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numerical values of the analytical calculations obtained
during the research.
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NNMAHHPOBAHHE MAPWIPYTOB MONETA BECMTHMOTHBIX
NETATENBHBIX ANMNAPATOB MYTEM PEWMEHKA 3AAYH
KOMMHBOAMEPA

PaceMoTpeHbl METO/bI PellieHus 3a/laui KOMMUBOsDKepa JIJist
[TAHMPOBAHUS MapIIPyTOB TMoJieTa OECHIJIOTHBIX JIETATETbHBIX
amnmapaToB W MPOAHATN3WPOBAHBI Pe3YJIbTAaThl paboTsl. Ilokasa-
HO, 4TO METOJ[ yCPeJHEHHBIX K0I(DDUIMEHTOB pelraer 3ajady
OIITUMAJIBHO 110 KPUTEPHUIO PACCTOSIHIS, MCIIOJIb30BAHNE KOTOPOTO
obecrieunBaeT MUHUMAJIbHbBIE 9KCTIIYaTAIOHHBIE PACXO/BI TTOJIETA
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MINIMIZATION OF BOOLEAN FUNCTIONS
BY COMBINATORIAL METHOD

Posensinymo nowupenns npunyuny MiHimizayii 3a 00nomozo10 aizebpuuHux nepemeopens Ha Memoo
MIHIMI3QUTT 3 BUKOPUCTAHHAM KOMOTHAMOPHOT 610K -cXxemu 3 nosmopennsim. Mamemamuunuii anapam
OI0K-CXeMU 3 NOBMOPEHHAM 0a€ Olavlue THHOPMAUii CMOCOBHO 0PMOZOHATLHOCTI, CYMINCHOCTE, 00HO-
3Haunocmi 610KI8 KOMOTHAMOPHOI cucmemu, K00 € GlacHe mabiuys iCmuHHOCmi 3a0anoi Qyukyii,
MoMYy 3aCMOCYBanis maxoi cucmemu MiHiMisayii pynxyii € Oinvu epexmuenum.

Kmouosi cnosa: Oynesa Qynxyis, memood minimizauii, minimisayis ro2iunoi Qynuxuyii, 610K-cxema

3 NOBMOPEHHAM, MIHMEPM.

1. Introduction

The problems and shortcomings of the known methods
for minimizing Boolean functions are associated with a rapid

growth in the amount of computation, which results in an
increase in the number of computational operations, and,
consequently, in the increase in the number of variables
of the logical function.
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The following methods for minimizing Boolean func-
tions are known [1-5]:

— Blake-Poretsky method,;

— Nelson method;

— Karnaugh map method,;

— Quine method,;

— Quine-McCluskey method;

— Veitch diagram method;

— method of algebraic transformations;

— Petrik method;

— Roth method;

— a method of minimizing functions in bases YES-NO

and OR-NOT (Schaeffer and Pierce basis);

— method of undetermined coefficients;

— hypercube method;

— functional decomposition method,;

— heuristic algorithm for Espresso minimization.

The Boolean function f(xi,...,x,) that describes the
operation of a logical device can be realized with the help
of a disjunctive normal form (DNF), which in this case
describe the scheme of the corresponding logical device.
The problem of minimizing DNF is one of the multiex-
tremal logical-combinatorial problems and is reduced to
optimal reduction of the number of logical elements of
the gate system without loss of its functionality.

Functions with a large number of variables (more than
16 variables) can be minimized only in a certain sense,
not guaranteeing the achievement of the optimal solution
with the help of the heuristic Espresso algorithm, which
today is documented by the world standard [6].

The result of minimizing the Boolean function depends
on the speed of computing device, its reliability and ener-
gy savings. Since Espresso minimization algorithm does
not guarantee optimal minimization of Boolean function
with increasing number of variables, the search for new
minimization methods remains relevant. Carrying out the
minimization of the logical function is one of the central
and practically important problems that arises during de-
velopment of the computing attachments.

2. The ohject of research and
its technological audit

The object of research is the problem of minimizing the
Boolean function by a combinatorial method — a block-
diagram with repetition. Since the block-diagram with
repetition is actually the truth table of this function, it
allows concentrating the minimization principle within the
function calculation protocol. The tabular organization of
the mathematical apparatus of the repetition block-diagrams
also makes it possible to obtain more information about
the orthogonality, contiguity, uniqueness of truth table
blocks (combinatorial system). Equivalent transformations by
graphic images, in their properties have a large information
capacity, capable of effectively replacing verbal procedures
of algebraic transformations, in particular using the library
of submatrices. This efficiency of the combinatorial method
makes it possible to carry out manual minimization of 4,
5-bit Boolean functions without difficulty.

The graphical properties of the combinatorial method
make it possible to obtain a minimal function by several
variants of the search, reduces the search, the search for
the function becomes more definite, and, consequently,
the complexity of the minimization algorithm decreases.

The complexity of the search algorithm by the com-
binatorial method is O(n) and is linear — the execution
time of the algorithm with increasing bit depth of the
function n grows linearly.

Combinatorial method allows automation by its protocol
and is able to support aggregated minimization systems
by combining with other apparatus of other methods for
minimizing Boolean functions.

The disadvantages of the combinatorial method of manual
minimization are associated with the growth of the num-
ber of variables (more than seven or eight) of the logical
function. Minimizing a function with a large number of
variables requires updating the library of submatrices on
which the figurative calculus of the combinatorial method
is based.

3. The aim and ohjectives of research

The aim of research is development of a method for
minimizing a logical function, using a combinatorial device
of a block-diagram with repetition and establishing the
properties of such method.

To achieve this aim, it is necessary to solve the fol-
lowing tasks:

1. To establish the adequacy of using a combinatorial
block-diagram device with repetition to create a method
for minimizing the Boolean function.

2. To determine the properties of the apparatus of
a combinatorial method for minimizing Boolean functions,
in particular, to represent the apparatus of figurative cal-
culus for equivalent transformations of conjunctors.

3. To determine the verification of the combinatorial
method and obtain an estimate of the complexity of the
algorithm for finding the minimal function by a combi-
natorial method.

4. To conduct a comparable analysis of the performance
and quality of minimization of Boolean functions obtained
by the combinatorial method, with examples of minimizing
the function by other methods.

4. Research of existing solutions
of the prohlem

In [7], the conditions of logical minimization of the
Boolean function represented in DNF are considered. If
the function satisfies the following conditions, then to
simplify it, the classical Quine-McCluskey minimization
algorithm is applied, which allows automation. It is noted
that the number of function variables for the program
code is limited by the computer’s memory.

In [8], generalized rules for simplifying the conjunc-
tors in a polynomial set-theoretic format are considered,
based on the proposed theorem for various initial condi-
tions for the transformation of a pair of conjunctors, the
gemming distance between which can be arbitrary. These
rules can be useful for minimizing in the polynomial set-
theoretic format arbitrary logical functions of n variables.
The effectiveness of the proposed rules is demonstrated by
examples of minimization of functions borrowed from the
work of well-known authors for the purpose of comparison.
Given the comparative examples, the proposed rules give
grounds for confirming the expediency of applying them
in the procedures for minimizing any logical function of
n variables in polynomial form.
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In [9], a simple and systematic method for minimizing
a logical function is proposed. The method consists in
reducing the truth table from N variables N-1, N — from
1 to N-2, and so on in a sequence until all variables are
exhausted with built-in all possible simplifications, after
each reduction. The obtained resultant expression for F
will be minimal.

In [10], an algorithm and program for minimizing com-
binational logic functions up to 20 variables is presented,
but the number of variables is limited only by the memory
of the computer system. The algorithm is based on the
sequential clustering of terms, beginning with the grouping
of terms with one change. The clustering algorithm ends
when the variables can no longer be grouped. This al-
gorithm is analogous to the Quine-McClusky algorithm,
but it is more simplistic, since it eliminates a number
of actions necessary for implementation of the Quine-
McCluskey algorithm

In [11], a discussion is presented on the role of the
autosymmetry degree of variables in a Boolean function
and why it deserves attention on minimizing a logical
function. The regularity of the variables of a Boolean
function can be expressed by the degree of autosym-
metry, which in the end gives a new tool for effective
minimization.

In [12], the method of logical-minimized image com-
pression, which depends on the logical function, is dem-
onstrated. The minimization process treats neighboring
pixels of the image as separate minterms representing
a logic function and compresses 24-bit color images using
the function minimization procedure. The compression
ratio of such method is on average 25 % larger than the
existing methods of image compression.

The paper [13] demonstrates how to increase the ef-
ficiency of minimizing a logical function by applying M-
terms. It is noted that implementation of the method is
possible for any number of variables.

Work [14] demonstrates the use of a genetic algorithm
for selecting side objects of the procedure for minimizing
a logical function using the Karnaugh map.

A new heuristic algorithm is proposed in [15] for maxi-
mum minimization of Boolean functions. Graphic data
is used to implement the proposed algorithm. There are
also some conditions for achieving the maximum level of
minimization of the Boolean function.

In [16], the optimal simplification of Boolean func-
tions by means of Karnaugh maps is considered, using
the object-oriented minimization algorithm. Analysis of
the performance of the proposed algorithm is presented.

In contrast to [7—16], in this paper, the object of
solving the problem of minimizing a Boolean function is
a combinatorial block-diagram with repetition, which al-
lows to concentrate the minimization principle within the
truth table of a given function. The peculiarities of the
combinatorial method consist in greater informativeness
of the process of solving the problem in comparison with
the algebraic method of minimizing the function, due to
tabular organization and the introduction of figurative
calculus apparatus. In this regard, the procedure for mini-
mizing the function becomes more tangible, and, therefore,
more reliable, simplified. Combinatorial method allows its
automation and is able to support aggregated minimiza-
tion systems by combining with other apparatus of other
methods for minimizing Boolean functions.

5. Methods of research

5.1. Minimization of Boolean functions hy means of
an acyclic graph. To minimize the function that simu-
lates the operation of a logical device is possibly using
the method in which an acyclic graph is used [17].
To do this, two arcs are drawn from the initial vertex
of G (the root of the graph): the left arc corresponds
to the value of the variable x;, and the right — vari-
able x;. From each vertex of the first and subsequent
levels, two arcs are drawn again according to the same
rule, where each vertex forms two child vertices of the
lowest level. Thus, from each vertex of the i-th level,
two arcs are drawn, where the left arcs correspond to
the direct value of the variable, and the right ones to
the inverted one. The number of such entries is equal
to the number of variables entering the created min-
term (and, consequently, the number of levels of the
acyclic graph) (Fig. 1).

/ \ Y \
VASTASTASTAN

________________ O @ _____0O_._O-.___-___0__

my me Ims my m3 mp; mg mog

Fig. 1. The acyclic graph & for a function of three variables ¥

It can be seen from Fig. 1 that each path in this graph
from a finite vertex (in this case from the third level)
to the root of the graph (to 0-level) identifies a certain min-
term: my =X, Xy X3, My =X XyXs,.., M7= X1X5X5.

In the general case, each logical function can be rep-
resented by an acyclic graph of the form:

G={M,X},

where M ={m,ms,..,m,}, X:{x1,x1,x2,x2,...,xn,x,,}.

The acyclic graph G with n levels is to be decomposed
into components G,G,,...,G;..,G, in order to identify the
possibility of gluing the i-th variable according to the
dependence:

Gix;vGix, =G,

The minterms, which values are equal to one on the
graph G, are denoted by black circles (Fig. 1).

The division of the acyclic graph G must begin from

the terminal vertices to the root of the graph. For exam-
ple, for the graph in Fig. 1:

Gy ={M3,(x3 VZ)},
Gy ={My, (10, v )}, My =i, m2 m3, m3}, )

G, = {M1,(x1 vz)}, M, ={m},m}}.
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For the n-th variable:

G,= {Mn,(xn vxj)}, M, = {mﬁ’,m{’,...,m:} .

Analyzing the system of equations (1) obtained by
dividing the acyclic graph into three (n=3) components,
it is easy to see that the process of minimizing the perfect
disjunctive normal form (PDNF) of a Boolean function
reduces to passing the path from a finite vertex of the
third level to the root of the graph. PDNF minimization
of a Boolean function is accomplished by gluing variables
at appropriate levels.

The acyclic graph G for a function:

Y= X1X9X3 + X1 X9 X3 + X1 X9X3 + XXy X3

is shown in Fig. 1. Black minterm is shaded, from which
the function Y actually consists. As a result of the separa-
tion of graph G, at the 3-rd level the gluing procedure will
pass between the variables of minterms m? —m§ — get xx,.
For variable of minterm m; gluing will take place at the
2-nd level — get x,x5. For variable of minterm m, gluing
will take place at the 1-st level — get x,x5. In the end
we find a minimized function:

Y = 2000 V X1 X3 V X5 (2)

The function (2) satisfies the given truth table (Table 1).

Table 1

The truth table of a logical function ¥ = x,x,x5 + ;lxzxz, + x1;2x3 + X1 X5 X3

Nao. X1 X2 X3 Y No. X X2 X3 Y
0 0 0 0 0 4 1 0 0 0
1 0 0 1 0 5 1 0 1 1
2 0 1 0 0 B 1 1 0 1
3 0 1 1 1 7 1 1 1 1

5.2. Combinatorial method for minimization of Boolean
functions. The concept of Boolean functions and DNF
are closely connected with many concepts of combinato-
rial analysis, in particular, with the notion of covering.
Let C=(X1, .., Xn) be some family of subsets of X, and
let Y2 X. Then Y is a covering for C if the condition
X;NY =@ holds for any X; with C. Covering of Y is said
to be reduced for C if any of its proper subsets is not
a cover for C. The set of all reduced covering for C is
denoted by P(C).

With combinatorial analysis, it is known that a graph
can be represented in the form of an appropriate block-
diagram [18]. Hence it follows that the acyclic graph for
a logical function can be analyzed from the truth table in
the form of a block-diagram with a repetition (Table 1).
Consequently, the principle of minimization with the help
of an acyclic graph can be extended to a minimization
method using combinatorial block-diagrams (Table 2).

It should be noted that, unlike the PDNF minimiza-
tion by the acyclic graph method, where the minimization
procedure reduces to the passage of the path from the
final vertex of the lower level to the root of the graph in
order to glue variables at the appropriate levels, using the
block-diagram with repetition, the minimization process in
the part of the gluing of the variables reduces to search

for blocks with the same variables in the corresponding
bits, except for one variable. Given the tabular organiza-
tion of the combinatorial method, this makes it possible
to improve the search efficiency of the minimal function.

Table 2

Thesauri of minimization methods

Thesaurus of minimization.
No. | With the help of an acyclic
graph

Thesaurus of minimization.
Using a block-diagram with repetition

1 | Acyclic graph Combinatorial system with repetition

Block of variables of a combinatorial

2 | Path (branch) in the graph
system

3 | Variables Variables

4 | Laws of algebra of logic

g5 —

Laws of algebra of logic

Figurative calculus

Minimization of the logical function by combinato-
rial method is carried out as follows. At the first stage,
blocks (constituents) are identified with variables, and can
be glued together. The next step is search for sets of pairs
of blocks (implicants) with the possibility of minimizing
them by replacing (gluing, absorbing) the variables in these
pairs. The resulting sets of blocks are again minimized
in a similar way, etc., until a deadlock DNF (DDNF) is
obtained. Among the set of DDNFs there are also mini-
mal functions (MDNF). At the last step, the minimized
function is verified by applying the optimality criterion
and the specified truth table.

The process of minimizing by a combinatorial method
a logical function is shown in Fig. 1 looks like this.

Y = x100005 + X000 + X X0X5 + XX X5

1-st option:

1
1

_ = O =
e e
S = =, -
_ O =

1
1

In the first matrix, the variables are glued together
in the 1-st and 2-nd blocks, in the second matrix, the

variables are replaced in the 2-nd and 4-th blocks.
2-nd option:

11 1 11
Y:011:011:011: 11

10 1 101 101 1 1

110 11 11 11

In the first matrix, the variables are glued together
in the first and fourth blocks, the second matrix replaces
the variables in the second and third blocks.

As a result, the function for the two variants is mini-
mized and has the form Y = x,x, v 2,25 v x,x5 that coincides
with (2).

In the general case, when minimized by a combinatorial
method, the following rules of the algebra of logic are used:

— gluing of variables — ab+ab =a;

— generalized gluing of the variables — xy+xz=ay+

+Xxz+yz;

;52
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— substitution of the variable — a+ab=a+b;

— absorbing of the variable — ab+a=a(b+1)=a,

— idempotency of the variables — a+a=a, aa=a;

— addition of the variable — a+a=1 aa=0;

— repetition of the constant — a+0=a, a-1=a and

others.

Algebraic transformations of the combinatorial method
for minimizing the Boolean function can be replaced by
equivalent transformations by means of submatrices (graphi-
cal images). The procedure for gluing using submatrices
can be illustrated as follows:

206+ 202 = 2, (20 + ,) = X,
0 0
- - ,
01 0 0

01 1 i

Applying a graphic image, it is possible to illustrate
other algebraic transformations.
Generalized gluing:

XX + X100 + Xg 2y = 2, X5 + Xy X,
11
1 1 -1 1,
10 10
x1x:s+x2;3:x1x3+x2;3+x1x2,
11
1 1 -1 1.
10 10
Substitution of the variable:
o o 000
X1 Xy + Xy XX 3 = X (X + X0X3) = 000
=21(2y +X3) = X300 + X743, 001
tr 001
1o1 1 1 011
F={100
Absorbing of the variable: 101
x1x3+x1;2x3=x1x3(1+;2)=x1xs7 Lot
110
1 1 1 1 111
- .
1 01 111

Idem potency of the variables:

XXy + XXy = XXy,
11

%
11 11

Since the graphic images give more information about
the orthogonality, contiguity, uniqueness of the blocks of
the combinatorial system, so using them when searching

for objects for equivalent transformations, in the process
of minimizing the logical function, is effective.
5.3. Minimization of 4-hit Boolean functions. The com-
binatorial method easily minimizes 4-bit Boolean functions.
Example 1. To minimize the logic function F(xy,x,,25,24)
by the combinatorial method given by the following truth
table (Table 3) [17].

Tahle 3
The truth table of a logical function F(x,, x5, x5, x,)

No. | x1 | % | x3 | x4 F |No | x | 0 | x3 | x4 F
0 0 0 0 0 1 8 1 0 0 0 0
1 0 0 0 1 1 9 1 0 0 1 1
2 0 0 1 0 11101 0 1 0 1
3 0 0 1 1 11111 0 1 1 1
4 0 1 0 0 0|12 1 1 0 0 0
5 0 1 0 1 0D |13 1 1 0 1 1
B 0 1 1 0 1 1141 1 1 0 1
7 0 1 1 1 0D |15 | 1 1 1 1 1

Let’s compose the perfect disjunctive normal form (PDNF)
of the given function with respect to the blocks for which
the function gets the value of unity, that is, for the sets 0, 1,
2,3, 6,9, 10, 11, 13, 14, 15.

F(ay, 209, 205,24) = x1 Xy X3 X4 +x1 xz x3xi +
+x1 x2x3 x4 + x1 x2x3x4 + x1x2x3 x4 +

FX Xy X3X 4 + X1 X X3X 4 + X1 XoX3X 4 +

FX Xy X3 X5 + X XoX3 X4 + X XXXy

The first step is gluing of the constituent (first blocks).

The variables for the first gluing are in blocks 1 and
2,3 and 4, 6 and 9, 7 and 8 and 10 and 11 (3). In (3),
the first step is shown on the first three matrices.

0] 000
1 o000 000 00

0l 001

1| {001 001 00 00

ol o110/ 0110/ |0110] 0110
tl=[1 o0 1|= = = = 3
0l |1 01

1 [101 101 1

1t o1t o1t o1 [t o1

0| [111

111 111 1 1 1t 1

The second step is to glue together the implicants — to
search for pairs of blocks that have matching variables in
the corresponding bits, except for one variable, followed
by replacement (gluing, absorbing) in these pairs.

Obviously, the substitution of variables for the 4-th,
5t-h and 9-th, 11-th blocks of the fourth matrix (3):

X1 Xy +x1xzxsx4 = x1(xz +xzx;x4)—

(4)

= x1(x2 +x3x4)= Xy x2 +x1x3x4,
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00 00

% ’
0110 0 10

X1 X3%4 + X, X3 = Xy (X304 + X3) = (5)

=, (24 +X3) = X004 + XX,

After the procedures (4) and (5) let’s obtain an inter-
mediate matrix:

00
o 1o
- (B
o1

Obviously, the substitution of variables for the 2-nd
and 4-th blocks of the intermediate matrix:

X123 X4 + X1 X3 = X3 (X Xg + X)) =

_ _ (6)
= x3(20; +X1) = 2,005 + X3 Xy,
0 10 10
—> .
1 1 1

After the procedure (6), let’s get the last intermediate
matrix:

00
-, (B
1

The generalized substitution of variables for the 2-nd,
3-rd and 4-th blocks of the last intermediate matrix is
obvious:

X3 X4+ X X4+ X X3 =X3X, + XXy,

10 10
1 151 1,
1 1

00
- 10
I 1

As a result, let’s get the minimum function:

F=x, 20y +x04+x52,. @)
The third step is the verification of the obtained mini-
mized function (7) using the original truth table (Table 3).
The minimized logic function (7) satisfies the original
truth table.
Table 4 shows the results of minimizing the function
F(xy,25,%5,x4) using an acyclic graph [17] and the com-
binatorial method.

Tahle 4

Results of minimizing the function F(x,,x;, X5, x,)

Minimization by combinatorial
method

Minimization by acyclic
graph

F = X, X5 + X X4 + X X3 X4 + X XpX5 X4 F =%+ XX + X3X,

Considering Table 4 we see that the combinatorial
method gives a function with a smaller number of input
variables.

5.4. Minimization of 5-hit Boolean functions. The combi-
natorial structure of the truth table of the 5-bit function
is more complex compared to the 4-bit function, because
of which there are more minimization options from the
first step. For example, in the first step of minimizing the
5-bit function, it is possible to detect pair of blocks and
sets of three blocks that allow for gluing and replacing
variables. In the general case, the minimization of the
combinatorial method of the 5-bit function is analogous
to minimizing the 4-bit function.

Example 2. To minimize the logical function by the
combinatorial method specified by the following table of
truth (Table 5) [19].

Tahle 5
The truth table of the logical function Fl(x;, x,, X3, X4, X5)

No.| g | x0 | x3 | x4 | x5 | FINo.| x; | xo0 | x5 | x4 | x5 | F
o|o|o0o(o0|0O|O0O|O}|16|1|0O|0O|O0)|0]|1
i1|of0(0|jO0O|1|{1}17|1|0|0O|O0|1]|1
2|0|0(0O|1|0|-(18]1|0|0|1]|0]|1
3(0|0|O}|1|1|-}18|1|0|0|1]|]1 |0
4|10|0|1|0(0|1)20|1|O|1|0O|O
5|o0|o0of1|jo0|1|(1j21|1 (0|1 |0|1]|0
g|0|0(1|1|]0|0})22|1 (0|1 |1 |0]|1
7|00 |1|1}{1|1}23|1 |01 |1 (|10
g|0|1(0|0|0|0O}J24|1 (1 |0|0|0O|O
g|of1|jojoj1|(1}25|1 |1 0|01 |0
w|jofjt1|o|1(ojoy28 (1 |1|0(f1]0]|-
m{o(t1|jo|t1|1j1 271 |(1|j0|1|1]0
2|01 |1 (00|21 }281 |1 |1 |0|0]|1
3(0(1 1|01 |31})29(1 1|1 |0/|1]|0O
4(0(1 |1 |1 |0}|-j30(11]1]|1]0]-
15|01 (1 (1|1 |-=f31(1 1|1 |1]1]1

Using Table 5, let’s compose the PDNF of the given
5-bit function from the blocks for which the function
receives the value of 1, that is, for the sets 1, 4, 5, 7, 9,
11, 12, 13, 16, 17, 18, 22, 28, 31.

F(31,09, 003, X4, 065 ) = 2y X5 X3 X405 + 2 X503.00, 25 +

204 205X X425 -+ Xy Xy X3 X5 + X100 X5 X405 +

FX (X X3 X4 X5+ XX X3 X4 X5+ XXXz X4 X5 +

FX Xy X3 Xy X5+ X1 X9 X3 Xy X5+ XXy X3X4 X5+

)

X X9 X3 X4 X5+ X1 X9 X3 X4 X5 + X X0X504 X5
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Let’s recall that the value of «—» of F function means
an arbitrary state indicating that such set of input va-
riables is not expected and the value of the function
can be arbitrary — zero or one in the process of mini-
mization.

Let’s define function F(xy,x,,%5,244,%5) by replacing
the value of the «—» function by one. After replacing the
value of the «—» function F(x;,x,,%5,%4,%5) by one, the
truth table (Table 5) takes the following form (Table 6).

Table 6

The truth table of a logical function F(x,, x5, X5, X,, X5)
after the value of the «» function is replaced by one

No.|xg | x| x3 | x4 | x5 | FINo.| x| x| x3 | x4 | x5 | F

ojo|jo|o|ojo0o|O}J16|1|0|0|0|0|1

ty1o0|0|0|O0O}|1T|{1}17|1|0|O0O|0O|1]|1

2|0|0(0O|1|0|2}|18]|1|0|0|1]|0]|1

3|0|jo0ojoj|1}{1}j1y19|1|0|0|1 (1|0

4|10|0|1|0(0(1})20|1T|O|1|O0O|O0|1

5(ofo|jt1|joj|1|1j21(1|(0|1|0|1]|0O

6|o0|jo0o|1|1(0(0}22|1 |01 |1 |01

7(0(0|1 |1 |1 |v}j23|1 |0 |1 ]|1]1

0
g8|/0|1|0|0|0|O}J24|1 |1 |0|0|D0|O
g|of1|jojoj1|1}25|1|1|0|0|1 |0

wjo|1|(of1|0|0Of26 |1 |1 |0 |1

"m{o(t1|jo|t1|1|1)27(1|(1|j0|1|1]|0

2|01 |(1|(0|0|1 281 |1 |1 |0|0O]|1

3(0(1 1|01 |2)29(1|1]|]1|0/|1]|0O

4101 (1|1 |0 |2 j30f(1 |1 |1 |1]|]0]1

15|01 {1 {1 |1 |0 31{1 11 1]1]1

Using Table 6, let’s compose the PDNF of the 5-bit
function from the blocks for which the function receives
the value of unity, that is, for the sets 1, 2, 3, 4, 5, 7,
9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 26, 28, 30, 31.

F(1, X, 23,04, X5 ) = Xy Xy Xy 2045 + Xy 2y Xy X5+

20, Xg X300405 + Xy a3 X5 X5 + Xg XoX3 045 +

FX X9X3X, X5+ XX X3 X X5+ X100 X3X,X5 +

+X (X9 X304 X5 + x1x2x3 xpcr + XX X504 X5 +

+x1x2x3x4x + XXy X3 X4 X5 + Xy Xy X Xy X5+

T+ X1 X9 X3X X5+ X1 X9 X3X 4 X5+ X1 X9 X3X 4 X5+

+X1 X9 X3 X X5 + X X9 X3 X4 X5 + X1 X0X504 X5 + X X0 X3, X5. (9)

Let’s consider two options for minimization of the
5-bit Boolean function (9).

In the first variant, pairs of blocks that allow procedures
for pasting and replacing variables are first identified.

At the first step, the constituents are glued together
and the variables are replaced.

Algebraic transformations of the 1-st matrix (the re-
sult of the transformation is written in the 2-nd matrix):

1 2 3 4
INO.x; 209 23 204 25|01 009 X3 24 X5 |24 X0y X3 X X5 |Xy Xy X3 X X
1100001/00001|00001|000 1
200010
3100011000 000 000
4100100/0010 (0010 (0010
500101001 1001 111|001 1
600111
7101001
g§i01011j010 1j010 1j010 1
9101100
F=/10/01101/0110 (0110 |011 =
1101110

1210111110111

13110000

14100011000 (1000 |1000O0
15(1 0010110 10{t0 1010 10
1610100101 0101 0101 0
17(1 0110
8110101101011 010111 10
9111100111001 1 1001111 0
20011110

201111111111 111 111

— gluing of variable in 2 and 3 blocks:

Xy Ko X3X4 X5+ X Xy X5X 4 X5 —x1 x2 x3x4(x +x5)= x1 xz x3x4,

— gluing and replacing of variables in 4, 5 and 6 blocks:

X1 X9 X3 X4 X5+ X X X3 X4 X5+ X XoX3 X4 X5 = Xy XXz X

(A4 X5+ 2045+ 24005 ) = 2y 25005 (204 X5+ X0 X5+ 204 + X,05) =
= ;1372353(;4375"‘374355 +x7+x;) = ;1372353 X
(204 (05 + 205+ 204 +265) = 2, 265005 (X + 204 +25) =

=200 2,03 (X4 +X5) = X X304 + Xy Xy X35,

— gluing of variables in 7 and 8 blocks:

XXy X3 X4 X5 +x1x2x3x4xr = XMCZX:;XS()Q +X4) x1x2x3x5,

— gluing of variables in 9 and 10 blocks:

X1 X9 X3 X5 X5+ X1 X0X3 x4xr = x1x2x3 X4 (x +x5)= x1x2x3 x4,

— gluing of variables in 11 and 12 blocks:

X429 X3X04 X5 + X100 304 X5 = X153 (X5 + X5) = Xy X0 X3,

— gluing of variables in 13 and 14 blocks:

x1x2x3x4xa+x1x2x3x4x5—x1x2x3x/(x5+x) x1x2x3x4,
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— gluing and replacing of variables in 15, 16 and — replacing of variables in 4 and 10 blocks:
17 blocks:

X4 X953 X4 + X105 X5 = X425 (Xp X4 + X)) =

X1 X9 X3X4 X5+ X1 XoX3X4 X5+ Xy XoX3 X5 X5 = X1 Xy X5 X

_ _ _ o =x,X3 (X4 + X)) = Xy X304 + Xy X0 X3,
X(X34 + X304 + X3X1 ) = X1 X9 X5 (X304 + X304 + X3 X)) =

= 20120 205 (203205 + 203004 + X0 + X3, ) = — gluing of variables in 1 and 5 blocks:

= 2020 205 (205 (20 + 203 )+ 204 + 203) = _ —— _ — I
12 X5 (Xi(X + %)+ 21 4 %) Xy X9 X3X5 + X{ XoX3X5 = Xy XoX5(X3 +X3) = Xy XoXs.

= x1;2;5(x4 +x+x)= x1372975(x4 +x3)=

:x1;2x:;975+x1;2x4x5, No. 5 6 7 8
1 X Xg Xy X5(X1 X X3 Xg X5{X1 Xy X3 Xy X5(X4 X X3 Xy X5
— gluing of variables in 20 and 21 blocks: 1
2
X1X X3 X4 X5+ X1 X5 X3 X405 =K1 X9 X3 X4 (X5 +X5) =20 Xy X3 X4. 310001 (0001 0001 (0001
410 10 |0 10 |0 10
At the second step, the implicants are glued together
and the replacing the variables is made. 500 t
Gluing of variables in 12 and 21 blocks. 6
Algebraic transformations of the 2-nd matrix (the re- 7
sult of the transformation is written in the 3-rd matrix): 8101 ilo 1lo 1o 1
;13(2953954 T XX X504 = x2x3x4(;1+ Xp) = XpX3 Xy J
=100 1 1 011
Algebraic transformations of the 3-rd matrix (the re- 11

sult of the transformation is written in the 4-th matrix):

— replacing of variables in 10, 18, 19 and 21 blocks: g

xixzxgx74+x1x2x73x4x75+x1x2x3x74x75+x2x3x4= 12 1000 (1000 (1000 (1000
= 209203004 F 201000003 X4 + X Xo X3 005 X5 + Xodas + {6 {00 100
FX Xy X3 X X5 = X9X3 (X4 + X X4 + X X5 X5) + 17

20,04 (263 + X120 X5 ) = 25 (364 + Xy + 2,25 ) + 181 1ot 1o to[t 1o

[N
©
—_
—_
(e}
—_
—_
(e}
—_
(e}

+205004 (x5 +x1975) = 2,05 (%y +;1+X1;5)+

[\
o)

F20,004 (X3 + X X5) = XoX3X 4 + X1 XpX5 +

+x1x2x3;5+x2x3x4+x1x2x4;5:x2x3x4+ 21 111 111 111 111

+X1 X005 + X129 X3 X5+ Xod3X4 + Xy Xody X5 = ) ) )

— — Algebraic transformations of the 5-th matrix (the re-

= Xy XX+ XXXy + XXXy X5 + X4 Xy X sult of the transformation is written in the 6-th matrix):
— gluing of variables in 5 and 8 blocks:

— replacing of variables in 1 and 3 blocks:
X1 X X5 + X1 X9 X5 = X1 X5(X5 + Xy) = X1 Xs5.

Xy Xy Xy X4 X5 4 X1 Xy X325 = X4 205 25 (00, X5+ 24) = , . ) )
IR oL e — generalized replacing of variables in 4, 8 and 16 blocks:
=20 20, X3 (X5 + X4) = Xy Xy X35 + 2y Xy Koy

XXX+ X1 X9 X3 + X9 X3X, = X1 X3X, +
Algebraic transformations of the 4-th matrix (the re- _ T
sult of the transformation is written in the 5-th matrix): FXRXX + X4 X X3 = X4 X3 Xg + XXXy,
— gluing of variables in 15 and 18 blocks:
— generalized replacing of variables in 4 and 19 blocks:

X1 X004 X5 + X100, X5 = X1 X4 X5( X + Xy ) = X124 X,

X4 X305 + Xy X3 X5 = X304 + X403 X5 +
— gluing of variables in 16 and 19 blocks: — = = — T
+X03003 X X5 = X103 X4 + Xy X3 X5 + X304 Xs.
Xy 25 X3 X5+ X1 X003 X5 = Xy X325 (Xp + X)) = X123 X5 . . .
’ 7 Algebraic transformations of the 7-th matrix (the re-

sult of the transformation is written in the 8-th matrix):
— generalized replacing of variables in 4, 10 and
- 21 blocks:

X100 X35 + X105 = X2, (X345 +X3) =

— gluing of variables in 8 and 10 blocks:

= X1X5 (X5 + X3) = Xy o5 + X1 X045, X1X5 + X3X4 X5 + X X304 = X1 X5 + X3X4 X5,
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— generalized replacing of variables in 16, 18 and

19 blocks:

X3X4 X5+ X1 X4 X5

=X3X, X5+ XX X5+ X1 X3X5 X5 =

=X3X 4 X5+ XX X5 + X X3 X5 = X3 X4 X5 + X1 X4 X5.

The third step involves testing of each simple implicant
in PDNF for redundancy to remove it and verifying the
resulting function using a truth table (Table 6).

Attempts to further apply algebraic transformation ope-
rations do not yield a result (matrix 8). So, the resulting
DDNF of the function F(x,x,,%5,%4,%5) is presented in
Table 6. Further, the problem of finding the minimal DNF
is solved on the basis of the covering table (Table 7).
In general, in order to obtain the minimum DNF, it is
necessary to remove all superfluous simple implicants from
the DDNE.

Table 7

Covering table of the function F(x,, x5, x5, X4, X5)

X X5 | X1 X3 X5 X4 | X1X4Xs

Constituents Xy Xp X3Xy | XpX3Xy | X3X4Xs

oooo1 [ ] - - - - -
ooo10 - - - [ ] - -
0oo11 [ ] - - - - -
00100 - - - - - [ ]
00101
00111
01001
01011
01100 - - - - - [ ]
01101
01110 - - - -
01111 [ ] - - -
10000 -
10001 -
10010 - -
10100 - - - - - [ ]
10110 - -
11010 - -
11100 - - - - - [ ]
11110 - - [ ] - [ ] -
11111 - - - - [ ] -

In the columns of Table 7 there are simple implicants
of the reduced DNF of the function (matrix 8). The rows
of Table 7 represent the constituents of a unit of the PDNF
function, represented by Table. 6.

A simple implicant absorbs some constituent of the unit
when it is its own part. The corresponding cell of Table 7
at the intersection of the column (with the simple implicant
under consideration) and the line (with the constituent of
the unit) is affected by the @ icon of black color.

Considering Table 7 we see that there are no super-
fluous implicants, and, consequently, Table 7 represents
MDNF of the function (9), presented in Table 6.

F(ay,200,25,%4,%5) = x1x5 T XXy X3 Xy +

+x1X4x + X X9 X3X4 +XoX3 X4 + X3X,4 X5.

(10)

The truth table (Table 6) is created in order to obtain
a more convenient minimization process. However, the
original logical function (8) is represented by a truth
table (Table 5), in which there are sets of variables, is
not expected. The value of the function F for such sets
is affected by «—» and means an arbitrary state.

In this regard, the search for MDNF of the func-
tion, represented by the original truth table (Table 5),
is solved using the covering table (Table 7), removing
sets of variables from its rows is not expected. Table 7
after removing the sets that are not expected to take
the form of Table 8.

Table 8

Covering table of the function F(x,,x,, x5, X, Xs) with remote sets
of variables that are not expected

XiXs | X1 X5 X3 X,

Constituents X1X4Xs | Xy Xo X3Xy4 | XoX3Xy | X3X4 X

0ooo1 [ J - - - - -
00100 - - - - - [ J
00101
00111
01001
01011
01100 - - - - - [
01101
10000 -
10001 -
10010 - -
10110 - -
11100 - - - - - [
11111 - - - - [ -

Considering Table 8 we see that the implicant x; x, x3%,
is superfluous, which we remove from the expression for
the function (10).

F(xy,209,25,%4,%5) = x1xs T XXy X3 X4 +

+20,004 X5 + X X34 + X324 Xs. (11)
Expression (11) represents DDNF and MDNF of the
initial function (8) that is presented in Table. 5
Table 9 shows the results of minimization by the method
of «symmetric maps» [19] and combinatorial method.

Tahle 9

The result of minimization of the function Fl(x,, x,, x5, x,, X5)

Minimization by the method of «symmetric maps»

Flxy, X5, X5, Xq, Xs) = XyXs + X Xp Xg X4 + Xy X Xg + XXsXy + X3 Xg Xs.

Fxy, X5, X5, X4, Xs) = X; X5 + Xp X3 X4 X5 + X; Xp X + XpX3Xy + X3 X4 Xs.

Minimization by combinatorial method

Flx;, Xy, X3, Xy, X5) = X1 Xg + X1 X5 X5 Xy + X1 X4 Xg + XpX3X4 + X3 X4 Xs.
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The main difference between the minimal functions of
Table 9 shows the 3-rd implicant. For a function minimized
by the method of «symmetrical cards» implicant — x,x,x5
to maintain its functionality requires two inverters. For
a function minimized by the combinatorial method of an
implicant x,x,x5, one inverter is required to maintain its
functionality. Thus, using, for example, C-MOS techno-
logy (the complementary metal-oxide-semiconductor struc-
ture), the hardware implementation of the function (11)
will require one inverter less.

The minimized logic function (11) satisfies the given
truth table (Table 5).

The second option is to minimize the 5-bit logic func-
tion (9). At the first stage, sets of three blocks are iden-
tified that allow procedures for gluing and replacing of
variables.

The first step is gluing of the constituent and replacing
of the variables.

Algebraic transformations are presented only for the
first matrix.

— gluing and replacing of variables in 1, 2 and 3 blocks:

Xy Xy X3 X4 X5+ X1 Xy X3X4 X5 + Xy Xy X3X4X5 = Xy Xy X3 X

X(;MS +x4;5+x4x5)= ;1;2973(374% + X4 X5 +x4;5) =

=01 X5 X3 (X405 + X4 X5 + X5 + X4 X5 ) = Xy Xy X3 X

X045 204005 - X 204 ) = Xy X 263 (05 (20 + 20, )+ 25+ X4) =

=Xy Xy X3X4 + X1 Xy X35,

— gluing and replacing of variables in 4, 5 and 6 blocks:

Xy XoX3 X4 X5 + Xy XoXg X4 X5 + Xy XoX3X X5 = Xy XoXg X

X(X4 X5+ X4 X5+ X4X5) = Xy XoX3 (X4 X5 + X405 + X4 +X4X5) =

= X1 25203 (X4 X5+ 204005+ 204+ 25) = 20 25005 (204 (X5 +X5) + X4+ X5) =

= X1 25203 (X4 + 204+ X5) = X X523(X4 + X5) = Xy X053 X4 + Xy XpX3X5,

00001f000 1
00010
00011f0001 {0001 {0001 {0001 {0001
00100(0010
00101f001 1jj0o0 oo oo gjjoo 1
00111
01001
01011010 1}j010 1jj0 0 1jj0 0 1jjo 0 1
011000110 {0 10 |0 10 |0 10 |0 10

01101
F=|01110/011 0j011 0j011 0011 0011 0=
01111 011
10000
100011000 {1000 {1000 {1000 {1000
10010
10100101 O 100
1011010 10 1110
11010
11100111 0Ot 1 0]t 1 0Ot 1 01 1 0
1111011 10t 101 10j1 101 10
1111y 111f) 1114 11101 111 | 111

— gluing of variables in 7 and 8 blocks:

X400y X3 X4 X5+ X300y X3 X4 X5 = X105 X325 (X4 + X4 ) = X105 X3 X5,

— gluing and replacing of variables in 9, 10 and
11 blocks:

X1 X9 X3 X5 X5+ X1 X0 X3 X4 X5 + X1 X X304 X5 = X1 XgX3 X

X(Z;s"‘zxs +x4;5) = szxx(xjxiﬁxjxs +;4+x4;5) =
= ;1352?53(374;5+;4xs +;4+;5):
= 20205263 (204 (25 + X5 ) + 204 + X5) = Xy X005 (X4 + 24+ X5) =

= X0005X3(X4 + X5) = X XoX3 X4 + XX X3 X5,

— gluing of variables in 12 and 21 blocks:

X4 X9 X304 X5 + Xy X X3 X5 = X X324 X5 (X1 + X)) = Xy X504 X5,

— gluing of variables in 13 and 14 blocks:

X1 Xy X3 Xg X5+ X1 Xy X3 Xy X5= X1 Xy Xy X4 (X5 +X5) = X1 Xy X3 Xy

— gluing and replacing of variables in 15, 16 and
17 blocks:

XXy X3 X4 X5+ X XoX5 X4 X5 + X XoX5X4 X5 = Xy Xy X5 X

X( X304 + X304+ X3X4) = X1 Xg X304 X5+ X XoX3X4 X5+

20 2934 X5 = 4 2 205 (2504 + 25 X4 + XX ) =
=212 X5 (204 (X5 + 203) + X4+ 25) = 2200 X5(24 + X4+ X5) =

=220 X5 (24 + X3) = X X X3 X5 + X X X4 X,

0001 (0001 |OOO1 [[0O0O1 |0OOO1

0 10 ([0 10 (0 10 |0 10

011 011 011

1000 (1000 (1000 (1000 (1000

100 100 100 100 100

1 101 1 0|1 10|/1 1 0|1 10
111 111 111 111 111

;58
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— gluing and replacing of variables in 18, 19 and

20 blocks:

X1 X9 X5 X4 X5 + Xy X0 X3 X4 X5 + X X9 X3 X, X5 = X X9 X5 X

X(X3204 + X3 205 + X304 ) = X109 X5 (X304 + X3 X4 + X304 ) =
= X005 X5 (X304 + X304 + X+ X304) =
= XX X5 (X304 + X304 + X4 +X3) =

X1X2;5(X4(;3+x3)+x4 +x3)= x1x2;5(x4 +x,t+x5)=

= XX X5 (X4 + X3) = XX X3 X5 + Xy X9 X X5

The peculiarity of the second variant of minimization
is the change in the initial state of each constituent of
the logical function in the first stage of minimization.

Attempts to further apply the operations of algebraic
transformation in the second version of minimization do not
give a result. So, DDNF of the function F(x,x,,25,%4,%5) is
obtained (9).

To obtain the minimum DNF of the function, repre-
sented by the original truth table (Table 5), it is neces-
sary to carry out actions similar to the first variant of
minimization.

Example 3. To minimize the logic function F(xy, x5, 3,24, %5)
by combinatorial method, given by the following truth
table (Table 10) [20].

Tahble 10
The truth table of a logical function F(x;, x,, X5, X4, X5)

No.| x | xo | x3 | x4 | x5 | FINo.| x| xo | x3 | x4 | x5 | F
oj(o|ojojo|0|1 1101|011
1|o0f(0|1]|]0}|1]1 110|1|1]|0]|1
2101101 1 1 11101 0|1 1 1 1
31011 01 1 11111 1 0|00 |1
4(0|1(1|0|O0O|2 121 |1|1|0|0]1
5(0|1(1jo0|1 |2 13|11 |1]|0}|1]|1
6|0 |1 1 1 1 11141 1 1 1(0]|1
7 1 o|jo|0|0]1])15]1 1 1 1 1 1

An figurative calculus (without demonstrating algebraic
transformations) of the combinatorial method of minimizing
the Boolean function looks like this:

00000
00101
00111 001 1
01011 01011} 01011 01011 |01 11
01100 (0110 0110 110 110
01101 (011 1 0 1 1 |0 1 1
01111

F:10000: OOOO: OOOO: 0000: 0000
10101} (101 1] 101 1 |1 1 1 11
10110[ [1011 1011 1 11 1 11
10111
11000[ [11000] {11000 (11 00 |11 00
11100
11101 [1110
11110
11111 1111 111 111

In the first matrix 6 procedures of gluing and replacing
of variables were carried out, 2 procedures for gluing of
variables were performed in the second matrix, 4 gluing
procedures were carried out in the third matrix, 1 gluing
procedure was carried out in the fourth matrix and 1 gene-
ralized gluing procedure was performed — 14 transforma-
tions in all.

Superfluous implicants in the obtained minimal logical
function (12) are absent.

F(ay,200, 205,204, X5) = X305 + X1203004 + X X3 X4 +

FX X X4 X5+ XXy Xy X5+ Xy X3 Xy X5,

(12)

The result of minimization by combinatorial method (12)
coincides with the result of minimization obtained by means
of the Karnaugh map [20].

The minimized logic function (12) satisfies the given
truth table (Table 10).

The process of minimizing the function of Example 3
demonstrates the hardware compactness of the combina-
torial method.

6. Research results

The problems of reducing the Boolean function and
establishing an assessment of the complexity of DNF
minimization have been studied since the 50s of the 20th
century [21-25]. A typical difficulty of such problems is
that, on the one hand, procedures for minimizing Boolean
functions can’t be performed without brute force [22],
and on the other hand, the power of busting is usually
very large. As noted in [23, 24], the maximum number
of DDNFs of a loglcal function of n variables is of the
order greater than 22"

In the process of these studies, algorithms were de-
veloped that perform a much less exhaustive search than
the algorithm for enumerating all the DDNF of Boolean
functions from the selected class. The mathematical ap-
paratus of such algorithm is the interval graph [25].

Algorithms for finding the MDNF for a class of Boolean
functions, the so-called simplified graph of intervals, were
described. The complexity of the constructed algorithms
turned out to be linearly dependent on the number of
vertices-conjunctions in the original graph.

The peculiarity of the combinatorial minimization method
is obtaining of a minimal function by several variants of
the search that reduces the search. This feature is the
rationale for development of an appropriate minimization
protocol.

The complexity of the algorithm is a quantitative char-
acteristic that reflects the resources consumed by the al-
gorithm during its execution. The main resources that are
evaluated are the execution time (that is, the maximum
number of operations required by the algorithm to obtain
the response) and the memory space.

To estimate the algorithmic complexity of the search
for a minimal function by a combinatorial method, let’s
take the operations of algebraic transformations as con-
sumed algorithmic resources, which are performed when
the function is minimized. For example, the absorption,
substitution or idempotency of variables is one operation,
but the number of elementary operations in the indicated
algebraic transformations can be different.
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Minimization of the logical function by the Quine-
McCluskey method involves splitting all sets of variables
into groups according to the number of units in them.
The gluing operation can only be in sets of neighboring
groups that differ in a single-digit variable. Putting the
sets into groups, at the first stage, carry out all possible
gluing of variables. In the second stage, again, all the
sets of variables are separated after gluing into groups
according to the number of units in them and taking into
account the coordinate sign (for example, «~»). Conduct
all possible gluing of the second stage.

After receiving DDNF, a table of covering is constructed,
the columns of which are called constituents of the original
function, and the lines correspond to the obtained impli-
cants at the stages of gluing of the variables. Using the
covering table, the minimum function (MDNF) is found.

The main resources that are spent using the Quine-
McCluskey search algorithm are algebraic operations in
the stages of gluing together variables. In this connection,
the estimation of the algorithmic complexity of the search
for a minimal function by the Quine-McCluskey method
will be determined by calculating the amount of consumed
resources (the number of algebraic operations) at the stages
of gluing, absorbing and idempotency of the variables that
are performed when the function is minimized.

Example 4. To minimize the 3-bit Boolean function
by the Quine-McCluskey method. The output function is
given by the following truth table (Table 11) [23].

Tahble 11
The truth table of a logical function Fl(x,, x,, x5)
No. X3 X3 X1 F No. X3 X3 X1 F
0 0 0 0 1 4 1 0 0 1
1 0 0 1 0 5 1 0 1 1
2 0 1 0 1 6 1 1 0 1
3 0 1 1 1 7 1 1 1 0

To minimize the given function, let’s select sets of va-
riables for which the function receives the values of unit:
F={000,010, 011, 100, 101, 110}. (13)
Let’s separate the sets of variables into groups de-

pending on the number of units in them and carry out
the gluing of variables in neighboring groups (Fig. 2).

First Second group Third group

group

(000) 010 100) o011 101 110)
-00 /~10 i~ 10~ Stage 1
~~0 Stage 2

Fig. 2. Separation of the sets of variables of function (13) into groups
by number of units in them

From Fig. 2 we see that in the two stages of gluing
of variables, 5 algebraic transformations are consumed.
Underlined implicants form a Z-covering;

01~;
Z=310~;
~~0.

Thus, DDNF (14) of the function F (13) is obtained:

Fone = 23 + 2320, + 2.

(14)

To remove excess implicants and to obtain MDNF,
a covering table is constructed (Table 12).

Tahle 12
Covering table of the function F(x,, x5, x5)
Constituents
Implicants

000 010 100 011 101 110
01~ - ® - [ ] - -
10~ - - ° - ° -
-0 [ J ( J [ J - - [ J

From the covering table it turns out that all the ob-
tained implicants are part of the core of the function. Thus,
the MDNF of a given function has the following form:

Fong = X300 + X509 + X

(15)

The minimization of the logical function (13) by com-
binatorial method looks like this:

000 [0O0O] |0 O
010

F=011=01 =01 =01
100
101 |10 10 10
110 |t10] |1 O 0

In the first matrix, 2 procedures for gluing of variables
are performed, the second matrix contains the 2 procedure
for the replacing of variables, in the third matrix there
is 1 procedure for gluing of variables. Total: 5 algebraic
transformations. The minimized function by combinatorial
method coincides with expression (15).

Example 5. To minimize the 4-bit Boolean function
by the Quine-McCluskey method. The output function
is specified by the following truth table (Table 13) [24].

Tahle 13
The truth table of a logical function F(x, x5, x5, x,)

No. | x1 | % | x3 | x4 F | No. | x X2 | xz3 | x4 F
0 0 0 0 0 0 8 1 0 0 0 0
1 0 0 0 1 0 9 1 0 0 1 1
2 0 0 1 0 0D |10| 1 0 1 0 0
3 0 0 1 1 11111 0 1 1 0
4 0 1 0 0 11121 1 0 0 0
5 0 1 0 1 1 |13] 1 1 0 1 1
] 0 1 1 0 0|14 1 1 1 0 1
7 0 1 1 1 1 |15] 1 1 1 1 1

;SO
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To minimize the given function, let’s select sets of va-
riables for which the function receives the values of unit:

F={0011,0100,0101,0111, 1001, 1101, 1110, 1111}. (16)

Let’s separate the sets of variables into groups de-
pending on the number of units in them and carry out
the gluing of variables in neighboring groups (Fig. 3).

First Second group Third group Fourth
group group
(0100) (0011, 0101, 1001) (0111, 1101, 1110)  (1111)

1-

Fig. 3. Separation of the sets of variables of function (16) into groups
by number of units in them

From Fig. 3, we see that 11 algebraic transforma-
tions (10 gluing and 1 idempodentity of variables) are
used in two stages of gluing of variables. Emphasized
implicants form a Z-covering:

010 ~;
0~11;
Z=311~01;
111~;
~1~1.

Thus, DDNF of the function F (16) is obtained:

FDNF =X Xy X3+ X X3 Xy + X1 X3X 4 + XX X3+ XXy,

To remove excess implicants and to obtain MDNF,
a covering table is constructed (Table 14).

Tahle 14
Covering table of the function F(x;, Xz, X3, x,)
Constituents
Implicants

0011 | 0100 | 0101 | 0111 | 1001 | 1101 | 1110 | 1111
010 ~ - [ [ J - - - - _
0~11 ® - - [} - - - -
1~01 - - - - [ J o - -
111~ - - - - - - [ J [ J
~1~1 - - [ ] [ ] - ([ - [ J

It is necessary to select the minimum number of rows
that cover all columns. The solution to the problem of
selecting columns containing one label begins. This is
column 0011: in the decision it is necessary to accept
implicants 0~11, otherwise constituent 0011 will not be
covered (will not enter the solution).

From the covering table 14 it turns out that the impli-
cant ~1~1 is superfluous. Thus, the MDNF of the given
function (16) has the form (17):

Fonp = X109 X5 4 X030 + Xy X304 + X1 X00X5. 7

The minimization of the logical function (16) by com-
binatorial method looks like this:

0011
0100
0101 (010
F:O111:0 11'
1001
110 1 |1 01
1110
1111|111

In the first matrix there are 4 procedures of gluing of
variables — only 4 algebraic transformations. The mini-
mized function by combinatorial method coincides with
the expression (17).

Example 6. To minimize the 5-bit Boolean function
by the Quine-McCluskey method. The output function
is specified by a truth table (Table 10). To minimize the
given function, let’s select sets of variables for which the
function receives the values of unity

F={00000,00101,00111,01011, 01100, 01101,
01111, 10000, 10101, 10110, 10111, 11000,

11100, 11101, 11110, 11111}. (18)
Let’s separate the sets of variables into groups de-
pending on the number of units in them and carry out
the gluing of variables in neighboring groups (Fig. 4).
The resulting DDNF of the function F (18) has the
form (19):

Fong = X9 X5 X4 X5+ X X3 X4 X5 +x1x2x4 x +

F XXX X5+ Xy X5 + X X3 2 + X100304 + X 0. (19)

To remove excess implicants and to obtain MDNF,
a covering table is constructed (Table 15).

It is necessary to select the minimum number of co-
lumns that cover all rows. From the covering Table 15
it turns out that the implicants 1~000 and 111~ are
superfluous. The corresponding cells of Table 15 at the
intersection of the column (with implicants 1~000, 111~)
and the row (with constituent unit) are indicated by the
green symbol @. The cells of Table 15 at the intersection
of the column with implicants, which are included in the
minimum function and the rows (with constituent unit)
are indicated by the blue symbol ®.

Thus, MDNF of the given function (18) has the
form (20), which coincides with (12):

Fong = X9 X5 X4 X5+ X X9 Xy X5 + X X9 X, X5 +

+X3X5 + X9X3 X4 + Xy X354, (20)

Based on the results of examples 4-6, let’s calculate
the number of consumed algebraic transformations by
the Quine-McCluskey method performed at the stages
of gluing, absorption, and idempotence of variables, while
minimizing the logical function. Let’s also establish an
estimate of the algorithmic complexity of the search for
a minimal function by this method.
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1st group

00000

2nd group

10000

3rd group

00101
01100
11000

4th group

00111
01011
01101
10101
10110
11100

5th group

11
11

01111
10111

101
110

6th group 11

111
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~0000  1stgroup
1~000  2nd group
0110~
11~00
001~1
01~11
0~101
~0101
011~1
~1100
0~111
~0111
101~1
1~101  4th group
~1101
1~110
1011~
1110~
111~0
~1111
1~111
111~1
1111~

3rd group

5th group

~0000
1~000

~0000
1~000
11~00
01~11
0~1~1 ~0000 ~0000 ~0000
~~101 1~000 1~000 1~000
~01~1 11~00 11~00 11~00
~~101 01~11 01~11 01~11
~110~ 0~1~1_____ ~~1~1 ~~1~1

~110~ ~01~1 ~01~1 ~110~
~~101 ~~101 1~11~
~110~ ~110~ 11~~
~~111 ~~111
~11~1 ~11~1

~~111
~~111
~11~1
1~1~1 1~11~
1~11~ 11~~
111~~

V2

~11~1
1-1~1
1-1~1
1~1-~1
1~11~
1~11~
111~~
111~~

N

Fig. 4. Separation of the sets of variables of the function (18) into groups with the following procedures for gluing, absorbing
and idem potency of implicants

The results of calculating the number of algebraic trans-
formations are presented in Table 16.

Fig. 5 shows the dynamics of the growth in the number
of algebraic transformations that occur when the logical
function is minimized by the Quine-McCluskey method

Table 15 and by the combinatorial method with in-
Covering table of the function F(x,, X, X5, X,, Xs) creasing the bit capacity of the function.
Implicants Tahble 16
Constituents Comparative table of spent algebraic transformations
~0000 |1~000|(11~00 |01~11 |~1~1|~110~ [1~11~| 111~ for two methods of minimizing the function
F(x;, %5, %3, %4, X5)
00000 ° - - - - - - -
10000 ® ° _ _ _ _ _ _ Bit depth The number of algebraic transformations
of function | Ouine-McCluskey Combinatorial
00101 - - - - ® - - - method method
01100 - - - - - [ J - - 3 5 5
11000 - ° ° - - - - - 4 11 4
00111 - - - - ° - - - 5 51 14
01011 - - - ° - - - - o .
Taking into account Fig. 5 we see that
01101 - - - - L - - the dynamics of the growth of the number of
algebraic transformations, with the increase
10101 - - - - - - - . . . .
in the bit depth of the logical function, for
10110 - - - - - - o - a combinatorial minimization method by a
slower process in comparison with dynamics.
11100 _ - e - - e - e The growth of the number of algebraic
01111 _ _ _ _ Y _ _ _ transformations in the Quine-McCluskey
method. Thus, the search for a minimal func-
10111 - - - - e - e - tion by a combinatorial method is more
11101 - - _ _ ° ° _ ° efficient than searching using the Quine-
McCluskey method.
11110 - - - - - - i The complexity of the Quine-McCluskey
11111 _ B _ _ ° _ P minimization method increases exponentially
with the increase in the bit of the input

variables [25].

According to the data that we have at our disposal,

the complexity of the search algorithm by a combinatorial

method can be described as a first approximation linearly
on the number of algebraic transformations with an O(n)
complexity rating.
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60
50
The number of
algebraic 40
transformations
30
20
L
0 : SR SR SO
3 4 5
=0=Quine-McCluskey metod 5 11 51
==Combinatorial metod 5 4 14

Fig. 5. Dynamics of growth of algebraic transformations
when the function is minimized by the Quine-McCluskey method
and by the combinatorial method, with the increase
in the bit of the function

7. SWOT analysis of research results

Strengths. The strength of the combinatorial method
is that the object of solving the problem of minimizing
a Boolean function is a block-diagram with repetition,
what is the truth table of this function. This allows
to concentrate the minimization principle within the
function calculation protocol and, thus, dispense with
auxiliary objects like the Karnaugh map, Veitch diagram,
acyclic graph, etc. The equivalent transformations by
graphic images have a large information capacity, with
the properties replace the verbal procedures of algebraic
transformations. The increased information capacity of
the combinatorial method makes it possible to carry
out manual minimization of 4, 5-bit Boolean functions
quite easily.

This is more advantageous in comparison with ana-
logues for the following factors:

— lower cost of development and implementation, since
the principle of minimization of the method remains
within the truth table of this function and does not
require other auxiliary objects;
— Increasing the performance of the manual minimiza-
tion procedure for 4-, 5-bit functions and increasing
the performance of automated minimization with a greater
number of variable functions, in particular due to the
fact that several search options give the same mini-
mum function.

Weaknesses. The weak side of the combinatorial method
with manual minimization is associated with an increase
in the number of variables (more than seven or eight)
of the logical function. With such number of variables,
the laboriousness of calculating manual minimization in-
creases.

Negative internal factors inherent in the combinatorial
method of manual minimization of the Boolean function
consist in increasing the time of obtaining the minimal
function with increasing number of variables of the given
function.

Opportunities. The opportunity of further studies of the
combinatorial method can be the development of a protocol
for the optimal alternation of algebraic transformations

over implicit Boolean functions, with the aim of further
optimizing the execution time of the search algorithm of
the minimal function.

Additional features that connected with implementa-
tion of the combinatorial method for minimizing Boolean
functions is the use and support of the submatrix library,
which will help optimize the response time for the search
algorithm for minimizing the function.

Threats. The minimization protocol for the Boolean
function of the combinatorial method is independent of
the protocols of other minimization methods, therefore
there is no threat of negative impact on the object of
research of external factors.

To a certain extent, the Quine-McClusky method is
an analog of the combinatorial method for minimizing the
Boolean function. At the moment, the Quine-McCluskey
method is the best because an algorithm for automating
the search for a minimal function has already been crea-
ted for it.

1. It is established that the object of solving the prob-
lem of minimizing a Boolean function is a combinatorial
block-diagram with repetition, what is the truth table
of this function. This allows to focus the minimization
principle within the function calculation protocol and,
thus, do without auxiliary objects of the minimum func-
tion search.

2. It is revealed that the tabular organization of the
mathematical apparatus of the block-diagram with repetition
allows obtain more information about the orthogonality,
contiguity, uniqueness of the blocks of the combinatorial
system, and, consequently, blocks of the truth table of
the given function. Equivalent transformations by graphic
images, in their properties have a large information capa-
city, capable of effectively replacing verbal procedures of
algebraic transformations, in particular using the library
of submatrices.

3. It is established that the results of verification of
the minimized function obtained by the combinatorial
method satisfy the output protocol of calculating the
given function and, therefore, indicate the optimal de-
crease in the number of function variables without lo-
sing its functionality. The complexity of the algorithm
for searching for a minimal function by a combinatorial
method is O(n) and is linear — the execution time of
the algorithm increases linearly with increasing the bit
length of the function 7.

4. The efficiency of the combinatorial method is demon-
strated by examples of minimizing functions borrowed from
the work of other authors for the purpose of comparison:
Example 1 [17, art. 184], — minimization of the 4-bit
Boolean function, examples 2 [19], 3 [20] — minimization
of 5-bit Boolean functions. Taking these examples into
account, the combinatorial method of minimizing a func-
tion gives grounds for the expediency of applying it in
procedures for minimizing a logical function.

It is established that the growth dynamics of the num-
ber of algebraic transformations, with increasing bit depth
of the logical function, for a combinatorial minimization
method by a slower process in comparison with the growth
dynamics of the number of algebraic transformations by
the Quine-McCluskey method. In this regard, the com-
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binatorial method is more efficient than the search using
the Quine-McCluskey method.
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MHHHMUBALMKA BYNEBLIX DPYHKUMA KOMEHHATOPHLIM
METOAOM

PaccMoTpeHo pactpocTpaHeH e IPUHITNTIA MUHUMU3AIINH C 10~
MOTIBIO aTeOpandecknx npeodpasoBaHUil HA METOJ MUHUMU3AIINI
C UCTIOJIb30BAHUEM KOMOUHATOPHOI 610K — CXEMbI € TIOBTOPEHUEM.
MareMaTiyecKuii armapar 610K-CXeMBI € TTOBTOPEHIEM TaéT 60JIbiire
nHGOPMAIMU OTHOCUTENBHO OPTOTOHATBHOCTH, CMEKHOCTH, OTHO-
3HAYHOCTH GJOKOB KOMOMHATOPHON CHCTEMbI, KOTOPOH COGCTBEH-
HO sIBJIsIeTCsT TabJInIla NCTHHHOCTH 3alaHHON (YHKIIUH, TOITOMY
MPUMEHEHNE TaKOW CUCTeMbl MUHUMU3AIMK (QYHKINU ecTh Gosee
ahexTuBHBIM.

Kmiouessie cnmoBa: GyseBa (GyHKINS, METOJ MUHUMHI3AINH,
MUHUMU3AINS JOTHYECKON (QYHKIMH, OI0K-CXeMa ¢ TIOBTOPEHNEM,
MUHTEPM.
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