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Abstract— This paper studies strategies to minimize the 
electromechanical interaction (EMI) within aircraft power 
systems. With the growth of electrical power on-board aircraft, the 
interaction between the electrical systems and the engine core will 
become significant. The behaviour of electrical loads (on/off, 
transient etc.) will have significant impacts on the engine shaft, 
such as producing transient vibrations, creating stability problems 
and reducing the efficiency etc. To avoid these problems, an 
advanced electrical power management system (PMS) is required. 
This paper introduces novel loading methods for PMS applications 
to minimize the interactions between electrical and mechanical 
systems. The strategies, referred as Single Level Multi-edge 
Switching Loads (SLME), Multilevel Loading (MLL), and Multi-
load Single Level Multi-edge Switching Loads (MSLME) are 
developed based on the Posicast method. An insight look of the 
developed technique has been studied using the zero-pole root 
locus. It is demonstrated that the excited poles in the system are 
cancelled by the addition of zeros, and thus supressed the EMI 
vibrations.  
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I. INTRODUCTION 

The More Electric Aircraft (MEA) has become one of the 
main trends for future aircraft technologies. Many functions, 
which were driven by pneumatic, mechanical and hydraulic 
power in conventional aircraft, are being gradually replaced by 
electrical devices. The increased use of novel electrical loads 
also gives rise to the electrical power extracted from the engine. 
In some cases, such as taxiing period when the engine is at the 
idle mode, the electrical power may account for more than 50% 
of the total engine power [1]. A higher electrical power system 
allows having more flexible systems and a higher range of 
applications, but also introduces new challenges. One of these 
challenges is the interaction between the electrical and 
mechanical power system.  

In conventional aircraft, the electrical system has a small 
impact on the mechanical system, due to the difference in sizes: 
the electrical system is small compared to the mechanical one, 
and therefore the short term changes of it do not affect the 
mechanical system [2]. However, with a higher electrical power 
rating, the connection of electrical loads produces transients 
vibrations which, as it has been shown in [3], are transferred to 
the mechanical system, stressing and weakening the shaft [4], 

[5]. The maximum vibration allowed by the shaft depends on 
two material properties, i.e. the ultimate stress and the 
endurance stress [6].  

• Ultimate stress: Maximum peak magnitude of an 
oscillation that the material can withstand. 

• Endurance stress: Maximum duration of an oscillation 
that the material can withstand. 

In order to reduce the vibrations due to the EMI and 
consequently extend the material lifecycle, the transient period 
needs to be minimized. The aim of the paper is to minimize the 
EMI between the electrical power system and the shaft of the 
generator of an aircraft system. 

 This paper proposed a PMS that uses strategies based on 
the Posicast compensation method [7], [8]. In the PMS, the 
electrical loads are categorized as Time Critical Loads and 
Time Non-critical Loads with respect to its connection 
properties. For each type of loads, the PMS will apply different 
strategies. 

The rest of the paper is organized as follows: in section II 
the EMI system in study is modelled and analysed. Section III 
presents the natural frequencies relationship with the vibrations 
and the Posicast compensator. After, section IV introduces 
strategies to minimize the vibrations produced by the EMI. 
Finally, in sections V and VI, a strategy to identify parameters 
of the system and the conclusions are presented. 

II. THE ELECTROMECHANICAL SYSTEM 

This section presents the EMI system of an aircraft: in 
section A, the model is introduced; in section B, the parameters 
of the system are defined; and in section C the response to an 
electrical load connection is shown. 

A. Modelling of the System 

The connections between the engine and the power system 
of an aircraft can be represented by Fig. 1 [4]. The engine, 
represented by an E, is connected to two generators. Each 
generator has a control unit (GCU) and supplies power to the 
electrical power system. The modelling of the EMI system is 
divided into the mechanical and electrical parts. 
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Fig. 1. Electromechanical interaction system. 

1) Mechanical System Modelling 

The mechanical system can be represented as a lumped 
mass system with three key parameters i.e. the inertias, the 
stiffness and the damping factor [9]. The EMI system in study 
(Fig. 1), consists of 6 inertias ( , = 1,2, … , 6) including the 
engine, the gear box and generator rotors. These inertias are 
connected through shafts (horizontal connections) or a gear 
shaft (vertical connections). Each shaft connection has an 
associated stiffness and damping, given by  and , with  
and  the sub-index of the related inertias being connected. In 
the case of the gear shaft connection, a gear ratio is given by .  

To model the system, the torques acting over each inertia 
are modelled. In (1) the torque equation for inertia 1 is shown, 
with  the torque applied by the engine, and  the torque 
being used by the shaft. The torque on the shaft connecting 
inertias 1 and 2 can be calculated by (2), with , , and , the 
position, speed and acceleration of inertia . = −  (1) = ( − ) + ( − ) (2) 

Repeating the same proceeding done for inertia 1 on the rest 
of the system, the lumped mass system of the EMI is found as 
shown in (3), with the rotational angles of each inertia as a state, 
and the inertia ( ), stiffness ( ) and damping ( ) matrices 
defined according to the connections described. The input of the 
system  is made out of the torques , , and , which are 
being applied by the electrical system and are modelled in 
section 2. The matrices and vectors values are presented in (4).  + + =  (3) 

=
0 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0

=
− 0 0 0 0− 0 0 0 00 0 0 − 00 0 0 0 −0 0 − 0 00 0 0 − 0

  (4) 

=
− 0 0 0 0− 0 0 0 00 0 0 − 00 0 0 0 −0 0 − 0 00 0 0 − 0

= 0 00 0 00 0 00 0 00− 00 0 − 	 =  

It is important to notice that the lumped mass model in (3) 
does not consider the effect of the gear box J2, which relates the 
speed from inertias 3 ( ) and 4 ( ) to the speed of inertia 2 
( ), as shown in (5). Considering this relationship, the system 
from (3) can be reduced to a system of 4 states ( , , , ) 
using the transformation matrix of (6). In (7) the reduced 
matrices of the system are shown. =  =  

(5) 

= 1 0 0 00 1 0 00 0 00 0 00 0 1 00 0 0 1   (6) 

=  =  =  =  = ′   

(7) 

2) Electrical System Modelling 

The obtained lumped mass model is connected to the 
electrical one through the applied torques ,  and .  

In this paper, the generator is modelled as a DC machine 
since from a control point of view, the control of a DC machine 
and an AC one is the same. Consequently, the electrical power 
system is modelled as a DC grid connected to a resistive load. 
Equations (8) and (9) show the torque of each machine and the 
voltage equation of the power system, with ,  the airgap 
torque of the generators, ,  the machines constant, ,  the 
current on each power system, ,  the terminal voltage of each 
generator, ,  and ,  the line parameters of the power 
systems, and ,  the voltage of the loads of each power 
system. , = , ,  (8) , = , , + , , + ,  (9) 

Additionally, each generator has a GCU, which regulates 
the terminal voltage to be constant. Subsequently, an electrical 
load connection to the generator has a proportional impact on 
the torque of the generator, as presented in [3], [10]. For 
simplification, in this paper the electrical load connections will 
be represented as changes in the airgap torque of the generators , . As a result, to model the EMI only the value of the 
generators torque will be needed. 

Secondly, the engine of the system is going to be modelled 
as torque , which value depends on the speed of the shaft 
( = ). Its behaviour can be modelled by a lineal equation 
given by (10), in which  and  are constants. = − +  (10) 



3) System integration 

The system integration is achieved by combining the 
mechanical model from (7) and the electrical one (8) and (10). 
First, the torques driven by the engine and the generator must 
be included in (7). The torques of generators are inputs of the 
system. On the other hand, the torque of the engine, depends on 
the speed of the shaft, hence its constant  is added as a 
damping parameter to the  matrix in the position (1,1), while 
the constant  remains as an input of the system. The state 
space system given by (11). = +  =  

(11) 

Where: = 0− − 						 = −    =  = 0 − 0 0 − 0  
(12) 

The states of the system are the rotational angles  and the 
rotational speed  of each inertia; the input are the torques 
applied by the generators  and , and the constant associated 
with the engine torque . And the output is the torque 
connecting the shaft from inertia 4 to 6, = . 

B. Parameter Definition 

The system is designed to have two mechanical natural 
frequencies between 10 and 30Hz in order to represent the 
typical values of aircraft systems [4]. Moreover, as the engine 
is considered the ground of the system, its inertia value has to 
be at least 100 times the generator inertia. Table I shows the 
parameters that are going to be used for the rest of the paper. 

TABLE I. PARAMETERS OF THE ELECTROMECHANICAL SYSTEM. 

Parameter  Value Unit 

Engine Inertia  1.2485e3  

Gear Shaft Inertia 

 2.073e-2  

 2.028e-3  

 2.028e-3  

Generator 1  Inertia  0.1909  

Generator 2  Inertia  0.1909  

Shaft Stiffness 

 141e3 /  

 2890 /  

 2890 /  

Shaft Damping 

 1.8 /  

 0.9 /  

 0.9 /  

Gearbox Ratio 
 -1.8 - 

 -1.8 - 

Engine Constants 
 0.3536 /  

 55.55  

Using the values from Table I on the A matrix from (12), 
the natural frequencies and damping of the system are obtained: 

• = 0 	and = 1 
• = 17.46  and = 0.017 
• = 24.95  and = 0.022 
• = 334.01  and = 0.049 

C. Step Response of the System 

To show the EMI, the system of (11) is analysed using 
MATLAB/Simulink software. A step load torque is applied to 
the generator  and the torque transient is observed. Fig. 2 
shows the response to a connection from 3 to 10Nm. The torque 
applied on the generator  represents the connection of an 
electrical load (solid line), while the torque on the shaft  
(dashed line) shows the EMI of the system. It is observed that 
the connection of an electrical load generates transient 
vibrations on the shaft. Thus, there is an EMI and its effect must 
be studied. 

 
Fig. 2. Step response of the system. 

The next section will focus on development of strategies to 
eliminate these vibrations. 

III. FREQUENCY CONCEPT 

In order to eliminate the vibration due to EMI, first the 
relationship between load connection, and natural frequencies 
must be described. Secondly, the Posicast method that uses this 
relationship is introduced. 

A. Effect of Natural Frequencies on Vibrations 

For undamped and underdamped systems, as the one of the 
EMI of an aircraft, the complex conjugate poles , define the 
system vibration characteristics. These conjugate poles can be 
written as:  = − ± 1 − = − ±  (13) 

Where  is the natural frequency,  is the damped 
frequency, and  is the damping ratio. 

Moreover, the response ( ) of a system initially in 
equilibrium to an external excitation ( ) can be given by the 
Duhamel integral as shown in (14). Where ( ) is the system 
impulse response function [11], [12]. ( ) = ( ) ( − )  (14) 

From here, the algebraic analysis presented in [10] is 
followed. The response to a step connection at a time , ℎ( −), is defined as the integral of a the impulse function, ( − ) . Moreover, following a modal approach [13], 

the step response can be written as a function of step response 
modes, as shown in (15), where  represents the kth eigenvalue 
and ℎ  represents the coefficient of the step response associated 
with the eigenvalue . ℎ( − ) = ℎ + ℎ exp ( − )	  (15) 



Assuming that ( ) is a sequence of step excitations, such 
as ( ) = ∑ = , the response of the system can 
derived and presented in (16), where ( ) is the response of the 
system,  and  are the value and time of the pth step applied 
to the system,  is the poles being excited, and ℎ  is the 
associated step response [11]. ( ) = 	 ℎ + ℎ exp	( ( − )) (16) 

In order to supress the vibrations of the  related to , the 
steps applied to the system have to be orthogonal to the 
vibration characteristic. This condition is satisfied when (17) is 
solved. real exp − = 0	∀	 >  (17) 

B. Posicast Compensator 

The solution of (17) was proposed in [7], [8] using the 
Posicast method. In Fig. 3(a), the transient response of the 
system after a step response is shown. While, in Fig. 3(b) the 
open loop Posicast compensator is used. Instead of using one 
single step excitation system, in Fig. 3(b) a series of step 
excitation signals are applied. By carefully choosing the 
excitation time and amplitude, the vibrations can be supressed. 

 
Fig. 3. System diagram with and without Posicast compensator. 

The Posicast compensator can be modelled as a series of 
delayed step connections as shown in (18), in which  and  
represent the pth step connection value and the time of it.  + +⋯+ +⋯+  (18)

IV. STRATEGIES AND STABILITY ANALYSIS 

In this section, a PMS that allows the cancelation of shaft 
vibrations due to electrical load transient is developed. The 
electrical loads of an aircraft are categorized into different types 
according to its operation characteristic. Different Posicast 
strategies will be applied according to the load type. A zero-
pole root locus technique is used to explain the effect of the 
Posicast compensators on the overall system.  

A. Aircraft Load Classification 

The main loads in a MEA, given in [1], are shown in Table 
II. These loads can be separated into two groups: Time Critical 
and Time Non-critical Loads. 

TABLE II. CLASSIFICATION OF LOADS ON AIRCRAFT SYSTEM 

Time Critical Time Non-critical 

Flight Control Surfaces (2-35kW) 
Fuel Pumps (10kW) 
Landing Gear (5-70kW) 
Engine starting (200kW) 

De-Icing (20kW) 
Cabin Air (4*70kW) 

Time Critical Loads are the ones in which the connection 
time represents a crucial factor for its operation. For these loads 
is essential to have a precise connection time. An example is the 
case of the flight control surfaces or the landing gear, which 
cannot have a delay in their connection. On the other hand, 
Time Non-critical Loads are the ones for which an exact time 
connection is not a crucial factor for its operation. For example, 
the de-icing system and the air cabin can be connected and 
disconnected at any time during the flight. In particular, it was 
stated in [14], that the de-icing system must be part of the time 
on and off. This characteristic is the one that makes the de-icing 
system the perfect load to use on the PMS strategies, as it will 
be shown. 

B. PMS Strategies 

1) Time Non-critical Strategies 

As there is no need of an exact connection time for a Time 
Non-critical Load, the PMS can apply the Posicast compensator 
directly to the load connection. For these cases, the Posicast 
based strategies Single Level Multi-edge Switching Loads 
(SLME) and Multi-level Loading (MLL) were introduced in 
[10]. SLME consists in connecting the load as a series of on/off 
pulses, as can be seen in  (solid line) in Fig. 4 (a); while MLL, 
consists in connecting the load by a sequence of steps as shown 
in  (solid line) in Fig. 4 (b). 

To obtain the time instant and step values of the SLME and 
MLL strategies, the equations in (19) and (20) must be solved 
respectively. These equations are derived from (17) as 
presented in [10]. The subscript  represents the natural 
frequency with which the equation is associated, and sub-index 

, the number of the step connection.  

The EMI system in this study has three non-zero natural 
frequencies ( = 17.46, 24.95, 334.01 ). In order to 
eliminate the vibrations, the SLME strategy will have 7 
connection pulses . Moreover on the equation system = 0, 
and = ±1 for the odd and even step connections 
respectively. Therefore, the connection times −  are the 
parameters that will be solved. On the other hand, MLL will 
have 4 connection steps , and the following constrains: =0, and ∑ = 1. Hence, the values of the times −  and 
the step values , ,  must be found.  

 Solving equation systems (19) and (20) in MATLAB with 
Opti Toolbox [15], and applying a step connection of the same 
value used in section II C (from 3Nm to 10Nm) to the Simulink 
model of the system, the responses from Fig. 4 are obtained. In 
dashed line is observed that the response of the shaft does not 
present the transient response that is obtained when connecting 
an electrical load without the Posicast strategy. Hence, the use 



of the strategies SLME and MLL allow suppression of the shaft 
vibrations due to electrical load connections. cos( ) + ⋯+ cos+⋯+ cos( ) = 0sin( ) + ⋯+ sin+⋯+ sin( ) = 0 (19) 

cos( ) + ⋯+ cos+⋯+ cos( ) = 0sin( ) + ⋯+ sin+⋯+ sin( ) = 0 (20) 

Moreover, both strategies are applied in half of the periods 
of the natural frequencies, making the total loading time in the 
order of milliseconds. In addition, the SLME connection 
behaves as mechanical switches, which have a bounce in its 
connection. Radar and de-icing systems are examples of loads 
in which it can be applied. On the other hand, the MLL strategy 
is suggested for loads that do not need to be loaded to its full 
power at one single time instant. These loads can be multilevel 
converters fed drive systems or the ice protection systems. 

 
Fig. 4. Step response with Time Non-critical strategies. 

2) Time Critical Strategy  

For Time Critical Loads, like flight control surfaces, to 
which a delay in the connection cannot be applied in order to 
avoid the vibrations produced by a step connection the PMS 
uses an auxiliary load. Auxiliary Loads are going to be Time 
Non-critical Loads that are already connected to the system, and 
to which a Posicast based strategy is going to be applied. The 
electrical power of the Time Non-critical Load must be higher 
than the one of the Time Critical Load being connected. An 
example of an auxiliary load is the de-icing system presented in 
[14] where is stated that the de-icing system is following an on-
off-on pattern.  

The strategy applied by the PMS to Time Critical Loads 
( ) will consist in the pulsating connection and disconnection 
of an auxiliary load ( ) with the SLME strategy. Fig. 5(a) 
shows this approach.  As can be seen, while the Time Critical 
Load (  in dashed line) is connected by step, the Auxiliary 
Load (  in dashed-dot line) is using the SLME method. In this 

way, the total load applied on the generator ( = + ), 
shown in solid line in Fig. 5(a) and (b), is not a single step. This 
strategy will be called Multi-load Single Level Multi-edge 
Switching Loads (MSLME). 

The equation system that needs to be solved to find the time 
connections of  that allows eliminating the vibrations will 
include the connection time of  and . As it was done for 
the Time Non-critical Loads, the equation system to find the 
step values and the time connections is derivate from (17) and 
shown in (21). For the system in study 6 connection pulses are 
going to be needed in order to supress the vibrations. 
Considering = 0 and the steps  as a partial disconnection 
of the auxiliary load , which takes values = ±  for the 
even and odd steps respectively, the variables that need to be 
solved are the times −  and the value of the auxiliary load 
disconnection . cos( ) + ⋯+ cos  + cos( ) + cos( ) = 0 sin( ) + ⋯+ sin  + sin( ) + sin( ) = 0 (21) 

The system is solved in MATLAB with Opti Toolbox [15], 
and the system is tested in Simulink. Fig. 5 shows the results 
obtained for a Time Critical Load connection of 3Nm when the 
auxiliary load connected to the system is of 10Nm. As already 
stated in Fig. 5(a) the value of  (dashed-dot line),  
(dashed line), and the total load applied to the generator  
(solid line) are shown. It is observed that, even though the 
critical load is connected as a step connection, the total torque 
applied to the generator is a series of pulses thanks to the 
Auxiliary Load. In Fig. 5(b) the total torque over the generator 
(solid line) and the shaft torque (dashed line) are presented. The 
total system transient shows the elimination of the vibrations 
compared to the step result of section II. C, which demonstrated 
the effectiveness of this loading pattern. This connection takes 
a maximum of half period of the system natural frequencies.  

  
Fig. 5. Step response with Time Critical strategies. 



C. Root Locus Analysis 

To understand the effect on the system of the introduced 
PMS strategies, zero-pole root locus of the system in each case 
is analysed. 

The total transfer function of the system depends on the 
plant transfer function, , and the Posicast compensator 
transfer function, , as presented in (22).  is 
obtained from the “A” matrix presented in section II.A, while 

 is obtained from the Posicast representation given by 
(18), in which  represents the  step at a time . Thus, 
representing the time delays of the step connections by Padé of 
order 6, the transfer function is given as ( ) = ( ) ( ) (22) 

Fig. 6 shows the poles of the system with the zeros added 
by the Posicast strategies. Fig. 6 (a) presents the poles 
(represented by x) of the plant while Fig.6 (b), (c) and (d) show 
the poles and zeros (represented by o) when the system is with 
the Posicast compensator. It can be seen, that the zeros from the 
Posicast compensator (added to the system by using the SLME, 
MLL, and MSLME methods) provides additional zeros which 
cancelled the poles in the original system. Thus the cancelled 
poles cannot be excited from input signals and thus suppress the 
mechanical vibrations in the system. 

 
Fig. 6. Poles (shown by x) and zeros (shown by o) of the system. 

V. PARAMETER IDENTIFICATION 

To identify the parameters of a real system, in particular the 
natural frequencies and damping ratios, the Fourier analysis to 
a step load response is done. In Fig. 7 is observed the Fourier 
transform obtained from the shaft response  to a step load 
connection, which was presented in Fig. 2. It is observed that 
the frequencies of the system are 17.46, 24.95, and 334.01 Hz, 
which correspond to the frequency design values. Therefore, 
the Fourier analysis is a good identification system for EMI 
system.  

  
Fig. 7. Fourier analysis of the vibration absorber case of the system in study. 

VI. CONCLUSIONS 

In new aircraft system due to higher power system EMI 
need to be analysed. This paper presented one of the effects of 
the EMI on aircraft systems, as well as a PMS that allows its 
solving.  

The PMS consists of strategies that eliminate the vibrations 
produced on the generator shaft due to electrical load 
connections. It studies the cases of Time Critical and Time Non-
critical Loads, and according to its characteristics applies one 
of the three Posicast based strategies: Single Level Multi-edge 
Switching Loads (SLME), Multi-level Loading (MLL), and 
Multi-load SLME (MSLME).  

In order to eliminate the vibrations, the PMS uses strategies 
based on the timing of the load connection, for which the natural 
frequencies and damping ratio need to be know. For real 
systems, it was shown that Fourier analysis can be used for the 
identification of its values. Therefore, the PMS proposed 
presents a viable solution for the transient vibrations due to 
EMI. 
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