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MINIMIZATION OF ELECTROSTATIC FREE ENERGY AND THE
POISSON–BOLTZMANN EQUATION FOR MOLECULAR

SOLVATION WITH IMPLICIT SOLVENT∗

BO LI†

Abstract. In an implicit-solvent description of the solvation of charged molecules (solutes), the
electrostatic free energy is a functional of concentrations of ions in the solvent. The charge density
is determined by such concentrations together with the point charges of the solute atoms, and the
electrostatic potential is determined by the Poisson equation with a variable dielectric coefficient.
Such a free-energy functional is considered in this work for both the case of point ions and that of
ions with a uniform finite size. It is proved for each case that there exists a unique set of equilibrium
concentrations that minimize the free energy and that are given by the corresponding Boltzmann
distributions through the equilibrium electrostatic potential. Such distributions are found to depend
on the boundary data for the Poisson equation. Pointwise upper and lower bounds are obtained for
the free-energy minimizing concentrations. Proofs are also given for the existence and uniqueness
of the boundary-value problem of the resulting Poisson–Boltzmann equation that determines the
equilibrium electrostatic potential. Finally, the equivalence of two different forms of such a boundary-
value problem is proved.
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1. Introduction. It has long been realized that the electrostatic potential of a
charged molecular system extremizes an electrostatic free-energy functional [3, 6, 12,
13, 15, 18, 20, 26, 28, 29]. In a simple setting, this functional is given by

F [c1, . . . , cM ;ψ] =
∫ ⎧⎨

⎩− ε

8π
|∇ψ|2 + ρψ + β−1

M∑
j=1

cj
[
ln

(
Λ3cj

)− 1
]− M∑

j=1

μjcj

⎫⎬
⎭ dx,

where c1, . . . , cM are ionic concentrations, ψ is an electrostatic potential, ε is the di-
electric constant, ρ is the charge density defined to be a linear combination of the ionic
concentrations, β is the inverse thermal energy, Λ is the thermal de Broglie wavelength,
and μj is the chemical potential of the jth ionic species. Throughout, we use the elec-
trostatics CGS units. We also use log x to denote the natural logarithm of x > 0.
Extremizing this functional with respect to the concentrations and the potential lead
to the Boltzmann distribution of concentrations and the Poisson equation for the
equilibrium potential, respectively [3, 6, 12, 13, 15, 26, 28]. Notice, however, that this
free-energy functional is concave with respect to the electrostatic potential. There-
fore, the extremizing concentrations and potential do not minimize this free-energy
functional, rather they form an unstable saddle point of the system [1, 6, 12, 13]. This
flaw of theory is removed in the free-energy minimization approach that was proposed
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Fig. 1. The geometry of a solvation system with an implicit solvent.

in [12, 20]. The key point in this new approach is that the electrostatic free-energy
functional depends solely on the ionic concentrations and the electrostatic potential
is determined by such concentrations through the Poisson equation. In the recent
article [5], this free-energy minimization approach was revisited and applied to the
implicit-solvent (or continuum-solvent) description of solvation.

The present work is a mathematical study of the free-energy minimization ap-
proach to the electrostatics applied to the solvation of molecules with an implicit-
solvent. Such application introduces additional mathematical complications due to
the presence of point charges in solutes and the dielectric boundaries. We consider
both the case of point ions—ions modeled as points without volumes—and that of
ions with a uniform finite size. The finite-size effect of ions is known to be important
in continuum modeling of electrostatics in molecular systems. Our analysis shows par-
ticularly that the free-energy minimizing ionic concentrations are uniformly bounded
from above and away from zero at each spatial point. This uniform boundedness,
which is proved by somewhat tedious constructions, is a consequence of the prop-
erty that the free-energy minimizing concentrations have a large entropy. We do not
consider the more general case of ions with different sizes for which there seems no
explicit Boltzmann distributions.

Consider now the solvation of charged molecules with an implicit solvent [27]. We
divide the entire region Ω of the solvation system into the region of solute molecules
Ωm ⊂ R

3 that is possibly multiply connected, the region of solvent (such as salted
water) Ωs ⊂ R

3, and the solute-solvent interface Γ = ∂Ωm ∩ ∂Ωs; cf. Figure 1. This
interface Γ serves as the dielectric boundary. Assume the solutes consist of N atoms
with the ith one located at xi and carrying a charge Qi. Assume also there are M
ionic species in the solvent with qj = ezj the buck charge of the jth ionic species,
where e is the elementary charge and zj the valence of jth ionic species. Denote by
cj = cj(x) the local concentration at x ∈ Ωs of the jth ionic species. Following the
common assumption that the mobile ions in the solvent cannot penetrate the dielectric
boundary Γ, we define cj(x) = 0 for all x ∈ Ωm and 1 ≤ j ≤M.

We consider two mean-field approximations of the electrostatic free energy of the
solvation system as functionals of the local ionic concentrations c = (c1, . . . , cM ) in the
solvent region. In the first one, point ions are assumed, and the related electrostatic
free-energy functional is given by [5, 12, 19, 20, 26]

F0[c] =
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ψdx

+ β−1
M∑
j=1

∫
Ωs

cj
[
log

(
a3cj

)− 1
]
dx−

M∑
j=1

∫
Ωs

μjcjdx.(1.1)
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In the second approximation, all ions are assumed to have a uniform linear size, and
the related free-energy functional is given by [3, 20]

Fa[c] =
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ψdx

+ β−1
M∑
j=0

∫
Ωs

cj
[
log

(
a3cj

)− 1
]
dx−

M∑
j=1

∫
Ωs

μjcj dx,(1.2)

where the summation in the β−1 term starts from j = 0 and

(1.3) c0(x) = a−3

⎡
⎣1 −

M∑
j=1

a3cj(x)

⎤
⎦ ∀x ∈ Ωs.

In (1.1) and (1.2), ψ is the electrostatic potential of the solvation system,

(1.4) ψvac(x) =
N∑
i=1

Qi
εm|x− xi|

defines the electrostatic potential generated by all the point charges Qi at xi in a
medium with the dielectric constant εm (usually taken as that in the vacuum), a > 0
is a constant, and μj is the constant chemical potential of the jth ionic species. The
constant a > 0 represents in (1.1) a nonphysical cut-off which is often chosen to be
the thermal de Broglie wavelength and in (1.2) the uniform linear size of ions.

The electrostatic potential ψ is determined by the Poisson equation

(1.5) ∇ · εΓ∇ψ = −4πρ in Ω,

where εΓ is the dielectric coefficient and ρ is the charge density, together with a
boundary condition which is usually taken to be

(1.6) ψ = ψ0 on ∂Ω,

where ψ0 is a given function. The dielectric coefficient is defined to be

(1.7) εΓ(x) =

{
εm if x ∈ Ωm,
εs if x ∈ Ωs,

where εm and εs are the dielectric constants of the solutes and the solvent, respectively.
The charge density is given by

(1.8) ρ =
N∑
i=1

Qiδxi +
M∑
j=1

qjcj in Ω,

where δxi denotes the Dirac delta function centered at xi.
The first two terms in (1.1) or (1.2) represent the internal electrostatic energy,

which are often written formally as the integral of ρψ/2 over the entire region Ω.
Based on Born’s definition [2], the contribution to the electrostatic free energy due to
the solute point charges is given as the first term in (1.1) or (1.2) though the reaction
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field ψ−ψvac. The β−1 term represents the ideal gas entropy. The term 1−∑M
j=1 a

3cj
in (1.2) is the concentration of solvent molecules. It describes the effect of finite size
of ions. The last term in (1.1) or (1.2) accounts for a constant chemical potential in
the system. The osmotic pressure from the mobile ions is dropped, since it is only an
additive constant to the free-energy functional in the present setting. We remark that
the use of notations F0 and Fa does not indicate that we can obtain the functional
F0 by simply setting a = 0 in Fa.

In this work, we prove the following results:
(1) For each of the free-energy functionals (1.1) and (1.2), there admits a unique

minimizer c1, . . . , cM , which is also the unique equilibrium, in an admissible
set of concentrations. Moreover, such concentrations and the correspond-
ing equilibrium electrostatic potential ψ are related by the boundary-data
dependent Boltzmann distributions

(1.9) cj(x) =

⎧⎪⎪⎨
⎪⎪⎩
c∞j e

−βqj[ψ(x)−ψ̂0(x)/2] for point ions,

c∞j e
−βqj[ψ(x)−ψ̂0(x)/2]

1 + a3
∑M

i=1 c
∞
i e

−βqi[ψ(x)−ψ̂0(x)/2]
for finite-size ions,

for a.e. x ∈ Ωs and 1 ≤ j ≤ M , where c∞j = a−3eβμj and ψ̂0 ∈ H1(Ω) is
determined by

(1.10)

⎧⎨
⎩

∫
Ω

εΓ∇ψ̂0 · ∇ηdx = 0 ∀η ∈ H1
0 (Ω),

ψ̂0 = ψ0 on ∂Ω.

The free-energy minimizing concentrations are shown to be uniformly bounded
above and below away from zero. These results are summarized in Theo-
rems 2.3–2.5 and Lemmas 3.4 and 3.5.

(2) The equilibrium electrostatic potential ψ is the unique solution to the boundary-
data dependent Poisson–Boltzmann equation (PBE) [3, 4, 10, 11, 16, 17, 20,
31], together with the boundary condition (1.6),

(1.11) ∇ · εΓ∇ψ + 4πχΩs

M∑
j=1

qjc
∞
j e

−βqj(ψ−ψ̂0/2) = −4π
N∑
i=1

Qiδxi in Ω

for the case of point ions, and
(1.12)

∇·εΓ∇ψ+4πχΩs

M∑
j=1

qjc
∞
j e

−βqj(ψ−ψ̂0/2)

1 + a3
∑M
i=1 c

∞
i e

−βqi(ψ−ψ̂0/2)
= −4π

N∑
i=1

Qiδxi in Ω

for the case of finite-size ions, where χΩs is the characteristic function of Ωs.
These equations can be written together as

(1.13) ∇ · εΓ∇ψ − 4πχΩsB
′
(
ψ − ψ̂0

2

)
= −4π

N∑
i=1

Qiδxi in Ω,
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where B′ is the derivative of the function B : R → R defined by
(1.14)

B(ψ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M∑
j=1

β−1c∞j e
−βqjψ for point ions,

β−1a−3 log

⎛
⎝1 + a3

M∑
j=1

c∞j e
−βqjψ

⎞
⎠ for finite-size ions.

See Theorem 2.1.
(3) The boundary-value problem of the PBE (1.13) and (1.6) is equivalent to the

elliptic interface problem

(1.15)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · εm∇ψ = −4π
N∑
i=1

Qiδxi in Ωm,

∇ · εs∇ψ − 4πB′
(
ψ − ψ̂0

2

)
= 0 in Ωs,

�ψ� = �εΓ∇ψ · n� = 0 on Γ,
ψ = ψ0 on Ω.

Here and below, we denote for any function u on Ω, um = u|Ωm , us = u|Ωs ,,
and �u� = us − um on Γ. See Theorem 2.2.

Two variations of the PBE (1.11) with ψ0 = 0 are commonly used [8, 15, 29].
First, we have by the Taylor expansion and the electrostatic neutrality

∑M
j=1 c

∞
j = 0

that

M∑
j=1

qjc
∞
j e

−βqjψ ≈ −
⎛
⎝ M∑
j=1

βq2j c
∞
j

⎞
⎠ψ,

if |ψ| is small, leading to the linearized PBE [9]

∇ · εΓ∇ψ − εsκ
2χΩsψ = −4π

N∑
i=1

Qiδxi in Ω,

where κ =
√

4πβ
∑M

i=1 q
2
j c

∞
j /ε

2
s is the ionic strength or the inverse Debye–Hückel

screening length. Clearly, all of our results for the nonlinear PBE (1.11) hold true for
the linearized PBE. Second, for the common z : −z type of salt such as NaCl in the
solution, we have M = 2, c∞1 = c∞2 , and q1 = −q2 = ze. The PBE (1.11) reduces to
the following sinh PBE:

∇ · εΓ∇ψ − 8πzec∞1 χΩs sinh(βzeψ) = −4π
N∑
i=1

Qiδxi in Ω.

In proving the existence of minimizers of the functionals F0 and Fa, we use de la
Vallée Poussin’s criterion [25] of the sequential compactness in L1(Ω). The unique-
ness of such minimizers follows basically from the convexity of these functionals. A
crucial step in defining and deriving equilibriums of F0 and Fa is the construction of
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L∞-concentrations that are bounded below in Ωs by a positive constant and that have
low free energies. Such constructions are made by increasing the entropy of ionic con-
centrations through their small perturbations. The effect of inhomogeneous Dirichlet
boundary data to the Boltzmann distributions and, hence, to the PBE can be useful
to guide practical numerical computations. The equivalence of the two formulations
is a common property for many physical problems. The interface formulation of the
boundary-value problem of the PBE has been used for numerical computations using
boundary integral method [22–24]. The finite-size effect is important in modeling
electrostatics [3, 20].

The rest of the paper is organized as follows: In section 2, we state our main
results; in section 3, we provide some lemmas; in section 4, we prove our theorems
on the boundary-value problem of PBE; in section 5, we prove our theorems on the
free-energy minimization. Finally, in Appendix, we give the proof of two lemmas.

2. Main results. Throughout the rest of the paper, we make the following
assumptions:

A1. The set Ω ⊂ R
3 is nonempty, bounded, open, and connected. The sets

Ωm ⊂ R
3 and Ωs ⊂ R

3 are nonempty, bounded, and open, and satisfy that
Ωm ⊂ Ω and Ωs = Ω \ Ωm. The N points x1, . . . , xN for some integer N ≥ 1
belong to Ωm. Both ∂Ω and Γ are of C2. The unit exterior normal at the
boundary of Ωs is denoted by n; cf. Figure 1.

A2. M ≥ 2 is an integer. All a > 0, β > 0, Qi ∈ R (1 ≤ i ≤ N), qj ∈ R and
μj ∈ R (1 ≤ j ≤M), εm > 0, and εs > 0 are constants;

A3. The functions ψvac and εΓ are defined in (1.4) and (1.7), respectively. The
boundary data ψ0 is the trace of a given function, also denoted by ψ0, in
W 2,∞(Ω).

Boundary values are understood as traces. When no confusion arises, the capital
letter C, with or without a subscript, denotes a positive constant that can depend on
all Ωm, Ωs, Ω, Γ, εm, εs, a, β, N , M , xi, and Qi (1 ≤ i ≤ N), qj and μj (1 ≤ j ≤M),
and ψ0.

For any open set U ⊆ R
3 that contains all x1, . . . , xN , we denote

H1
∗ (U) =

{
u ∈W 1,1(U) : u|Uα ∈ H1(Uα)∀α > 0

}
,

where Uα = U \ (∪Ni=1B(xi, α)) and B(xi, α) denotes the ball centered at xi with
radius α.

Definition 2.1. A function ψ ∈ H1
∗ (Ω) is a weak solution to the boundary-value

problem of the PBE (1.13) and (1.6), if ψ = ψ0 on ∂Ω, χΩsB(ψ) ∈ L2(Ωs), and
(2.1)∫

Ω

[
εΓ∇ψ · ∇η + 4πχΩsB

′
(
ψ − ψ̂0

2

)
η

]
dx = 4π

N∑
i=1

Qiη(xi) ∀η ∈ C∞
c (Ω).

We remark that if φ ∈ H1(U) for some bounded and smooth domain U ⊂ R
3,

then eφ and, hence, B(φ) may not be in L1(U). For example, let U = B(0, 1) be the
unit ball of R

3 and α ∈ (0, 1/2). Define φ(x) = |x|−α for any x ∈ U . Then φ ∈ H1(U)
and that eφ ∈ L1(U). Notice by (1.14) that χΩsB(ψ) ∈ L2(Ωs) is equivalent to
χΩse

−βqjψ ∈ L2(Ωs) or χΩse
−βqj(ψ−ψ̂0/2) ∈ L2(Ωs) (j = 1, . . . ,M), which in turn are

equivalent to χΩsB(ψ − ψ̂0/2) ∈ L2(Ωs).
Theorem 2.1. There exists a unique weak solution ψ ∈ H1

∗ (Ω) to the boundary-
value problem of the PBE (1.13) and (1.6). Moreover, ψ ∈ C(Ω \ (∪Ni=1B(xi, α))
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for any α > 0 such that the closure of ∪Ni=1B(xi, α) is contained in Ωm, and ψ ∈
C∞((Ωm \ {x1, . . . , xN}) ∪ Ωs).

Definition 2.2. A function ψ : Ω → R is a weak solution of the interface
problem (1.15), if the following are satisfied: ψm ∈ H1∗ (Ωm) and

(2.2)
∫

Ωm

εm∇ψ · ∇ηdx = 4π
N∑
i=1

Qiη(xi) ∀η ∈ C∞
c (Ωm);

ψs ∈ H1(Ωs), χΩsB(ψ) ∈ L2(Ωs), and

(2.3)
∫

Ωs

[
εs∇ψ · ∇η + 4πχΩsB

′
(
ψ − ψ̂0

2

)
η

]
dx = 0 ∀η ∈ C∞

c (Ωs);

and the third and fourth equations in (1.15) hold true.
Theorem 2.2. A function ψ : Ω → R is a weak solution to the boundary-value

problems (1.13) and (1.6), if and only if it is a weak solution to the boundary-value
problem (1.15).

Let U ⊂ R
3 be a nonempty, bounded, and open set. Let f ∈ L1(U). Assume

(2.4) sup
0�=ξ∈L∞(U)∩H1

0 (U)

∫
U
fξ dx

‖ξ‖H1(U)
<∞.

Since L∞(U)∩H1
0 (U) is dense in H1

0 (U), we can identify f as an element in H−1(U),
the dual of H1

0 (U), with

〈f, ξ〉 =
∫
U

fξdx ∀ξ ∈ L∞(U) ∩H1
0 (U),

and we write f ∈ L1(U) ∩ H−1(U). The H−1(U) norm of f is given by (2.4). We
define

X =

⎧⎨
⎩c = (c1, . . . , cM ) ∈ L1

(
Ω,RM

)
: c = 0 a.e. Ωm and

M∑
j=1

qjcj ∈ H−1(Ω)

⎫⎬
⎭ ,

‖c‖X =
M∑
j=1

‖cj‖L1(Ωs) +

∥∥∥∥∥∥
M∑
j=1

qjcj

∥∥∥∥∥∥
H−1(Ω)

∀c = (c1, . . . , cM ) ∈ X.

Clearly, (X, ‖ · ‖X) is a Banach space.
Let α ∈ R and define Sα : [0,∞) → R by Sα(0) = 0 and Sα(u) = u(α + log u) if

u > 0. It is easy to see that Sα is bounded below on [0,∞) and strictly convex on
(0,∞). Define

V0 =
{

(c1, . . . , cM ) ∈ X : cj ≥ 0 a.e. Ωs and
∫

Ω

S0(cj) dx <∞, j = 1, . . . ,M
}
,

W0 =
{

(c1, . . . , cM ) ∈ V0 : there exists p >
3
2

such that cj ∈ Lp(Ω), j = 1, . . . ,M
}
,

Va =

⎧⎨
⎩(c1, . . . , cM ) ∈ V0 : c0 = a−3

⎛
⎝1 −

M∑
j=1

a3cj

⎞
⎠ ≥ 0 a.e. Ωs

⎫⎬
⎭ .
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Clearly, all V0, W0, and Va are nonempty and convex. For any c = (c1, . . . , cM ) ∈ V0,
there exists a unique weak solution ψ = ψ(c) of the boundary-value problem (1.5) and
(1.6) with the charge density ρ given by (1.8); in particular, ψ − ψvac is harmonic in
Ωm, cf. Lemma 3.2. We shall call ψ = ψ(c) the electrostatic potential corresponding
to c. Therefore, F0 : V0 → R and Fa : Va → R are well defined. We use V, F to denote
V0, F0 or W0, F0 or Va, Fa.

Definition 2.3. An element c = (c1, . . . , cM ) ∈ V is an equilibrium of F : V →
R, if
(2.5)
there exist γ1 > 0 and γ2 > 0 such that γ1 ≤ cj(x) ≤ γ2 a.e. x ∈ Ωs, j = 1, . . . ,M,

for the case of point ions, or

(2.6) there exists θ0 ∈ (0, 1) such that a3cj(x) ≥ θ0 a.e. x ∈ Ωs, j = 0, 1, . . . ,M,

for the case of finite-size ions; and

δF [c]e := lim
t→0

F [c+ te] − F [c]
t

= 0 ∀e ∈ X ∩ L∞ (
Ω,RM

)
.

Definition 2.4. An element c ∈ V is a local minimizer of F : V → R, if there
exists ε > 0 such that F [d] ≥ F [c] for any d ∈ V with ‖d− c‖X < ε.

Theorem 2.3. There exists a unique minimizer of F0 : V0 → R. It is also the
unique local minimizer of F0 : V0 → R.

It is an open question if the unique minimizer of F0 : V0 → R is an equilibrium
of F0 : V0 → R as defined in Definition 2.3. The answer to this question would be yes
if this minimizer were in W0 or if mind∈V0 F0[d] = mind∈W0 F0[d], neither of which is
clearly true. This is the reason we introduce the class of concentrations W0. See the
proof of Lemma 3.4 in Appendix.

Theorem 2.4.

(1) There exists a unique equilibrium c = (c1, . . . , cM ) of F0 : W0 → R. It is also
the unique global minimizer and the unique local minimizer of F0 : W0 → R.

(2) If ψ = ψ(c) is the corresponding electrostatic potential, then the Boltzmann
distributions (1.9) for point ions holds true and ψ is the unique weak solu-
tion to the corresponding boundary-value problem of PBE (1.11) and (1.6).
Moreover,

min
d∈W0

F0[d] =
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
∫

Γ

1
8π

(
ψ − φ̂0

)
εΓ∂n

(
ψ − ψ̂0

)
dS

−
∫

Ωs

εs
8π

∣∣∣∇(
ψ − ψ̂0

)∣∣∣2 dx− β−1
M∑
j=1

∫
Ωs

c∞j e
−βqj(ψ−ψ̂0/2)dx.(2.7)

Theorem 2.5.

(1) There exists a unique equilibrium c = (c1, . . . , cM ) of Fa : Va → R. It is also
the unique global minimizer and the unique local minimizer of Fa : Va → R.

(2) If ψ = ψ(c) is the corresponding electrostatic potential, then the Boltzmann
distributions (1.9) for finite-size ions holds true and ψ is the unique weak
solution to the corresponding boundary-value problem of PBE (1.12) and (1.6).
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Moreover,

min
d∈Va

Fa[d] =
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
∫

Γ

1
8π

(
ψ − φ̂0

)
εΓ∂n

(
ψ − ψ̂0

)
dS

−
∫

Ωs

εΓ
8π

∣∣∣∇(
ψ − ψ̂0

)∣∣∣2 dx− β−1a−3

∫
Ωs

(2.8) ⎡
⎣1 + log

⎛
⎝1 + a3

M∑
j=1

c∞j e
−βqj(ψ−ψ̂0/2)

⎞
⎠
⎤
⎦ dx.

3. Some lemmas. The key point of our first lemma below is the existence and
continuity across the interface Γ of the normal flux for a solution of an elliptic interface
problem. In terms of electrostatics, this means that the electrostatic potential and
the normal component of electrostatic displacement are continuous across dielectric
boundaries. These seem to be known results. For completeness, we give a proof here.

Lemma 3.1. Let U ⊂ R
3 be an open set such that Γ ⊂ U ⊆ Ω. Let g ∈

L1(U) ∩H−1(U). Suppose u ∈ H1(U) satisfies

(3.1)
∫
U

εΓ∇u · ∇ηdx =
∫
U

gηdx ∀η ∈ C∞
c (U).

Then �u� = 0 on Γ. If in addition g ∈ L2(U), then �εΓ∂nu� = 0 on Γ.
Proof. Fix an open ball B ⊂ U such that Γ ∩ B = ∅. Let η ∈ C∞

c (U) with
supp η ⊂ B. Let nj with 1 ≤ j ≤ 3 be the jth component of n, the unit normal at the
Γ, pointing from Ωs to Ωm. It follows from the fact that u ∈ H1(Ω) and integration
by parts that

−
∫
B

u∂jη dx =
∫
B

(∂ju)η dx

=
∫
B∩Ωm

(∂ju)η dx +
∫
B∩Ωs

(∂ju)η dx

= −
∫
B∩Ωm

u∂jη dx−
∫

Γ∩B
umηnj dS −

∫
B∩Ωs

u∂jη dx+
∫

Γ∩B
usηnj dS

= −
∫
B

u∂jη dx+
∫

Γ∩B
(us − um)ηnj dS, j = 1, 2, 3.

This and the arbitrariness of η imply �u� = 0 on Γ.
To show the continuity of εΓ∇u ·n across Γ, we fix an open set U0 ⊂ R

3 such that
Γ ⊂ U0 ⊂ U0 ⊂ U and that the boundary ∂U0 is C2. By the fact that u ∈ H1(U) and
g ∈ L2(U), and by (3.1), we have

(εt∇ut)|U0∩Ωt ∈ L2
(
U0 ∩ Ωt,R3

)
and

(∇ · εt∇ut)|U0∩Ωt = −g ∈ L2(U0 ∩ Ωt), t = m, s.

Therefore, by Theorem 1.2 in [30], the trace of (εt∇ut)|U0∩Ωt · ν ∈ H−1/2(∂(U0 ∩Ωt))
exists, and also by (3.1),

(3.2)∫
U0∩Ωt

εt∇ut · ∇ηdx =
∫
U0∩Ωt

gηdx+
∫
∂(U0∩Ωt)

(εt∇ut · ν)ηdS ∀η ∈ C∞
c (U0 ∩ Ωt),
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where ν denotes the unit exterior normal of the boundary ∂(U0 ∩ Ωt) which contains
Γ and t = m, s. Notice that the normals ν at Γ from both sides U0 ∩Ωm and U0 ∩Ωs
are in opposite directions.

These traces are determined independent of the choice of U0. In fact, if Q0 ⊂ R
3

is another open set such that Γ ⊂ Q0 ⊂ Q0 ⊂ U and the boundary ∂Q0 is C2,
then the traces (εm∇um)|Q0∩Ωm · ν ∈ H−1/2(∂(Q0 ∩ Ωm)) and (εs∇us)|Q0∩Ωs · ν ∈
H−1/2(∂(Q0 ∩ Ωm)) exist, and (3.2) holds true for t = m, s when U0 is replaced by
Q0. Consider now (3.2) with t = m. Choose any η ∈ C1

c (U0 ∩Q0) such that η = 0 on
∂(U0 ∩ Ωm) \ Γ and on ∂(Q0 ∩ Ωm) \ Γ. Extend η by η = 0 to outside U0 ∩Q0. By
(3.2) with t = m and the corresponding equation with U0 replaced by Q0, we obtain
that ∫

∂(U0∩Ωm)

(εm∇um · ν)ηdS =
∫
∂(Q0∩Ωm)

(εm∇um · ν)ηdS.

The arbitrariness of η then implies that the trace of (εm∇um · ν)|U0∩Ωm on Γ de-
termined by U0 is the same as that determined by Q0. By the same argument, we
see that the trace of (εs∇us · n)|U0∩Ωs on Γ determined by U0 is the same as that
determined by Q0.

Now, by the fact that U0 = (U0 ∩Ωm)∪ (U0 ∩Ωs) and (U0 ∩Ωm)∩ (U0 ∩Ωs) = ∅,
and by our convention for the direction of the unit normal n along Γ, we obtain from
(3.1) and (3.2) that for any η ∈ C∞

c (U) with supp η ⊂ U0∫
Γ

(
εm

∂um
∂n

− εs
∂us
∂n

)
ηdS = 0.

The arbitrariness of η implies �εΓ∂nu� = 0 on Γ.
Let L : H−1(Ω) → H1(Ω) be the linear operator defined as follows: for any

ξ ∈ H−1(Ω), Lξ ∈ H1
0 (Ω) is the unique function in H1

0 (Ω) that satisfies

(3.3)
1
4π

∫
Ω

εΓ∇ (Lξ) · ∇v dx = ξ(v) ∀v ∈ H1
0 (Ω).

It is easy to see that 〈ξ, η〉 = ξ(Lη) defines an inner product ofH−1(Ω). Denote by |||·|||
the corresponding norm ofH−1(Ω), i.e., |||ξ||| =

√〈ξ, ξ〉 =
√
ξ(Lξ) for any ξ ∈ H−1(Ω).

One can verify that there exist C1 = C1(Ω, εm, εs) > 0 and C2 = C2(εm, εs) > 0 such
that

(3.4) C1|||ξ||| ≤ ‖ξ‖H−1(Ω) ≤ C2|||ξ||| ∀ξ ∈ H−1(Ω).

It follows from [21] (with minor modifications) that there exists a unique G ∈
H1∗ (Ω) such that G = 0 on ∂Ω and

(3.5)
∫

Ω

εΓ∇G · ∇ηdx = 4π
N∑
i=1

Qiη(xi) ∀η ∈ C∞
c (Ω).

Clearly, G − ψvac is harmonic in Ωm and G ∈ W 1,p(Ω) for any p ∈ [1, 3/2). Notice
that the function ψ̂0 ∈ H1(Ω) defined in (1.10) is harmonic in Ωm ∪ Ωs.

The next lemma gives a solution decomposition of the Poisson equation (1.5) with
its right-hand side consisting of Dirac masses and a function inH−1(Ω) that represents
the density of ionic charges. This decomposition is a mathematical formulation of the
Born cycle [2].
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Lemma 3.2. Let f ∈ L1(Ω) ∩ H−1(Ω) be such that f = 0 in Ωm. Then ψ :=
G+ ψ̂0 + Lf is the unique function in H1∗ (Ω) that satisfies ψ = ψ0 on ∂Ω and

(3.6)
∫

Ω

εΓ∇ψ · ∇ηdx = 4π
N∑
i=1

Qiη(xi) + 4π
∫

Ωs

fηdx ∀η ∈ C∞
c (Ω).

Moreover, Lf and ψ − ψvac are harmonic in Ωm, and

N∑
i=1

Qi (Lf) (xi) =
∫

Ωs

Gfdx.(3.7)

Proof. From the definition of G, ψ̂0, and L (cf. (3.5), (1.10), and (3.3)), we easily
verify that the function ψ is in H1∗ (Ω), ψ = ψ0 on ∂Ω, and (3.6) holds true. If
ψ̄ ∈ H1

∗ (Ω) satisfies ψ̄ = 0 on ∂Ω and
∫
Ω
εΓ∇ψ̄ · ∇η dx = 0 for all η ∈ C∞

c (Ω), then
clearly ψ̄ ∈ H1

0 (Ω) and in fact ψ̄ = 0 a.e. Ω. This proves the needed uniqueness.
By the fact that f = 0 in Ωm and the definition of L (cf. (3.3)), Lf is harmonic

in Ωm. The fact that ψ− ψvac is harmonic in Ωm follows from (3.6) with η ∈ C∞
c (Ω)

so chosen that supp η ⊂ Ωm and

∫
Ωm

εm∇ψvac · ∇ηdx = 4π
N∑
i=1

Qiη(xi) ∀η ∈ C∞
c (Ωm).

It remains to prove (3.7). Denote ψc = Lf ∈ H1
0 (Ω). Let α > 0 be sufficiently

small and let Bα = ∪Ni=1B(xi, α). By the fact that G is harmonic in Ωm \ Bα and
G− ψvac is harmonic in Ωm, we obtain by a series of routine calculations that

∫
Ωm

εm∇G · ∇ψcdx =
∫

Ωm\Bα

εm∇G · ∇ψcdx+
∫
Bα

εm∇G · ∇ψcdx

= −
∫

Ωm\Bα

εm(ΔG)ψcdx+
∫
∂(Ωm\Bα)

εmψc
∂G

∂ν
dS +O(α)

= −
∫

Γ

εmψc|m ∂G|m
∂n

dS +
∫
∂Bα

εmψc
∂G

∂ν
dS +O(α)

= −
∫

Γ

εmψc|m ∂G|m
∂n

dS +
∫
∂Bα

εmψc
∂ (G− ψvac)

∂ν
dS

+
N∑
i=1

∫
∂B(xi,α)

εmψc
∂ψvac
∂ν

dS +O(α)

→ −
∫

Γ

εmψc|m ∂G|m
∂n

dS + 4π
N∑
i=1

Qiψc(xi) as α→ 0,

where ν is the exterior unit normal of ∂(Ωm \Bα) and ν = −n on Γ by our convention
for the direction of n. Consequently, by the continuity of εΓ∇G · n across Γ (cf.
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Lemma 3.1), the fact that G is harmonic in Ωs, and G = ψc = 0 on ∂Ω, we obtain

4π
N∑
i=1

Qiψc(xi) =
∫

Γ

εsψc|s ∂G|s
∂n

dS +
∫

Ωm

εm∇G · ∇ψcdx

=
∫

Ωs

εs(ΔG)ψcdx+
∫

Ωs

εs∇G · ∇ψcdx+
∫

Ωm

εm∇G · ∇ψcdx

=
∫

Ω

εΓ∇G · ∇ψcdx.(3.8)

Since ψc = Lf ∈ H1
0 (Ω) is harmonic in Ωm, we also have by the properties of G

(cf. [21]) and integration by parts that

∫
Ωm

εm∇G · ∇ψcdx =
∫

Ωm\Bα

εm∇G · ∇ψcdx+
∫
Bα

εm∇G · ∇ψcdx

= −
∫

Ωm\Bα

εmGΔψcdx+
∫
∂(Ωm\Bα)

εmG
∂ψc
∂ν

dS +O(α)

= −
∫

Γ

εmG|m ∂ψc|m
∂n

dS +
∫
∂Bα

εmG
∂ψc
∂ν

dS +O(α)

→ −
∫

Γ

εmG|m ∂ψc|m
∂n

dS as α→ 0.(3.9)

Let Ĝ ∈ H1(Ωm) be such that Ĝ = G on Γ = ∂Ωm. Replacing G in (3.9) by Ĝ and
repeating the same calculations, we obtain

(3.10)
∫

Ωm

εm∇G · ∇ψcdx =
∫

Ωm

εm∇Ĝ · ∇ψcdx.

Define G : Ω → R by G(x) = Ĝ(x) if x ∈ Ωm and by G(x) = G(x) if x ∈ Ωs. Clearly,
G ∈ H1

0 (Ω). Since ψc = Lf and f = 0 in Ωm, we, thus, have by (3.8) and (3.10) that

4π
N∑
i=1

Qiψc(xi) =
∫

Ωm

εm∇Ĝ · ∇ψcdx+
∫

Ωs

εs∇G · ∇ψcdx

=
∫

Ω

εΓ∇G · ∇ψcdx = 4π
∫

Ω

Gfdx = 4π
∫

Ωs

Gfdx.

This implies (3.7).
By Lemma 3.2, the potential ψ = ψ(c1, . . . , cM ) corresponding to a set of concen-

trations (c1, . . . , cM ) is well defined with f =
∑M

j=1 qjcj and is given by

(3.11) ψ(c1, . . . , cM ) = G+ ψ̂0 + L

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ .
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Moreover, the functional F0 : V0 → R and Fa : Va → R can be rewritten as

F0[c] =
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj

⎞
⎠L

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ dx+

M∑
j=1

∫
Ωs

μ0jcjdx

+ β−1
M∑
j=1

∫
Ωs

S−1(cj)dx + E0, ∀c = (c1, . . . , cM ) ∈ V0,(3.12)

Fa[c] =
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj

⎞
⎠L

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ dx+

M∑
j=1

∫
Ωs

μajcjdx

+ β−1
M∑
j=0

∫
Ωs

S−1(cj)dx + Ea ∀c = (c1, . . . , cM ) ∈ Va,(3.13)

respectively, where

μ0j(x) = qjG(x) +
1
2
qjψ̂0(x) + 3β−1 log a− μj ∀x ∈ Ωs, j = 1, . . . ,M,(3.14)

E0 =
1
2

N∑
i=1

Qi

(
G+ ψ̂0 − ψvac

)
(xi),(3.15)

μaj(x) = qjG(x) +
1
2
qjψ̂0(x) − μj ∀x ∈ Ωs, j = 1, . . . ,M,(3.16)

Ea =
1
2

N∑
i=1

Qi

(
G+ ψ̂0 − ψvac

)
(xi) + 3β−1a−3(log a)|Ωs|,(3.17)

where |E| denotes the Lebesgue measure of a Lebesgue measurable set E ⊂ R
3.

Lemma 3.3. Let D ⊂ R
3 be a bounded and open set. Let α ∈ R. Let {u(k)} be a

sequence of functions in L1(D) such that u(k) ≥ 0 a.e. D for each k ≥ 1 and that

sup
k≥1

∫
D

Sα

(
u(k)

)
dx <∞.

Then there exists a subsequence {u(kj)} of {u(k)} such that {u(kj)} converges weakly
in L1(D) to some u ∈ L1(D) with u ≥ 0 a.e. D and

∫
D

Sα(u) dx ≤ lim inf
k→∞

∫
D

Sα

(
u(k)

)
dx.

Proof. Since Sα : [0,∞) → R is bounded below, by passing to a subsequence if
necessary, we may assume that the limit

(3.18) A := lim
k→∞

∫
D

Sα

(
u(k)

)
dx = lim inf

k→∞

∫
D

Sα

(
u(k)

)
dx
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exists and is finite. Since Sα(λ)/λ → +∞ as λ → +∞, {u(k)} is weakly sequentially
compact in L1(D) by de la Vallée Poussin’s criterion [25]. Therefore, this sequence
has a subsequence, not relabeled, that converges weakly in L1(D) to some u ∈ L1(D).
Clearly, u ≥ 0 a.e. D.

Let ε > 0. By (3.18), there exists an integer K > 0 such that

(3.19)
∫
D

Sα

(
u(k)

)
dx ≤ A+ ε ∀k > K.

By Mazur’s theorem [7, 32], there exist convex combinations v(k) of u(K+1), . . . , u(K+k)

for all k ≥ 1 such that v(k) → u in L1(D). Let v(k) =
∑k

j=1 λk,ju
(K+j) with λk,j ≥ 0

for all j and k, and
∑k

j=1 λk,j = 1 for all k. Since Sα : [0,∞) → R is convex, we have
by Jensen’s inequality and (3.19) that

(3.20) Sα

(
v(k)

)
≤

k∑
j=1

λk,jSα

(
u(K+j)

)
≤

k∑
j=1

λk,j(A+ ε) = A+ ε ∀k ≥ 1.

Since v(k) → u in L1(D), there exists a subsequence {v(kj)} of {v(k)} such that
vkj (x) → u(x) a.e. x ∈ D. Consequently, since Sα : [0,∞) → R is continuous and
bounded below, we have by Fatou’s lemma and (3.20) that

∫
D

Sα(u(x)) dx =
∫
D

lim
j→∞

Sα
(
vkj (x)

)
dx ≤ lim inf

j→∞

∫
D

Sα
(
vkj (x)

)
dx ≤ A+ ε,

concluding the proof by the arbitrariness of ε > 0.
The next two lemmas state some boundedness of concentrations that have low

free energies. Their proofs are somewhat tedious, and are given in Appendix A.
Lemma 3.4. Let c = (c1, . . . , cM ) ∈ W0 satisfy that c ∈ L∞(Ω,RM ) or there

exists j ∈ {1, . . . ,M} with |{x ∈ Ωs : cj(x) < α}| > 0 for all α > 0. Then for
any ε > 0 there exist ĉ = (ĉ1, . . . , ĉM ) ∈ W0 that satisfies (2.5) with c replaced by ĉ,
‖ĉ− c‖X < ε, and F0[ĉ] < F0[c].

Lemma 3.5. Let c = (c1, . . . , cM ) ∈ Va and c0 be defined by (1.3). Assume there
exists j ∈ {0, 1, . . . ,M} such that |{x ∈ Ωs : a3cj(x) < α}| > 0 for all α > 0. Let
ε > 0. Then there exists ĉ = (ĉ1, . . . , ĉM ) ∈ Va that satisfies (2.6) with c replaced by
ĉ, ‖ĉ− c‖X < ε, and Fa[ĉ] < Fa[c].

4. The Poisson–Boltzmann equation: Proof of Theorems 2.1 and 2.2.
Proof of Theorem 2.1. It is easy to verify that the function B : R → R defined in
(1.14) is convex for both the case of point ions and that of finite-size ions. Let

K :=
{
u ∈ H1(Ω) : u = ψ0 on ∂Ω and χΩsB(u) ∈ L2(Ω)

}
.

Clearly, K = ∅ since ψ0 ∈ K and K is convex since B : R → R is convex. We show
now that K is closed in H1(Ω). Let uk ∈ K (k = 1, 2, . . . ) and uk → u in H1(Ω)
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for some u ∈ H1(Ω). Clearly, u = ψ0 on ∂Ω. Up to a subsequence, not relabeled,
uk(x) → u(x) a.e. x ∈ Ω. Since B : R → R is convex and positive, we have

d2

dv2

(
[B(v)]2

)
= 2[B′(v)]2 + 2B(v)B′′(v) > 0 ∀v ∈ R.

Thus, v �→ [B(v)]2 is convex. It then follows from Fatou’s lemma, Jensen’s inequality,
and the H1(Ω)-boundedness of {uk} that

1
|Ωs|

∫
Ωs

[B(u)]2 dx ≤ lim inf
k→∞

1
|Ωs|

∫
Ωs

[B(uk)]2 dx

≤ lim inf
k→∞

[
B

(
1

|Ωs|
∫

Ωs

ukdx

)]2

<∞.

This implies that u ∈ K. Therefore, K is closed in H1(Ω). Since K is convex, it is
also weakly closed in H1(Ω).

Define now J : K → R by

J [u] =
∫

Ω

[
εΓ
2
|∇u|2 + 4πχΩsB

(
u+G− ψ̂0

2

)]
dx ∀u ∈ K,

where G and ψ̂0 are defined in (3.5) and (1.10), respectively. Note that ψ0 ∈ K and
that J [ψ0] <∞. By the Poincaré inequality, there exist constants C3 > 0 and C4 ≥ 0
such that J [u] ≥ C3‖u‖2

H1(Ω) − C4 for all u ∈ K. Thus, α := infu∈K J [u] is finite.
Let vk ∈ K (k = 1, 2 . . . ) be such that limk→∞ J [vk] = α. Then, {vk} is bounded in
H1(Ω) and, hence, it has a subsequence, not relabeled, that weakly converges to some
v ∈ H1(Ω). Since K is weakly closed, v ∈ K. Since the embedding H1(Ω) ↪→ L2(Ω)
is compact, up to a further subsequence, again not relabeled, vk → v a.e. in Ω.
Therefore, since B : R → R is continuous and nonnegative, Fatou’s lemma implies

lim inf
k→∞

∫
Ω

χΩsB

(
vk +G− ψ̂0

2

)
dx ≥

∫
Ω

χΩsB

(
v +G− ψ̂0

2

)
dx.

Since u �→ ∫
Ω
εΓ|∇u|2dx is convex and H1(Ω) continuous, it is sequentially weakly

lower semicontinuous. Consequently, lim infk→∞ J [vk] ≥ J [v]. Thus, v is a minimizer
of J : K → R.

Notice that χΩsB
′(v + G − ψ̂0/2) ∈ L2(Ωs). Simple calculations of the first

variation of J : K → R at any η ∈ C∞
c (Ω) leads to

∫
Ω

[
εΓ∇v · ∇η + 4πχΩsB

′
(
v +G− ψ̂0

2

)
η

]
dx = 0 ∀η ∈ C∞

c (Ω).

The function ψ = v +G is, thus, a needed solution.
We now prove the uniqueness. Let φ be another weak solution. Let ξ = ψ − φ.

Then, ξ ∈ H1∗ (Ω), ξ = 0 on ∂Ω, and

∫
Ω

{
εΓ∇ξ · ∇η + 4πχΩs

[
B′

(
ψ − ψ̂0

2

)
−B′

(
φ− ψ̂0

2

)]
η

}
dx = 0 ∀η ∈ C∞

c (Ω).
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Choosing the test functions η ∈ C∞
c (Ω) so that supp η ⊂ Ωm, we find that ξ is

harmonic in Ωm. This and the fact that ξ ∈ H1∗ (Ω) imply that ξ ∈ H1
0 (Ω). Thus, the

above test functions η can be chosen from H1
0 (Ω). In particular, setting η = ξ and

using the convexity of B : R → R, we obtain that ξ = 0 and, hence, ψ = φ in H1(Ω).
Let σ > 0 be such that the closure of Bσ := ∪Ni=1B(xi, σ) is contained in Ωm.

Clearly, the unique weak solution ψ ∈ H1
∗ (Ω) satisfies

(4.1)
∫

Ω\Bσ

εΓ∇ψ · ∇ηdx =
∫

Ω\Bσ

gηdx ∀η ∈ C∞
c

(
Ω \Bσ

)
,

where g = −4πχΩsB
′(ψ − ψ̂0/2) ∈ L2(Ω \ Bσ). Therefore, ψ ∈ C(Ω \ Bσ) by the

standard regularity theory [14]. Since εΓ = εm in Ωm and εΓ = εs in Ωs, ψ is
harmonic in Ωm \ Bσ. Hence, ψ ∈ C∞(Ωm \ Bσ). Notice that B ∈ C∞(R); thus, we
have ψ ∈ C∞(Ωs) by a standard bootstrapping argument.

Proof of Theorem 2.2. Let ψ ∈ H1∗ (Ω) be a weak solution to the boundary-value
problem (1.13) and (1.6). Clearly, ψm ∈ H1

∗ (Ωm). For any η ∈ C∞
c (Ωm), we extend

η to the entire Ω by defining η = 0 outside Ωm. Then, we obtain (2.2) from (2.1).
Since all xi ∈ Ωm (i = 1, . . . , N), we have ψs ∈ H1(Ωs). Since χΩsB(ψ) ∈ L2(Ωs), it
follows from (1.14) that χΩsB

′(ψ) ∈ L2(Ωs). For any η ∈ C∞
c (Ωs), we, again, extend

η to Ω by defining η = 0 outside Ωs. Then, we obtain (2.3) from (2.1). Finally, by
Lemma 3.1, (4.1), and (1.6), the last two equations in (1.15) hold true. Hence, ψ is a
weak solution to (1.15).

Now let ψ : Ω → R be a solution to the boundary-value problem (1.15). We
first show that ψ ∈ H1

∗ (Ω). Let σ > 0 be small enough so that the closure of
Bσ := ∪Ni=1B(xi, σ) is contained in Ωm. Since ψm ∈ H1

∗ (Ωm), ψm ∈ H1(Ωm \ Bσ).
Thus, the trace ψm|Γ ∈ L2(Γ), and is independent on the choice of σ. Similarly,
ψs ∈ H1(Ωs), and, hence, ψs|Γ ∈ L2(Γ). Fix j ∈ {1, 2, 3}. Define ξj : Ω \Bσ → R by
ξj = ∂jψm in Ωm \Bσ and ξj = ∂jψs in Ωs. Clearly, ξj ∈ L2(Ω \Bσ). Let nj be the
jth component of the unit exterior normal n at Γ, pointing from Ωs to Ωm. Then, for
any η ∈ C∞

c (Ω \Bσ), we have

∫
Ω\Bσ

ξjη dx =
∫

Ωm\Bσ

(∂jψm)η dx+
∫

Ωs

(∂jψs)η dx

= −
∫

Ωm\Bσ

ψ∂jη dx−
∫

Γ

ψmηnj dS −
∫

Ωs

ψ∂jη dx+
∫

Γ

ψsηnj dS

= −
∫

Ω\Bσ

ψ∂jη dx+
∫

Γ

�ψ�njη dS

= −
∫

Ω\Bσ

ψ∂jη dx,

where in the last step we used the fact that �ψ� = 0 on Γ. Thus, ξj = ∂jψ ∈ L2(Ω\Bσ),
and, hence, ψ ∈ H1

∗ (Ω) by the arbitrariness of σ > 0.
Clearly, χΩsB

′(ψ) ∈ L2(Ωs) and ψ = ψ0 on ∂Ω. It remains to show that (2.1)
holds true. Let η ∈ C∞

c (Ω). Let V1 and V2 be two open sets in R
3 such that ∂V1

and ∂V2 are of C2, xi ∈ V2 for i = 1, . . . , N , and Γ ⊂ V1 ⊂ V 1 ⊂ V2 ⊂ V 2 ⊂ Ω. Let
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ζ ∈ C∞
c (Ω) be such that supp ζ ⊂ V2 and ζ = 1 on V1. Then, (1− ζ)η|Ωm ∈ C∞

c (Ωm),
(1 − ζ)η|Ωs ∈ C∞

c (Ωs), and (1 − ζ(xi))η(xi) = η(xi), i = 1, . . . , N. We, thus, have by
(2.2) and (2.3) that

∫
Ω

[
εΓ∇ψ · ∇η + 4πχΩsB

′
(
ψ − ψ̂0

2

)
η

]
dx

=
∫

Ω

[
εΓ∇ψ · ∇((1 − ζ)η) + 4πχΩsB

′
(
ψ − ψ̂0

2

)
(1 − ζ)η

]
dx

+
∫

Ω

[
εΓ∇ψ · ∇(ζη) + 4πχΩsB

′
(
ψ − ψ̂0

2

)
ζη

]
dx

=
∫

Ωm

εΓ∇ψ · ∇((1 − ζ)η)dx

+
∫

Ωs

[
εΓ∇ψ · ∇((1 − ζ)η) + 4πχΩsB

′
(
ψ − ψ̂0

2

)
(1 − ζ)η

]
dx

+
∫
V2

[
εΓ∇ψ · ∇(ζη) + 4πχΩsB

′
(
ψ − ψ̂0

2

)
ζη

]
dx

= 4π
N∑
i=1

Qiη(xi) +
∫
V2

[
εΓ∇ψ · ∇(ζη) + 4πχΩsB

′
(
ψ − ψ̂0

2

)
ζη

]
dx.(4.2)

We now show that the second term in (4.2) is zero. Notice that ψ|V2 ∈ H1(V2)
and xi ∈ V2 (1 ≤ i ≤ N). Denoting Vm = V2 ∩ Ωm and Vs = V2 ∩ Ωs, we have by
(2.2) and (2.3) that

∫
Vm

εm∇ψ · ∇ξ dx = 0 ∀ξ ∈ C∞
c (Vm),

∫
Vs

εs∇φ · ∇ξ dx = − 4π
∫
Vs

B′
(
ψ − ψ̂0

2

)
ξ dx ∀ξ ∈ C∞

c (Vs).

Consequently, since χΩsB
′(ψ − ψ̂0/2) ∈ L2(Ωs), we infer from the regularity theory

of elliptic boundary-value problems [14] that ψ|Vm ∈ H2(Vm) and ψ|Vs ∈ H2(Vs), and
that

∇ · εm∇ψ = 0 a.e. Vm,

∇ · εs∇ψ − 4πB′
(
ψ − ψ̂0

2

)
= 0 a.e. Vs.
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Therefore, the trace of εm∇ψ · n and that of εs∇ψ · n on Γ both exist. Moreover,∫
V2

[
εΓ∇ψ · ∇(ζη) + 4πχΩsB

′
(
ψ − ψ̂0

2

)
ζη

]
dx

=
∫
Vm

εm∇ψ · ∇(ζη)dx +
∫
Vs

[
εs∇ψ · ∇(ζη) + 4πχΩsB

′
(
ψ − ψ̂0

2

)
ζη

]
dx

= −
∫
Vm

(∇ · εm∇ψ)ζη dx−
∫

Γ

(εm∇ψ · n)ζη dS

+
∫
Vs

[
−(∇ · εs∇ψ)(ζη) + 4πχΩsB

′
(
ψ − ψ̂0

2

)
ζη

]
dx+

∫
Γ

(εs∇ψ · n)ζη dS

=
∫

Γ

�ε∇ψ · n�ζη dS

= 0,
(4.3)

where in the last step, we used the third equation of (1.15). Now, since η ∈ C∞
c (Ω)

is arbitrary, we obtain (2.1) from (4.2) and (4.3).

5. Minimization of the electrostatic free energy: Proof of Theorems 2.3,
2.4, and 2.5.

Proof of Theorem 2.3. Let t = 1 + βmax1≤j≤M ‖μ0j‖L∞(Ωs), where μ0j (j =
1, . . . ,M) are defined in (3.14). It follows from (3.12) and (3.4) that there exists
C5 > 0 such that
(5.1)

F0[c] ≥ C5

∥∥∥∥∥∥
M∑
j=1

qjcj

∥∥∥∥∥∥
2

H−1(Ω)

+ β−1
M∑
j=1

∫
Ωs

S−t(cj)dx+E0 ∀c = (c1, . . . , cM ) ∈ V0,

where E0 is defined in (3.15). Let z = infc∈V0 F0[c]. Since S−t : [0,∞) → R is
bounded below, z is finite.

Let c(k) = (c(k)1 , . . . , c
(k)
M ) ∈ V0 (k = 1, 2, . . . ) be such that limk→∞ F0[c(k)] = z. It

follows from (5.1) that {∫Ωs
S−t(c

(k)
j )dx} is bounded for each j = 1, . . . ,M . Therefore,

by Lemma 3.3, up to a subsequence that is not relabeled, {c(k)j } converges weakly in
L1(Ωs) to some cj ∈ L1(Ωs), and

(5.2)
∫

Ωs

S−t (cj) dx ≤ lim inf
k→∞

∫
Ωs

S−t
(
c
(k)
j

)
dx <∞ j = 1, . . . ,M.

Define cj = 0 on Ωm for all j = 1, . . . ,M . By (5.1), {∑M
j=1 qjc

(k)
j } is bounded in

H−1(Ω). Since H−1(Ω) is a Hilbert space, {∑M
j=1 qjc

(k)
j } has a subsequence, again

not relabeled, that weakly converges to some F ∈ H−1(Ω). Let ξ ∈ L∞(Ω) ∩H1
0 (Ω).

We have

F (ξ) = lim
k→∞

∫
Ω

⎛
⎝ M∑
j=1

qjc
(k)
j

⎞
⎠ ξdx =

∫
Ω

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ ξdx.

Therefore,
∑M

j=1 qjcj ∈ H−1(Ω) and, hence, c = (c1, . . . , cM ) ∈ V0.
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By (5.2) and the fact that the norm of a Banach space is sequentially weakly
lower semicontinuous, we have z = lim infk→∞ F0[c(k)] ≥ F0[c] ≥ z. This implies that
c ∈ V0 is a global minimizer of F0 : V0 → R.

Let d = (d1, . . . , dM ) ∈ V0 be a local minimizer of F0 : V0 → R. Then for λ ∈ (0, 1)
close to 0, we have by the convexity of F0 : V0 → R that

F0[d] ≤ F0[λc+ (1 − λ)d] ≤ λF0[c] + (1 − λ)F0[d],

leading to F0[d] ≤ F0[c]. Thus, d is also a global minimizer of F0 : V0 → R. Clearly,
(c + d)/2 ∈ V0. Consequently, it follows from the definition of the norm ||| · ||| and
the Cauchy–Schwarz inequality with respect to the inner product 〈ξ, η〉 = ξ(Lη)
(ξ, η ∈ H−1(Ω)) that

0 ≤ F0

[
c+ d

2

]
− min
e∈V0

F0[e]

= F0

[
c+ d

2

]
− 1

2
F0[c] − 1

2
F0[d]

=
1
8

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
M∑
j=1

qj(cj + dj)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

− 1
4

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
M∑
j=1

qjcj

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

− 1
4

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
M∑
j=1

qjdj

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

+ β−1
M∑
j=1

∫
Ωs

[
S−1

(
cj + dj

2

)
− 1

2
S−1 (cj) − 1

2
S−1 (dj)

]
dx

≤ β−1
M∑
j=1

∫
Ωs

[
S−1

(
cj + dj

2

)
− 1

2
S−1 (cj) − 1

2
S−1 (dj)

]
dx.

This, together with the convexity of S−1 on [0,∞), implies that

S−1

(
cj(x) + dj(x)

2

)
=

1
2
S−1 (cj(x))+

1
2
S−1 (dj(x)) ∀j = 1, . . . ,M, ∀x ∈ Ωs\ωs,

for some ωs ⊂ Ωs with |ωs| = 0. Let x ∈ Ωs \ ωs. Then it follows from the definition
of S−1 : [0,∞) → R that cj(x) = 0 if and only if dj(x) = 0 for all j = 1, . . . ,M .
The strict convexity of S0 on (0,∞) then implies that c = d a.e. Ωs. Hence, c = d in
V0.

Proof of Theorem 2.4. (1) Let c = (c1, . . . , cM ) ∈ W0. We show that the following
four statements are equivalent:

(i) c is an equilibrium of F0 : W0 → R;
(ii) The property (2.5) holds true, and

(5.3) qjL

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ + μ0j + β−1 log cj = 0 a.e. Ωs, j = 1, . . . ,M ;

(iii) c is a global minimizer of F0 : W0 → R;
(iv) c is a local minimizer of F0 : W0 → R.
Assume (i) is true. Then (2.5) holds true by Definition 2.3. Let e = (e1, . . . , eM ) ∈

X ∩ L∞(Ω,RM ). Notice that S′
−1(u) = log u for any u > 0. Thus, for each j ∈

{1, . . . ,M} and each x ∈ Ωs, the mean-value theorem implies the existence of θj(x)
∈ [0, 1] such that

S−1(cj(x) + tej(x)) − S−1(cj(x)) = tej(x) log(cj(x) + tθj(x)ej(x)).
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Hence, by the Lebesgue dominated convergence theorem,

lim
t→0

∫
Ωs

S−1(cj + tej) − S−1(cj)
t

dx =
∫

Ωs

ej log cj dx, j = 1, . . . ,M.

Therefore, it follows from Definition 2.3, the definition of the norm ||| · |||, (3.12), and
(3.4) that

0 = δF0[c]e

= lim
t→0

F0[c+ te] − F0[c]
t

= lim
t→0

⎧⎪⎨
⎪⎩

1
2
t

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
M∑
j=1

qjej

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

+
∫

Ωs

⎛
⎝ M∑
j=1

qjej

⎞
⎠L

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ dx

+
M∑
j=1

∫
Ωs

μ0jejdx+ β−1
M∑
j=1

∫
Ωs

1
t

[S−1(cj + tej) − S−1(cj)] dx

⎫⎪⎬
⎪⎭

=
M∑
j=1

∫
Ωs

⎡
⎣qjL

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ + μ0j + β−1 log cj

⎤
⎦ ejdx ∀e ∈ X ∩ L∞ (

Ω,RM
)
.

(5.4)

This implies (5.3). Hence, (ii) is true.
Assume (ii) is true. We show that (iii) is true. By Lemma 3.4, we need only to

show that F0[c] ≤ F0[d] for any fixed d = (d1, . . . , dM ) ∈ W0 that satisfies (2.5) with
c replaced by d. In fact, setting e = (e1, . . . , eM ) = d− c ∈ X ∩ L∞(Ω,RM ), we have
by the convexity of S−1 : [0,∞) → R that

S−1(dj) − S−1(cj) ≥ (dj − cj)S′
−1(cj) = ej log cj a.e. Ωs.

Therefore, it follows from (3.12) and (5.3) that

F0[d] − F0[c] =
1
2

∫
Ωs

⎛
⎝M∑
j=1

qjej

⎞
⎠L

⎛
⎝M∑
j=1

qjej

⎞
⎠ dx+

∫
Ωs

⎛
⎝M∑
j=1

qjej

⎞
⎠L

⎛
⎝M∑
j=1

qjcj

⎞
⎠ dx

+
M∑
j=1

∫
Ωs

μ0jejdx+ β−1
M∑
j=1

∫
Ωs

[S−1(dj) − S−1(cj)] dx

≥
M∑
j=1

∫
Ωs

[
qjL

(
M∑
i=1

qici

)
+ μ0j + β−1 log cj

]
ejdx

= 0.

Hence, F0[c] ≤ F0[d], and (iii) is true.
Clearly, (iii) implies (iv).
Finally, assume (iv) is true. By Lemma 3.4, (2.5) holds true. For any e ∈

X∩L∞(Ω,RM ), it is easy to see that δF0[c]e exists, cf. (5.4). Since F0[c+te] ≥ F0[c] for
|t| small enough, we have δF0[c]e = 0. Therefore, c is an equilibrium of F0 : W0 → R,
and (i) is true.
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Let now ψ ∈ H1
∗ (Ω) be the unique weak solution to the boundary-value problem

of the PBE (1.11) and (1.6), cf. Theorem 2.1. Define c = (c1, . . . , cM ) : Ω → R by
(1.9) for point ions and cj(x) = 0 for all x ∈ Ωm and all j = 1, . . . ,M . Clearly,
c ∈ W0. Moreover, by Theorem 2.1, ψ|Ωs ∈ C(Ωs). This implies (2.5). It follows
from (1.11), (1.6), (1.9) for point ions, and Lemma 3.2 with f =

∑M
j=1 qjcj that ψ

is the electrostatic potential corresponding to c; i.e., ψ = G + ψ̂0 + L(
∑M

j=1 qjcj).
This, together with the Boltzmann relations (1.9) for point ions and (3.14), implies
(5.3). Hence, c is an equilibrium, and, thus, a local and global minimizer, of F0 :
W0 → R. The uniqueness of equilibria or local minimizers is equivalent to that of
global minimizers, and can be proved by the same argument used in the proof of
Theorem 2.3.

(2) It is clear that from our definition of c and ψ that we need only to prove
(2.7). Since c is the unique minimizer of F0 : W0 → R and ψ is the corresponding
electrostatic potential determined by (3.11), we have by (1.1) and (1.9) for point ions
that

min
d∈W0

F0[d] = F0[c]

=
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ψdx

+ β−1
M∑
j=1

∫
Ωs

cj
[
log

(
a3cj

)− 1
]
dx −

M∑
j=1

∫
Ωs

μjcjdx

=
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) − 1
2

M∑
j=1

∫
Ωs

qjc
∞
j e

−βqj(ψ−ψ̂0/2)
(
ψ − ψ̂0

)
dx

− β−1
M∑
j=1

∫
Ωs

c∞j e
−βqj(ψ−ψ̂0/2)dx.(5.5)

Since ψ is the unique solution to the boundary-value problem of PBE (1.11) and (1.6),
and since ψ̂0 is harmonic in Ωs by (1.10), we have

εsΔ
(
ψ − ψ̂0

)
+ 4π

M∑
j=1

qjc
∞
j e

−βqj(ψ−ψ̂0/2) = 0 a.e. Ωs.

Multiplying both sides of this equation by ψ − ψ̂0 and integrate the resulting terms
over Ωs, we obtain by integration by parts and the fact that by Lemma 3.1 both
ψ − ψ̂0 and εΓ∂n(ψ − ψ̂0) are continuous across Γ,

−
∫

Ωs

εs

∣∣∣∇(
ψ − ψ̂0

)∣∣∣2 dx+
∫

Γ

εΓ

(
ψ − ψ̂0

)
∂n

(
ψ − ψ̂0

)
dS

+ 4π
M∑
j=1

∫
Ωs

qjc
∞
j e

−βqj(ψ−ψ̂0/2)
(
ψ − ψ̂0

)
dx = 0.

This and (5.5) imply (2.7).
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Proof of Theorem 2.5. (1) We first show that Fa : Va → R is a convex functional.
Define TM = {(u1, . . . , uM ) ∈ R

M : uj > 0 for j = 1, . . . ,M, and
∑M
j=1 uj < 1} and

h(u) =

⎛
⎝1 −

M∑
j=1

uj

⎞
⎠

⎡
⎣log

⎛
⎝1 −

M∑
j=1

uj

⎞
⎠− 1

⎤
⎦ ∀u = (u1, . . . , uM ) ∈ TM .

Clearly, TM is convex. We have ∂uiujh(u) = (1−∑M
k=1 uk)

−1 for all 1 ≤ i, j ≤M . Let
H(u) = (∂uiujh) be the Hessian of h : TM → R. Then, for any y = (y1, . . . , yM ) ∈ RM ,
we have y ·H(u)y = (

∑M
k=1 yk)

2/(1 −∑
k=1 uk) ≥ 0. Therefore, H(u) is symmetric,

semidefinite for any u ∈ TM . Hence, h : TM → R is convex. Consequently, since Va
is a convex subset of X and S−1 : [0,∞) → R is convex, we conclude by (3.13) that
Fa : Va → R is convex.

Let now c = (c1, . . . , cM ) ∈ Va. By the same argument used in the proof of
Theorem 2.4, we obtain the equivalence of the following four statements:

(i) c is an equilibrium of Fa : Va → R;
(ii) The property (2.6) holds true, and

(5.6) qjL

(
M∑
i=1

qici

)
+ μaj + β−1 log

(
a3cj

1 − a3
∑M
i=1 ci

)
= 0

a.e. Ωs, j = 1, . . . ,M ;

(iii) c is a global minimizer of Fa : Va → R;
(iv) c is a local minimizer of Fa : Va → R.
Let ψ ∈ H1∗ (Ω) be the unique weak solution to the boundary-value problem of

the PBE (1.12) and (1.6), cf. Theorem 2.1. Define c = (c1, . . . , cM ) : Ω → R by (1.9)
for finite-size ions and cj(x) = 0 for all x ∈ Ωm and all j = 1, . . . ,M . Clearly, c ∈ Va.
Moreover, by Theorem 2.1, ψ|Ωs ∈ C(Ωs). This implies (2.6). By (1.9) for finite-size
ions, we have

a3
M∑
j=1

cj(x) = 1 − 1

1 + a3
∑M

i=1 c
∞
i e

−βqi

(
ψ−ψ̂0/2

) .
This together with (1.9) for finite-size ions imply that

(5.7)
cj

1 − a3
∑M

i=1 ci
= c∞j e

−βqj

(
ψ−ψ̂0/2

)
, j = 1, . . . ,M.

It follows from (1.12), (1.6), (1.9) for finite-size ions, and Lemma 3.2 with f =∑M
j=1 qjcj that ψ is the electrostatic potential corresponding to c, i.e., ψ = G +

ψ̂0 +L(
∑M
j=1 qjcj). This, together with (5.7) and (3.16), implies (5.6). Hence, c is an

equilibrium, and, thus, a local and global minimizer, of Fa : Va → R. The uniqueness
of equilibria or local minimizers is equivalent to that of global minimizers, and can be
proved by the same argument used in the proof of Theorem 2.3.

(2) We need only to prove (2.8). Since c is the unique minimizer of Fa : Va → R

and ψ is the corresponding electrostatic potential determined by (3.11), we have by
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(1.2), (1.3), and (1.9) for finite-size ions that

min
d∈Va

Fa[d] = Fa[c]

=
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) +
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ψdx

+ β−1
M∑
j=0

∫
Ωs

cj
[
log

(
a3cj

)− 1
]
dx−

M∑
j=1

∫
Ωs

μjcjdx

=
1
2

N∑
i=1

Qi(ψ − ψvac)(xi) − 1
2

M∑
j=1

∫
Ωs

qjc
∞
j e

−βqj(ψ−ψ̂0/2)
(
ψ − ψ̂0

)
1 + a3

∑M
i=1 c

∞
i e

−βqi(ψ−ψ̂0/2)
dx

− β−1a−3

∫
Ωs

[
1 + log

(
1 + a3

M∑
i=1

c∞i e
−βqi(ψ−ψ̂0/2)

)]
dx.(5.8)

Since ψ is the unique solution to the boundary-value problem of PBE (1.12) and (1.6),
and since ψ̂0 is harmonic in Ωs by (1.10), we have

εsΔ
(
ψ − ψ̂0

)
+ 4π

M∑
j=1

qjc
∞
j e

−βqj(ψ−ψ̂0/2)

1 + a3
∑M

i=1 c
∞
i e

−βqi(ψ−ψ̂0/2)
= 0 a.e. Ωs.

Multiplying both sides of this equation by ψ− ψ̂0 and integrating the resulting terms
over Ωs, we obtain by integration by parts and the fact that by Lemma 3.1 both
ψ − ψ̂0 and εΓ∂n(ψ − ψ̂0) are continuous across Γ,

−
∫

Ωs

εs

∣∣∣∇(
ψ − ψ̂0

)∣∣∣2 dx+
∫

Γ

εΓ

(
ψ − ψ̂0

)
∂n

(
ψ − ψ̂0

)
dS

+ 4π
M∑
j=1

∫
Ωs

qjc
∞
j e

−βqj(ψ−ψ̂0/2)
(
ψ − ψ̂0

)
1 + a3

∑M
i=1 c

∞
i e

−βqi(ψ−ψ̂0/2)
dx = 0.

This and (5.8) imply (2.8).

Appendix A.
We now prove Lemma 3.4 and Lemma 3.5 by constructing ionic concentrations

that satisfy required conditions and that have lower free energies. The key idea here
is based on the following observation: the function Sα : [0,∞) → R, defined for any
α ∈ R by Sα(0) = 0 and Sα(u) = u(α+ log u) if u > 0, has a unique minimizer which
is a positive number. Moreover, the magnitude |S′

α(u)| is very large if u is close to 0 or
∞. Notice that −Sα represents the entropy of the system. Therefore, small changes
of concentrations near zero or infinity can largely increase the corresponding entropy
and, hence, decrease the free energy.

Proof of Lemma 3.4. We first construct c̄ ∈W0 that satisfies

(A.1) c̄j(x) ≤ γ′2 a.e. x ∈ Ωs, j = 1, . . . ,M,

for some constant γ′2 > 0, ‖c̄− c‖X < ε/2, and F0[c̄] ≤ F0[c] with a strict inequality
if c ∈ L∞(Ω,RM ). Let A > 0. Define c̄ = (c̄1, . . . , c̄M ) : Ω → R by

(A.2) c̄j(x) =

{
cj(x) if cj(x) ≤ A

0 if cj(x) > A
∀x ∈ Ω, j = 1, . . . ,M.
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Clearly, c̄ ∈ W0 and (A.1) holds true with γ′2 = A. Moreover,
∑M
j=1 ‖c̄j − cj‖L1(Ω) <

ε/4 for A > 0 large enough.
Denote

τj(A) = {x ∈ Ωs : cj(x) > A}, j = 1, . . . ,M.

Since c ∈W0, there exists p > 3/2 such that each cj ∈ Lp(Ω) (1 ≤ j ≤M). Thus,

M∑
j=1

qj c̄j −
M∑
j=1

qjcj = −
M∑
j=1

qjχτj(A)cj → 0 in Lp(Ω) as A→ ∞.

By the definition of L : H−1(Ω) → H1
0 (Ω) and the regularity theory for elliptic

problems [14], we have L(
∑M

j=1 qjχτj(A)cj)|Ωs ∈W 2,p(Ωs) and

∥∥∥∥∥∥L
⎛
⎝ M∑
j=1

qjχτj(A)cj

⎞
⎠
∥∥∥∥∥∥
W 2,p(Ωs)

≤ C

∥∥∥∥∥∥
M∑
j=1

qjχτj(A)cj

∥∥∥∥∥∥
Lp(Ωs)

→ 0 as A→ ∞.

Hence, by (3.4) and the embedding W 2,p(Ωs) ↪→ L∞(Ωs) that

∥∥∥∥∥∥
M∑
j=1

qj c̄j −
M∑
j=1

qjcj

∥∥∥∥∥∥
2

H−1(Ω)

≤ C

∫
Ωs

⎛
⎝ M∑
j=1

qjχτj(A)cj

⎞
⎠L

⎛
⎝ M∑
j=1

qjχτj(A)cj

⎞
⎠ dx

≤ C

∥∥∥∥∥∥
M∑
j=1

qjχτj(A)cj

∥∥∥∥∥∥
L1(Ωs)

∥∥∥∥∥∥L
⎛
⎝ M∑
j=1

qjχτj(A)cj

⎞
⎠
∥∥∥∥∥∥
L∞(Ωs)

≤ C

∥∥∥∥∥∥
M∑
j=1

qjχτj(A)cj

∥∥∥∥∥∥
Lp(Ωs)

∥∥∥∥∥∥L
⎛
⎝M∑
j=1

qjχτj(A)cj

⎞
⎠
∥∥∥∥∥∥
W 2,p(Ωs)

≤ C

∥∥∥∥∥∥
M∑
j=1

qjχτj(A)cj

∥∥∥∥∥∥
2

Lp(Ωs)

→ 0 as A→ ∞.

Therefore, ‖c̄− c‖X < ε if A > 0 is large enough.
Notice that c̄j = cj − χτj(A)cj for all j = 1, . . . ,M . Thus,

1
2

∫
Ωs

⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠L

⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠ dx− 1

2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj

⎞
⎠L

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ dx

= −1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjχτj(A)cj

⎞
⎠L

⎛
⎝ M∑
j=1

qjcj +
M∑
j=1

qj c̄j

⎞
⎠ dx

≤ 1
2

M∑
j=1

|qj |dj(A)
∫
τj(A)

cjdx,(A.3)
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where

dj(A) =

∥∥∥∥∥∥L
⎛
⎝ M∑
j=1

qjcj

⎞
⎠
∥∥∥∥∥∥
L∞(Ωs)

+

∥∥∥∥∥∥L
⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠
∥∥∥∥∥∥
L∞(Ωs)

.

Since ∥∥∥∥∥∥L
⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠
∥∥∥∥∥∥
L∞(Ωs)

≤ C

∥∥∥∥∥∥L
⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠
∥∥∥∥∥∥
W 2,p(Ωs)

≤ C

∥∥∥∥∥∥
M∑
j=1

qj c̄j

∥∥∥∥∥∥
Lp(Ωs)

→
∥∥∥∥∥∥
M∑
j=1

qjcj

∥∥∥∥∥∥
Lp(Ωs)

as A → ∞, we have max1≤j≤M dj(A) ≤ C as A > 0 large enough. For each fixed
j ∈ {1, . . . ,M} and x ∈ τj(A), we also have

(A.4) S−1(c̄j(x)) − S−1(cj(x)) = −S−1(cj(x)) = −cj(x) log cj(x) ≤ −cj(x) logA.

Therefore, it follows from (3.12), (A.3), and (A.4) that

F0[c̄] − F0[c] ≤
M∑
j=1

(
1
2
|qj |dj(A) + ‖μ0j‖L∞(Ωs) − β−1 logA

)∫
τj(A)

cjdx.

If A > 0 is large enough, this is nonpositive. If c ∈ L∞(Ω,RM ), then there exists
j ∈ {1, . . . ,M} such that |τj(A)| > 0 for all A > 0. In this case, we have the strict
inequality F0[c̄] < F0[c].

We now construct ĉ ∈ W0 that satisfies (2.5) with c replaced by ĉ, ‖ĉ− c̄‖X < ε/2,
and F0[ĉ] ≤ F0[c̄] with a strict inequality if there exists j ∈ {1, . . . ,M} such that
|{x ∈ Ωs : cj(x) < α}| > 0 for all α > 0, all these implying that ĉ satisfies all the
desired properties. If there exists γ′1 > 0 such that cj(x) ≥ γ′1 for a.e. x ∈ Ωs and
j = 1, . . . ,M , then ĉ = c̄ with A ≥ γ′1 (cf. (A.2)) satisfies all the desired properties
with γ1 = γ′1 and γ2 = γ′2. Assume otherwise there exists j0 ∈ {1, . . . ,M} such that
|{x ∈ Ωs : cj0(x) < α}| > 0 for all α > 0. This means that |{x ∈ Ωs : c̄j0(x) < α}| > 0
for all α > 0.

Define

ρj(α) = {x ∈ Ωs : c̄j(x) < α} ∀α > 0, j = 1, . . . ,M,

I0 = {j ∈ {1, . . . ,M} : |ρj(α)| > 0 ∀α > 0},
I1 = {1, . . . ,M} \ I0.

Clearly, I0 = ∅. If I1 = ∅, then there exists α1 > 0 such that

c̄j(x) ≥ α1 a.e. x ∈ Ωs, ∀j ∈ I1.

Define for 0 < α < α1 and 1 ≤ j ≤M

ĉj(x) =

{
c̄j(x) + αχρj(α)(x) if j ∈ I0

c̄j(x) if j ∈ I1
∀x ∈ Ω.

Clearly, ĉ = (ĉ1, . . . , ĉM ) ∈ W0 and (2.5) holds true with c replaced by ĉ, γ1 = α,
and γ2 = γ′2 + α. Moreover,

∑M
j=1 ‖ĉj − c̄j‖L1(Ω) < ε/4 if α > 0 is small enough.
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Furthermore,∥∥∥∥∥∥
M∑
j=1

qj ĉj −
M∑
j=1

qj c̄j

∥∥∥∥∥∥
H−1(Ω)

= α

∥∥∥∥∥∥
∑
j∈I0

qjχρj(α)

∥∥∥∥∥∥
H−1(Ω)

≤ α

∥∥∥∥∥∥
∑
j∈I0

qjχρj(α)

∥∥∥∥∥∥
L2(Ω)

≤ α
∑
j∈I0

|qj |
√
|ρj(α)| → 0 as α→ 0.(A.5)

Hence, ‖ĉ− c̄‖X < ε/2 if α > 0 is small enough.
By the mean-value theorem and the fact that S′

−1(u) = log u for any u > 0,

M∑
j=1

∫
Ωs

[S−1(ĉj) − S−1(c̄j)] dx =
∑
j∈I0

∫
ρj(α)

[S−1(ĉj) − S−1(c̄j)] dx

≤ α log (2α)
∑
j∈I0

|ρj(α)|.

Consequently, it follows from (3.13), (3.4), (A.5) that

F0[ĉ] − F0[c̄] =
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qj c̄j + α
∑
j∈I0

qjχρj(α)

⎞
⎠L

⎛
⎝ M∑
j=1

qj c̄j + α
∑
j∈I0

qjχρj(α)

⎞
⎠ dx

− 1
2

∫
Ωs

⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠L

⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠ dx+ α

∑
j∈I0

∫
ρj(α)

μ0jdx

+ β−1
∑
j∈I0

∫
ρj(α)

[S−1(ĉj) − S−1(c̄j)] dx

≤ α2

2

∫
Ωs

⎛
⎝∑
j∈I0

qjχρj(α)

⎞
⎠L

⎛
⎝∑
j∈I0

qjχρj(α)

⎞
⎠ dx

+ α

∫
Ωs

⎛
⎝∑
j∈I0

qjχρj(α)

⎞
⎠L

⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠ dx

+ α
∑
j∈I0

‖μ0j‖L∞(Ωs)|ρj(α)| + α
∑
j∈I0

β−1 log(2α)|ρj(α)|

≤ α2

2

(∑
i∈I0

q2i

) ∑
j∈I0

|ρj(α)| + α

∥∥∥∥∥∥L
⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠
∥∥∥∥∥∥
L∞(Ωs)

∑
j∈I0

|qj ||ρj(α)|

+ α
∑
j∈I0

‖μ0j‖L∞(Ωs)|ρj(α)| + α
∑
j∈I0

β−1 log(2α)|ρj(α)|

= α
∑
j∈J0

⎡
⎢⎣α2

⎛
⎝∑
j∈I0

q2j

⎞
⎠ + |qj |

∥∥∥∥∥∥L
⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠
∥∥∥∥∥∥
L∞(Ωs)

+‖μ0j‖L∞(Ωs) + β−1 log(2α)|

⎤
⎥⎦ ρj(α)|.

Since I0 = ∅, this is strictly negative if α > 0 is small enough.
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Proof of Lemma 3.5. We first construct c̄ = (c̄1, . . . , c̄M ) ∈ Va such that

(A.6) a3c̄0(x) = 1 − a3
M∑
j=1

c̄j(x) ≥ θ1 a.e. x ∈ Ωs

for some constant θ1 ∈ (0, 1), ‖c̄−c‖X < ε/2, and Fa[c̄] ≤ Fa[c] with a strict inequality
if |{x ∈ Ωs : a3c0(x) < α}| > 0 for all α > 0.

Denote for any α > 0

ω0(α) =
{
x ∈ Ωs : a3c0(x) < α

}
.

If there exists a constant α1 > 0 such that |ω0(α1)| = 0, i.e., a3c0(x) ≥ α1 a.e.
Ωs, then (c̄1, . . . , c̄M ) = (c1, . . . , cM ) ∈ Va satisfies all the desired properties with
θ1 = α1/(1 + α1) ∈ (0, 1). Suppose |ω0(α)| > 0 for any α > 0. Let 0 < α < 1/(4M).
Let x ∈ ω0(α). Then there exists some j = j(x) ∈ {1, . . . ,M} such that a3cj(x) ≥
1/(2M). In fact, if this were not true, then a3ci(x) < 1/(2M) for all i = 1, . . . ,M .
Hence, a3c0(x) = 1 − a3

∑M
i=1 ci(x) > 1/2 > α. This would mean that x ∈ ω0(α), a

contradiction. Denoting

Hj(α) =
{
x ∈ ω0(α) : a3cj(x) ≥ 1

2M

}
, j = 1, . . . ,M,

we, thus, have ω0(α) = ∪Mj=1Hj(α). Since |ω0(α)| > 0, we have |Hj1(α)| > 0 for
some j1 (1 ≤ j1 ≤ M). If |Hj(α) \ Hj1(α)| = 0 for all j = j1, then we have
ω0(α) = K̃1(α) ∪ Hj1(α) for some K̃1(α) ⊂ ω0(α) with |K̃1(α)| = 0. Otherwise,
|Hj2(α)\Hj1(α)| > 0 for some j2 = j1. In case |ω0(α)\[Hj1(α)∪Hj2 (α)]| = 0, we have
ω0(α) = K̃2(α)∪Hj1 (α)∪[Hj2 (α)\Hj1(α)] for some K̃2(α) ⊂ ω0(α) with |K̃2(α)| = 0.
By induction, we see that there existm ∈ {1, . . . ,M}, K̃m(α) ⊂ ω0(α) with |K̃m(α)| =
0, and mutually disjoint sets Kj1(α), . . . ,Kjm(α) ⊆ ω0(α) such that Kji(α) ⊆ Hji(α)
and |Kji(α)| > 0 for i = 1, . . . ,m, and ω0(α) = K̃m(α)∪ [∪mi=1Kji(α)] . By relabeling,
we may assume that ji = i for i = 1, . . . ,m.

Define now

c̄j(x) =

{
cj(x) − αa−3χKj(α)(x) ∀x ∈ Ω, j = 1, . . . ,m,

cj(x) ∀x ∈ Ω, j = m+ 1, . . . ,M,
(A.7)

c̄0(x) = a−3

⎡
⎣1 − a3

M∑
j=1

c̄j(x)

⎤
⎦ ∀x ∈ Ωs.

It is easy to see that (c̄1, . . . , c̄M ) ∈ Va. Moreover,

(A.8) a3c̄0(x) = a3c0(x) + αχω0(α)(x) ≥ α a.e. x ∈ Ωs,

implying (A.6) with θ1 = α. Clearly,
∑M

j=1 ‖c̄j − cj‖L1(Ω) ≤ αa−3
∑m
j=1 |Kj(α)|.

Moreover,∥∥∥∥∥∥
M∑
j=1

qj c̄j −
M∑
j=1

qjcj

∥∥∥∥∥∥
H−1(Ω)

≤ αa−3

∥∥∥∥∥∥
m∑
j=1

qjχKj(α)

∥∥∥∥∥∥
L2(Ω)

≤ αa−3

√√√√ m∑
j=1

q2j |Kj(α)|.

Therefore, ‖c̄− c‖X < ε/2, provided that α > 0 is small enough.
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If x ∈ Kj(α) for some j with 1 ≤ j ≤ m, then cj(x) ≥ 1/(2Ma3), and c̄j(x) ≥
1/(4Ma3) since 0 < α < 1/(4M). By the mean-value theorem and the fact that
S′
−1(u) = log u for any u > 0, there exists ηj(x) with c̄j(x) ≤ ηj(x) ≤ cj(x) such that

S−1 [c̄j(x)] − S−1 [cj(x)] = [c̄j(x) − cj(x)] log ηj(x)
≤ −αa−3 log c̄j(x) ≤ αa−3 log

(
4Ma3

)
.

By the same argument using (A.8) and the definition of ω0(α), we obtain

S−1 (c̄0(x)) − S−1 (c0(x)) ≤ αa−3 log
(
a−3α

)
a.e. x ∈ ω0(α).

Consequently, we have by (3.13), (3.4), and the embedding L2(Ωs) ↪→ H−1(Ωs) that

Fa[c̄] − Fa[c] =
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj − αa−3
m∑
j=1

qjχKj(α)

⎞
⎠

L

⎛
⎝ M∑
j=1

qjcj − αa−3
m∑
j=1

qjχKj(α)

⎞
⎠ dx

− 1
2

∫
Ωs

⎛
⎝ M∑
j=1

qjcj

⎞
⎠L

⎛
⎝ M∑
j=1

qjcj

⎞
⎠ dx− αa−3

m∑
j=1

∫
Kj(α)

μajdx

+ β−1
m∑
j=0

∫
ω0(α)

[S−1(c̄j) − S−1(cj)] dx

≤ 1
2
α2a−6

∫
Ωs

⎛
⎝ m∑
j=1

qjχKj(α)

⎞
⎠L

⎛
⎝ m∑
j=1

qjχKj(α)

⎞
⎠ dx

− αa−3

∫
Ωs

⎛
⎝ m∑
j=1

qjχKj(α)

⎞
⎠L

⎛
⎝ m∑
j=1

qjcj

⎞
⎠ dx

+ αa−3
m∑
j=1

‖μaj‖L∞(Ωs)|Kj(α)|

+ β−1αa−3 log
(
a−3α

) |ω0(α)| + β−1αa−3 log
(
4Ma3

) |ω0(α)|

≤ Cα2a−6

∥∥∥∥∥∥
m∑
j=1

qjχKj(α)

∥∥∥∥∥∥
2

L2(Ωs)

+ αa−3

∥∥∥∥L
( M∑
j=1

qjcj

)∥∥∥∥
L∞(Ω)

m∑
j=1

|qj ||Kj(α)|

+ αa−3
m∑
j=1

‖μaj‖L∞(Ωs)|Kj(α)| + β−1αa−3 log
(
8Ma3α

) m∑
j=1

|Kj(α)|

= α

M∑
j=1

[
Cαa−6q2j + a−3|qj |

∥∥∥∥L
( M∑
j=1

qjcj

)∥∥∥∥
L∞(Ω)

+ a−3‖μaj‖L∞(Ωs)

+ β−1a−3 log
(
8Ma3α

)]|Kj(α)|,
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where C > 0 is a constant independent of α. Thus, Fa[c̄] − Fa[c] is nonpositive for
α > 0 sufficiently small. It is strictly negative, if |ω0(α)| =

∑m
j=1 |Kj(α)| > 0 for all

α > 0, i.e., if |{x ∈ Ωs : a3c0(x) < α}| > 0 for all α > 0.
We now construct ĉ ∈ Va that satisfies (2.6) with c replaced by ĉ, ‖ĉ− c̄‖X < ε/2,

and Fa[ĉ] ≤ Fa[c̄] with a strict inequality if there exists j ∈ {1, . . . ,M} such that
|{x ∈ Ωs : a3cj(x) < α}| > 0 for all α > 0, all these implying that ĉ satisfies
all the desired properties. If there exists θ2 ∈ (0, 1) such that cj(x) ≥ θ2 for a.e.
x ∈ Ωs and all j = 1, . . . ,M , then ĉ = c̄ with 0 < α < θ2/2 (cf. (A.7)) satisfies
all the desired properties with θ0 = min(θ1, θ2/2). Assume otherwise there exists
j0 ∈ {1, . . . ,M} such that |{x ∈ Ωs : cj0(x) < α}| > 0 for all α > 0. This means that
|{x ∈ Ωs : c̄j0(x) < α}| > 0 for all α > 0.

Define

σj(α) = {x ∈ Ωs : a3c̄j(x) < α} ∀α > 0, j = 1, . . . ,M,

J0 = {j ∈ {1, . . . ,M} : |σj(α)| > 0 ∀α > 0},
J1 = {1, . . . ,M} \ J0.

Clearly, J0 = ∅. If J1 = ∅, then there exists α2 > 0 such that

a3c̄j(x) ≥ α2 a.e. x ∈ Ωs, ∀j ∈ J1.

Define for 0 < α < min{α2, θ1/M} and 1 ≤ j ≤M

ĉj(x) =

{
c̄j(x) + αa−3χσj(α)(x) if j ∈ J0

c̄j(x) if j ∈ J1

∀x ∈ Ω.

ĉ0(x) = a−3

⎡
⎣1 −

M∑
j=1

a3ĉj(x)

⎤
⎦ ∀x ∈ Ωs.

Notice by (A.6) that

a3ĉ0(x) = 1 −
M∑
j=1

a3ĉj(x) = 1 −
M∑
j=1

a3c̄j(x) − α
∑
j∈J0

χσj(α)

≥ θ1 − αM > 0 a.e. x ∈ Ωs.

Thus, ĉ = (ĉ1, . . . , ĉM ) ∈ Va. Clearly, (2.6) holds true for θ0 = min{α, α2, θ1 − αM}.
Applying the same argument used above, we obtain that ‖ĉ − c̄‖X < ε/2 for α > 0
small enough.

We have now by the mean-value theorem that

M∑
j=1

∫
Ωs

[S−1(ĉj) − S−1(c̄j)] dx =
∑
j∈J0

∫
σj(α)

[S−1(ĉj) − S−1(c̄j)] dx

≤ αa−3 log
(
2αa−3

) ∑
j∈J0

|σj(α)|.

Similarly, we have by (2.6) that∫
Ωs

[S−1(ĉ0) − S−1(c̄0)] dx ≤ −αa−3 log
(
a−3θ0

) ∑
j∈J0

|σj(α)|.
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Consequently, we have by (3.13) and a similar argument that

Fa[ĉ] − Fa[c̄] =
1
2

∫
Ωs

⎛
⎝ M∑
j=1

qj c̄j + αa−3
∑
j∈J0

qjχσj(α)

⎞
⎠

L

⎛
⎝ M∑
j=1

qj c̄j + αa−3
∑
j∈J0

qjχσj(α)

⎞
⎠ dx

− 1
2

∫
Ωs

⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠L

⎛
⎝ M∑
j=1

qj c̄j

⎞
⎠ dx+ αa−3

∑
j∈J0

∫
σj(α)

μajdx

+ β−1
∑
j∈J0

∫
σj(α)

[S−1(ĉj) − S−1(c̄j)] dx

+ β−1

∫
Ωs

[S−1(ĉ0) − S−1(c̄0)] dx

≤ Cα2a−6

∥∥∥∥∥∥
∑
j∈J0

qjχσj(α)

∥∥∥∥∥∥
2

L2(Ωs)

+ αa−3

∥∥∥∥∥∥
M∑
j=1

qj c̄j

∥∥∥∥∥∥
L∞(Ωs)

∑
j∈J0

|qj ||σj(α)|

+ αa−3
∑
j∈J0

‖μaj‖L∞(Ωs)|σj(α)| + β−1αa−3 log(2α/θ0)
∑
j∈J0

|σj(α)|

≤ α
∑
j∈J0

⎡
⎢⎣Cαa−6q2j + a−3|qj |

∥∥∥∥∥∥
M∑
j=1

qj c̄j

∥∥∥∥∥∥
L∞(Ωs)

+ a−3‖μaj‖L∞(Ωs)

+β−1a−3 log(2α/θ0)

⎤
⎥⎦ |σj(α)|.

Since J0 = ∅, this is strictly negative if α > 0 is sufficiently small. The case that
J1 = ∅ can be treated similarly.
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