean functions and DNF 
are closely connected with many concepts of combinato-
rial analysis, in particular, with the notion of covering. 
Let C = (X1, ..., Xn) be some family of subsets of X, and 
let Y X⊆ . Then Y is a covering for C if the condition 
X Yi ∩ ≠ ∅ holds for any Xi with C. Covering of Y is said 
to be reduced for C if any of its proper subsets is not 
a cover for C. The set of all reduced covering for C is 
denoted by P(C).

With combinatorial analysis, it is known that a graph 
can be represented in the form of an appropriate block-
diagram [18]. Hence it follows that the acyclic graph for 
a logical function can be analyzed from the truth table in 
the form of a block-diagram with a repetition (Table 1). 
Consequently, the principle of minimization with the help 
of an acyclic graph can be extended to a minimization 
method using combinatorial block-diagrams (Table 2).

It should be noted that, unlike the PDNF minimiza-
tion by the acyclic graph method, where the minimization 
procedure reduces to the passage of the path from the 
final vertex of the lower level to the root of the graph in 
order to glue variables at the appropriate levels, using the 
block-diagram with repetition, the minimization process in 
the part of the gluing of the variables reduces to search 

for blocks with the same variables in the corresponding 
bits, except for one variable. Given the tabular organiza-
tion of the combinatorial method, this makes it possible 
to improve the search efficiency of the minimal function.

table 2

Thesauri of minimization methods

No.
Thesaurus of minimization. 
With the help of an acyclic 

graph

Thesaurus of minimization.  
Using a block-diagram with repetition

1 Acyclic graph Combinatorial system with repetition

2 Path (branch) in the graph
Block of variables of a combinatorial 
system

3 Variables Variables

4 Laws of algebra of logic Laws of algebra of logic

5 – Figurative calculus

Minimization of the logical function by combinato-
rial method is carried out as follows. At the first stage, 
blocks (constituents) are identified with variables, and can 
be glued together. The next step is search for sets of pairs 
of blocks (implicants) with the possibility of minimizing 
them by replacing (gluing, absorbing) the variables in these 
pairs. The resulting sets of blocks are again minimized 
in a similar way, etc., until a deadlock DNF (DDNF) is 
obtained. Among the set of DDNFs there are also mini-
mal functions (MDNF). At the last step, the minimized 
function is verified by applying the optimality criterion 
and the specified truth table.

The process of minimizing by a combinatorial method 
a logical function is shown in Fig. 1 looks like this.

Y x x x x x x x x x x x x= + + +1 2 3 1 2 3 1 2 3 1 2 3 .

1-st option:

Y = = = =

1 1 1

0 1 1

1 0 1

1 1 0

1 1

1 1

1 0 1

1 1 0

1 1

1 0 1

1 1 0

1 1

1 1

1 1

.

In the first matrix, the variables are glued together 
in the 1-st and 2-nd blocks, in the second matrix, the 
variables are replaced in the 2-nd and 4-th blocks.

2-nd option:

Y = = = =

1 1 1

0 1 1

1 0 1

1 1 0

1 1

0 1 1

1 0 1

1 1

0 1 1

1 0 1

1 1

1 1

1 1

1 1

.

In the first matrix, the variables are glued together 
in the first and fourth blocks, the second matrix replaces 
the variables in the second and third blocks.

As a result, the function for the two variants is mini-
mized and has the form Y x x x x x x= ∨ ∨1 2 1 3 2 3 that coincides 
with (2).

In the general case, when minimized by a combinatorial 
method, the following rules of the algebra of logic are used:

– gluing of variables – ab ab a+ = ;
– generalized gluing of the variables – xy xz xy xz yz+ = + + ; 

xy xz xy xz yz+ = + + ;
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– substitution of the variable – a ab a b+ = + ;
– absorbing of the variable – ab a a b a+ = + =( ) ;1
– idempotency of the variables – a a a+ = , aa a= ;
– addition of the variable – a a+ = 1, aa = 0;
– repetition of the constant – a a+ =0 , a a⋅ =1  and 
others.
Algebraic transformations of the combinatorial method 

for minimizing the Boolean function can be replaced by 
equivalent transformations by means of submatrices (graphi-
cal images). The procedure for gluing using submatrices 
can be illustrated as follows:

x x x x x x x x1 2 1 2 1 2 2 1+ = + =( ) ,

0 0

0 1

0

0 0
    → → ,

x x x x x x x x1 2 1 2 2 1 1 2+ + + =( ) ,

1 1

0 1

1

1 1
    → → .

Applying a graphic image, it is possible to illustrate 
other algebraic transformations.

Generalized gluing:

x x x x x x x x x x1 2 1 3 2 3 1 3 2 3+ + = + ,

1 1

1 1

1 0

1 1

1 0

  → ,

x x x x x x x x x x1 3 2 3 1 3 2 3 1 2+ = + + ,

1 1

1 0

1 1

1 1

1 0

  → .

Substitution of the variable: 

x x x x x x x x x

x x x x x x x
1 2 1 2 3 1 2 2 3

1 2 3 1 2 1 3

+ = + =
= + = +

( )

( ) ,

1 1

1 0 1

1 1

1 1
  → .  

Absorbing of the variable: 

x x x x x x x x x x1 3 1 2 3 1 3 2 1 31+ = + =( ) ,

1 1

1 0 1

1 1
  → .  

Idem potency of the variables: 

x x x x x x1 2 1 2 1 2+ = ,

1 1

1 1 1 1
  → .  

Since the graphic images give more information about 
the orthogonality, contiguity, uniqueness of the blocks of 
the combinatorial system, so using them when searching 

for objects for equivalent transformations, in the process 
of minimizing the logical function, is effective.

5.3.  minimization  of  4-bit  Boolean  functions.  The com-
binatorial method easily minimizes 4-bit Boolean functions.

Example 1. To minimize the logic function F x x x x( , , , )1 2 3 4  
by the combinatorial method given by the following truth 
table (Table 3) [17].

table 3

The truth table of a logical function F x x x x( , , , )1 2 3 4

No. x1 x2 x3 x4 F No. x1 x2 x3 x4 F

0 0 0 0 0 1 8 1 0 0 0 0

1 0 0 0 1 1 9 1 0 0 1 1

2 0 0 1 0 1 10 1 0 1 0 1

3 0 0 1 1 1 11 1 0 1 1 1

4 0 1 0 0 0 12 1 1 0 0 0

5 0 1 0 1 0 13 1 1 0 1 1

6 0 1 1 0 1 14 1 1 1 0 1

7 0 1 1 1 0 15 1 1 1 1 1

Let’s compose the perfect disjunctive normal form (PDNF)  
of the given function with respect to the blocks for which 
the function gets the value of unity, that is, for the sets 0, 1,  
2, 3, 6, 9, 10, 11, 13, 14, 15.

F x x x x x x x x x x x x

x x x x x x x x x x x

( , , , )1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3

= + +

+ + + xx

x x x x x x x x x x x x

x x x x x x x x x x x x

4

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3

+

+ + + +

+ + + 44.

The first step is gluing of the constituent (first blocks).
The variables for the first gluing are in blocks 1 and 

2, 3 and 4, 6 and 9, 7 and 8 and 10 and 11 (3). In (3), 
the first step is shown on the first three matrices.

The second step is to glue together the implicants – to 
search for pairs of blocks that have matching variables in 
the corresponding bits, except for one variable, followed 
by replacement (gluing, absorbing) in these pairs.

Obviously, the substitution of variables for the 4-th, 
5t-h and 9-th, 11-th blocks of the fourth matrix (3):

x x x x x x x x x x x

x x x x x x x x x

1 2 1 2 3 4 1 2 2 3 4

1 2 3 4 1 2 1 3 4

+ = + =

= + = +

( )

( ) ,  (4)

F = =

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 1 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0

0 0 0

0 0 1

0 0 11

0 1 1 0

1 0 1

1 0 1

1 0 1

1 0 1

1 1 1

1 1 1

0 0 0

0 0 1

0 1 1 0

1 0 1

1 0 1

1 1 1

0 0

0 0

0 1 1 0

1 1

1 0 1

= =

11 1

0 0

0 1 1 0

1 0 1

1 1

= =  (3)
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0 0

0 1 1 0

0 0

0 1 0
  → ,

x x x x x x x x x

x x x x x x x
1 3 4 1 3 1 3 4 3

1 4 3 1 4 1 3

+ = + =
= + = +

( )

( ) ,
 (5)

1 0 1

1 1

1 1

1 1
  → .

After the procedures (4) and (5) let’s obtain an inter-
mediate matrix:

= =

0 0

0 1 0

1 1

1 1

Obviously, the substitution of variables for the 2-nd 
and 4-th blocks of the intermediate matrix:

x x x x x x x x x

x x x x x x x

1 3 4 1 3 3 1 4 1

3 4 1 1 3 3 4

+ = + =

= + = +

( )

( ) ,
 (6)

0 1 0

1 1

1 0

1 1
  → .

After the procedure (6), let’s get the last intermediate  
matrix:

= =

0 0

1 0

1 1

1 1

The generalized substitution of variables for the 2-nd, 
3-rd and 4-th blocks of the last intermediate matrix is 
obvious:

x x x x x x x x x x3 4 1 4 1 3 3 4 1 4+ + = + .

1 0

1 1

1 1

1 0

1 1  → ,

=

0 0

1 0

1 1
.

As a result, let’s get the minimum function:

F x x x x x x= + +1 2 1 4 3 4.  (7)

The third step is the verification of the obtained mini-
mized function (7) using the original truth table (Table 3).

The minimized logic function (7) satisfies the original 
truth table.

Table 4 shows the results of minimizing the function 
F x x x x( , , , )1 2 3 4  using an acyclic graph [17] and the com-
binatorial method.

table 4

Results of minimizing the function F x x x x( , , , )1 2 3 4

Minimization by acyclic  
graph

Minimization by combinatorial 
method

F x x x x x x x x x x x= + + +1 2 1 4 1 3 4 1 2 3 4 F x x x x x x= + +1 2 1 4 3 4

Considering Table 4 we see that the combinatorial 
method gives a function with a smaller number of input 
variables.

5.4. minimization of 5-bit Boolean functions. The combi-
natorial structure of the truth table of the 5-bit function 
is more complex compared to the 4-bit function, because 
of which there are more minimization options from the 
first step. For example, in the first step of minimizing the 
5-bit function, it is possible to detect pair of blocks and 
sets of three blocks that allow for gluing and replacing 
variables. In the general case, the minimization of the 
combinatorial method of the 5-bit function is analogous 
to minimizing the 4-bit function.

Example 2. To minimize the logical function by the 
combinatorial method specified by the following table of 
truth (Table 5) [19].

table 5

The truth table of the logical function F x x x x x( , , , , )1 2 3 4 5

No. x1 x2 x3 x4 x5 F No. x1 x2 x3 x4 x5 F

0 0 0 0 0 0 0 16 1 0 0 0 0 1

1 0 0 0 0 1 1 17 1 0 0 0 1 1

2 0 0 0 1 0 – 18 1 0 0 1 0 1

3 0 0 0 1 1 – 19 1 0 0 1 1 0

4 0 0 1 0 0 1 20 1 0 1 0 0 –

5 0 0 1 0 1 1 21 1 0 1 0 1 0

6 0 0 1 1 0 0 22 1 0 1 1 0 1

7 0 0 1 1 1 1 23 1 0 1 1 1 0

8 0 1 0 0 0 0 24 1 1 0 0 0 0

9 0 1 0 0 1 1 25 1 1 0 0 1 0

10 0 1 0 1 0 0 26 1 1 0 1 0 –

11 0 1 0 1 1 1 27 1 1 0 1 1 0

12 0 1 1 0 0 1 28 1 1 1 0 0 1

13 0 1 1 0 1 1 29 1 1 1 0 1 0

14 0 1 1 1 0 – 30 1 1 1 1 0 –

15 0 1 1 1 1 – 31 1 1 1 1 1 1

Using Table 5, let’s compose the PDNF of the given 
5-bit function from the blocks for which the function 
receives the value of 1, that is, for the sets 1, 4, 5, 7, 9, 
11, 12, 13, 16, 17, 18, 22, 28, 31.

F x x x x x x x x x x x x x x x

x x x x x x x x

( , , , , )1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

= + +

+ + xx x x x x x x

x x x x x x x x x x x x x x x

x x x

4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3

+ +

+ + + +

+ xx x x x x x x x x x x x

x x x x x x x x x x x x x

4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3

+ + +

+ + +

 

xx x4 5.  (8)
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Let’s recall that the value of «–» of F function means 
an arbitrary state indicating that such set of input va-
riables is not expected and the value of the function  
can be arbitrary – zero or one in the process of mini-
mization.

Let’s define function F x x x x x( , , , , )1 2 3 4 5  by replacing 
the value of the «–» function by one. After replacing the 
value of the «–» function F x x x x x( , , , , )1 2 3 4 5  by one, the 
truth table (Table 5) takes the following form (Table 6).

table 6

The truth table of a logical function F x x x x x( , , , , )1 2 3 4 5   
after the value of the «–» function is replaced by one

No. x1 x2 x3 x4 x5 F No. x1 x2 x3 x4 x5 F

0 0 0 0 0 0 0 16 1 0 0 0 0 1

1 0 0 0 0 1 1 17 1 0 0 0 1 1

2 0 0 0 1 0 1 18 1 0 0 1 0 1

3 0 0 0 1 1 1 19 1 0 0 1 1 0

4 0 0 1 0 0 1 20 1 0 1 0 0 1

5 0 0 1 0 1 1 21 1 0 1 0 1 0

6 0 0 1 1 0 0 22 1 0 1 1 0 1

7 0 0 1 1 1 1 23 1 0 1 1 1 0

8 0 1 0 0 0 0 24 1 1 0 0 0 0

9 0 1 0 0 1 1 25 1 1 0 0 1 0

10 0 1 0 1 0 0 26 1 1 0 1 0 1

11 0 1 0 1 1 1 27 1 1 0 1 1 0

12 0 1 1 0 0 1 28 1 1 1 0 0 1

13 0 1 1 0 1 1 29 1 1 1 0 1 0

14 0 1 1 1 0 1 30 1 1 1 1 0 1

15 0 1 1 1 1 1 31 1 1 1 1 1 1

Using Table 6, let’s compose the PDNF of the 5-bit 
function from the blocks for which the function receives 
the value of unity, that is, for the sets 1, 2, 3, 4, 5, 7, 
9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 26, 28, 30, 31.

F x x x x x x x x x x x x x x x

x x x x x x x x

( , , , , )1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3

= + +

+ + xx x x x x x x

x x x x x x x x x x x x x x x

x x x

4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2

+ +

+ + + +

+

 

33 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3

x x x x x x x x x x x x

x x x x x x x x x x x x x

+ + +

+ + + xx x

x x x x x x x x x x x x x x x

x x x x x x x x

4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2

+

+ + + +

+ +

 

33 4 5 1 2 3 4 5 1 2 3 4 5x x x x x x x x x x x x+ + .  (9)

Let’s consider two options for minimization of the 
5-bit Boolean function (9).

In the first variant, pairs of blocks that allow procedures 
for pasting and replacing variables are first identified.

At  the  first  step, the constituents are glued together 
and the variables are replaced.

Algebraic transformations of the 1-st matrix (the re-
sult of the transformation is written in the 2-nd matrix):

F

x x x x x x x x x x x x x x x x x x x x

=

No.

1 2 3 4

1 0 0 0 0 1 0 0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

00 0 1 0 0 0 0 1 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1

4 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0

5 0 0 11 0 1 0 0 1 1 0 0 1 1 0 0 1 1

6 0 0 1 1 1

7 0 1 0 0 1

8 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1

9 0 1 1 0 0

10 0 1 1 0 11 0 1 1 0 0 1 1 0 0 1 1

11 0 1 1 1 0

12 0 1 1 1 1 0 1 1 1

13 1 0 0 0 0

14 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0

155 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

16 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0

17 1 0 1 1 0

18 1 1 0 1 0 1 1 0 1 0 1 11 0 1 0 1 1 1 0

19 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0

20 1 1 1 1 0

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

=

– gluing of variable in 2 and 3 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4+ = + =( ) ,

– gluing and replacing of variables in 4, 5 and 6 blocks:

x x x x x x x x x x x x x x x x x x

x x x x x x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

4 5 4 5 4 5

+ + = ×

× + + =( ) xx x x x x x x x x x

x x x x x x x x x x x x

1 2 3 4 5 4 5 4 4 5

1 2 3 4 5 4 5 4 5 1 2 3

( )

( )

+ + + =

= + + + = ××

× + + + = + + =

= + =

( ( ) ) ( )

( )

x x x x x x x x x x x

x x x x x x x x

4 5 5 4 5 1 2 3 4 4 5

1 2 3 4 5 1 2 33 4 1 2 3 5x x x x x+ ,

– gluing of variables in 7 and 8 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 5 4 4 1 2 3 5+ = + =( ) ,

– gluing of variables in 9 and 10 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4+ = + =( ) ,

– gluing of variables in 11 and 12 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4+ = + =( ) ,

– gluing of variables in 13 and 14 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4+ = + =( ) ,
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– gluing and replacing of variables in 15, 16 and 
17 blocks:

x x x x x x x x x x x x x x x x x x

x x x x x x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 5

3 4 3 4 3 4

+ + = ×

× + + =( ) xx x x x x x x x x

x x x x x x x x x x

x x x

1 2 5 3 4 3 4 3 4

1 2 5 3 4 3 4 4 3 4

1 2 5

( )

( )

+ + =

= + + + =

= (( ( ) )

( ) ( )

x x x x x

x x x x x x x x x x x

x x x

4 3 3 4 3

1 2 5 4 4 3 1 2 5 4 3

1 2 3

+ + + =

= + + = + =

= xx x x x x5 1 2 4 5+ ,

– gluing of variables in 20 and 21 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4+ = + =( ) .

At  the  second  step, the implicants are glued together 
and the replacing the variables is made.

Gluing of variables in 12 and 21 blocks.
Algebraic transformations of the 2-nd matrix (the re-

sult of the transformation is written in the 3-rd matrix):

x x x x x x x x x x x x x x x x1 2 3 4 1 2 3 4 2 3 4 1 1 2 3 4+ = + =( ) .

Algebraic transformations of the 3-rd matrix (the re-
sult of the transformation is written in the 4-th matrix):

– replacing of variables in 10, 18, 19 and 21 blocks:

x x x x x x x x x x x x x x x x x

x x x x x x x x x

1 2 3 4 1 2 3 4 5 1 2 3 4 5 2 3 4

2 3 4 1 2 3 4 1

+ + + =

= + + 22 3 4 5 2 3 4

1 2 3 4 5 2 3 4 1 4 1 4 5

2 4 3

x x x x x x

x x x x x x x x x x x x x

x x x

+ +

+ = + + +

+ +

( )

( xx x x x x x x x x

x x x x x x x x x x x

1 3 5 2 3 4 1 1 5

2 4 3 1 5 2 3 4 1 1 5

) ( )

( ) ( )

= + + +

+ + = + + +

++ + = + +

+ + + =

x x x x x x x x x x x

x x x x x x x x x x x x

2 4 3 1 5 2 3 4 1 2 3

1 2 3 5 2 3 4 1 2 4 5 2

( )

xx x

x x x x x x x x x x x x x x

x x x x x x x x

3 4

1 2 3 1 2 3 5 2 3 4 1 2 4 5

2 3 4 1 2 3 1 2

+

+ + + + =

= + + xx x x x x x3 5 1 2 4 5+ .

– replacing of variables in 1 and 3 blocks:

x x x x x x x x x x x x x x x

x x x x x x x x x

1 2 3 4 5 1 2 3 4 1 2 3 4 5 4

1 2 3 5 4 1 2 3

+ = + =

= + =

( )

( ) 55 1 2 3 4+ x x x x .

Algebraic transformations of the 4-th matrix (the re-
sult of the transformation is written in the 5-th matrix):

– gluing of variables in 15 and 18 blocks:

x x x x x x x x x x x x x x x x1 2 4 5 1 2 4 5 1 4 5 2 2 1 4 5+ = + =( ) ,

– gluing of variables in 16 and 19 blocks:

x x x x x x x x x x x x x x x x1 2 3 5 1 2 3 5 1 3 5 2 2 1 3 5+ = + =( ) ,

– gluing of variables in 8 and 10 blocks:

x x x x x x x x x x x x

x x x x x x x x x x

1 2 3 5 1 2 3 1 2 3 5 3

1 2 5 3 1 2 5 1 2 3

+ = + =

= + = +

( )

( ) ,

– replacing of variables in 4 and 10 blocks:

x x x x x x x x x x x x

x x x x x x x x x x

1 2 3 4 1 2 3 1 3 2 4 2

1 3 4 2 1 3 4 1 2 3

+ = + =

= + = +

( )

( ) ,

– gluing of variables in 1 and 5 blocks:

x x x x x x x x x x x x x x x x1 2 3 5 1 2 3 5 1 2 5 3 3 1 2 5+ = + =( ) .

=

No. 5 6 7 8

1

2

3 0 0 0 1 0 0 0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5x x x x x x x x x x x x x x x x x x x x

11 0 0 0 1 0 0 0 1

4 0 1 0 0 1 0 0 1 0

5 0 0 1

6

7

8 0 1 1 0 1 0 1 0 1

9

10 0 1 1 0 1 1

11

12

13

14 1 0 0 0 1 00 0 0 1 0 0 0 1 0 0 0

15

16 1 0 0 1 0 0

17

18 1 1 0 1 1 0 1 1 0 1 1 0

19 1 1 0 1 1 0 1 1 0

20

21 1 1 1 1 1 11 1 1 1 1 1 1

Algebraic transformations of the 5-th matrix (the re-
sult of the transformation is written in the 6-th matrix):

– gluing of variables in 5 and 8 blocks:

x x x x x x x x x x x x1 2 5 1 2 5 1 5 2 2 1 5+ = + =( ) .

– generalized replacing of variables in 4, 8 and 16 blocks:

x x x x x x x x x x x x

x x x x x x x x x x x x

1 3 4 1 2 3 2 3 4 1 3 4

2 3 4 1 2 3 1 3 4 2 3 4

+ + = +

+ + = + ,

– generalized replacing of variables in 4 and 19 blocks:

x x x x x x x x x x x x

x x x x x x x x x x x x x

1 3 4 1 3 5 1 3 4 1 3 5

3 3 4 5 1 3 4 1 3 5 3 4 5

+ = + +

+ = + + ..

Algebraic transformations of the 7-th matrix (the re-
sult of the transformation is written in the 8-th matrix):

– generalized replacing of variables in 4, 10 and 
21 blocks:

x x x x x x x x x x x x x1 5 3 4 5 1 3 4 1 5 3 4 5+ + = + ,
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– generalized replacing of variables in 16, 18 and 
19 blocks:

x x x x x x x x x x x x x x x x

x x x x x x x x x

3 4 5 1 4 5 3 4 5 1 4 5 1 3 5 5

3 4 5 1 4 5 1 3 5

+ = + + =

= + + == +x x x x x x3 4 5 1 4 5.

The third step involves testing of each simple implicant 
in PDNF for redundancy to remove it and verifying the 
resulting function using a truth table (Table 6).

Attempts to further apply algebraic transformation ope-
rations do not yield a result (matrix 8). So, the resulting 
DDNF of the function F x x x x x( , , , , )1 2 3 4 5  is presented in 
Table 6. Further, the problem of finding the minimal DNF 
is solved on the basis of the covering table (Table 7). 
In general, in order to obtain the minimum DNF, it is 
necessary to remove all superfluous simple implicants from 
the DDNF.

table 7

Covering table of the function F x x x x x( , , , , )1 2 3 4 5

Constituents x x1 5 x x x x1 2 3 4 x x x1 4 5 x x x x1 2 3 4 x x x2 3 4 x x x3 4 5

00001  – – – – –

00010 – – –  – –

00011  – – – – –

00100 – – – – – 

00101  – – – – –

00111  – – – – –

01001  – – – – –

01011  – – – – –

01100 – – – – – 

01101  – – – – –

01110 – – – –  –

01111  – – –  –

10000 –  – – – –

10001 –  – – – –

10010 – –  – – –

10100 – – – – – 

10110 – –  – – –

11010 – –  – – –

11100 – – – – – 

11110 – –  –  –

11111 – – – –  –

In the columns of Table 7 there are simple implicants 
of the reduced DNF of the function (matrix 8). The rows  
of Table 7 represent the constituents of a unit of the PDNF  
function, represented by Table. 6.

A simple implicant absorbs some constituent of the unit 
when it is its own part. The corresponding cell of Table 7 
at the intersection of the column (with the simple implicant 
under consideration) and the line (with the constituent of 
the unit) is affected by the  icon of black color.

Considering Table 7 we see that there are no super-
fluous implicants, and, consequently, Table 7 represents 
MDNF of the function (9), presented in Table 6.

F x x x x x x x x x x x

x x x x x x x x x x x

( , , , , )1 2 3 4 5 1 5 1 2 3 4

1 4 5 1 2 3 4 2 3 4 3

= + +

+ + + + xx x4 5.  (10)

The truth table (Table 6) is created in order to obtain 
a more convenient minimization process. However, the 
original logical function (8) is represented by a truth 
table (Table 5), in which there are sets of variables, is 
not expected. The value of the function F for such sets 
is affected by «–» and means an arbitrary state.

In this regard, the search for MDNF of the func-
tion, represented by the original truth table (Table 5), 
is solved using the covering table (Table 7), removing 
sets of variables from its rows is not expected. Table 7 
after removing the sets that are not expected to take 
the form of Table 8.

table 8

Covering table of the function F x x x x x( , , , , )1 2 3 4 5  with remote sets 
of variables that are not expected

Constituents x x1 5 x x x x1 2 3 4 x x x1 4 5 x x x x1 2 3 4 x x x2 3 4 x x x3 4 5

00001  – – – – –

00100 – – – – – 

00101  – – – – –

00111  – – – – –

01001  – – – – –

01011  – – – – –

01100 – – – – – 

01101  – – – – –

10000 –  – – – –

10001 –  – – – –

10010 – –  – – –

10110 – –  – – –

11100 – – – – – 

11111 – – – –  –

Considering Table 8 we see that the implicant x x x x1 2 3 4 
is superfluous, which we remove from the expression for 
the function (10).

F x x x x x x x x x x x

x x x x x x x x x

( , , , , )

.

1 2 3 4 5 1 5 1 2 3 4

1 4 5 2 3 4 3 4 5

= + +

+ + +  (11)

Expression (11) represents DDNF and MDNF of the 
initial function (8) that is presented in Table. 5.

Table 9 shows the results of minimization by the method 
of «symmetric maps» [19] and combinatorial method.

table 9

The result of minimization of the function F x x x x x( , , , , )1 2 3 4 5

Minimization by the method of «symmetric maps»

F x x x x x x x x x x x x x x x x x x x x( , , , , ) .1 2 3 4 5 1 5 1 2 3 4 1 2 5 2 3 4 3 4 5= + + + +

F x x x x x x x x x x x x x x x x x x x x( , , , , ) .1 2 3 4 5 1 5 2 3 4 5 1 2 5 2 3 4 3 4 5= + + + +

Minimization by combinatorial method

F x x x x x x x x x x x x x x x x x x x x( , , , , ) .1 2 3 4 5 1 5 1 2 3 4 1 4 5 2 3 4 3 4 5= + + + +
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The main difference between the minimal functions of 
Table 9 shows the 3-rd implicant. For a function minimized 
by the method of «symmetrical cards» implicant – x x x1 2 5 
to maintain its functionality requires two inverters. For 
a function minimized by the combinatorial method of an 
implicant x x x1 4 5, one inverter is required to maintain its 
functionality. Thus, using, for example, C-MOS techno-
logy (the complementary metal-oxide-semiconductor struc-
ture), the hardware implementation of the function (11)  
will require one inverter less.

The minimized logic function (11) satisfies the given 
truth table (Table 5).

The second option is to minimize the 5-bit logic func-
tion (9). At the first stage, sets of three blocks are iden-
tified that allow procedures for gluing and replacing of 
variables.

The first step is gluing of the constituent and replacing  
of the variables.

Algebraic transformations are presented only for the 
first matrix.

– gluing and replacing of variables in 1, 2 and 3 blocks:

x x x x x x x x x x x x x x x x x x

x x x x x x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

4 5 4 5 4 5

+ + = ×

× + + =( ) xx x x x x x x x x

x x x x x x x x x x x x x

1 2 3 4 5 4 5 4 5

1 2 3 4 5 4 5 5 4 5 1 2 3

( )

( )

+ + =

= + + + = ×

×× + + + = + + + =

= +

( ) ( ( ) )x x x x x x x x x x x x x x

x x x x x x

4 5 4 5 5 4 1 2 3 5 4 4 5 4

1 2 3 4 1 2 xx x3 5,

– gluing and replacing of variables in 4, 5 and 6 blocks:

x x x x x x x x x x x x x x x x x x

x x x x x x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

4 5 4 5 4 5

+ + = ×

× + + =( ) xx x x x x x x x x x

x x x x x x x x x x x x

1 2 3 4 5 4 5 4 4 5

1 2 3 4 5 4 5 4 5 1 2 3

( )

( )

+ + + =

= + + + = (( ( ) )

( ) ( )

x x x x x

x x x x x x x x x x x x x x x

4 5 5 4 5

1 2 3 4 4 5 1 2 3 4 5 1 2 3

+ + + =

= + + = + = 44 1 2 3 5+ x x x x ,

F =

0 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 1 0 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 11 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 1 0 0

1 0 1 1 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

0 0 0 1

0 0 0 1

00 0 1 0

0 0 1 1

0 1 0 1

0 1 1 0

0 1 1 0

1 0 0 0

1 0 1 0

1 0 1 0

1 1 1 0

1 1 1 0

1 1 1 1

0 0 0 1

0 0 1

0 1 0 1

0 1 00

0 1 1 0

1 0 0 0

1 1 0

1 1 0

1 1 1 1

0 0 0 1

0 0 1

0 0 1

0 1 0

0 1 1 0

1 0 0 0

1 1 1 0

1 1 0

1 1 0

1 1 1 1

0 0 0 11

0 0 1

0 0 1

0 1 0

0 1 1 0

1 0 0 0

1 1 0

1 1 0

1 1 1

0 0 0 1

0 0 1

0 0 1

0 1 0

0 1 1 0

0 1 1

1 0 0 0

1 0 0

1 1 0

11 1 0

1 1 1

=

– gluing of variables in 7 and 8 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 5 4 4 1 2 3 5+ = + =( ) ,

– gluing and replacing of variables in 9, 10 and 
11 blocks:

x x x x x x x x x x x x x x x x x x

x x x x x x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3

4 5 4 5 4 5

+ + = ×

× + + =( ) xx x x x x x x x x x

x x x x x x x x x

x x x

1 2 3 4 5 4 5 4 4 5

1 2 3 4 5 4 5 4 5

1 2

( )

( )

+ + + =

= + + + =

= 33 4 5 5 4 5 1 2 3 4 4 5

1 2 3 4 5 1 2 3

( ( ) ) ( )

( )

x x x x x x x x x x x

x x x x x x x x

+ + + = + + =

= + = xx x x x x4 1 2 3 5+ ,

– gluing of variables in 12 and 21 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 2 3 4 5 1 1 2 3 4 5+ = + =( ) ,

– gluing of variables in 13 and 14 blocks:

x x x x x x x x x x x x x x x x x x x x1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 5 1 2 3 4+ = + =( ) ,

– gluing and replacing of variables in 15, 16 and 
17 blocks:

x x x x x x x x x x x x x x x x x x

x x x x x x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 5

3 4 3 4 3 4

+ + = ×

× + + =( ) xx x x x x x x x x x

x x x x x x x x x x x x x x

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 5 3 4 3 4 3 4

+ +

+ = + + =( )

== + + + = + + =

= + =

x x x x x x x x x x x x x x

x x x x x

1 2 5 4 3 3 4 3 1 2 5 4 4 3

1 2 5 4 3

( ( ) ) ( )

( ) xx x x x x x x x1 2 3 5 1 2 4 5+ ,

0 0 0 1

0 0 1

0 1 1

0 0 1

0 1 0

0 1 1

1 0 0 0

1 0 0

1 1 0

1 1 1

0 0 0 1

0 0 1

0 1

0 1 0

0 1 1

1 0 0 0

1 0 0

1 1 0

1 11 1

0 0 0 1

0 1

0 1 0

0 1 1

1 0 0 0

1 0 0

1 1 0

1 1 1

0 0 0 1

0 1

0 1 0

1 0 0 0

1 0 0

1 1 0

1 1 1

0 0 0 1

0 1

1 0 00 0

1 0 0

1 1 0

1 1 1
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– gluing and replacing of variables in 18, 19 and 
20 blocks:

x x x x x x x x x x x x x x x x x x

x x x x x x

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 5

3 4 3 4 3 4

+ + = ×

× + + =( ) xx x x x x x x x x

x x x x x x x x x x

x x x

1 2 5 3 4 3 4 3 4

1 2 5 3 4 3 4 4 3 4

1 2 5

( )

( )

+ + =

= + + + =

= (( )

( ( ) ) (

x x x x x x

x x x x x x x x x x x x x x

3 4 3 4 4 3

1 2 5 4 3 3 4 3 1 2 5 4 4 3

+ + + =

+ + + = + + ))

( ) .

=

= + = +x x x x x x x x x x x x x1 2 5 4 3 1 2 3 5 1 2 4 5

The peculiarity of the second variant of minimization 
is the change in the initial state of each constituent of 
the logical function in the first stage of minimization.

Attempts to further apply the operations of algebraic 
transformation in the second version of minimization do not 
give a result. So, DDNF of the function F x x x x x( , , , , )1 2 3 4 5  is  
obtained (9).

To obtain the minimum DNF of the function, repre-
sented by the original truth table (Table 5), it is neces-
sary to carry out actions similar to the first variant of 
minimization.

Example 3. To minimize the logic function F x x x x x( , , , , )1 2 3 4 5  
by combinatorial method, given by the following truth 
table (Table 10) [20].

table 10

The truth table of a logical function F x x x x x( , , , , )1 2 3 4 5

No. x1 x2 x3 x4 x5 F No. x1 x2 x3 x4 x5 F

0 0 0 0 0 0 1 8 1 0 1 0 1 1

1 0 0 1 0 1 1 9 1 0 1 1 0 1

2 0 0 1 1 1 1 10 1 0 1 1 1 1

3 0 1 0 1 1 1 11 1 1 0 0 0 1

4 0 1 1 0 0 1 12 1 1 1 0 0 1

5 0 1 1 0 1 1 13 1 1 1 0 1 1

6 0 1 1 1 1 1 14 1 1 1 1 0 1

7 1 0 0 0 0 1 15 1 1 1 1 1 1

An figurative calculus (without demonstrating algebraic 
transformations) of the combinatorial method of minimizing  
the Boolean function looks like this:

F =

0 0 0 0 0

0 0 1 0 1

0 0 1 1 1

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

1 0 0 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 11 0 0 0

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1

0 0 1 1

0 1 0 1 1

0 1 1 0

0 1 1 1

0 0 0 0

1 0 1 1

1 0 1 1

1 1 0

=

00 0

1 1 1 0

1 1 1 1

0 1 0 1 1

0 1 1 0

0 1 1

0 0 0 0

1 0 1 1

1 0 1 1

1 1 0 0 0

1 1 1

0 1 0 1 1

1 1 0

0 1 1

0 0
= =

00 0

1 1 1

1 1 1

1 1 0 0

1 1 1

0 1 1 1

1 1 0

0 0 0 0

1 1

1 1 1

1 1 0 0

= .

In the first matrix 6 procedures of gluing and replacing 
of variables were carried out, 2 procedures for gluing of 
variables were performed in the second matrix, 4 gluing 
procedures were carried out in the third matrix, 1 gluing  
procedure was carried out in the fourth matrix and 1 gene-
ralized gluing procedure was performed – 14 transforma-
tions in all.

Superfluous implicants in the obtained minimal logical 
function (12) are absent.

F x x x x x x x x x x x x x

x x x x x x x x x

( , , , , )1 2 3 4 5 3 5 1 3 4 2 3 4

1 2 4 5 1 2 4 5 2

= + + +

+ + + xx x x3 4 5.  (12)

The result of minimization by combinatorial method (12) 
coincides with the result of minimization obtained by means 
of the Karnaugh map [20].

The minimized logic function (12) satisfies the given 
truth table (Table 10).

The process of minimizing the function of Example 3 
demonstrates the hardware compactness of the combina-
torial method.

6.  research results

The problems of reducing the Boolean function and 
establishing an assessment of the complexity of DNF 
minimization have been studied since the 50s of the 20th 
century [21–25]. A typical difficulty of such problems is 
that, on the one hand, procedures for minimizing Boolean 
functions can’t be performed without brute force [22], 
and on the other hand, the power of busting is usually 
very large. As noted in [23, 24], the maximum number 
of DDNFs of a logical function of n variables is of the 
order greater than 22n .

In the process of these studies, algorithms were de-
veloped that perform a much less exhaustive search than 
the algorithm for enumerating all the DDNF of Boolean 
functions from the selected class. The mathematical ap-
paratus of such algorithm is the interval graph [25].

Algorithms for finding the MDNF for a class of Boolean 
functions, the so-called simplified graph of intervals, were 
described. The complexity of the constructed algorithms 
turned out to be linearly dependent on the number of 
vertices-conjunctions in the original graph.

The peculiarity of the combinatorial minimization method 
is obtaining of a minimal function by several variants of 
the search that reduces the search. This feature is the 
rationale for development of an appropriate minimization 
protocol.

The complexity of the algorithm is a quantitative char-
acteristic that reflects the resources consumed by the al-
gorithm during its execution. The main resources that are 
evaluated are the execution time (that is, the maximum 
number of operations required by the algorithm to obtain 
the response) and the memory space.

To estimate the algorithmic complexity of the search 
for a minimal function by a combinatorial method, let’s 
take the operations of algebraic transformations as con-
sumed algorithmic resources, which are performed when 
the function is minimized. For example, the absorption, 
substitution or idempotency of variables is one operation, 
but the number of elementary operations in the indicated 
algebraic transformations can be different.
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Minimization of the logical function by the Quine-
McCluskey method involves splitting all sets of variables 
into groups according to the number of units in them. 
The gluing operation can only be in sets of neighboring 
groups that differ in a single-digit variable. Putting the 
sets into groups, at the first stage, carry out all possible 
gluing of variables. In the second stage, again, all the 
sets of variables are separated after gluing into groups 
according to the number of units in them and taking into 
account the coordinate sign (for example, «~»). Conduct 
all possible gluing of the second stage.

After receiving DDNF, a table of covering is constructed, 
the columns of which are called constituents of the original 
function, and the lines correspond to the obtained impli-
cants at the stages of gluing of the variables. Using the 
covering table, the minimum function (MDNF) is found.

The main resources that are spent using the Quine-
McCluskey search algorithm are algebraic operations in 
the stages of gluing together variables. In this connection, 
the estimation of the algorithmic complexity of the search 
for a minimal function by the Quine-McCluskey method 
will be determined by calculating the amount of consumed 
resources (the number of algebraic operations) at the stages 
of gluing, absorbing and idempotency of the variables that 
are performed when the function is minimized.

Example 4. To minimize the 3-bit Boolean function 
by the Quine-McCluskey method. The output function is 
given by the following truth table (Table 11) [23].

table 11

The truth table of a logical function F x x x( , , )1 2 3

No. x3 x2 x1 F No. x3 x2 x1 F

0 0 0 0 1 4 1 0 0 1

1 0 0 1 0 5 1 0 1 1

2 0 1 0 1 6 1 1 0 1

3 0 1 1 1 7 1 1 1 0

To minimize the given function, let’s select sets of va-
riables for which the function receives the values of unit:

F = {000, 010, 011, 100, 101, 110}. (13)

Let’s separate the sets of variables into groups de-
pending on the number of units in them and carry out 
the gluing of variables in neighboring groups (Fig. 2).

First Second group Third group
group
(000) (010 100) (011 101 110)

~00 ~10 01~ 10~ Stage 1 

~~0 Stage 2

fig. 2. Separation of the sets of variables of function (13) into groups  
by number of units in them

From Fig. 2 we see that in the two stages of gluing 
of variables, 5 algebraic transformations are consumed. 
Underlined implicants form a Z-covering:

Z =






01

10

0







;

;

.

Thus, DDNF (14) of the function F (13) is obtained:

F x x x x xDNF = + +3 2 3 2 1.  (14)

To remove excess implicants and to obtain MDNF, 
a covering table is constructed (Table 12).

table 12

Covering table of the function F x x x( , , )1 2 3

Implicants
Constituents

000 010 100 011 101 110

01  –  –  – –

10  – –  –  –

 0    – – 

From the covering table it turns out that all the ob-
tained implicants are part of the core of the function. Thus, 
the MDNF of a given function has the following form:

F x x x x xDNF = + +3 2 3 2 1.  (15)

The minimization of the logical function (13) by com-
binatorial method looks like this:

F = = = =

0 0 0

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

0 0 0

0 1

1 0

1 1 0

0 0

0 1

1 0

1 0

0 1

1 0

0

.

In the first matrix, 2 procedures for gluing of variables 
are performed, the second matrix contains the 2 procedure 
for the replacing of variables, in the third matrix there 
is 1 procedure for gluing of variables. Total: 5 algebraic 
transformations. The minimized function by combinatorial 
method coincides with expression (15).

Example 5. To minimize the 4-bit Boolean function 
by the Quine-McCluskey method. The output function 
is specified by the following truth table (Table 13) [24].

table 13

The truth table of a logical function F x x x x( , , , )1 2 3 4

No. x1 x2 x3 x4 F No. x1 x2 x3 x4 F

0 0 0 0 0 0 8 1 0 0 0 0

1 0 0 0 1 0 9 1 0 0 1 1

2 0 0 1 0 0 10 1 0 1 0 0

3 0 0 1 1 1 11 1 0 1 1 0

4 0 1 0 0 1 12 1 1 0 0 0

5 0 1 0 1 1 13 1 1 0 1 1

6 0 1 1 0 0 14 1 1 1 0 1

7 0 1 1 1 1 15 1 1 1 1 1
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To minimize the given function, let’s select sets of va-
riables for which the function receives the values of unit:

F = {0011, 0100, 0101, 0111, 1001, 1101, 1110, 1111}. (16)

Let’s separate the sets of variables into groups de-
pending on the number of units in them and carry out 
the gluing of variables in neighboring groups (Fig. 3).

First Fourth
group group
(0100) (0011, 0101, 1001) (0111, 1101, 1110) (1111)

010~ 0~11 ~101 01~1 1~01 ~111 11~1 111~

~1~1

Second group Third group

fig. 3. Separation of the sets of variables of function (16) into groups 
by number of units in them

From Fig. 3, we see that 11 algebraic transforma-
tions (10 gluing and 1 idempodentity of variables) are 
used in two stages of gluing of variables. Emphasized 
implicants form a Z-covering:

Z =














010

0 11

1 01

111

1 1









 

;

;

;

;

.

Thus, DDNF of the function F (16) is obtained:

F x x x x x x x x x x x x x xDNF = + + + +1 2 3 1 3 4 1 3 4 1 2 3 2 4.

To remove excess implicants and to obtain MDNF, 
a covering table is constructed (Table 14).

table 14

Covering table of the function F x x x x( , , , )1 2 3 4

Implicants
Constituents

0011 0100 0101 0111 1001 1101 1110 1111

010  –   – – – – –

0 11

 – –  – – – –

1 01

– – – –   – –

111  – – – – – –  

 1 1 – –   –  – 

It is necessary to select the minimum number of rows 
that cover all columns. The solution to the problem of 
selecting columns containing one label begins. This is 
column 0011: in the decision it is necessary to accept 
implicants 0~11, otherwise constituent 0011 will not be 
covered (will not enter the solution).

From the covering table 14 it turns out that the impli-
cant  1 1 is superfluous. Thus, the MDNF of the given 
function (16) has the form (17):

F x x x x x x x x x x x xDNF = + + +1 2 3 1 3 4 1 3 4 1 2 3.  (17)

The minimization of the logical function (16) by com-
binatorial method looks like this:

F = =

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 1

1 0 0 1

1 1 0 1

1 1 1 0

1 1 1 1

0 1 0

0 1 1

1 0 1

1 1 1

.

In the first matrix there are 4 procedures of gluing of 
variables – only 4 algebraic transformations. The mini-
mized function by combinatorial method coincides with 
the expression (17).

Example 6. To minimize the 5-bit Boolean function 
by the Quine-McCluskey method. The output function 
is specified by a truth table (Table 10). To minimize the 
given function, let’s select sets of variables for which the 
function receives the values of unity

F = {00000, 00101, 00111, 01011, 01100, 01101,  
01111, 10000, 10101, 10110, 10111, 11000,  
11100, 11101, 11110, 11111}. (18)

Let’s separate the sets of variables into groups de-
pending on the number of units in them and carry out 
the gluing of variables in neighboring groups (Fig. 4).

The resulting DDNF of the function F (18) has the 
form (19):

F x x x x x x x x x x x x

x x x x x x x x x x x

DNF = + + +

+ + + +
2 3 4 5 1 3 4 5 1 2 4 5

1 2 4 5 3 5 2 3 4 1 3xx x x x4 1 2 3+ .  (19)

To remove excess implicants and to obtain MDNF,  
a covering table is constructed (Table 15).

It is necessary to select the minimum number of co-
lumns that cover all rows. From the covering Table 15 
it turns out that the implicants 1 000  and 111  are 
superfluous. The corresponding cells of Table 15 at the 
intersection of the column (with implicants 1 000 ,  111) 
and the row (with constituent unit) are indicated by the 
green symbol . The cells of Table 15 at the intersection 
of the column with implicants, which are included in the 
minimum function and the rows (with constituent unit) 
are indicated by the blue symbol .

Thus, MDNF of the given function (18) has the 
form (20), which coincides with (12):

F x x x x x x x x x x x x

x x x x x x x x

DNF = + + +

+ + +
2 3 4 5 1 2 4 5 1 2 4 5

3 5 2 3 4 1 3 4.  (20)

Based on the results of examples 4–6, let’s calculate 
the number of consumed algebraic transformations by 
the Quine-McCluskey method performed at the stages 
of gluing, absorption, and idempotence of variables, while 
minimizing the logical function. Let’s also establish an 
estimate of the algorithmic complexity of the search for 
a minimal function by this method.
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The results of calculating the number of algebraic trans-
formations are presented in Table 16.

Fig. 5 shows the dynamics of the growth in the number 
of algebraic transformations that occur when the logical 
function is minimized by the Quine-McCluskey method 

and by the combinatorial method with in-
creasing the bit capacity of the function.

table 16

Comparative table of spent algebraic transformations 
for two methods of minimizing the function 

F x x x x x( , , , , )1 2 3 4 5

Bit depth 
of function

The number of algebraic transformations

Quine-McCluskey 
method

Combinatorial 
method

3 5 5

4 11 4

5 51 14

Taking into account Fig. 5 we see that 
the dynamics of the growth of the number of 
algebraic transformations, with the increase 
in the bit depth of the logical function, for 
a combinatorial minimization method by a 
slower process in comparison with dynamics.

The growth of the number of algebraic 
transformations in the Quine-McCluskey 
method. Thus, the search for a minimal func-
tion by a combinatorial method is more 
efficient than searching using the Quine-
McCluskey method.

The complexity of the Quine-McCluskey 
minimization method increases exponentially 
with the increase in the bit of the input 
variables [25].

According to the data that we have at our disposal, 
the complexity of the search algorithm by a combinatorial 
method can be described as a first approximation linearly 
on the number of algebraic transformations with an O(n) 
complexity rating.

table 15

Covering table of the function F x x x x x( , , , , )1 2 3 4 5

Constituents
Implicants

 0000 1 000 11 00 01 11  1 1  110 1 11  111 

00000  – – – – – – –

10000   – – – – – –

00101 – – – –  – – –

01100 – – – – –  – –

11000 –   – – – – –

00111 – – – –  – – –

01011 – – –  – – – –

01101 – – – –   – –

10101 – – – –  – – –

10110 – – – – – –  –

11100 – –  – –  – 

01111 – – – –  – – –

10111 – – – –  –  –

11101 – – – –   – 

11110 – – – – – –  

11111 – – – –  –  

fig. 4. Separation of the sets of variables of the function (18) into groups with the following procedures for gluing, absorbing  
and idem potency of implicants

~0000 ~0000

1~000 1~000

0110~ 001~1 ~0000 ~0000

11~00 0~101 1~000 1~000

00000 001~1 ~0101 11~00 11~00

10000 01~11 0110~ 01~11 01~11

00101 0~101 ~1100 0~1~1 0~1~1 ~0000 ~0000 ~0000

01100 ~0101 11~00 ~~101 ~~101 1~000 1~000 1~000

11000 011~1 0~111 ~01~1 ~01~1 11~00 11~00 11~00

00111 ~1100 ~0111 ~~101 ~~101 01~11 01~11 01~11

01011 0~111 01~11 ~110~ ~110~ 0~1~1 ~~1~1 ~~1~1

01101 ~0111 011~1 ~110~ ~110~ ~01~1 ~01~1 ~110~

10101 101~1 ~1101 ~~111 = ~~111 ~~101 ~~101 1~11~

10110 1~101 101~1 ~~111 ~~111 ~110~ ~110~ 111~~

11100 ~1101 1~110 ~11~1 ~11~1 ~~111 ~~111

01111 1~110 1~101 ~11~1 ~11~1 ~11~1 ~11~1

10111 1011~ 1011~ 1~1~1 1~1~1 1~1~1 1~11~

11101 1110~ 1110~ 1~1~1 1~1~1 1~11~ 111~~

11110 111~0 111~0 1~1~1 1~1~1 111~~

11111 ~1111 ~1111 1~11~ 1~11~

1~111 1~111 1~11~ 1~11~

111~1 111~1 111~~ 111~~

1111~ 1111~ 111~~ 111~~

6th group

5th group

1st group

2nd group

3rd group
1st group

2nd group

3rd group

4th group

4th group

5th group
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fig. 5. Dynamics of growth of algebraic transformations  
when the function is minimized by the Quine-McCluskey method  

and by the combinatorial method, with the increase  
in the bit of the function

7.  sWot analysis of research results

Strengths. The strength of the combinatorial method 
is that the object of solving the problem of minimizing 
a Boolean function is a block-diagram with repetition, 
what is the truth table of this function. This allows 
to concentrate the minimization principle within the 
function calculation protocol and, thus, dispense with 
auxiliary objects like the Karnaugh map, Veitch diagram, 
acyclic graph, etc. The equivalent transformations by 
graphic ima ges have a large information capacity, with 
the properties replace the verbal procedures of algebraic 
transformations. The increased information capacity of 
the combinatorial method makes it possible to carry 
out manual minimization of 4, 5-bit Boolean functions 
quite easily.

This is more advantageous in comparison with ana-
logues for the following factors:

– lower cost of development and implementation, since 
the principle of minimization of the method remains 
within the truth table of this function and does not 
require other auxiliary objects;
– Increasing the performance of the manual minimiza-
tion procedure for 4-, 5-bit functions and increasing  
the performance of automated minimization with a greater 
number of variable functions, in particular due to the 
fact that several search options give the same mini-
mum function.
Weaknesses. The weak side of the combinatorial method 

with manual minimization is associated with an increase 
in the number of variables (more than seven or eight) 
of the logical function. With such number of variables, 
the laboriousness of calculating manual minimization in-
creases.

Negative internal factors inherent in the combinatorial 
method of manual minimization of the Boolean function 
consist in increasing the time of obtaining the minimal 
function with increasing number of variables of the given 
function.

Opportunities. The opportunity of further studies of the 
combinatorial method can be the development of a protocol 
for the optimal alternation of algebraic transformations 

over implicit Boolean functions, with the aim of further 
optimizing the execution time of the search algorithm of 
the minimal function.

Additional features that connected with implementa-
tion of the combinatorial method for minimizing Boolean 
functions is the use and support of the submatrix library, 
which will help optimize the response time for the search 
algorithm for minimizing the function.

Threats. The minimization protocol for the Boolean 
function of the combinatorial method is independent of 
the protocols of other minimization methods, therefore 
there is no threat of negative impact on the object of 
research of external factors.

To a certain extent, the Quine-McClusky method is 
an analog of the combinatorial method for minimizing the 
Boolean function. At the moment, the Quine-McCluskey 
method is the best because an algorithm for automating  
the search for a minimal function has already been crea-
ted for it.

8.  Conclusions

1. It is established that the object of solving the prob-
lem of minimizing a Boolean function is a combinatorial 
block-diagram with repetition, what is the truth table 
of this function. This allows to focus the minimization 
principle within the function calculation protocol and, 
thus, do without auxiliary objects of the minimum func-
tion search.

2. It is revealed that the tabular organization of the 
mathematical apparatus of the block-diagram with repetition 
allows obtain more information about the orthogonality, 
contiguity, uniqueness of the blocks of the combinatorial 
system, and, consequently, blocks of the truth table of 
the given function. Equivalent transformations by graphic 
images, in their properties have a large information capa-
city, capable of effectively replacing verbal procedures of 
algebraic transformations, in particular using the library 
of submatrices.

3. It is established that the results of verification of 
the minimized function obtained by the combinatorial 
method satisfy the output protocol of calculating the 
given function and, therefore, indicate the optimal de-
crease in the number of function variables without lo-
sing its functiona lity. The complexity of the algorithm 
for searching for a minimal function by a combinatorial 
method is O(n) and is linear – the execution time of 
the algorithm increases linearly with increasing the bit 
length of the function n.

4. The efficiency of the combinatorial method is demon-
strated by examples of minimizing functions borrowed from 
the work of other authors for the purpose of comparison: 
Example 1 [17, art. 184], – minimization of the 4-bit 
Boolean function, examples 2 [19], 3 [20] – minimization 
of 5-bit Boolean functions. Taking these examples into 
account, the combinatorial method of minimizing a func-
tion gives grounds for the expediency of applying it in 
procedures for minimizing a logical function.

It is established that the growth dynamics of the num-
ber of algebraic transformations, with increasing bit depth 
of the logical function, for a combinatorial minimization 
method by a slower process in comparison with the growth 
dynamics of the number of algebraic transformations by 
the Quine-McCluskey method. In this regard, the com-
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binatorial method is more efficient than the search using 
the Quine-McCluskey method.
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минимиЗация Булевых функций комБинаторным 
методом

Рассмотрено распространение принципа минимизации с по-
мощью алгебраических преобразований на метод минимизации  
с использованием комбинаторной блок – схемы с повторением.  
Математический аппарат блок-схемы с повторением даёт больше 
информации относительно ортогональности, смежности, одно-
значности блоков комбинаторной системы, которой собствен-
но является таблица истинности заданной функции, поэтому 
применение такой системы минимизации функции есть более 
эффективным.

ключевые  слова: булева функция, метод минимизации, 
минимизация логической функции, блок-схема с повторением,  
минтерм.

Riznyk Volodymyr, Doctor of Technical Sciences, Professor, De-

partment of Control Aided Systems, Lviv Polytechnic National 

University, Ukraine, е-mail: rvv@polynet.lviv.ua, ORCID: http://

orcid.org/0000-0002-3880-4595

Solomko Mykhailo, PhD, Associate Professor, Department of Com-

puter Engineering, National University of Water and Environmental 

Engineering, Rivne, Ukraine, e-mail: doctrinas@ukr.net, ORCID: 

http://orcid.org/0000-0003-0168-5657


