MINIMIZATION OF ELECTROSTATIC FREE ENERGY AND THE POISSON-BOLTZMANN EQUATION FOR MOLECULAR SOLVATION WITH IMPLICIT SOLVENT*

BO LI^{\dagger}

Abstract

In an implicit-solvent description of the solvation of charged molecules (solutes), the electrostatic free energy is a functional of concentrations of ions in the solvent. The charge density is determined by such concentrations together with the point charges of the solute atoms, and the electrostatic potential is determined by the Poisson equation with a variable dielectric coefficient. Such a free-energy functional is considered in this work for both the case of point ions and that of ions with a uniform finite size. It is proved for each case that there exists a unique set of equilibrium concentrations that minimize the free energy and that are given by the corresponding Boltzmann distributions through the equilibrium electrostatic potential. Such distributions are found to depend on the boundary data for the Poisson equation. Pointwise upper and lower bounds are obtained for the free-energy minimizing concentrations. Proofs are also given for the existence and uniqueness of the boundary-value problem of the resulting Poisson-Boltzmann equation that determines the equilibrium electrostatic potential. Finally, the equivalence of two different forms of such a boundaryvalue problem is proved.

Key words. implicit solvent, electrostatic free energy, ionic concentrations, electrostatic potentials, the Poisson-Boltzmann equation, variational methods, nonlinear elliptic interface problems

AMS subject classifications. 35J, 35Q, 49S, 82D, 92C
DOI. 10.1137/080712350

1. Introduction. It has long been realized that the electrostatic potential of a charged molecular system extremizes an electrostatic free-energy functional $[3,6,12$, $13,15,18,20,26,28,29]$. In a simple setting, this functional is given by
$F\left[c_{1}, \ldots, c_{M} ; \psi\right]=\int\left\{-\frac{\varepsilon}{8 \pi}|\nabla \psi|^{2}+\rho \psi+\beta^{-1} \sum_{j=1}^{M} c_{j}\left[\ln \left(\Lambda^{3} c_{j}\right)-1\right]-\sum_{j=1}^{M} \mu_{j} c_{j}\right\} d x$,
where c_{1}, \ldots, c_{M} are ionic concentrations, ψ is an electrostatic potential, ε is the dielectric constant, ρ is the charge density defined to be a linear combination of the ionic concentrations, β is the inverse thermal energy, Λ is the thermal de Broglie wavelength, and μ_{j} is the chemical potential of the j th ionic species. Throughout, we use the electrostatics CGS units. We also use $\log x$ to denote the natural logarithm of $x>0$. Extremizing this functional with respect to the concentrations and the potential lead to the Boltzmann distribution of concentrations and the Poisson equation for the equilibrium potential, respectively $[3,6,12,13,15,26,28]$. Notice, however, that this free-energy functional is concave with respect to the electrostatic potential. Therefore, the extremizing concentrations and potential do not minimize this free-energy functional, rather they form an unstable saddle point of the system $[1,6,12,13]$. This flaw of theory is removed in the free-energy minimization approach that was proposed

[^0]

FIG. 1. The geometry of a solvation system with an implicit solvent.
in $[12,20]$. The key point in this new approach is that the electrostatic free-energy functional depends solely on the ionic concentrations and the electrostatic potential is determined by such concentrations through the Poisson equation. In the recent article [5], this free-energy minimization approach was revisited and applied to the implicit-solvent (or continuum-solvent) description of solvation.

The present work is a mathematical study of the free-energy minimization approach to the electrostatics applied to the solvation of molecules with an implicitsolvent. Such application introduces additional mathematical complications due to the presence of point charges in solutes and the dielectric boundaries. We consider both the case of point ions-ions modeled as points without volumes-and that of ions with a uniform finite size. The finite-size effect of ions is known to be important in continuum modeling of electrostatics in molecular systems. Our analysis shows particularly that the free-energy minimizing ionic concentrations are uniformly bounded from above and away from zero at each spatial point. This uniform boundedness, which is proved by somewhat tedious constructions, is a consequence of the property that the free-energy minimizing concentrations have a large entropy. We do not consider the more general case of ions with different sizes for which there seems no explicit Boltzmann distributions.

Consider now the solvation of charged molecules with an implicit solvent [27]. We divide the entire region Ω of the solvation system into the region of solute molecules $\Omega_{m} \subset \mathbb{R}^{3}$ that is possibly multiply connected, the region of solvent (such as salted water) $\Omega_{s} \subset \mathbb{R}^{3}$, and the solute-solvent interface $\Gamma=\partial \Omega_{m} \cap \partial \Omega_{s}$; cf. Figure 1. This interface Γ serves as the dielectric boundary. Assume the solutes consist of N atoms with the i th one located at x_{i} and carrying a charge Q_{i}. Assume also there are M ionic species in the solvent with $q_{j}=e z_{j}$ the buck charge of the j th ionic species, where e is the elementary charge and z_{j} the valence of j th ionic species. Denote by $c_{j}=c_{j}(x)$ the local concentration at $x \in \Omega_{s}$ of the j th ionic species. Following the common assumption that the mobile ions in the solvent cannot penetrate the dielectric boundary Γ, we define $c_{j}(x)=0$ for all $x \in \Omega_{m}$ and $1 \leq j \leq M$.

We consider two mean-field approximations of the electrostatic free energy of the solvation system as functionals of the local ionic concentrations $c=\left(c_{1}, \ldots, c_{M}\right)$ in the solvent region. In the first one, point ions are assumed, and the related electrostatic free-energy functional is given by $[5,12,19,20,26]$

$$
\begin{align*}
F_{0}[c]= & \frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(\psi-\psi_{v a c}\right)\left(x_{i}\right)+\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) \psi d x \\
& +\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}} c_{j}\left[\log \left(a^{3} c_{j}\right)-1\right] d x-\sum_{j=1}^{M} \int_{\Omega_{s}} \mu_{j} c_{j} d x \tag{1.1}
\end{align*}
$$

In the second approximation, all ions are assumed to have a uniform linear size, and the related free-energy functional is given by [3, 20]

$$
\begin{align*}
F_{a}[c]= & \frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(\psi-\psi_{v a c}\right)\left(x_{i}\right)+\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) \psi d x \\
& +\beta^{-1} \sum_{j=0}^{M} \int_{\Omega_{s}} c_{j}\left[\log \left(a^{3} c_{j}\right)-1\right] d x-\sum_{j=1}^{M} \int_{\Omega_{s}} \mu_{j} c_{j} d x \tag{1.2}
\end{align*}
$$

where the summation in the β^{-1} term starts from $j=0$ and

$$
\begin{equation*}
c_{0}(x)=a^{-3}\left[1-\sum_{j=1}^{M} a^{3} c_{j}(x)\right] \quad \forall x \in \Omega_{s} \tag{1.3}
\end{equation*}
$$

In (1.1) and (1.2), ψ is the electrostatic potential of the solvation system,

$$
\begin{equation*}
\psi_{v a c}(x)=\sum_{i=1}^{N} \frac{Q_{i}}{\varepsilon_{m}\left|x-x_{i}\right|} \tag{1.4}
\end{equation*}
$$

defines the electrostatic potential generated by all the point charges Q_{i} at x_{i} in a medium with the dielectric constant ε_{m} (usually taken as that in the vacuum), $a>0$ is a constant, and μ_{j} is the constant chemical potential of the j th ionic species. The constant $a>0$ represents in (1.1) a nonphysical cut-off which is often chosen to be the thermal de Broglie wavelength and in (1.2) the uniform linear size of ions.

The electrostatic potential ψ is determined by the Poisson equation

$$
\begin{equation*}
\nabla \cdot \varepsilon_{\Gamma} \nabla \psi=-4 \pi \rho \quad \text { in } \Omega \tag{1.5}
\end{equation*}
$$

where ε_{Γ} is the dielectric coefficient and ρ is the charge density, together with a boundary condition which is usually taken to be

$$
\begin{equation*}
\psi=\psi_{0} \quad \text { on } \partial \Omega \tag{1.6}
\end{equation*}
$$

where ψ_{0} is a given function. The dielectric coefficient is defined to be

$$
\varepsilon_{\Gamma}(x)= \begin{cases}\varepsilon_{m} & \text { if } x \in \Omega_{m} \tag{1.7}\\ \varepsilon_{s} & \text { if } x \in \Omega_{s}\end{cases}
$$

where ε_{m} and ε_{s} are the dielectric constants of the solutes and the solvent, respectively. The charge density is given by

$$
\begin{equation*}
\rho=\sum_{i=1}^{N} Q_{i} \delta_{x_{i}}+\sum_{j=1}^{M} q_{j} c_{j} \quad \text { in } \Omega \tag{1.8}
\end{equation*}
$$

where $\delta_{x_{i}}$ denotes the Dirac delta function centered at x_{i}.
The first two terms in (1.1) or (1.2) represent the internal electrostatic energy, which are often written formally as the integral of $\rho \psi / 2$ over the entire region Ω. Based on Born's definition [2], the contribution to the electrostatic free energy due to the solute point charges is given as the first term in (1.1) or (1.2) though the reaction
field $\psi-\psi_{v a c}$. The β^{-1} term represents the ideal gas entropy. The term $1-\sum_{j=1}^{M} a^{3} c_{j}$ in (1.2) is the concentration of solvent molecules. It describes the effect of finite size of ions. The last term in (1.1) or (1.2) accounts for a constant chemical potential in the system. The osmotic pressure from the mobile ions is dropped, since it is only an additive constant to the free-energy functional in the present setting. We remark that the use of notations F_{0} and F_{a} does not indicate that we can obtain the functional F_{0} by simply setting $a=0$ in F_{a}.

In this work, we prove the following results:
(1) For each of the free-energy functionals (1.1) and (1.2), there admits a unique minimizer c_{1}, \ldots, c_{M}, which is also the unique equilibrium, in an admissible set of concentrations. Moreover, such concentrations and the corresponding equilibrium electrostatic potential ψ are related by the boundary-data dependent Boltzmann distributions

$$
c_{j}(x)= \begin{cases}c_{j}^{\infty} e^{-\beta q_{j}\left[\psi(x)-\hat{\psi}_{0}(x) / 2\right]} & \text { for point ions } \tag{1.9}\\ \frac{c_{j}^{\infty} e^{-\beta q_{j}\left[\psi(x)-\hat{\psi}_{0}(x) / 2\right]}}{1+a^{3} \sum_{i=1}^{M} c_{i}^{\infty} e^{-\beta q_{i}\left[\psi(x)-\hat{\psi}_{0}(x) / 2\right]}} & \text { for finite-size ions }\end{cases}
$$

for a.e. $x \in \Omega_{s}$ and $1 \leq j \leq M$, where $c_{j}^{\infty}=a^{-3} e^{\beta \mu_{j}}$ and $\hat{\psi}_{0} \in H^{1}(\Omega)$ is determined by

$$
\left\{\begin{align*}
\int_{\Omega} \varepsilon_{\Gamma} \nabla \hat{\psi}_{0} \cdot \nabla \eta d x=0 & \forall \eta \in H_{0}^{1}(\Omega) \tag{1.10}\\
\hat{\psi}_{0}=\psi_{0} & \text { on } \partial \Omega
\end{align*}\right.
$$

The free-energy minimizing concentrations are shown to be uniformly bounded above and below away from zero. These results are summarized in Theorems 2.3-2.5 and Lemmas 3.4 and 3.5.
(2) The equilibrium electrostatic potential ψ is the unique solution to the boundarydata dependent Poisson-Boltzmann equation (PBE) $[3,4,10,11,16,17,20$, 31], together with the boundary condition (1.6),

$$
\begin{equation*}
\nabla \cdot \varepsilon_{\Gamma} \nabla \psi+4 \pi \chi_{\Omega_{s}} \sum_{j=1}^{M} q_{j} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}=-4 \pi \sum_{i=1}^{N} Q_{i} \delta_{x_{i}} \quad \text { in } \Omega \tag{1.11}
\end{equation*}
$$

for the case of point ions, and
$\nabla \cdot \varepsilon_{\Gamma} \nabla \psi+4 \pi \chi_{\Omega_{s}} \sum_{j=1}^{M} \frac{q_{j} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}}{1+a^{3} \sum_{i=1}^{M} c_{i}^{\infty} e^{-\beta q_{i}\left(\psi-\hat{\psi}_{0} / 2\right)}}=-4 \pi \sum_{i=1}^{N} Q_{i} \delta_{x_{i}} \quad$ in Ω
for the case of finite-size ions, where $\chi_{\Omega_{s}}$ is the characteristic function of Ω_{s}. These equations can be written together as

$$
\begin{equation*}
\nabla \cdot \varepsilon_{\Gamma} \nabla \psi-4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right)=-4 \pi \sum_{i=1}^{N} Q_{i} \delta_{x_{i}} \quad \text { in } \Omega \tag{1.13}
\end{equation*}
$$

where B^{\prime} is the derivative of the function $B: \mathbb{R} \rightarrow \mathbb{R}$ defined by
(1.14)

$$
B(\psi)= \begin{cases}\sum_{j=1}^{M} \beta^{-1} c_{j}^{\infty} e^{-\beta q_{j} \psi} & \text { for point ions } \\ \beta^{-1} a^{-3} \log \left(1+a^{3} \sum_{j=1}^{M} c_{j}^{\infty} e^{-\beta q_{j} \psi}\right) & \text { for finite-size ions. }\end{cases}
$$

See Theorem 2.1.
(3) The boundary-value problem of the PBE (1.13) and (1.6) is equivalent to the elliptic interface problem

$$
\begin{cases}\nabla \cdot \varepsilon_{m} \nabla \psi=-4 \pi \sum_{i=1}^{N} Q_{i} \delta_{x_{i}} & \text { in } \Omega_{m} \tag{1.15}\\ \nabla \cdot \varepsilon_{s} \nabla \psi-4 \pi B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right)=0 & \text { in } \Omega_{s} \\ \llbracket \psi \rrbracket=\llbracket \varepsilon_{\Gamma} \nabla \psi \cdot n \rrbracket=0 & \text { on } \Gamma \\ \psi=\psi_{0} & \text { on } \Omega\end{cases}
$$

Here and below, we denote for any function u on $\Omega, u_{m}=\left.u\right|_{\Omega_{m}}, u_{s}=\left.u\right|_{\Omega_{s}}$, , and $\llbracket u \rrbracket=u_{s}-u_{m}$ on Γ. See Theorem 2.2.
Two variations of the PBE (1.11) with $\psi_{0}=0$ are commonly used [8, 15, 29]. First, we have by the Taylor expansion and the electrostatic neutrality $\sum_{j=1}^{M} c_{j}^{\infty}=0$ that

$$
\sum_{j=1}^{M} q_{j} c_{j}^{\infty} e^{-\beta q_{j} \psi} \approx-\left(\sum_{j=1}^{M} \beta q_{j}^{2} c_{j}^{\infty}\right) \psi,
$$

if $|\psi|$ is small, leading to the linearized PBE [9]

$$
\nabla \cdot \varepsilon_{\Gamma} \nabla \psi-\varepsilon_{s} \kappa^{2} \chi_{\Omega_{s}} \psi=-4 \pi \sum_{i=1}^{N} Q_{i} \delta_{x_{i}} \quad \text { in } \Omega
$$

where $\kappa=\sqrt{4 \pi \beta \sum_{i=1}^{M} q_{j}^{2} c_{j}^{\infty} / \varepsilon_{s}^{2}}$ is the ionic strength or the inverse Debye-Hückel screening length. Clearly, all of our results for the nonlinear PBE (1.11) hold true for the linearized PBE. Second, for the common $z:-z$ type of salt such as NaCl in the solution, we have $M=2, c_{1}^{\infty}=c_{2}^{\infty}$, and $q_{1}=-q_{2}=z e$. The PBE (1.11) reduces to the following sinh PBE:

$$
\nabla \cdot \varepsilon_{\Gamma} \nabla \psi-8 \pi z e c_{1}^{\infty} \chi_{\Omega_{s}} \sinh (\beta z e \psi)=-4 \pi \sum_{i=1}^{N} Q_{i} \delta_{x_{i}} \quad \text { in } \Omega
$$

In proving the existence of minimizers of the functionals F_{0} and F_{a}, we use de la Vallée Poussin's criterion [25] of the sequential compactness in $L^{1}(\Omega)$. The uniqueness of such minimizers follows basically from the convexity of these functionals. A crucial step in defining and deriving equilibriums of F_{0} and F_{a} is the construction of
L^{∞}-concentrations that are bounded below in Ω_{s} by a positive constant and that have low free energies. Such constructions are made by increasing the entropy of ionic concentrations through their small perturbations. The effect of inhomogeneous Dirichlet boundary data to the Boltzmann distributions and, hence, to the PBE can be useful to guide practical numerical computations. The equivalence of the two formulations is a common property for many physical problems. The interface formulation of the boundary-value problem of the PBE has been used for numerical computations using boundary integral method [22-24]. The finite-size effect is important in modeling electrostatics [3, 20].

The rest of the paper is organized as follows: In section 2, we state our main results; in section 3, we provide some lemmas; in section 4, we prove our theorems on the boundary-value problem of PBE; in section 5, we prove our theorems on the free-energy minimization. Finally, in Appendix, we give the proof of two lemmas.
2. Main results. Throughout the rest of the paper, we make the following assumptions:

A1. The set $\Omega \subset \mathbb{R}^{3}$ is nonempty, bounded, open, and connected. The sets $\Omega_{m} \subset \mathbb{R}^{3}$ and $\Omega_{s} \subset \mathbb{R}^{3}$ are nonempty, bounded, and open, and satisfy that $\overline{\Omega_{m}} \subset \Omega$ and $\Omega_{s}=\Omega \backslash \overline{\Omega_{m}}$. The N points x_{1}, \ldots, x_{N} for some integer $N \geq 1$ belong to Ω_{m}. Both $\partial \Omega$ and Γ are of C^{2}. The unit exterior normal at the boundary of Ω_{s} is denoted by n; cf. Figure 1 .
A2. $M \geq 2$ is an integer. All $a>0, \beta>0, Q_{i} \in \mathbb{R}(1 \leq i \leq N), q_{j} \in \mathbb{R}$ and $\mu_{j} \in \mathbb{R}(1 \leq j \leq M), \varepsilon_{m}>0$, and $\varepsilon_{s}>0$ are constants;
A3. The functions $\psi_{v a c}$ and ε_{Γ} are defined in (1.4) and (1.7), respectively. The boundary data ψ_{0} is the trace of a given function, also denoted by ψ_{0}, in $W^{2, \infty}(\Omega)$.
Boundary values are understood as traces. When no confusion arises, the capital letter C, with or without a subscript, denotes a positive constant that can depend on all $\Omega_{m}, \Omega_{s}, \Omega, \Gamma, \varepsilon_{m}, \varepsilon_{s}, a, \beta, N, M, x_{i}$, and $Q_{i}(1 \leq i \leq N), q_{j}$ and $\mu_{j}(1 \leq j \leq M)$, and ψ_{0}.

For any open set $U \subseteq \mathbb{R}^{3}$ that contains all x_{1}, \ldots, x_{N}, we denote

$$
H_{*}^{1}(U)=\left\{u \in W^{1,1}(U):\left.u\right|_{U_{\alpha}} \in H^{1}\left(U_{\alpha}\right) \forall \alpha>0\right\}
$$

where $U_{\alpha}=U \backslash\left(\cup_{i=1}^{N} \overline{B\left(x_{i}, \alpha\right)}\right)$ and $B\left(x_{i}, \alpha\right)$ denotes the ball centered at x_{i} with radius α.

Definition 2.1. A function $\psi \in H_{*}^{1}(\Omega)$ is a weak solution to the boundary-value problem of the PBE (1.13) and (1.6), if $\psi=\psi_{0}$ on $\partial \Omega$, $\chi_{\Omega_{s}} B(\psi) \in L^{2}\left(\Omega_{s}\right)$, and

$$
\begin{equation*}
\int_{\Omega}\left[\varepsilon_{\Gamma} \nabla \psi \cdot \nabla \eta+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \eta\right] d x=4 \pi \sum_{i=1}^{N} Q_{i} \eta\left(x_{i}\right) \quad \forall \eta \in C_{c}^{\infty}(\Omega) \tag{2.1}
\end{equation*}
$$

We remark that if $\phi \in H^{1}(U)$ for some bounded and smooth domain $U \subset \mathbb{R}^{3}$, then e^{ϕ} and, hence, $B(\phi)$ may not be in $L^{1}(U)$. For example, let $U=B(0,1)$ be the unit ball of \mathbb{R}^{3} and $\alpha \in(0,1 / 2)$. Define $\phi(x)=|x|^{-\alpha}$ for any $x \in U$. Then $\phi \in H^{1}(U)$ and that $e^{\phi} \notin L^{1}(U)$. Notice by (1.14) that $\chi_{\Omega_{s}} B(\psi) \in L^{2}\left(\Omega_{s}\right)$ is equivalent to $\chi_{\Omega_{s}} e^{-\beta q_{j} \psi} \in L^{2}\left(\Omega_{s}\right)$ or $\chi_{\Omega_{s}} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)} \in L^{2}\left(\Omega_{s}\right)(j=1, \ldots, M)$, which in turn are equivalent to $\chi_{\Omega_{s}} B\left(\psi-\hat{\psi}_{0} / 2\right) \in L^{2}\left(\Omega_{s}\right)$.

Theorem 2.1. There exists a unique weak solution $\psi \in H_{*}^{1}(\Omega)$ to the boundaryvalue problem of the PBE (1.13) and (1.6). Moreover, $\psi \in C\left(\bar{\Omega} \backslash\left(\cup_{i=1}^{N} \overline{B\left(x_{i}, \alpha\right)}\right)\right.$
for any $\alpha>0$ such that the closure of $\cup_{i=1}^{N} B\left(x_{i}, \alpha\right)$ is contained in Ω_{m}, and $\psi \in$ $C^{\infty}\left(\left(\Omega_{m} \backslash\left\{x_{1}, \ldots, x_{N}\right\}\right) \cup \Omega_{s}\right)$.

Definition 2.2. A function $\psi: \Omega \rightarrow \mathbb{R}$ is a weak solution of the interface problem (1.15), if the following are satisfied: $\psi_{m} \in H_{*}^{1}\left(\Omega_{m}\right)$ and

$$
\begin{equation*}
\int_{\Omega_{m}} \varepsilon_{m} \nabla \psi \cdot \nabla \eta d x=4 \pi \sum_{i=1}^{N} Q_{i} \eta\left(x_{i}\right) \quad \forall \eta \in C_{c}^{\infty}\left(\Omega_{m}\right) \tag{2.2}
\end{equation*}
$$

$\psi_{s} \in H^{1}\left(\Omega_{s}\right), \chi_{\Omega_{s}} B(\psi) \in L^{2}\left(\Omega_{s}\right)$, and

$$
\begin{equation*}
\int_{\Omega_{s}}\left[\varepsilon_{s} \nabla \psi \cdot \nabla \eta+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \eta\right] d x=0 \quad \forall \eta \in C_{c}^{\infty}\left(\Omega_{s}\right) \tag{2.3}
\end{equation*}
$$

and the third and fourth equations in (1.15) hold true.
Theorem 2.2. A function $\psi: \Omega \rightarrow \mathbb{R}$ is a weak solution to the boundary-value problems (1.13) and (1.6), if and only if it is a weak solution to the boundary-value problem (1.15).

Let $U \subset \mathbb{R}^{3}$ be a nonempty, bounded, and open set. Let $f \in L^{1}(U)$. Assume

$$
\begin{equation*}
\sup _{0 \neq \xi \in L^{\infty}(U) \cap H_{0}^{1}(U)} \frac{\int_{U} f \xi d x}{\|\xi\|_{H^{1}(U)}}<\infty \tag{2.4}
\end{equation*}
$$

Since $L^{\infty}(U) \cap H_{0}^{1}(U)$ is dense in $H_{0}^{1}(U)$, we can identify f as an element in $H^{-1}(U)$, the dual of $H_{0}^{1}(U)$, with

$$
\langle f, \xi\rangle=\int_{U} f \xi d x \quad \forall \xi \in L^{\infty}(U) \cap H_{0}^{1}(U)
$$

and we write $f \in L^{1}(U) \cap H^{-1}(U)$. The $H^{-1}(U)$ norm of f is given by (2.4). We define

$$
\begin{aligned}
& X=\left\{c=\left(c_{1}, \ldots, c_{M}\right) \in L^{1}\left(\Omega, \mathbb{R}^{M}\right): c=0 \text { a.e. } \Omega_{m} \text { and } \sum_{j=1}^{M} q_{j} c_{j} \in H^{-1}(\Omega)\right\}, \\
&\|c\|_{X}=\sum_{j=1}^{M}\left\|c_{j}\right\|_{L^{1}\left(\Omega_{s}\right)}+\left\|\sum_{j=1}^{M} q_{j} c_{j}\right\|_{H^{-1}(\Omega)} \quad \forall c=\left(c_{1}, \ldots, c_{M}\right) \in X .
\end{aligned}
$$

Clearly, $\left(X,\|\cdot\|_{X}\right)$ is a Banach space.
Let $\alpha \in \mathbb{R}$ and define $S_{\alpha}:[0, \infty) \rightarrow \mathbb{R}$ by $S_{\alpha}(0)=0$ and $S_{\alpha}(u)=u(\alpha+\log u)$ if $u>0$. It is easy to see that S_{α} is bounded below on $[0, \infty)$ and strictly convex on $(0, \infty)$. Define
$V_{0}=\left\{\left(c_{1}, \ldots, c_{M}\right) \in X: c_{j} \geq 0\right.$ a.e. Ω_{s} and $\left.\int_{\Omega} S_{0}\left(c_{j}\right) d x<\infty, j=1, \ldots, M\right\}$,
$W_{0}=\left\{\left(c_{1}, \ldots, c_{M}\right) \in V_{0}:\right.$ there exists $p>\frac{3}{2}$ such that $\left.c_{j} \in L^{p}(\Omega), j=1, \ldots, M\right\}$, $V_{a}=\left\{\left(c_{1}, \ldots, c_{M}\right) \in V_{0}: c_{0}=a^{-3}\left(1-\sum_{j=1}^{M} a^{3} c_{j}\right) \geq 0\right.$ a.e. $\left.\Omega_{s}\right\}$.

Clearly, all V_{0}, W_{0}, and V_{a} are nonempty and convex. For any $c=\left(c_{1}, \ldots, c_{M}\right) \in V_{0}$, there exists a unique weak solution $\psi=\psi(c)$ of the boundary-value problem (1.5) and (1.6) with the charge density ρ given by (1.8); in particular, $\psi-\psi_{v a c}$ is harmonic in Ω_{m}, cf. Lemma 3.2. We shall call $\psi=\psi(c)$ the electrostatic potential corresponding to c. Therefore, $F_{0}: V_{0} \rightarrow \mathbb{R}$ and $F_{a}: V_{a} \rightarrow \mathbb{R}$ are well defined. We use V, F to denote V_{0}, F_{0} or W_{0}, F_{0} or V_{a}, F_{a}.

DEfinition 2.3. An element $c=\left(c_{1}, \ldots, c_{M}\right) \in V$ is an equilibrium of $F: V \rightarrow$ \mathbb{R}, if
there exist $\gamma_{1}>0$ and $\gamma_{2}>0$ such that $\gamma_{1} \leq c_{j}(x) \leq \gamma_{2}$ a.e. $x \in \Omega_{s}, j=1, \ldots, M$,
for the case of point ions, or

$$
\begin{equation*}
\text { there exists } \theta_{0} \in(0,1) \text { such that } a^{3} c_{j}(x) \geq \theta_{0} \text { a.e. } x \in \Omega_{s}, j=0,1, \ldots, M \text {, } \tag{2.6}
\end{equation*}
$$

for the case of finite-size ions; and

$$
\delta F[c] e:=\lim _{t \rightarrow 0} \frac{F[c+t e]-F[c]}{t}=0 \quad \forall e \in X \cap L^{\infty}\left(\Omega, \mathbb{R}^{M}\right)
$$

Definition 2.4. An element $c \in V$ is a local minimizer of $F: V \rightarrow \mathbb{R}$, if there exists $\varepsilon>0$ such that $F[d] \geq F[c]$ for any $d \in V$ with $\|d-c\|_{X}<\varepsilon$.

THEOREM 2.3. There exists a unique minimizer of $F_{0}: V_{0} \rightarrow \mathbb{R}$. It is also the unique local minimizer of $F_{0}: V_{0} \rightarrow \mathbb{R}$.

It is an open question if the unique minimizer of $F_{0}: V_{0} \rightarrow \mathbb{R}$ is an equilibrium of $F_{0}: V_{0} \rightarrow \mathbb{R}$ as defined in Definition 2.3. The answer to this question would be yes if this minimizer were in W_{0} or if $\min _{d \in V_{0}} F_{0}[d]=\min _{d \in W_{0}} F_{0}[d]$, neither of which is clearly true. This is the reason we introduce the class of concentrations W_{0}. See the proof of Lemma 3.4 in Appendix.

Theorem 2.4.
(1) There exists a unique equilibrium $c=\left(c_{1}, \ldots, c_{M}\right)$ of $F_{0}: W_{0} \rightarrow \mathbb{R}$. It is also the unique global minimizer and the unique local minimizer of $F_{0}: W_{0} \rightarrow \mathbb{R}$.
(2) If $\psi=\psi(c)$ is the corresponding electrostatic potential, then the Boltzmann distributions (1.9) for point ions holds true and ψ is the unique weak solution to the corresponding boundary-value problem of $P B E$ (1.11) and (1.6). Moreover,

$$
\begin{align*}
\min _{d \in W_{0}} F_{0}[d]= & \frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(\psi-\psi_{v a c}\right)\left(x_{i}\right)+\int_{\Gamma} \frac{1}{8 \pi}\left(\psi-\hat{\phi}_{0}\right) \varepsilon_{\Gamma} \partial_{n}\left(\psi-\hat{\psi}_{0}\right) d S \\
(2.7) & -\int_{\Omega_{s}} \frac{\varepsilon_{s}}{8 \pi}\left|\nabla\left(\psi-\hat{\psi}_{0}\right)\right|^{2} d x-\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)} d x \tag{2.7}
\end{align*}
$$

Theorem 2.5.
(1) There exists a unique equilibrium $c=\left(c_{1}, \ldots, c_{M}\right)$ of $F_{a}: V_{a} \rightarrow \mathbb{R}$. It is also the unique global minimizer and the unique local minimizer of $F_{a}: V_{a} \rightarrow \mathbb{R}$.
(2) If $\psi=\psi(c)$ is the corresponding electrostatic potential, then the Boltzmann distributions (1.9) for finite-size ions holds true and ψ is the unique weak solution to the corresponding boundary-value problem of $P B E$ (1.12) and (1.6).

Moreover,

$$
\begin{align*}
\min _{d \in V_{a}} F_{a}[d]= & \frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(\psi-\psi_{v a c}\right)\left(x_{i}\right)+\int_{\Gamma} \frac{1}{8 \pi}\left(\psi-\hat{\phi}_{0}\right) \varepsilon_{\Gamma} \partial_{n}\left(\psi-\hat{\psi}_{0}\right) d S \\
& -\int_{\Omega_{s}} \frac{\varepsilon_{\Gamma}}{8 \pi}\left|\nabla\left(\psi-\hat{\psi}_{0}\right)\right|^{2} d x-\beta^{-1} a^{-3} \int_{\Omega_{s}} \tag{2.8}\\
& {\left[1+\log \left(1+a^{3} \sum_{j=1}^{M} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}\right)\right] d x . }
\end{align*}
$$

3. Some lemmas. The key point of our first lemma below is the existence and continuity across the interface Γ of the normal flux for a solution of an elliptic interface problem. In terms of electrostatics, this means that the electrostatic potential and the normal component of electrostatic displacement are continuous across dielectric boundaries. These seem to be known results. For completeness, we give a proof here.

Lemma 3.1. Let $U \subset \mathbb{R}^{3}$ be an open set such that $\Gamma \subset U \subseteq \Omega$. Let $g \in$ $L^{1}(U) \cap H^{-1}(U)$. Suppose $u \in H^{1}(U)$ satisfies

$$
\begin{equation*}
\int_{U} \varepsilon_{\Gamma} \nabla u \cdot \nabla \eta d x=\int_{U} g \eta d x \quad \forall \eta \in C_{c}^{\infty}(U) . \tag{3.1}
\end{equation*}
$$

Then $\llbracket u \rrbracket=0$ on Γ. If in addition $g \in L^{2}(U)$, then $\llbracket \varepsilon_{\Gamma} \partial_{n} u \rrbracket=0$ on Γ.
Proof. Fix an open ball $B \subset U$ such that $\Gamma \cap B \neq \emptyset$. Let $\eta \in C_{c}^{\infty}(U)$ with $\operatorname{supp} \eta \subset B$. Let n_{j} with $1 \leq j \leq 3$ be the j th component of n, the unit normal at the Γ, pointing from Ω_{s} to Ω_{m}. It follows from the fact that $u \in H^{1}(\Omega)$ and integration by parts that

$$
\begin{aligned}
-\int_{B} u \partial_{j} \eta d x & =\int_{B}\left(\partial_{j} u\right) \eta d x \\
& =\int_{B \cap \Omega_{m}}\left(\partial_{j} u\right) \eta d x+\int_{B \cap \Omega_{s}}\left(\partial_{j} u\right) \eta d x \\
& =-\int_{B \cap \Omega_{m}} u \partial_{j} \eta d x-\int_{\Gamma \cap B} u_{m} \eta n_{j} d S-\int_{B \cap \Omega_{s}} u \partial_{j} \eta d x+\int_{\Gamma \cap B} u_{s} \eta n_{j} d S \\
& =-\int_{B} u \partial_{j} \eta d x+\int_{\Gamma \cap B}\left(u_{s}-u_{m}\right) \eta n_{j} d S, \quad j=1,2,3 .
\end{aligned}
$$

This and the arbitrariness of η imply $\llbracket u \rrbracket=0$ on Γ.
To show the continuity of $\varepsilon_{\Gamma} \nabla u \cdot n$ across Γ, we fix an open set $U_{0} \subset \mathbb{R}^{3}$ such that $\Gamma \subset U_{0} \subset \overline{U_{0}} \subset U$ and that the boundary ∂U_{0} is C^{2}. By the fact that $u \in H^{1}(U)$ and $g \in L^{2}(U)$, and by (3.1), we have

$$
\begin{aligned}
&\left.\left(\varepsilon_{t} \nabla u_{t}\right)\right|_{U_{0} \cap \Omega_{t}} \in L^{2}\left(U_{0} \cap \Omega_{t}, \mathbb{R}^{3}\right) \quad \text { and } \\
&\left.\left(\nabla \cdot \varepsilon_{t} \nabla u_{t}\right)\right|_{U_{0} \cap \Omega_{t}}=-g \in L^{2}\left(U_{0} \cap \Omega_{t}\right), \quad t=m, s .
\end{aligned}
$$

Therefore, by Theorem 1.2 in [30], the trace of $\left.\left(\varepsilon_{t} \nabla u_{t}\right)\right|_{U_{0} \cap \Omega_{t}} \cdot \nu \in H^{-1 / 2}\left(\partial\left(U_{0} \cap \Omega_{t}\right)\right)$ exists, and also by (3.1),

$$
\begin{equation*}
\int_{U_{0} \cap \Omega_{t}} \varepsilon_{t} \nabla u_{t} \cdot \nabla \eta d x=\int_{U_{0} \cap \Omega_{t}} g \eta d x+\int_{\partial\left(U_{0} \cap \Omega_{t}\right)}\left(\varepsilon_{t} \nabla u_{t} \cdot \nu\right) \eta d S \quad \forall \eta \in C_{c}^{\infty}\left(U_{0} \cap \Omega_{t}\right), \tag{3.2}
\end{equation*}
$$

where ν denotes the unit exterior normal of the boundary $\partial\left(U_{0} \cap \Omega_{t}\right)$ which contains Γ and $t=m, s$. Notice that the normals ν at Γ from both sides $U_{0} \cap \Omega_{m}$ and $U_{0} \cap \Omega_{s}$ are in opposite directions.

These traces are determined independent of the choice of U_{0}. In fact, if $Q_{0} \subset \mathbb{R}^{3}$ is another open set such that $\Gamma \subset Q_{0} \subset \overline{Q_{0}} \subset U$ and the boundary ∂Q_{0} is C^{2}, then the traces $\left.\left(\varepsilon_{m} \nabla u_{m}\right)\right|_{Q_{0} \cap \Omega_{m}} \cdot \nu \in H^{-1 / 2}\left(\partial\left(Q_{0} \cap \Omega_{m}\right)\right)$ and $\left.\left(\varepsilon_{s} \nabla u_{s}\right)\right|_{Q_{0} \cap \Omega_{s}} \cdot \nu \in$ $H^{-1 / 2}\left(\partial\left(Q_{0} \cap \Omega_{m}\right)\right)$ exist, and (3.2) holds true for $t=m, s$ when U_{0} is replaced by Q_{0}. Consider now (3.2) with $t=m$. Choose any $\eta \in C_{c}^{1}\left(U_{0} \cap Q_{0}\right)$ such that $\eta=0$ on $\partial\left(U_{0} \cap \Omega_{m}\right) \backslash \Gamma$ and on $\partial\left(Q_{0} \cap \Omega_{m}\right) \backslash \Gamma$. Extend η by $\eta=0$ to outside $U_{0} \cap Q_{0}$. By (3.2) with $t=m$ and the corresponding equation with U_{0} replaced by Q_{0}, we obtain that

$$
\int_{\partial\left(U_{0} \cap \Omega_{m}\right)}\left(\varepsilon_{m} \nabla u_{m} \cdot \nu\right) \eta d S=\int_{\partial\left(Q_{0} \cap \Omega_{m}\right)}\left(\varepsilon_{m} \nabla u_{m} \cdot \nu\right) \eta d S
$$

The arbitrariness of η then implies that the trace of $\left.\left(\varepsilon_{m} \nabla u_{m} \cdot \nu\right)\right|_{U_{0} \cap \Omega_{m}}$ on Γ determined by U_{0} is the same as that determined by Q_{0}. By the same argument, we see that the trace of $\left.\left(\varepsilon_{s} \nabla u_{s} \cdot n\right)\right|_{U_{0} \cap \Omega_{s}}$ on Γ determined by U_{0} is the same as that determined by Q_{0}.

Now, by the fact that $U_{0}=\left(U_{0} \cap \Omega_{m}\right) \cup\left(U_{0} \cap \Omega_{s}\right)$ and $\left(U_{0} \cap \Omega_{m}\right) \cap\left(U_{0} \cap \Omega_{s}\right)=\emptyset$, and by our convention for the direction of the unit normal n along Γ, we obtain from (3.1) and (3.2) that for any $\eta \in C_{c}^{\infty}(U)$ with supp $\eta \subset U_{0}$

$$
\int_{\Gamma}\left(\varepsilon_{m} \frac{\partial u_{m}}{\partial n}-\varepsilon_{s} \frac{\partial u_{s}}{\partial n}\right) \eta d S=0
$$

The arbitrariness of η implies $\llbracket \varepsilon_{\Gamma} \partial_{n} u \rrbracket=0$ on Γ.
Let $L: H^{-1}(\Omega) \rightarrow H^{1}(\Omega)$ be the linear operator defined as follows: for any $\xi \in H^{-1}(\Omega), L \xi \in H_{0}^{1}(\Omega)$ is the unique function in $H_{0}^{1}(\Omega)$ that satisfies

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{\Omega} \varepsilon_{\Gamma} \nabla(L \xi) \cdot \nabla v d x=\xi(v) \quad \forall v \in H_{0}^{1}(\Omega) \tag{3.3}
\end{equation*}
$$

It is easy to see that $\langle\xi, \eta\rangle=\xi(L \eta)$ defines an inner product of $H^{-1}(\Omega)$. Denote by $\|\cdot\|$ the corresponding norm of $H^{-1}(\Omega)$, i.e., $\|\xi\|=\sqrt{\langle\xi, \xi\rangle}=\sqrt{\xi(L \xi)}$ for any $\xi \in H^{-1}(\Omega)$. One can verify that there exist $C_{1}=C_{1}\left(\Omega, \varepsilon_{m}, \varepsilon_{s}\right)>0$ and $C_{2}=C_{2}\left(\varepsilon_{m}, \varepsilon_{s}\right)>0$ such that

$$
\begin{equation*}
C_{1}\|\xi\| \leq\|\xi\|_{H^{-1}(\Omega)} \leq C_{2}\|\xi\| \quad \forall \xi \in H^{-1}(\Omega) \tag{3.4}
\end{equation*}
$$

It follows from [21] (with minor modifications) that there exists a unique $G \in$ $H_{*}^{1}(\Omega)$ such that $G=0$ on $\partial \Omega$ and

$$
\begin{equation*}
\int_{\Omega} \varepsilon_{\Gamma} \nabla G \cdot \nabla \eta d x=4 \pi \sum_{i=1}^{N} Q_{i} \eta\left(x_{i}\right) \quad \forall \eta \in C_{c}^{\infty}(\Omega) \tag{3.5}
\end{equation*}
$$

Clearly, $G-\psi_{v a c}$ is harmonic in Ω_{m} and $G \in W^{1, p}(\Omega)$ for any $p \in[1,3 / 2)$. Notice that the function $\hat{\psi}_{0} \in H^{1}(\Omega)$ defined in (1.10) is harmonic in $\Omega_{m} \cup \Omega_{s}$.

The next lemma gives a solution decomposition of the Poisson equation (1.5) with its right-hand side consisting of Dirac masses and a function in $H^{-1}(\Omega)$ that represents the density of ionic charges. This decomposition is a mathematical formulation of the Born cycle [2].

Lemma 3.2. Let $f \in L^{1}(\Omega) \cap H^{-1}(\Omega)$ be such that $f=0$ in Ω_{m}. Then $\psi:=$ $G+\hat{\psi}_{0}+L f$ is the unique function in $H_{*}^{1}(\Omega)$ that satisfies $\psi=\psi_{0}$ on $\partial \Omega$ and

$$
\begin{equation*}
\int_{\Omega} \varepsilon_{\Gamma} \nabla \psi \cdot \nabla \eta d x=4 \pi \sum_{i=1}^{N} Q_{i} \eta\left(x_{i}\right)+4 \pi \int_{\Omega_{s}} f \eta d x \quad \forall \eta \in C_{c}^{\infty}(\Omega) \tag{3.6}
\end{equation*}
$$

Moreover, $L f$ and $\psi-\psi_{v a c}$ are harmonic in Ω_{m}, and

$$
\begin{equation*}
\sum_{i=1}^{N} Q_{i}(L f)\left(x_{i}\right)=\int_{\Omega_{s}} G f d x \tag{3.7}
\end{equation*}
$$

Proof. From the definition of $G, \hat{\psi}_{0}$, and L (cf. (3.5), (1.10), and (3.3)), we easily verify that the function ψ is in $H_{*}^{1}(\Omega), \psi=\psi_{0}$ on $\partial \Omega$, and (3.6) holds true. If $\bar{\psi} \in H_{*}^{1}(\Omega)$ satisfies $\bar{\psi}=0$ on $\partial \Omega$ and $\int_{\Omega} \varepsilon_{\Gamma} \nabla \bar{\psi} \cdot \nabla \eta d x=0$ for all $\eta \in C_{c}^{\infty}(\Omega)$, then clearly $\bar{\psi} \in H_{0}^{1}(\Omega)$ and in fact $\bar{\psi}=0$ a.e. Ω. This proves the needed uniqueness.

By the fact that $f=0$ in Ω_{m} and the definition of L (cf. (3.3)), $L f$ is harmonic in Ω_{m}. The fact that $\psi-\psi_{v a c}$ is harmonic in Ω_{m} follows from (3.6) with $\eta \in C_{c}^{\infty}(\Omega)$ so chosen that $\operatorname{supp} \eta \subset \Omega_{m}$ and

$$
\int_{\Omega_{m}} \varepsilon_{m} \nabla \psi_{v a c} \cdot \nabla \eta d x=4 \pi \sum_{i=1}^{N} Q_{i} \eta\left(x_{i}\right) \quad \forall \eta \in C_{c}^{\infty}\left(\Omega_{m}\right)
$$

It remains to prove (3.7). Denote $\psi_{c}=L f \in H_{0}^{1}(\Omega)$. Let $\alpha>0$ be sufficiently small and let $B_{\alpha}=\cup_{i=1}^{N} B\left(x_{i}, \alpha\right)$. By the fact that G is harmonic in $\Omega_{m} \backslash B_{\alpha}$ and $G-\psi_{v a c}$ is harmonic in Ω_{m}, we obtain by a series of routine calculations that

$$
\begin{aligned}
\int_{\Omega_{m}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x= & \int_{\Omega_{m} \backslash B_{\alpha}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x+\int_{B_{\alpha}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x \\
= & -\int_{\Omega_{m} \backslash B_{\alpha}} \varepsilon_{m}(\Delta G) \psi_{c} d x+\int_{\partial\left(\Omega_{m} \backslash B_{\alpha}\right)} \varepsilon_{m} \psi_{c} \frac{\partial G}{\partial \nu} d S+O(\alpha) \\
= & -\left.\int_{\Gamma} \varepsilon_{m} \psi_{c}\right|_{m} \frac{\left.\partial G\right|_{m}}{\partial n} d S+\int_{\partial B_{\alpha}} \varepsilon_{m} \psi_{c} \frac{\partial G}{\partial \nu} d S+O(\alpha) \\
= & -\left.\int_{\Gamma} \varepsilon_{m} \psi_{c}\right|_{m} \frac{\left.\partial G\right|_{m}}{\partial n} d S+\int_{\partial B_{\alpha}} \varepsilon_{m} \psi_{c} \frac{\partial\left(G-\psi_{v a c}\right)}{\partial \nu} d S \\
& +\sum_{i=1}^{N} \int_{\partial B\left(x_{i}, \alpha\right)} \varepsilon_{m} \psi_{c} \frac{\partial \psi_{v a c}}{\partial \nu} d S+O(\alpha) \\
\rightarrow- & -\left.\int_{\Gamma} \varepsilon_{m} \psi_{c}\right|_{m} \frac{\left.\partial G\right|_{m}}{\partial n} d S+4 \pi \sum_{i=1}^{N} Q_{i} \psi_{c}\left(x_{i}\right) \quad \text { as } \alpha \rightarrow 0
\end{aligned}
$$

where ν is the exterior unit normal of $\partial\left(\Omega_{m} \backslash B_{\alpha}\right)$ and $\nu=-n$ on Γ by our convention for the direction of n. Consequently, by the continuity of $\varepsilon_{\Gamma} \nabla G \cdot n$ across Γ (cf.

Lemma 3.1), the fact that G is harmonic in Ω_{s}, and $G=\psi_{c}=0$ on $\partial \Omega$, we obtain

$$
\begin{align*}
4 \pi \sum_{i=1}^{N} Q_{i} \psi_{c}\left(x_{i}\right) & =\left.\int_{\Gamma} \varepsilon_{s} \psi_{c}\right|_{s} \frac{\left.\partial G\right|_{s}}{\partial n} d S+\int_{\Omega_{m}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x \\
& =\int_{\Omega_{s}} \varepsilon_{s}(\Delta G) \psi_{c} d x+\int_{\Omega_{s}} \varepsilon_{s} \nabla G \cdot \nabla \psi_{c} d x+\int_{\Omega_{m}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x \\
& =\int_{\Omega} \varepsilon_{\Gamma} \nabla G \cdot \nabla \psi_{c} d x \tag{3.8}
\end{align*}
$$

Since $\psi_{c}=L f \in H_{0}^{1}(\Omega)$ is harmonic in Ω_{m}, we also have by the properties of G (cf. [21]) and integration by parts that

$$
\begin{aligned}
\int_{\Omega_{m}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x & =\int_{\Omega_{m} \backslash B_{\alpha}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x+\int_{B_{\alpha}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x \\
& =-\int_{\Omega_{m} \backslash B_{\alpha}} \varepsilon_{m} G \Delta \psi_{c} d x+\int_{\partial\left(\Omega_{m} \backslash B_{\alpha}\right)} \varepsilon_{m} G \frac{\partial \psi_{c}}{\partial \nu} d S+O(\alpha) \\
& =-\left.\int_{\Gamma} \varepsilon_{m} G\right|_{m} \frac{\left.\partial \psi_{c}\right|_{m}}{\partial n} d S+\int_{\partial B_{\alpha}} \varepsilon_{m} G \frac{\partial \psi_{c}}{\partial \nu} d S+O(\alpha) \\
& \rightarrow-\left.\int_{\Gamma} \varepsilon_{m} G\right|_{m} \frac{\left.\partial \psi_{c}\right|_{m}}{\partial n} d S \quad \text { as } \alpha \rightarrow 0
\end{aligned}
$$

Let $\hat{G} \in H^{1}\left(\Omega_{m}\right)$ be such that $\hat{G}=G$ on $\Gamma=\partial \Omega_{m}$. Replacing G in (3.9) by \hat{G} and repeating the same calculations, we obtain

$$
\begin{equation*}
\int_{\Omega_{m}} \varepsilon_{m} \nabla G \cdot \nabla \psi_{c} d x=\int_{\Omega_{m}} \varepsilon_{m} \nabla \hat{G} \cdot \nabla \psi_{c} d x \tag{3.10}
\end{equation*}
$$

Define $\bar{G}: \Omega \rightarrow \mathbb{R}$ by $\bar{G}(x)=\hat{G}(x)$ if $x \in \overline{\Omega_{m}}$ and by $\bar{G}(x)=G(x)$ if $x \in \Omega_{s}$. Clearly, $\bar{G} \in H_{0}^{1}(\Omega)$. Since $\psi_{c}=L f$ and $f=0$ in Ω_{m}, we, thus, have by (3.8) and (3.10) that

$$
\begin{aligned}
4 \pi \sum_{i=1}^{N} Q_{i} \psi_{c}\left(x_{i}\right) & =\int_{\Omega_{m}} \varepsilon_{m} \nabla \hat{G} \cdot \nabla \psi_{c} d x+\int_{\Omega_{s}} \varepsilon_{s} \nabla G \cdot \nabla \psi_{c} d x \\
& =\int_{\Omega} \varepsilon_{\Gamma} \nabla \bar{G} \cdot \nabla \psi_{c} d x=4 \pi \int_{\Omega} \bar{G} f d x=4 \pi \int_{\Omega_{s}} G f d x
\end{aligned}
$$

This implies (3.7).
By Lemma 3.2, the potential $\psi=\psi\left(c_{1}, \ldots, c_{M}\right)$ corresponding to a set of concentrations $\left(c_{1}, \ldots, c_{M}\right)$ is well defined with $f=\sum_{j=1}^{M} q_{j} c_{j}$ and is given by

$$
\begin{equation*}
\psi\left(c_{1}, \ldots, c_{M}\right)=G+\hat{\psi}_{0}+L\left(\sum_{j=1}^{M} q_{j} c_{j}\right) \tag{3.11}
\end{equation*}
$$

Moreover, the functional $F_{0}: V_{0} \rightarrow \mathbb{R}$ and $F_{a}: V_{a} \rightarrow \mathbb{R}$ can be rewritten as

$$
\begin{align*}
F_{0}[c]= & \frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) L\left(\sum_{j=1}^{M} q_{j} c_{j}\right) d x+\sum_{j=1}^{M} \int_{\Omega_{s}} \mu_{0 j} c_{j} d x \\
& +\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}} S_{-1}\left(c_{j}\right) d x+E_{0}, \quad \forall c=\left(c_{1}, \ldots, c_{M}\right) \in V_{0} \tag{3.12}\\
F_{a}[c]= & \frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) L\left(\sum_{j=1}^{M} q_{j} c_{j}\right) d x+\sum_{j=1}^{M} \int_{\Omega_{s}} \mu_{a j} c_{j} d x \\
& +\beta^{-1} \sum_{j=0}^{M} \int_{\Omega_{s}} S_{-1}\left(c_{j}\right) d x+E_{a} \quad \forall c=\left(c_{1}, \ldots, c_{M}\right) \in V_{a} \tag{3.13}
\end{align*}
$$

respectively, where

$$
\begin{align*}
\mu_{0 j}(x) & =q_{j} G(x)+\frac{1}{2} q_{j} \hat{\psi}_{0}(x)+3 \beta^{-1} \log a-\mu_{j} \quad \forall x \in \Omega_{s}, j=1, \ldots, M \tag{3.14}\\
E_{0} & =\frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(G+\hat{\psi}_{0}-\psi_{v a c}\right)\left(x_{i}\right), \tag{3.15}\\
\mu_{a j}(x) & =q_{j} G(x)+\frac{1}{2} q_{j} \hat{\psi}_{0}(x)-\mu_{j} \quad \forall x \in \Omega_{s}, j=1, \ldots, M \tag{3.16}\\
E_{a} & =\frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(G+\hat{\psi}_{0}-\psi_{v a c}\right)\left(x_{i}\right)+3 \beta^{-1} a^{-3}(\log a)\left|\Omega_{s}\right| \tag{3.17}
\end{align*}
$$

where $|E|$ denotes the Lebesgue measure of a Lebesgue measurable set $E \subset \mathbb{R}^{3}$.
Lemma 3.3. Let $D \subset \mathbb{R}^{3}$ be a bounded and open set. Let $\alpha \in \mathbb{R}$. Let $\left\{u^{(k)}\right\}$ be a sequence of functions in $L^{1}(D)$ such that $u^{(k)} \geq 0$ a.e. D for each $k \geq 1$ and that

$$
\sup _{k \geq 1} \int_{D} S_{\alpha}\left(u^{(k)}\right) d x<\infty
$$

Then there exists a subsequence $\left\{u^{\left(k_{j}\right)}\right\}$ of $\left\{u^{(k)}\right\}$ such that $\left\{u^{\left(k_{j}\right)}\right\}$ converges weakly in $L^{1}(D)$ to some $u \in L^{1}(D)$ with $u \geq 0$ a.e. D and

$$
\int_{D} S_{\alpha}(u) d x \leq \liminf _{k \rightarrow \infty} \int_{D} S_{\alpha}\left(u^{(k)}\right) d x
$$

Proof. Since $S_{\alpha}:[0, \infty) \rightarrow \mathbb{R}$ is bounded below, by passing to a subsequence if necessary, we may assume that the limit

$$
\begin{equation*}
A:=\lim _{k \rightarrow \infty} \int_{D} S_{\alpha}\left(u^{(k)}\right) d x=\liminf _{k \rightarrow \infty} \int_{D} S_{\alpha}\left(u^{(k)}\right) d x \tag{3.18}
\end{equation*}
$$

exists and is finite. Since $S_{\alpha}(\lambda) / \lambda \rightarrow+\infty$ as $\lambda \rightarrow+\infty,\left\{u^{(k)}\right\}$ is weakly sequentially compact in $L^{1}(D)$ by de la Vallée Poussin's criterion [25]. Therefore, this sequence has a subsequence, not relabeled, that converges weakly in $L^{1}(D)$ to some $u \in L^{1}(D)$. Clearly, $u \geq 0$ a.e. D.

Let $\varepsilon>0$. By (3.18), there exists an integer $K>0$ such that

$$
\begin{equation*}
\int_{D} S_{\alpha}\left(u^{(k)}\right) d x \leq A+\varepsilon \quad \forall k>K \tag{3.19}
\end{equation*}
$$

By Mazur's theorem [7, 32], there exist convex combinations $v^{(k)}$ of $u^{(K+1)}, \ldots, u^{(K+k)}$ for all $k \geq 1$ such that $v^{(k)} \rightarrow u$ in $L^{1}(D)$. Let $v^{(k)}=\sum_{j=1}^{k} \lambda_{k, j} u^{(K+j)}$ with $\lambda_{k, j} \geq 0$ for all j and k, and $\sum_{j=1}^{k} \lambda_{k, j}=1$ for all k. Since $S_{\alpha}:[0, \infty) \rightarrow \mathbb{R}$ is convex, we have by Jensen's inequality and (3.19) that

$$
\begin{equation*}
S_{\alpha}\left(v^{(k)}\right) \leq \sum_{j=1}^{k} \lambda_{k, j} S_{\alpha}\left(u^{(K+j)}\right) \leq \sum_{j=1}^{k} \lambda_{k, j}(A+\varepsilon)=A+\varepsilon \quad \forall k \geq 1 \tag{3.20}
\end{equation*}
$$

Since $v^{(k)} \rightarrow u$ in $L^{1}(D)$, there exists a subsequence $\left\{v^{\left(k_{j}\right)}\right\}$ of $\left\{v^{(k)}\right\}$ such that $v^{k_{j}}(x) \rightarrow u(x)$ a.e. $x \in D$. Consequently, since $S_{\alpha}:[0, \infty) \rightarrow \mathbb{R}$ is continuous and bounded below, we have by Fatou's lemma and (3.20) that

$$
\int_{D} S_{\alpha}(u(x)) d x=\int_{D} \lim _{j \rightarrow \infty} S_{\alpha}\left(v^{k_{j}}(x)\right) d x \leq \liminf _{j \rightarrow \infty} \int_{D} S_{\alpha}\left(v^{k_{j}}(x)\right) d x \leq A+\varepsilon
$$

concluding the proof by the arbitrariness of $\varepsilon>0$.
The next two lemmas state some boundedness of concentrations that have low free energies. Their proofs are somewhat tedious, and are given in Appendix A.

Lemma 3.4. Let $c=\left(c_{1}, \ldots, c_{M}\right) \in W_{0}$ satisfy that $c \notin L^{\infty}\left(\Omega, \mathbb{R}^{M}\right)$ or there exists $j \in\{1, \ldots, M\}$ with $\left|\left\{x \in \Omega_{s}: c_{j}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$. Then for any $\varepsilon>0$ there exist $\hat{c}=\left(\hat{c}_{1}, \ldots, \hat{c}_{M}\right) \in W_{0}$ that satisfies (2.5) with c replaced by \hat{c}, $\|\hat{c}-c\|_{X}<\varepsilon$, and $F_{0}[\hat{c}]<F_{0}[c]$.

Lemma 3.5. Let $c=\left(c_{1}, \ldots, c_{M}\right) \in V_{a}$ and c_{0} be defined by (1.3). Assume there exists $j \in\{0,1, \ldots, M\}$ such that $\left|\left\{x \in \Omega_{s}: a^{3} c_{j}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$. Let $\varepsilon>0$. Then there exists $\hat{c}=\left(\hat{c}_{1}, \ldots, \hat{c}_{M}\right) \in V_{a}$ that satisfies (2.6) with c replaced by $\hat{c},\|\hat{c}-c\|_{X}<\varepsilon$, and $F_{a}[\hat{c}]<F_{a}[c]$.
4. The Poisson-Boltzmann equation: Proof of Theorems 2.1 and 2.2. Proof of Theorem 2.1. It is easy to verify that the function $B: \mathbb{R} \rightarrow \mathbb{R}$ defined in (1.14) is convex for both the case of point ions and that of finite-size ions. Let

$$
\mathcal{K}:=\left\{u \in H^{1}(\Omega): u=\psi_{0} \text { on } \partial \Omega \text { and } \chi_{\Omega_{s}} B(u) \in L^{2}(\Omega)\right\} .
$$

Clearly, $\mathcal{K} \neq \emptyset$ since $\psi_{0} \in \mathcal{K}$ and \mathcal{K} is convex since $B: \mathbb{R} \rightarrow \mathbb{R}$ is convex. We show now that \mathcal{K} is closed in $H^{1}(\Omega)$. Let $u_{k} \in \mathcal{K}(k=1,2, \ldots)$ and $u_{k} \rightarrow u$ in $H^{1}(\Omega)$
for some $u \in H^{1}(\Omega)$. Clearly, $u=\psi_{0}$ on $\partial \Omega$. Up to a subsequence, not relabeled, $u_{k}(x) \rightarrow u(x)$ a.e. $x \in \Omega$. Since $B: \mathbb{R} \rightarrow \mathbb{R}$ is convex and positive, we have

$$
\frac{d^{2}}{d v^{2}}\left([B(v)]^{2}\right)=2\left[B^{\prime}(v)\right]^{2}+2 B(v) B^{\prime \prime}(v)>0 \quad \forall v \in \mathbb{R}
$$

Thus, $v \mapsto[B(v)]^{2}$ is convex. It then follows from Fatou's lemma, Jensen's inequality, and the $H^{1}(\Omega)$-boundedness of $\left\{u_{k}\right\}$ that

$$
\begin{aligned}
\frac{1}{\left|\Omega_{s}\right|} \int_{\Omega_{s}}[B(u)]^{2} d x & \leq \liminf _{k \rightarrow \infty} \frac{1}{\left|\Omega_{s}\right|} \int_{\Omega_{s}}\left[B\left(u_{k}\right)\right]^{2} d x \\
& \leq \liminf _{k \rightarrow \infty}\left[B\left(\frac{1}{\left|\Omega_{s}\right|} \int_{\Omega_{s}} u_{k} d x\right)\right]^{2}<\infty
\end{aligned}
$$

This implies that $u \in \mathcal{K}$. Therefore, \mathcal{K} is closed in $H^{1}(\Omega)$. Since \mathcal{K} is convex, it is also weakly closed in $H^{1}(\Omega)$.

Define now $J: \mathcal{K} \rightarrow \mathbb{R}$ by

$$
J[u]=\int_{\Omega}\left[\frac{\varepsilon_{\Gamma}}{2}|\nabla u|^{2}+4 \pi \chi_{\Omega_{s}} B\left(u+G-\frac{\hat{\psi}_{0}}{2}\right)\right] d x \quad \forall u \in \mathcal{K}
$$

where G and $\hat{\psi}_{0}$ are defined in (3.5) and (1.10), respectively. Note that $\psi_{0} \in \mathcal{K}$ and that $J\left[\psi_{0}\right]<\infty$. By the Poincaré inequality, there exist constants $C_{3}>0$ and $C_{4} \geq 0$ such that $J[u] \geq C_{3}\|u\|_{H^{1}(\Omega)}^{2}-C_{4}$ for all $u \in \mathcal{K}$. Thus, $\alpha:=\inf _{u \in \mathcal{K}} J[u]$ is finite. Let $v_{k} \in \mathcal{K}(k=1,2 \ldots)$ be such that $\lim _{k \rightarrow \infty} J\left[v_{k}\right]=\alpha$. Then, $\left\{v_{k}\right\}$ is bounded in $H^{1}(\Omega)$ and, hence, it has a subsequence, not relabeled, that weakly converges to some $v \in H^{1}(\Omega)$. Since \mathcal{K} is weakly closed, $v \in \mathcal{K}$. Since the embedding $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ is compact, up to a further subsequence, again not relabeled, $v_{k} \rightarrow v$ a.e. in Ω. Therefore, since $B: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and nonnegative, Fatou's lemma implies

$$
\liminf _{k \rightarrow \infty} \int_{\Omega} \chi_{\Omega_{s}} B\left(v_{k}+G-\frac{\hat{\psi}_{0}}{2}\right) d x \geq \int_{\Omega} \chi_{\Omega_{s}} B\left(v+G-\frac{\hat{\psi}_{0}}{2}\right) d x
$$

Since $u \mapsto \int_{\Omega} \varepsilon_{\Gamma}|\nabla u|^{2} d x$ is convex and $H^{1}(\Omega)$ continuous, it is sequentially weakly lower semicontinuous. Consequently, $\liminf _{k \rightarrow \infty} J\left[v_{k}\right] \geq J[v]$. Thus, v is a minimizer of $J: \mathcal{K} \rightarrow \mathbb{R}$.

Notice that $\chi_{\Omega_{s}} B^{\prime}\left(v+G-\hat{\psi}_{0} / 2\right) \in L^{2}\left(\Omega_{s}\right)$. Simple calculations of the first variation of $J: \mathcal{K} \rightarrow \mathbb{R}$ at any $\eta \in C_{c}^{\infty}(\Omega)$ leads to

$$
\int_{\Omega}\left[\varepsilon_{\Gamma} \nabla v \cdot \nabla \eta+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(v+G-\frac{\hat{\psi}_{0}}{2}\right) \eta\right] d x=0 \quad \forall \eta \in C_{c}^{\infty}(\Omega)
$$

The function $\psi=v+G$ is, thus, a needed solution.
We now prove the uniqueness. Let ϕ be another weak solution. Let $\xi=\psi-\phi$. Then, $\xi \in H_{*}^{1}(\Omega), \xi=0$ on $\partial \Omega$, and

$$
\int_{\Omega}\left\{\varepsilon_{\Gamma} \nabla \xi \cdot \nabla \eta+4 \pi \chi_{\Omega_{s}}\left[B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right)-B^{\prime}\left(\phi-\frac{\hat{\psi}_{0}}{2}\right)\right] \eta\right\} d x=0 \quad \forall \eta \in C_{c}^{\infty}(\Omega)
$$

Choosing the test functions $\eta \in C_{c}^{\infty}(\Omega)$ so that $\operatorname{supp} \eta \subset \Omega_{m}$, we find that ξ is harmonic in Ω_{m}. This and the fact that $\xi \in H_{*}^{1}(\Omega)$ imply that $\xi \in H_{0}^{1}(\Omega)$. Thus, the above test functions η can be chosen from $H_{0}^{1}(\Omega)$. In particular, setting $\eta=\xi$ and using the convexity of $B: \mathbb{R} \rightarrow \mathbb{R}$, we obtain that $\xi=0$ and, hence, $\psi=\phi$ in $H^{1}(\Omega)$.

Let $\sigma>0$ be such that the closure of $B_{\sigma}:=\cup_{i=1}^{N} B\left(x_{i}, \sigma\right)$ is contained in Ω_{m}. Clearly, the unique weak solution $\psi \in H_{*}^{1}(\Omega)$ satisfies

$$
\begin{equation*}
\int_{\Omega \backslash \overline{B_{\sigma}}} \varepsilon_{\Gamma} \nabla \psi \cdot \nabla \eta d x=\int_{\Omega \backslash \overline{B_{\sigma}}} g \eta d x \quad \forall \eta \in C_{c}^{\infty}\left(\Omega \backslash \overline{B_{\sigma}}\right) \tag{4.1}
\end{equation*}
$$

where $g=-4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\hat{\psi}_{0} / 2\right) \in L^{2}\left(\Omega \backslash \overline{B_{\sigma}}\right)$. Therefore, $\psi \in C\left(\bar{\Omega} \backslash B_{\sigma}\right)$ by the standard regularity theory [14]. Since $\varepsilon_{\Gamma}=\varepsilon_{m}$ in Ω_{m} and $\varepsilon_{\Gamma}=\varepsilon_{s}$ in Ω_{s}, ψ is harmonic in $\Omega_{m} \backslash \overline{B_{\sigma}}$. Hence, $\psi \in C^{\infty}\left(\Omega_{m} \backslash \overline{B_{\sigma}}\right)$. Notice that $B \in C^{\infty}(\mathbb{R})$; thus, we have $\psi \in C^{\infty}\left(\Omega_{s}\right)$ by a standard bootstrapping argument.

Proof of Theorem 2.2. Let $\psi \in H_{*}^{1}(\Omega)$ be a weak solution to the boundary-value problem (1.13) and (1.6). Clearly, $\psi_{m} \in H_{*}^{1}\left(\Omega_{m}\right)$. For any $\eta \in C_{c}^{\infty}\left(\Omega_{m}\right)$, we extend η to the entire Ω by defining $\eta=0$ outside Ω_{m}. Then, we obtain (2.2) from (2.1). Since all $x_{i} \in \Omega_{m}(i=1, \ldots, N)$, we have $\psi_{s} \in H^{1}\left(\Omega_{s}\right)$. Since $\chi_{\Omega_{s}} B(\psi) \in L^{2}\left(\Omega_{s}\right)$, it follows from (1.14) that $\chi_{\Omega_{s}} B^{\prime}(\psi) \in L^{2}\left(\Omega_{s}\right)$. For any $\eta \in C_{c}^{\infty}\left(\Omega_{s}\right)$, we, again, extend η to Ω by defining $\eta=0$ outside Ω_{s}. Then, we obtain (2.3) from (2.1). Finally, by Lemma 3.1, (4.1), and (1.6), the last two equations in (1.15) hold true. Hence, ψ is a weak solution to (1.15).

Now let $\psi: \Omega \rightarrow \mathbb{R}$ be a solution to the boundary-value problem (1.15). We first show that $\psi \in H_{*}^{1}(\Omega)$. Let $\sigma>0$ be small enough so that the closure of $B_{\sigma}:=\cup_{i=1}^{N} B\left(x_{i}, \sigma\right)$ is contained in Ω_{m}. Since $\psi_{m} \in H_{*}^{1}\left(\Omega_{m}\right), \psi_{m} \in H^{1}\left(\Omega_{m} \backslash \overline{B_{\sigma}}\right)$. Thus, the trace $\left.\psi_{m}\right|_{\Gamma} \in L^{2}(\Gamma)$, and is independent on the choice of σ. Similarly, $\psi_{s} \in H^{1}\left(\Omega_{s}\right)$, and, hence, $\left.\psi_{s}\right|_{\Gamma} \in L^{2}(\Gamma)$. Fix $j \in\{1,2,3\}$. Define $\xi_{j}: \Omega \backslash \overline{B_{\sigma}} \rightarrow \mathbb{R}$ by $\xi_{j}=\partial_{j} \psi_{m}$ in $\Omega_{m} \backslash \overline{B_{\sigma}}$ and $\xi_{j}=\partial_{j} \psi_{s}$ in Ω_{s}. Clearly, $\xi_{j} \in L^{2}\left(\Omega \backslash \overline{B_{\sigma}}\right)$. Let n_{j} be the j th component of the unit exterior normal n at Γ, pointing from Ω_{s} to Ω_{m}. Then, for any $\eta \in C_{c}^{\infty}\left(\Omega \backslash \overline{B_{\sigma}}\right)$, we have

$$
\begin{aligned}
\int_{\Omega \backslash \overline{B_{\sigma}}} \xi_{j} \eta d x & =\int_{\Omega_{m} \backslash \overline{B_{\sigma}}}\left(\partial_{j} \psi_{m}\right) \eta d x+\int_{\Omega_{s}}\left(\partial_{j} \psi_{s}\right) \eta d x \\
& =-\int_{\Omega_{m} \backslash \overline{B_{\sigma}}} \psi \partial_{j} \eta d x-\int_{\Gamma} \psi_{m} \eta n_{j} d S-\int_{\Omega_{s}} \psi \partial_{j} \eta d x+\int_{\Gamma} \psi_{s} \eta n_{j} d S \\
& =-\int_{\Omega \backslash \overline{B_{\sigma}}} \psi \partial_{j} \eta d x+\int_{\Gamma} \llbracket \psi \rrbracket n_{j} \eta d S \\
& =-\int_{\Omega \backslash \overline{B_{\sigma}}} \psi \partial_{j} \eta d x
\end{aligned}
$$

where in the last step we used the fact that $\llbracket \psi \rrbracket=0$ on Γ. Thus, $\xi_{j}=\partial_{j} \psi \in L^{2}\left(\Omega \backslash \overline{B_{\sigma}}\right)$, and, hence, $\psi \in H_{*}^{1}(\Omega)$ by the arbitrariness of $\sigma>0$.

Clearly, $\chi_{\Omega_{s}} B^{\prime}(\psi) \in L^{2}\left(\Omega_{s}\right)$ and $\psi=\psi_{0}$ on $\partial \Omega$. It remains to show that (2.1) holds true. Let $\eta \in C_{c}^{\infty}(\Omega)$. Let V_{1} and V_{2} be two open sets in \mathbb{R}^{3} such that ∂V_{1} and ∂V_{2} are of $C^{2}, x_{i} \notin V_{2}$ for $i=1, \ldots, N$, and $\Gamma \subset V_{1} \subset \bar{V}_{1} \subset V_{2} \subset \bar{V}_{2} \subset \Omega$. Let
$\zeta \in C_{c}^{\infty}(\Omega)$ be such that $\operatorname{supp} \zeta \subset V_{2}$ and $\zeta=1$ on V_{1}. Then, $\left.(1-\zeta) \eta\right|_{\Omega_{m}} \in C_{c}^{\infty}\left(\Omega_{m}\right)$, $\left.(1-\zeta) \eta\right|_{\Omega_{s}} \in C_{c}^{\infty}\left(\Omega_{s}\right)$, and $\left(1-\zeta\left(x_{i}\right)\right) \eta\left(x_{i}\right)=\eta\left(x_{i}\right), i=1, \ldots, N$. We, thus, have by (2.2) and (2.3) that

$$
\begin{align*}
& \int_{\Omega}\left[\varepsilon_{\Gamma} \nabla \psi \cdot \nabla \eta+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \eta\right] d x \\
&=\int_{\Omega} {\left[\varepsilon_{\Gamma} \nabla \psi \cdot \nabla((1-\zeta) \eta)+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right)(1-\zeta) \eta\right] d x } \\
&+\int_{\Omega}\left[\varepsilon_{\Gamma} \nabla \psi \cdot \nabla(\zeta \eta)+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \zeta \eta\right] d x \\
&=\int_{\Omega_{m}} \varepsilon_{\Gamma} \nabla \psi \cdot \nabla((1-\zeta) \eta) d x \\
&+\int_{\Omega_{s}}\left[\varepsilon_{\Gamma} \nabla \psi \cdot \nabla((1-\zeta) \eta)+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right)(1-\zeta) \eta\right] d x \\
&+\int_{V_{2}}\left[\varepsilon_{\Gamma} \nabla \psi \cdot \nabla(\zeta \eta)+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \zeta \eta\right] d x \\
&=4 \pi \sum_{i=1}^{N} Q_{i} \eta\left(x_{i}\right)+\int_{V_{2}}\left[\varepsilon_{\Gamma} \nabla \psi \cdot \nabla(\zeta \eta)+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \zeta \eta\right] d x \tag{4.2}
\end{align*}
$$

We now show that the second term in (4.2) is zero. Notice that $\left.\psi\right|_{V_{2}} \in H^{1}\left(V_{2}\right)$ and $x_{i} \notin V_{2}(1 \leq i \leq N)$. Denoting $V_{m}=V_{2} \cap \Omega_{m}$ and $V_{s}=V_{2} \cap \Omega_{s}$, we have by (2.2) and (2.3) that

$$
\begin{aligned}
\int_{V_{m}} \varepsilon_{m} \nabla \psi \cdot \nabla \xi d x & =0 \quad \forall \xi \in C_{c}^{\infty}\left(V_{m}\right) \\
\int_{V_{s}} \varepsilon_{s} \nabla \phi \cdot \nabla \xi d x & =-4 \pi \int_{V_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \xi d x \quad \forall \xi \in C_{c}^{\infty}\left(V_{s}\right)
\end{aligned}
$$

Consequently, since $\chi_{\Omega_{s}} B^{\prime}\left(\psi-\hat{\psi}_{0} / 2\right) \in L^{2}\left(\Omega_{s}\right)$, we infer from the regularity theory of elliptic boundary-value problems [14] that $\left.\psi\right|_{V_{m}} \in H^{2}\left(V_{m}\right)$ and $\left.\psi\right|_{V_{s}} \in H^{2}\left(V_{s}\right)$, and that

$$
\begin{aligned}
\nabla \cdot \varepsilon_{m} \nabla \psi=0 & \text { a.e. } V_{m} \\
\nabla \cdot \varepsilon_{s} \nabla \psi-4 \pi B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right)=0 & \text { a.e. } V_{s}
\end{aligned}
$$

Therefore, the trace of $\varepsilon_{m} \nabla \psi \cdot n$ and that of $\varepsilon_{s} \nabla \psi \cdot n$ on Γ both exist. Moreover,

$$
\begin{align*}
\int_{V_{2}} & {\left[\varepsilon_{\Gamma} \nabla \psi \cdot \nabla(\zeta \eta)+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \zeta \eta\right] d x } \\
= & \int_{V_{m}} \varepsilon_{m} \nabla \psi \cdot \nabla(\zeta \eta) d x+\int_{V_{s}}\left[\varepsilon_{s} \nabla \psi \cdot \nabla(\zeta \eta)+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \zeta \eta\right] d x \\
= & -\int_{V_{m}}\left(\nabla \cdot \varepsilon_{m} \nabla \psi\right) \zeta \eta d x-\int_{\Gamma}\left(\varepsilon_{m} \nabla \psi \cdot n\right) \zeta \eta d S \\
& +\int_{V_{s}}\left[-\left(\nabla \cdot \varepsilon_{s} \nabla \psi\right)(\zeta \eta)+4 \pi \chi_{\Omega_{s}} B^{\prime}\left(\psi-\frac{\hat{\psi}_{0}}{2}\right) \zeta \eta\right] d x+\int_{\Gamma}\left(\varepsilon_{s} \nabla \psi \cdot n\right) \zeta \eta d S \\
= & \int_{\Gamma} \llbracket \varepsilon \nabla \psi \cdot n \rrbracket \zeta \eta d S \\
= & 0 \tag{4.3}
\end{align*}
$$

where in the last step, we used the third equation of (1.15). Now, since $\eta \in C_{c}^{\infty}(\Omega)$ is arbitrary, we obtain (2.1) from (4.2) and (4.3).
5. Minimization of the electrostatic free energy: Proof of Theorems 2.3, 2.4, and 2.5 .

Proof of Theorem 2.3. Let $t=1+\beta \max _{1 \leq j \leq M}\left\|\mu_{0 j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}$, where $\mu_{0 j}(j=$ $1, \ldots, M)$ are defined in (3.14). It follows from (3.12) and (3.4) that there exists $C_{5}>0$ such that
$F_{0}[c] \geq C_{5}\left\|\sum_{j=1}^{M} q_{j} c_{j}\right\|_{H^{-1}(\Omega)}^{2}+\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}} S_{-t}\left(c_{j}\right) d x+E_{0} \quad \forall c=\left(c_{1}, \ldots, c_{M}\right) \in V_{0}$,
where E_{0} is defined in (3.15). Let $z=\inf _{c \in V_{0}} F_{0}[c]$. Since $S_{-t}:[0, \infty) \rightarrow \mathbb{R}$ is bounded below, z is finite.

Let $c^{(k)}=\left(c_{1}^{(k)}, \ldots, c_{M}^{(k)}\right) \in V_{0}(k=1,2, \ldots)$ be such that $\lim _{k \rightarrow \infty} F_{0}\left[c^{(k)}\right]=z$. It follows from (5.1) that $\left\{\int_{\Omega_{s}} S_{-t}\left(c_{j}^{(k)}\right) d x\right\}$ is bounded for each $j=1, \ldots, M$. Therefore, by Lemma 3.3, up to a subsequence that is not relabeled, $\left\{c_{j}^{(k)}\right\}$ converges weakly in $L^{1}\left(\Omega_{s}\right)$ to some $c_{j} \in L^{1}\left(\Omega_{s}\right)$, and

$$
\begin{equation*}
\int_{\Omega_{s}} S_{-t}\left(c_{j}\right) d x \leq \liminf _{k \rightarrow \infty} \int_{\Omega_{s}} S_{-t}\left(c_{j}^{(k)}\right) d x<\infty \quad j=1, \ldots, M \tag{5.2}
\end{equation*}
$$

Define $c_{j}=0$ on Ω_{m} for all $j=1, \ldots, M$. By (5.1), $\left\{\sum_{j=1}^{M} q_{j} c_{j}^{(k)}\right\}$ is bounded in $H^{-1}(\Omega)$. Since $H^{-1}(\Omega)$ is a Hilbert space, $\left\{\sum_{j=1}^{M} q_{j} c_{j}^{(k)}\right\}$ has a subsequence, again not relabeled, that weakly converges to some $F \in H^{-1}(\Omega)$. Let $\xi \in L^{\infty}(\Omega) \cap H_{0}^{1}(\Omega)$. We have

$$
F(\xi)=\lim _{k \rightarrow \infty} \int_{\Omega}\left(\sum_{j=1}^{M} q_{j} c_{j}^{(k)}\right) \xi d x=\int_{\Omega}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) \xi d x
$$

Therefore, $\sum_{j=1}^{M} q_{j} c_{j} \in H^{-1}(\Omega)$ and, hence, $c=\left(c_{1}, \ldots, c_{M}\right) \in V_{0}$.

By (5.2) and the fact that the norm of a Banach space is sequentially weakly lower semicontinuous, we have $z=\liminf _{k \rightarrow \infty} F_{0}\left[c^{(k)}\right] \geq F_{0}[c] \geq z$. This implies that $c \in V_{0}$ is a global minimizer of $F_{0}: V_{0} \rightarrow \mathbb{R}$.

Let $d=\left(d_{1}, \ldots, d_{M}\right) \in V_{0}$ be a local minimizer of $F_{0}: V_{0} \rightarrow \mathbb{R}$. Then for $\lambda \in(0,1)$ close to 0 , we have by the convexity of $F_{0}: V_{0} \rightarrow \mathbb{R}$ that

$$
F_{0}[d] \leq F_{0}[\lambda c+(1-\lambda) d] \leq \lambda F_{0}[c]+(1-\lambda) F_{0}[d]
$$

leading to $F_{0}[d] \leq F_{0}[c]$. Thus, d is also a global minimizer of $F_{0}: V_{0} \rightarrow \mathbb{R}$. Clearly, $(c+d) / 2 \in V_{0}$. Consequently, it follows from the definition of the norm $\|\cdot\|$ and the Cauchy-Schwarz inequality with respect to the inner product $\langle\xi, \eta\rangle=\xi(L \eta)$ $\left(\xi, \eta \in H^{-1}(\Omega)\right)$ that

$$
\begin{aligned}
0 \leq & F_{0}\left[\frac{c+d}{2}\right]-\min _{e \in V_{0}} F_{0}[e] \\
= & F_{0}\left[\frac{c+d}{2}\right]-\frac{1}{2} F_{0}[c]-\frac{1}{2} F_{0}[d] \\
= & \frac{1}{8}\left\|\left\|\sum_{j=1}^{M} q_{j}\left(c_{j}+d_{j}\right)\right\|\right\|^{2}-\frac{1}{4}\left\|\sum_{j=1}^{M} q_{j} c_{j}\right\|\left\|^{2}-\frac{1}{4}\right\|\left\|\sum_{j=1}^{M} q_{j} d_{j}\right\| \|^{2} \\
& +\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}}\left[S_{-1}\left(\frac{c_{j}+d_{j}}{2}\right)-\frac{1}{2} S_{-1}\left(c_{j}\right)-\frac{1}{2} S_{-1}\left(d_{j}\right)\right] d x \\
\leq & \beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}}\left[S_{-1}\left(\frac{c_{j}+d_{j}}{2}\right)-\frac{1}{2} S_{-1}\left(c_{j}\right)-\frac{1}{2} S_{-1}\left(d_{j}\right)\right] d x
\end{aligned}
$$

This, together with the convexity of S_{-1} on $[0, \infty)$, implies that
$S_{-1}\left(\frac{c_{j}(x)+d_{j}(x)}{2}\right)=\frac{1}{2} S_{-1}\left(c_{j}(x)\right)+\frac{1}{2} S_{-1}\left(d_{j}(x)\right) \quad \forall j=1, \ldots, M, \forall x \in \Omega_{s} \backslash \omega_{s}$,
for some $\omega_{s} \subset \Omega_{s}$ with $\left|\omega_{s}\right|=0$. Let $x \in \Omega_{s} \backslash \omega_{s}$. Then it follows from the definition of $S_{-1}:[0, \infty) \rightarrow \mathbb{R}$ that $c_{j}(x)=0$ if and only if $d_{j}(x)=0$ for all $j=1, \ldots, M$. The strict convexity of S_{0} on $(0, \infty)$ then implies that $c=d$ a.e. Ω_{s}. Hence, $c=d$ in V_{0}. \quad

Proof of Theorem 2.4. (1) Let $c=\left(c_{1}, \ldots, c_{M}\right) \in W_{0}$. We show that the following four statements are equivalent:
(i) c is an equilibrium of $F_{0}: W_{0} \rightarrow \mathbb{R}$;
(ii) The property (2.5) holds true, and

$$
\begin{equation*}
q_{j} L\left(\sum_{j=1}^{M} q_{j} c_{j}\right)+\mu_{0 j}+\beta^{-1} \log c_{j}=0 \quad \text { a.e. } \Omega_{s}, \quad j=1, \ldots, M ; \tag{5.3}
\end{equation*}
$$

(iii) c is a global minimizer of $F_{0}: W_{0} \rightarrow \mathbb{R}$;
(iv) c is a local minimizer of $F_{0}: W_{0} \rightarrow \mathbb{R}$.

Assume (i) is true. Then (2.5) holds true by Definition 2.3. Let $e=\left(e_{1}, \ldots, e_{M}\right) \in$ $X \cap L^{\infty}\left(\Omega, \mathbb{R}^{M}\right)$. Notice that $S_{-1}^{\prime}(u)=\log u$ for any $u>0$. Thus, for each $j \in$ $\{1, \ldots, M\}$ and each $x \in \Omega_{s}$, the mean-value theorem implies the existence of $\theta_{j}(x)$ $\in[0,1]$ such that

$$
S_{-1}\left(c_{j}(x)+t e_{j}(x)\right)-S_{-1}\left(c_{j}(x)\right)=t e_{j}(x) \log \left(c_{j}(x)+t \theta_{j}(x) e_{j}(x)\right)
$$

Hence, by the Lebesgue dominated convergence theorem,

$$
\lim _{t \rightarrow 0} \int_{\Omega_{s}} \frac{S_{-1}\left(c_{j}+t e_{j}\right)-S_{-1}\left(c_{j}\right)}{t} d x=\int_{\Omega_{s}} e_{j} \log c_{j} d x, \quad j=1, \ldots, M
$$

Therefore, it follows from Definition 2.3 , the definition of the norm $\|\cdot\|,(3.12)$, and (3.4) that

$$
\begin{align*}
0= & \delta F_{0}[c] e \\
= & \lim _{t \rightarrow 0} \frac{F_{0}[c+t e]-F_{0}[c]}{t} \\
= & \lim _{t \rightarrow 0}\left\{\frac{1}{2} t\left\|\mid \sum_{j=1}^{M} q_{j} e_{j}\right\| \|^{2}+\int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} e_{j}\right) L\left(\sum_{j=1}^{M} q_{j} c_{j}\right) d x\right. \\
& \left.+\sum_{j=1}^{M} \int_{\Omega_{s}} \mu_{0 j} e_{j} d x+\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}} \frac{1}{t}\left[S_{-1}\left(c_{j}+t e_{j}\right)-S_{-1}\left(c_{j}\right)\right] d x\right\} \\
= & \sum_{j=1}^{M} \int_{\Omega_{s}}\left[q_{j} L\left(\sum_{j=1}^{M} q_{j} c_{j}\right)+\mu_{0 j}+\beta^{-1} \log c_{j}\right] e_{j} d x \quad \forall e \in X \cap L^{\infty}\left(\Omega, \mathbb{R}^{M}\right) . \tag{5.4}
\end{align*}
$$

This implies (5.3). Hence, (ii) is true.
Assume (ii) is true. We show that (iii) is true. By Lemma 3.4, we need only to show that $F_{0}[c] \leq F_{0}[d]$ for any fixed $d=\left(d_{1}, \ldots, d_{M}\right) \in W_{0}$ that satisfies (2.5) with c replaced by d. In fact, setting $e=\left(e_{1}, \ldots, e_{M}\right)=d-c \in X \cap L^{\infty}\left(\Omega, \mathbb{R}^{M}\right)$, we have by the convexity of $S_{-1}:[0, \infty) \rightarrow \mathbb{R}$ that

$$
S_{-1}\left(d_{j}\right)-S_{-1}\left(c_{j}\right) \geq\left(d_{j}-c_{j}\right) S_{-1}^{\prime}\left(c_{j}\right)=e_{j} \log c_{j} \quad \text { a.e. } \Omega_{s}
$$

Therefore, it follows from (3.12) and (5.3) that

$$
\begin{aligned}
F_{0}[d]-F_{0}[c]= & \frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} e_{j}\right) L\left(\sum_{j=1}^{M} q_{j} e_{j}\right) d x+\int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} e_{j}\right) L\left(\sum_{j=1}^{M} q_{j} c_{j}\right) d x \\
& +\sum_{j=1}^{M} \int_{\Omega_{s}} \mu_{0 j} e_{j} d x+\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}}\left[S_{-1}\left(d_{j}\right)-S_{-1}\left(c_{j}\right)\right] d x \\
\geq & \sum_{j=1}^{M} \int_{\Omega_{s}}\left[q_{j} L\left(\sum_{i=1}^{M} q_{i} c_{i}\right)+\mu_{0 j}+\beta^{-1} \log c_{j}\right] e_{j} d x \\
= & 0
\end{aligned}
$$

Hence, $F_{0}[c] \leq F_{0}[d]$, and (iii) is true.
Clearly, (iii) implies (iv).
Finally, assume (iv) is true. By Lemma 3.4, (2.5) holds true. For any $e \in$ $X \cap L^{\infty}\left(\Omega, \mathbb{R}^{M}\right)$, it is easy to see that $\delta F_{0}[c] e$ exists, cf. (5.4). Since $F_{0}[c+t e] \geq F_{0}[c]$ for $|t|$ small enough, we have $\delta F_{0}[c] e=0$. Therefore, c is an equilibrium of $F_{0}: W_{0} \rightarrow \mathbb{R}$, and (i) is true.

Let now $\psi \in H_{*}^{1}(\Omega)$ be the unique weak solution to the boundary-value problem of the PBE (1.11) and (1.6), cf. Theorem 2.1. Define $c=\left(c_{1}, \ldots, c_{M}\right): \Omega \rightarrow \mathbb{R}$ by (1.9) for point ions and $c_{j}(x)=0$ for all $x \in \Omega_{m}$ and all $j=1, \ldots, M$. Clearly, $c \in W_{0}$. Moreover, by Theorem 2.1, $\left.\psi\right|_{\Omega_{s}} \in C\left(\overline{\Omega_{s}}\right)$. This implies (2.5). It follows from (1.11), (1.6), (1.9) for point ions, and Lemma 3.2 with $f=\sum_{j=1}^{M} q_{j} c_{j}$ that ψ is the electrostatic potential corresponding to c; i.e., $\psi=G+\hat{\psi}_{0}+L\left(\sum_{j=1}^{M} q_{j} c_{j}\right)$. This, together with the Boltzmann relations (1.9) for point ions and (3.14), implies (5.3). Hence, c is an equilibrium, and, thus, a local and global minimizer, of F_{0} : $W_{0} \rightarrow \mathbb{R}$. The uniqueness of equilibria or local minimizers is equivalent to that of global minimizers, and can be proved by the same argument used in the proof of Theorem 2.3.
(2) It is clear that from our definition of c and ψ that we need only to prove (2.7). Since c is the unique minimizer of $F_{0}: W_{0} \rightarrow \mathbb{R}$ and ψ is the corresponding electrostatic potential determined by (3.11), we have by (1.1) and (1.9) for point ions that

$$
\begin{aligned}
\min _{d \in W_{0}} F_{0}[d]= & F_{0}[c] \\
= & \frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(\psi-\psi_{v a c}\right)\left(x_{i}\right)+\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) \psi d x \\
& +\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}} c_{j}\left[\log \left(a^{3} c_{j}\right)-1\right] d x-\sum_{j=1}^{M} \int_{\Omega_{s}} \mu_{j} c_{j} d x \\
= & \frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(\psi-\psi_{v a c}\right)\left(x_{i}\right)-\frac{1}{2} \sum_{j=1}^{M} \int_{\Omega_{s}} q_{j} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}\left(\psi-\hat{\psi}_{0}\right) d x \\
& -\beta^{-1} \sum_{j=1}^{M} \int_{\Omega_{s}} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)} d x .
\end{aligned}
$$

Since ψ is the unique solution to the boundary-value problem of PBE (1.11) and (1.6), and since $\hat{\psi}_{0}$ is harmonic in Ω_{s} by (1.10), we have

$$
\varepsilon_{s} \Delta\left(\psi-\hat{\psi}_{0}\right)+4 \pi \sum_{j=1}^{M} q_{j} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}=0 \quad \text { a.e. } \Omega_{s}
$$

Multiplying both sides of this equation by $\psi-\hat{\psi}_{0}$ and integrate the resulting terms over Ω_{s}, we obtain by integration by parts and the fact that by Lemma 3.1 both $\psi-\hat{\psi}_{0}$ and $\varepsilon_{\Gamma} \partial_{n}\left(\psi-\hat{\psi}_{0}\right)$ are continuous across Γ,

$$
\begin{gathered}
-\int_{\Omega_{s}} \varepsilon_{s}\left|\nabla\left(\psi-\hat{\psi}_{0}\right)\right|^{2} d x+\int_{\Gamma} \varepsilon_{\Gamma}\left(\psi-\hat{\psi}_{0}\right) \partial_{n}\left(\psi-\hat{\psi}_{0}\right) d S \\
+4 \pi \sum_{j=1}^{M} \int_{\Omega_{s}} q_{j} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}\left(\psi-\hat{\psi}_{0}\right) d x=0
\end{gathered}
$$

This and (5.5) imply (2.7).

Proof of Theorem 2.5. (1) We first show that $F_{a}: V_{a} \rightarrow \mathbb{R}$ is a convex functional. Define $T_{M}=\left\{\left(u_{1}, \ldots, u_{M}\right) \in \mathbb{R}^{M}: u_{j}>0\right.$ for $j=1, \ldots, M$, and $\left.\sum_{j=1}^{M} u_{j}<1\right\}$ and

$$
h(u)=\left(1-\sum_{j=1}^{M} u_{j}\right)\left[\log \left(1-\sum_{j=1}^{M} u_{j}\right)-1\right] \quad \forall u=\left(u_{1}, \ldots, u_{M}\right) \in T_{M}
$$

Clearly, T_{M} is convex. We have $\partial_{u_{i} u_{j}} h(u)=\left(1-\sum_{k=1}^{M} u_{k}\right)^{-1}$ for all $1 \leq i, j \leq M$. Let $H(u)=\left(\partial_{u_{i} u_{j}} h\right)$ be the Hessian of $h: T_{M} \rightarrow \mathbb{R}$. Then, for any $y=\left(y_{1}, \ldots, y_{M}\right) \in R^{M}$, we have $y \cdot H(u) y=\left(\sum_{k=1}^{M} y_{k}\right)^{2} /\left(1-\sum_{k=1} u_{k}\right) \geq 0$. Therefore, $H(u)$ is symmetric, semidefinite for any $u \in T_{M}$. Hence, $h: T_{M} \rightarrow \mathbb{R}$ is convex. Consequently, since V_{a} is a convex subset of X and $S_{-1}:[0, \infty) \rightarrow \mathbb{R}$ is convex, we conclude by (3.13) that $F_{a}: V_{a} \rightarrow \mathbb{R}$ is convex.

Let now $c=\left(c_{1}, \ldots, c_{M}\right) \in V_{a}$. By the same argument used in the proof of Theorem 2.4, we obtain the equivalence of the following four statements:
(i) c is an equilibrium of $F_{a}: V_{a} \rightarrow \mathbb{R}$;
(ii) The property (2.6) holds true, and

$$
\begin{align*}
& q_{j} L\left(\sum_{i=1}^{M} q_{i} c_{i}\right)+\mu_{a j}+\beta^{-1} \log \left(\frac{a^{3} c_{j}}{1-a^{3} \sum_{i=1}^{M} c_{i}}\right)=0 \tag{5.6}\\
& \text { a.e. } \Omega_{s}, \quad j=1, \ldots, M
\end{align*}
$$

(iii) c is a global minimizer of $F_{a}: V_{a} \rightarrow \mathbb{R}$;
(iv) c is a local minimizer of $F_{a}: V_{a} \rightarrow \mathbb{R}$.

Let $\psi \in H_{*}^{1}(\Omega)$ be the unique weak solution to the boundary-value problem of the PBE (1.12) and (1.6), cf. Theorem 2.1. Define $c=\left(c_{1}, \ldots, c_{M}\right): \Omega \rightarrow \mathbb{R}$ by (1.9) for finite-size ions and $c_{j}(x)=0$ for all $x \in \Omega_{m}$ and all $j=1, \ldots, M$. Clearly, $c \in V_{a}$. Moreover, by Theorem 2.1, $\left.\psi\right|_{\Omega_{s}} \in C\left(\overline{\Omega_{s}}\right)$. This implies (2.6). By (1.9) for finite-size ions, we have

$$
a^{3} \sum_{j=1}^{M} c_{j}(x)=1-\frac{1}{1+a^{3} \sum_{i=1}^{M} c_{i}^{\infty} e^{-\beta q_{i}\left(\psi-\hat{\psi}_{0} / 2\right)}}
$$

This together with (1.9) for finite-size ions imply that

$$
\begin{equation*}
\frac{c_{j}}{1-a^{3} \sum_{i=1}^{M} c_{i}}=c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}, \quad j=1, \ldots, M \tag{5.7}
\end{equation*}
$$

It follows from (1.12), (1.6), (1.9) for finite-size ions, and Lemma 3.2 with $f=$ $\sum_{j=1}^{M} q_{j} c_{j}$ that ψ is the electrostatic potential corresponding to c, i.e., $\psi=G+$ $\hat{\psi}_{0}+L\left(\sum_{j=1}^{M} q_{j} c_{j}\right)$. This, together with (5.7) and (3.16), implies (5.6). Hence, c is an equilibrium, and, thus, a local and global minimizer, of $F_{a}: V_{a} \rightarrow \mathbb{R}$. The uniqueness of equilibria or local minimizers is equivalent to that of global minimizers, and can be proved by the same argument used in the proof of Theorem 2.3.
(2) We need only to prove (2.8). Since c is the unique minimizer of $F_{a}: V_{a} \rightarrow \mathbb{R}$ and ψ is the corresponding electrostatic potential determined by (3.11), we have by
(1.2), (1.3), and (1.9) for finite-size ions that

$$
\begin{align*}
\min _{d \in V_{a}} F_{a}[d] & =F_{a}[c] \\
= & \frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(\psi-\psi_{v a c}\right)\left(x_{i}\right)+\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) \psi d x \\
& +\beta^{-1} \sum_{j=0}^{M} \int_{\Omega_{s}} c_{j}\left[\log \left(a^{3} c_{j}\right)-1\right] d x-\sum_{j=1}^{M} \int_{\Omega_{s}} \mu_{j} c_{j} d x \\
= & \frac{1}{2} \sum_{i=1}^{N} Q_{i}\left(\psi-\psi_{v a c}\right)\left(x_{i}\right)-\frac{1}{2} \sum_{j=1}^{M} \int_{\Omega_{s}} \frac{q_{j} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}\left(\psi-\hat{\psi}_{0}\right)}{1+a_{i=1}^{M} c_{i}^{\infty} e^{-\beta q_{i}\left(\psi-\hat{\psi}_{0} / 2\right)}} d x \\
\text { 8) } \quad & \beta^{-1} a^{-3} \int_{\Omega_{s}}\left[1+\log \left(1+a^{3} \sum_{i=1}^{M} c_{i}^{\infty} e^{-\beta q_{i}\left(\psi-\hat{\psi}_{0} / 2\right)}\right)\right] d x . \tag{5.8}
\end{align*}
$$

Since ψ is the unique solution to the boundary-value problem of PBE (1.12) and (1.6), and since $\hat{\psi}_{0}$ is harmonic in Ω_{s} by (1.10), we have

$$
\varepsilon_{s} \Delta\left(\psi-\hat{\psi}_{0}\right)+4 \pi \sum_{j=1}^{M} \frac{q_{j} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}}{1+a^{3} \sum_{i=1}^{M} c_{i}^{\infty} e^{-\beta q_{i}\left(\psi-\hat{\psi}_{0} / 2\right)}}=0 \quad \text { a.e. } \Omega_{s}
$$

Multiplying both sides of this equation by $\psi-\hat{\psi}_{0}$ and integrating the resulting terms over Ω_{s}, we obtain by integration by parts and the fact that by Lemma 3.1 both $\psi-\hat{\psi}_{0}$ and $\varepsilon_{\Gamma} \partial_{n}\left(\psi-\hat{\psi}_{0}\right)$ are continuous across Γ,

$$
\begin{aligned}
& -\int_{\Omega_{s}} \varepsilon_{s}\left|\nabla\left(\psi-\hat{\psi}_{0}\right)\right|^{2} d x+\int_{\Gamma} \varepsilon_{\Gamma}\left(\psi-\hat{\psi}_{0}\right) \partial_{n}\left(\psi-\hat{\psi}_{0}\right) d S \\
& \quad+4 \pi \sum_{j=1}^{M} \int_{\Omega_{s}} \frac{q_{j} c_{j}^{\infty} e^{-\beta q_{j}\left(\psi-\hat{\psi}_{0} / 2\right)}\left(\psi-\hat{\psi}_{0}\right)}{1+a^{3} \sum_{i=1}^{M} c_{i}^{\infty} e^{-\beta q_{i}\left(\psi-\hat{\psi}_{0} / 2\right)}} d x=0
\end{aligned}
$$

This and (5.8) imply (2.8).

Appendix A.

We now prove Lemma 3.4 and Lemma 3.5 by constructing ionic concentrations that satisfy required conditions and that have lower free energies. The key idea here is based on the following observation: the function $S_{\alpha}:[0, \infty) \rightarrow \mathbb{R}$, defined for any $\alpha \in \mathbb{R}$ by $S_{\alpha}(0)=0$ and $S_{\alpha}(u)=u(\alpha+\log u)$ if $u>0$, has a unique minimizer which is a positive number. Moreover, the magnitude $\left|S_{\alpha}^{\prime}(u)\right|$ is very large if u is close to 0 or ∞. Notice that $-S_{\alpha}$ represents the entropy of the system. Therefore, small changes of concentrations near zero or infinity can largely increase the corresponding entropy and, hence, decrease the free energy.

Proof of Lemma 3.4. We first construct $\bar{c} \in W_{0}$ that satisfies

$$
\begin{equation*}
\bar{c}_{j}(x) \leq \gamma_{2}^{\prime} \quad \text { a.e. } x \in \Omega_{s}, j=1, \ldots, M \tag{A.1}
\end{equation*}
$$

for some constant $\gamma_{2}^{\prime}>0,\|\bar{c}-c\|_{X}<\varepsilon / 2$, and $F_{0}[\bar{c}] \leq F_{0}[c]$ with a strict inequality if $c \notin L^{\infty}\left(\Omega, \mathbb{R}^{M}\right)$. Let $A>0$. Define $\bar{c}=\left(\bar{c}_{1}, \ldots, \bar{c}_{M}\right): \Omega \rightarrow \mathbb{R}$ by

$$
\bar{c}_{j}(x)=\left\{\begin{array}{ll}
c_{j}(x) & \text { if } c_{j}(x) \leq A \tag{A.2}\\
0 & \text { if } c_{j}(x)>A
\end{array} \quad \forall x \in \Omega, j=1, \ldots, M\right.
$$

Clearly, $\bar{c} \in W_{0}$ and (A.1) holds true with $\gamma_{2}^{\prime}=A$. Moreover, $\sum_{j=1}^{M}\left\|\bar{c}_{j}-c_{j}\right\|_{L^{1}(\Omega)}<$ $\varepsilon / 4$ for $A>0$ large enough.

Denote

$$
\tau_{j}(A)=\left\{x \in \Omega_{s}: c_{j}(x)>A\right\}, \quad j=1, \ldots, M
$$

Since $c \in W_{0}$, there exists $p>3 / 2$ such that each $c_{j} \in L^{p}(\Omega)(1 \leq j \leq M)$. Thus,

$$
\sum_{j=1}^{M} q_{j} \bar{c}_{j}-\sum_{j=1}^{M} q_{j} c_{j}=-\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j} \rightarrow 0 \quad \text { in } L^{p}(\Omega) \quad \text { as } A \rightarrow \infty
$$

By the definition of $L: H^{-1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ and the regularity theory for elliptic problems [14], we have $\left.L\left(\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right)\right|_{\Omega_{s}} \in W^{2, p}\left(\Omega_{s}\right)$ and

$$
\left\|L\left(\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right)\right\|_{W^{2, p}\left(\Omega_{s}\right)} \leq C\left\|\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right\|_{L^{p}\left(\Omega_{s}\right)} \rightarrow 0 \quad \text { as } A \rightarrow \infty
$$

Hence, by (3.4) and the embedding $W^{2, p}\left(\Omega_{s}\right) \hookrightarrow L^{\infty}\left(\Omega_{s}\right)$ that

$$
\begin{aligned}
\left\|\sum_{j=1}^{M} q_{j} \bar{c}_{j}-\sum_{j=1}^{M} q_{j} c_{j}\right\|_{H^{-1}(\Omega)}^{2} & \leq C \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right) L\left(\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right) d x \\
& \leq C\left\|\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right\|_{L^{1}\left(\Omega_{s}\right)}\left\|L\left(\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right)\right\|_{L^{\infty}\left(\Omega_{s}\right)} \\
& \leq C\left\|\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right\|_{L^{p}\left(\Omega_{s}\right)} \| L\left(\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A) c_{j}}\left\|_{j}\right\|_{W^{2, p}\left(\Omega_{s}\right)}\right. \\
& \leq C\left\|\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right\|_{L^{p}\left(\Omega_{s}\right)} \\
& \rightarrow 0
\end{aligned}
$$

Therefore, $\|\bar{c}-c\|_{X}<\varepsilon$ if $A>0$ is large enough.
Notice that $\bar{c}_{j}=c_{j}-\chi_{\tau_{j}(A)} c_{j}$ for all $j=1, \ldots, M$. Thus,

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right) L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right) d x-\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) L\left(\sum_{j=1}^{M} q_{j} c_{j}\right) d x \\
& \quad=-\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} \chi_{\tau_{j}(A)} c_{j}\right) L\left(\sum_{j=1}^{M} q_{j} c_{j}+\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right) d x \\
& \quad \leq \frac{1}{2} \sum_{j=1}^{M}\left|q_{j}\right| d_{j}(A) \int_{\tau_{j}(A)} c_{j} d x \tag{A.3}
\end{align*}
$$

where

$$
d_{j}(A)=\left\|L\left(\sum_{j=1}^{M} q_{j} c_{j}\right)\right\|_{L^{\infty}\left(\Omega_{s}\right)}+\left\|L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right)\right\|_{L^{\infty}\left(\Omega_{s}\right)}
$$

Since

$$
\begin{aligned}
\left\|L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right)\right\|_{L^{\infty}\left(\Omega_{s}\right)} & \leq C\left\|L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right)\right\|_{W^{2, p}\left(\Omega_{s}\right)} \\
& \leq C\left\|\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right\|_{L^{p}\left(\Omega_{s}\right)} \rightarrow\left\|\sum_{j=1}^{M} q_{j} c_{j}\right\|_{L^{p}\left(\Omega_{s}\right)}
\end{aligned}
$$

as $A \rightarrow \infty$, we have $\max _{1 \leq j \leq M} d_{j}(A) \leq C$ as $A>0$ large enough. For each fixed $j \in\{1, \ldots, M\}$ and $x \in \tau_{j}(A)$, we also have

$$
\begin{equation*}
S_{-1}\left(\bar{c}_{j}(x)\right)-S_{-1}\left(c_{j}(x)\right)=-S_{-1}\left(c_{j}(x)\right)=-c_{j}(x) \log c_{j}(x) \leq-c_{j}(x) \log A \tag{A.4}
\end{equation*}
$$

Therefore, it follows from (3.12), (A.3), and (A.4) that

$$
F_{0}[\bar{c}]-F_{0}[c] \leq \sum_{j=1}^{M}\left(\frac{1}{2}\left|q_{j}\right| d_{j}(A)+\left\|\mu_{0 j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}-\beta^{-1} \log A\right) \int_{\tau_{j}(A)} c_{j} d x
$$

If $A>0$ is large enough, this is nonpositive. If $c \notin L^{\infty}\left(\Omega, \mathbb{R}^{M}\right)$, then there exists $j \in\{1, \ldots, M\}$ such that $\left|\tau_{j}(A)\right|>0$ for all $A>0$. In this case, we have the strict inequality $F_{0}[\bar{c}]<F_{0}[c]$.

We now construct $\hat{c} \in W_{0}$ that satisfies (2.5) with c replaced by $\hat{c},\|\hat{c}-\bar{c}\|_{X}<\varepsilon / 2$, and $F_{0}[\hat{c}] \leq F_{0}[\bar{c}]$ with a strict inequality if there exists $j \in\{1, \ldots, M\}$ such that $\left|\left\{x \in \Omega_{s}: c_{j}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$, all these implying that \hat{c} satisfies all the desired properties. If there exists $\gamma_{1}^{\prime}>0$ such that $c_{j}(x) \geq \gamma_{1}^{\prime}$ for a.e. $x \in \Omega_{s}$ and $j=1, \ldots, M$, then $\hat{c}=\bar{c}$ with $A \geq \gamma_{1}^{\prime}$ (cf. (A.2)) satisfies all the desired properties with $\gamma_{1}=\gamma_{1}^{\prime}$ and $\gamma_{2}=\gamma_{2}^{\prime}$. Assume otherwise there exists $j_{0} \in\{1, \ldots, M\}$ such that $\left|\left\{x \in \Omega_{s}: c_{j_{0}}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$. This means that $\left|\left\{x \in \Omega_{s}: \bar{c}_{j_{0}}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$.

Define

$$
\begin{aligned}
& \rho_{j}(\alpha)=\left\{x \in \Omega_{s}: \bar{c}_{j}(x)<\alpha\right\} \quad \forall \alpha>0, \quad j=1, \ldots, M \\
& I_{0}=\left\{j \in\{1, \ldots, M\}:\left|\rho_{j}(\alpha)\right|>0 \forall \alpha>0\right\} \\
& I_{1}=\{1, \ldots, M\} \backslash I_{0}
\end{aligned}
$$

Clearly, $I_{0} \neq \emptyset$. If $I_{1} \neq \emptyset$, then there exists $\alpha_{1}>0$ such that

$$
\bar{c}_{j}(x) \geq \alpha_{1} \quad \text { a.e. } x \in \Omega_{s}, \quad \forall j \in I_{1}
$$

Define for $0<\alpha<\alpha_{1}$ and $1 \leq j \leq M$

$$
\hat{c}_{j}(x)=\left\{\begin{array}{ll}
\bar{c}_{j}(x)+\alpha \chi_{\rho_{j}(\alpha)}(x) & \text { if } j \in I_{0} \\
\bar{c}_{j}(x) & \text { if } j \in I_{1}
\end{array} \quad \forall x \in \Omega\right.
$$

Clearly, $\hat{c}=\left(\hat{c}_{1}, \ldots, \hat{c}_{M}\right) \in W_{0}$ and (2.5) holds true with c replaced by $\hat{c}, \gamma_{1}=\alpha$, and $\gamma_{2}=\gamma_{2}^{\prime}+\alpha$. Moreover, $\sum_{j=1}^{M}\left\|\hat{c}_{j}-\bar{c}_{j}\right\|_{L^{1}(\Omega)}<\varepsilon / 4$ if $\alpha>0$ is small enough.

Furthermore,

$$
\begin{align*}
& \left\|\sum_{j=1}^{M} q_{j} \hat{c}_{j}-\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right\|_{H^{-1}(\Omega)}=\alpha\left\|\sum_{j \in I_{0}} q_{j} \chi_{\rho_{j}(\alpha)}\right\|_{H^{-1}(\Omega)} \leq \alpha\left\|\sum_{j \in I_{0}} q_{j} \chi_{\rho_{j}(\alpha)}\right\|_{L^{2}(\Omega)} \\
& \leq \alpha \sum_{j \in I_{0}}\left|q_{j}\right| \sqrt{\left|\rho_{j}(\alpha)\right|} \rightarrow 0 \quad \text { as } \alpha \rightarrow 0 \tag{A.5}
\end{align*}
$$

Hence, $\|\hat{c}-\bar{c}\|_{X}<\varepsilon / 2$ if $\alpha>0$ is small enough.
By the mean-value theorem and the fact that $S_{-1}^{\prime}(u)=\log u$ for any $u>0$,

$$
\begin{aligned}
\sum_{j=1}^{M} \int_{\Omega_{s}}\left[S_{-1}\left(\hat{c}_{j}\right)-S_{-1}\left(\bar{c}_{j}\right)\right] d x & =\sum_{j \in I_{0}} \int_{\rho_{j}(\alpha)}\left[S_{-1}\left(\hat{c}_{j}\right)-S_{-1}\left(\bar{c}_{j}\right)\right] d x \\
& \leq \alpha \log (2 \alpha) \sum_{j \in I_{0}}\left|\rho_{j}(\alpha)\right|
\end{aligned}
$$

Consequently, it follows from (3.13), (3.4), (A.5) that

$$
\begin{aligned}
& F_{0}[\hat{c}]-F_{0}[\bar{c}]=\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}+\alpha \sum_{j \in I_{0}} q_{j} \chi_{\rho_{j}(\alpha)}\right) L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}+\alpha \sum_{j \in I_{0}} q_{j} \chi_{\rho_{j}(\alpha)}\right) d x \\
& -\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right) L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right) d x+\alpha \sum_{j \in I_{0}} \int_{\rho_{j}(\alpha)} \mu_{0 j} d x \\
& +\beta^{-1} \sum_{j \in I_{0}} \int_{\rho_{j}(\alpha)}\left[S_{-1}\left(\hat{c}_{j}\right)-S_{-1}\left(\bar{c}_{j}\right)\right] d x \\
& \leq \frac{\alpha^{2}}{2} \int_{\Omega_{s}}\left(\sum_{j \in I_{0}} q_{j} \chi_{\rho_{j}(\alpha)}\right) L\left(\sum_{j \in I_{0}} q_{j} \chi_{\rho_{j}(\alpha)}\right) d x \\
& +\alpha \int_{\Omega_{s}}\left(\sum_{j \in I_{0}} q_{j} \chi_{\rho_{j}(\alpha)}\right) L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right) d x \\
& +\alpha \sum_{j \in I_{0}}\left\|\mu_{0 j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}\left|\rho_{j}(\alpha)\right|+\alpha \sum_{j \in I_{0}} \beta^{-1} \log (2 \alpha)\left|\rho_{j}(\alpha)\right| \\
& \leq \frac{\alpha^{2}}{2}\left(\sum_{i \in I_{0}} q_{i}^{2}\right) \sum_{j \in I_{0}}\left|\rho_{j}(\alpha)\right|+\alpha\left\|L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right)\right\|_{L^{\infty}\left(\Omega_{s}\right)} \sum_{j \in I_{0}}\left|q_{j}\right|\left|\rho_{j}(\alpha)\right| \\
& +\alpha \sum_{j \in I_{0}}\left\|\mu_{0 j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}\left|\rho_{j}(\alpha)\right|+\alpha \sum_{j \in I_{0}} \beta^{-1} \log (2 \alpha)\left|\rho_{j}(\alpha)\right| \\
& =\alpha \sum_{j \in J_{0}}\left[\frac{\alpha}{2}\left(\sum_{j \in I_{0}} q_{j}^{2}\right)+\left|q_{j}\right|\left\|L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right)\right\|_{L^{\infty\left(\Omega_{s}\right)}}\right. \\
& \left.+\left\|\mu_{0 j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}+\beta^{-1} \log (2 \alpha) \mid\right] \rho_{j}(\alpha) \mid .
\end{aligned}
$$

Since $I_{0} \neq \emptyset$, this is strictly negative if $\alpha>0$ is small enough.

Proof of Lemma 3.5. We first construct $\bar{c}=\left(\bar{c}_{1}, \ldots, \bar{c}_{M}\right) \in V_{a}$ such that

$$
\begin{equation*}
a^{3} \bar{c}_{0}(x)=1-a^{3} \sum_{j=1}^{M} \bar{c}_{j}(x) \geq \theta_{1} \quad \text { a.e. } x \in \Omega_{s} \tag{A.6}
\end{equation*}
$$

for some constant $\theta_{1} \in(0,1),\|\bar{c}-c\|_{X}<\varepsilon / 2$, and $F_{a}[\bar{c}] \leq F_{a}[c]$ with a strict inequality if $\left|\left\{x \in \Omega_{s}: a^{3} c_{0}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$.

Denote for any $\alpha>0$

$$
\omega_{0}(\alpha)=\left\{x \in \Omega_{s}: a^{3} c_{0}(x)<\alpha\right\} .
$$

If there exists a constant $\alpha_{1}>0$ such that $\left|\omega_{0}\left(\alpha_{1}\right)\right|=0$, i.e., $a^{3} c_{0}(x) \geq \alpha_{1}$ a.e. Ω_{s}, then $\left(\bar{c}_{1}, \ldots, \bar{c}_{M}\right)=\left(c_{1}, \ldots, c_{M}\right) \in V_{a}$ satisfies all the desired properties with $\theta_{1}=\alpha_{1} /\left(1+\alpha_{1}\right) \in(0,1)$. Suppose $\left|\omega_{0}(\alpha)\right|>0$ for any $\alpha>0$. Let $0<\alpha<1 /(4 M)$. Let $x \in \omega_{0}(\alpha)$. Then there exists some $j=j(x) \in\{1, \ldots, M\}$ such that $a^{3} c_{j}(x) \geq$ $1 /(2 M)$. In fact, if this were not true, then $a^{3} c_{i}(x)<1 /(2 M)$ for all $i=1, \ldots, M$. Hence, $a^{3} c_{0}(x)=1-a^{3} \sum_{i=1}^{M} c_{i}(x)>1 / 2>\alpha$. This would mean that $x \notin \omega_{0}(\alpha)$, a contradiction. Denoting

$$
H_{j}(\alpha)=\left\{x \in \omega_{0}(\alpha): a^{3} c_{j}(x) \geq \frac{1}{2 M}\right\}, \quad j=1, \ldots, M
$$

we, thus, have $\omega_{0}(\alpha)=\cup_{j=1}^{M} H_{j}(\alpha)$. Since $\left|\omega_{0}(\alpha)\right|>0$, we have $\left|H_{j_{1}}(\alpha)\right|>0$ for some $j_{1}\left(1 \leq j_{1} \leq M\right)$. If $\left|H_{j}(\alpha) \backslash H_{j_{1}}(\alpha)\right|=0$ for all $j \neq j_{1}$, then we have $\omega_{0}(\alpha)=\tilde{K}_{1}(\alpha) \cup H_{j_{1}}(\alpha)$ for some $\tilde{K}_{1}(\alpha) \subset \omega_{0}(\alpha)$ with $\left|\tilde{K}_{1}(\alpha)\right|=0$. Otherwise, $\left|H_{j_{2}}(\alpha) \backslash H_{j_{1}}(\alpha)\right|>0$ for some $j_{2} \neq j_{1}$. In case $\left|\omega_{0}(\alpha) \backslash\left[H_{j_{1}}(\alpha) \cup H_{j_{2}}(\alpha)\right]\right|=0$, we have $\omega_{0}(\alpha)=\tilde{K}_{2}(\alpha) \cup H_{j_{1}}(\alpha) \cup\left[H_{j_{2}}(\alpha) \backslash H_{j_{1}}(\alpha)\right]$ for some $\tilde{K}_{2}(\alpha) \subset \omega_{0}(\alpha)$ with $\left|\tilde{K}_{2}(\alpha)\right|=0$. By induction, we see that there exist $m \in\{1, \ldots, M\}, \tilde{K}_{m}(\alpha) \subset \omega_{0}(\alpha)$ with $\left|\tilde{K}_{m}(\alpha)\right|=$ 0 , and mutually disjoint sets $K_{j_{1}}(\alpha), \ldots, K_{j_{m}}(\alpha) \subseteq \omega_{0}(\alpha)$ such that $K_{j_{i}}(\alpha) \subseteq H_{j_{i}}(\alpha)$ and $\left|K_{j_{i}}(\alpha)\right|>0$ for $i=1, \ldots, m$, and $\omega_{0}(\alpha)=\tilde{K}_{m}(\alpha) \cup\left[\cup_{i=1}^{m} K_{j_{i}}(\alpha)\right]$. By relabeling, we may assume that $j_{i}=i$ for $i=1, \ldots, m$.

Define now

$$
\begin{align*}
& \bar{c}_{j}(x)=\left\{\begin{array}{lr}
c_{j}(x)-\alpha a^{-3} \chi_{K_{j}(\alpha)}(x) & \forall x \in \Omega, j=1, \ldots, m, \\
c_{j}(x) & \forall x \in \Omega, j=m+1, \ldots, M,
\end{array}\right. \tag{A.7}\\
& \bar{c}_{0}(x)=a^{-3}\left[1-a^{3} \sum_{j=1}^{M} \bar{c}_{j}(x)\right] \quad \forall x \in \Omega_{s} .
\end{align*}
$$

It is easy to see that $\left(\bar{c}_{1}, \ldots, \bar{c}_{M}\right) \in V_{a}$. Moreover,

$$
\begin{equation*}
a^{3} \bar{c}_{0}(x)=a^{3} c_{0}(x)+\alpha \chi_{\omega_{0}(\alpha)}(x) \geq \alpha \quad \text { a.e. } x \in \Omega_{s} \tag{A.8}
\end{equation*}
$$

implying (A.6) with $\theta_{1}=\alpha$. Clearly, $\sum_{j=1}^{M}\left\|\bar{c}_{j}-c_{j}\right\|_{L^{1}(\Omega)} \leq \alpha a^{-3} \sum_{j=1}^{m}\left|K_{j}(\alpha)\right|$. Moreover,

$$
\left\|\sum_{j=1}^{M} q_{j} \bar{c}_{j}-\sum_{j=1}^{M} q_{j} c_{j}\right\|_{H^{-1}(\Omega)} \leq \alpha a^{-3}\left\|\sum_{j=1}^{m} q_{j} \chi_{K_{j}(\alpha)}\right\|_{L^{2}(\Omega)} \leq \alpha a^{-3} \sqrt{\sum_{j=1}^{m} q_{j}^{2}\left|K_{j}(\alpha)\right| .}
$$

Therefore, $\|\bar{c}-c\|_{X}<\varepsilon / 2$, provided that $\alpha>0$ is small enough.

If $x \in K_{j}(\alpha)$ for some j with $1 \leq j \leq m$, then $c_{j}(x) \geq 1 /\left(2 M a^{3}\right)$, and $\bar{c}_{j}(x) \geq$ $1 /\left(4 M a^{3}\right)$ since $0<\alpha<1 /(4 M)$. By the mean-value theorem and the fact that $S_{-1}^{\prime}(u)=\log u$ for any $u>0$, there exists $\eta_{j}(x)$ with $\bar{c}_{j}(x) \leq \eta_{j}(x) \leq c_{j}(x)$ such that

$$
\begin{aligned}
S_{-1}\left[\bar{c}_{j}(x)\right]-S_{-1}\left[c_{j}(x)\right] & =\left[\bar{c}_{j}(x)-c_{j}(x)\right] \log \eta_{j}(x) \\
& \leq-\alpha a^{-3} \log \bar{c}_{j}(x) \leq \alpha a^{-3} \log \left(4 M a^{3}\right)
\end{aligned}
$$

By the same argument using (A.8) and the definition of $\omega_{0}(\alpha)$, we obtain

$$
S_{-1}\left(\bar{c}_{0}(x)\right)-S_{-1}\left(c_{0}(x)\right) \leq \alpha a^{-3} \log \left(a^{-3} \alpha\right) \quad \text { a.e. } x \in \omega_{0}(\alpha)
$$

Consequently, we have by (3.13), (3.4), and the embedding $L^{2}\left(\Omega_{s}\right) \hookrightarrow H^{-1}\left(\Omega_{s}\right)$ that

$$
\begin{aligned}
& F_{a}[\bar{c}]-F_{a}[c]=\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}-\alpha a^{-3} \sum_{j=1}^{m} q_{j} \chi_{K_{j}(\alpha)}\right) \\
& L\left(\sum_{j=1}^{M} q_{j} c_{j}-\alpha a^{-3} \sum_{j=1}^{m} q_{j} \chi_{K_{j}(\alpha)}\right) d x \\
& -\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} c_{j}\right) L\left(\sum_{j=1}^{M} q_{j} c_{j}\right) d x-\alpha a^{-3} \sum_{j=1}^{m} \int_{K_{j}(\alpha)} \mu_{a j} d x \\
& +\beta^{-1} \sum_{j=0}^{m} \int_{\omega_{0}(\alpha)}\left[S_{-1}\left(\bar{c}_{j}\right)-S_{-1}\left(c_{j}\right)\right] d x \\
& \leq \frac{1}{2} \alpha^{2} a^{-6} \int_{\Omega_{s}}\left(\sum_{j=1}^{m} q_{j} \chi_{K_{j}(\alpha)}\right) L\left(\sum_{j=1}^{m} q_{j} \chi_{K_{j}(\alpha)}\right) d x \\
& -\alpha a^{-3} \int_{\Omega_{s}}\left(\sum_{j=1}^{m} q_{j} \chi_{K_{j}(\alpha)}\right) L\left(\sum_{j=1}^{m} q_{j} c_{j}\right) d x \\
& +\alpha a^{-3} \sum_{j=1}^{m}\left\|\mu_{a j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}\left|K_{j}(\alpha)\right| \\
& +\beta^{-1} \alpha a^{-3} \log \left(a^{-3} \alpha\right)\left|\omega_{0}(\alpha)\right|+\beta^{-1} \alpha a^{-3} \log \left(4 M a^{3}\right)\left|\omega_{0}(\alpha)\right| \\
& \leq C \alpha^{2} a^{-6}\left\|\sum_{j=1}^{m} q_{j} \chi_{K_{j}(\alpha)}\right\|_{L^{2}\left(\Omega_{s}\right)}^{2} \\
& +\alpha a^{-3}\left\|L\left(\sum_{j=1}^{M} q_{j} c_{j}\right)\right\|_{L^{\infty}(\Omega)} \sum_{j=1}^{m}\left|q_{j}\right|\left|K_{j}(\alpha)\right| \\
& +\alpha a^{-3} \sum_{j=1}^{m}\left\|\mu_{a j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}\left|K_{j}(\alpha)\right|+\beta^{-1} \alpha a^{-3} \log \left(8 M a^{3} \alpha\right) \sum_{j=1}^{m}\left|K_{j}(\alpha)\right| \\
& =\alpha \sum_{j=1}^{M}\left[C \alpha a^{-6} q_{j}^{2}+a^{-3}\left|q_{j}\right|\left\|L\left(\sum_{j=1}^{M} q_{j} c_{j}\right)\right\|_{L^{\infty}(\Omega)}+a^{-3}\left\|\mu_{a j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}\right. \\
& \left.+\beta^{-1} a^{-3} \log \left(8 M a^{3} \alpha\right)\right]\left|K_{j}(\alpha)\right|,
\end{aligned}
$$

where $C>0$ is a constant independent of α. Thus, $F_{a}[\bar{c}]-F_{a}[c]$ is nonpositive for $\alpha>0$ sufficiently small. It is strictly negative, if $\left|\omega_{0}(\alpha)\right|=\sum_{j=1}^{m}\left|K_{j}(\alpha)\right|>0$ for all $\alpha>0$, i.e., if $\left|\left\{x \in \Omega_{s}: a^{3} c_{0}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$.

We now construct $\hat{c} \in V_{a}$ that satisfies (2.6) with c replaced by $\hat{c},\|\hat{c}-\bar{c}\|_{X}<\varepsilon / 2$, and $F_{a}[\hat{c}] \leq F_{a}[\bar{c}]$ with a strict inequality if there exists $j \in\{1, \ldots, M\}$ such that $\left|\left\{x \in \Omega_{s}: a^{3} c_{j}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$, all these implying that \hat{c} satisfies all the desired properties. If there exists $\theta_{2} \in(0,1)$ such that $c_{j}(x) \geq \theta_{2}$ for a.e. $x \in \Omega_{s}$ and all $j=1, \ldots, M$, then $\hat{c}=\bar{c}$ with $0<\alpha<\theta_{2} / 2$ (cf. (A.7)) satisfies all the desired properties with $\theta_{0}=\min \left(\theta_{1}, \theta_{2} / 2\right)$. Assume otherwise there exists $j_{0} \in\{1, \ldots, M\}$ such that $\left|\left\{x \in \Omega_{s}: c_{j_{0}}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$. This means that $\left|\left\{x \in \Omega_{s}: \bar{c}_{j_{0}}(x)<\alpha\right\}\right|>0$ for all $\alpha>0$.

Define

$$
\begin{aligned}
\sigma_{j}(\alpha) & =\left\{x \in \Omega_{s}: a^{3} \bar{c}_{j}(x)<\alpha\right\} \quad \forall \alpha>0, \quad j=1, \ldots, M \\
J_{0} & =\left\{j \in\{1, \ldots, M\}:\left|\sigma_{j}(\alpha)\right|>0 \forall \alpha>0\right\} \\
J_{1} & =\{1, \ldots, M\} \backslash J_{0}
\end{aligned}
$$

Clearly, $J_{0} \neq \emptyset$. If $J_{1} \neq \emptyset$, then there exists $\alpha_{2}>0$ such that

$$
a^{3} \bar{c}_{j}(x) \geq \alpha_{2} \quad \text { a.e. } x \in \Omega_{s}, \quad \forall j \in J_{1}
$$

Define for $0<\alpha<\min \left\{\alpha_{2}, \theta_{1} / M\right\}$ and $1 \leq j \leq M$

$$
\begin{array}{cl}
\hat{c}_{j}(x)=\left\{\begin{array}{ll}
\bar{c}_{j}(x)+\alpha a^{-3} \chi_{\sigma_{j}(\alpha)}(x) & \text { if } j \in J_{0} \\
\bar{c}_{j}(x) & \text { if } j \in J_{1}
\end{array} \quad \forall x \in \Omega .\right. \\
\hat{c}_{0}(x)=a^{-3}\left[1-\sum_{j=1}^{M} a^{3} \hat{c}_{j}(x)\right] & \forall x \in \Omega_{s}
\end{array}
$$

Notice by (A.6) that

$$
\begin{aligned}
& a^{3} \hat{c}_{0}(x)=1-\sum_{j=1}^{M} a^{3} \hat{c}_{j}(x)=1-\sum_{j=1}^{M} a^{3} \bar{c}_{j}(x)-\alpha \sum_{j \in J_{0}} \chi_{\sigma_{j}(\alpha)} \\
& \geq \theta_{1}-\alpha M>0 \quad \text { a.e. } x \in \Omega_{s}
\end{aligned}
$$

Thus, $\hat{c}=\left(\hat{c}_{1}, \ldots, \hat{c}_{M}\right) \in V_{a}$. Clearly, (2.6) holds true for $\theta_{0}=\min \left\{\alpha, \alpha_{2}, \theta_{1}-\alpha M\right\}$. Applying the same argument used above, we obtain that $\|\hat{c}-\bar{c}\|_{X}<\varepsilon / 2$ for $\alpha>0$ small enough.

We have now by the mean-value theorem that

$$
\begin{aligned}
\sum_{j=1}^{M} \int_{\Omega_{s}}\left[S_{-1}\left(\hat{c}_{j}\right)-S_{-1}\left(\bar{c}_{j}\right)\right] d x & =\sum_{j \in J_{0}} \int_{\sigma_{j}(\alpha)}\left[S_{-1}\left(\hat{c}_{j}\right)-S_{-1}\left(\bar{c}_{j}\right)\right] d x \\
& \leq \alpha a^{-3} \log \left(2 \alpha a^{-3}\right) \sum_{j \in J_{0}}\left|\sigma_{j}(\alpha)\right|
\end{aligned}
$$

Similarly, we have by (2.6) that

$$
\int_{\Omega_{s}}\left[S_{-1}\left(\hat{c}_{0}\right)-S_{-1}\left(\bar{c}_{0}\right)\right] d x \leq-\alpha a^{-3} \log \left(a^{-3} \theta_{0}\right) \sum_{j \in J_{0}}\left|\sigma_{j}(\alpha)\right|
$$

Consequently, we have by (3.13) and a similar argument that

$$
\begin{aligned}
& F_{a}[\hat{c}]-F_{a}[\bar{c}]=\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}+\alpha a^{-3} \sum_{j \in J_{0}} q_{j} \chi_{\sigma_{j}(\alpha)}\right) \\
& L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}+\alpha a^{-3} \sum_{j \in J_{0}} q_{j} \chi_{\sigma_{j}(\alpha)}\right) d x \\
& -\frac{1}{2} \int_{\Omega_{s}}\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right) L\left(\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right) d x+\alpha a^{-3} \sum_{j \in J_{0}} \int_{\sigma_{j}(\alpha)} \mu_{a j} d x \\
& +\beta^{-1} \sum_{j \in J_{0}} \int_{\sigma_{j}(\alpha)}\left[S_{-1}\left(\hat{c}_{j}\right)-S_{-1}\left(\bar{c}_{j}\right)\right] d x \\
& +\beta^{-1} \int_{\Omega_{s}}\left[S_{-1}\left(\hat{c}_{0}\right)-S_{-1}\left(\bar{c}_{0}\right)\right] d x \\
& \leq C \alpha^{2} a^{-6}\left\|\sum_{j \in J_{0}} q_{j} \chi_{\sigma_{j}(\alpha)}\right\|_{L^{2}\left(\Omega_{s}\right)}^{2}+\alpha a^{-3}\left\|\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right\|_{L^{\infty}\left(\Omega_{s}\right)} \sum_{j \in J_{0}}\left|q_{j} \| \sigma_{j}(\alpha)\right| \\
& +\alpha a^{-3} \sum_{j \in J_{0}}\left\|\mu_{a j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}\left|\sigma_{j}(\alpha)\right|+\beta^{-1} \alpha a^{-3} \log \left(2 \alpha / \theta_{0}\right) \sum_{j \in J_{0}}\left|\sigma_{j}(\alpha)\right| \\
& \leq \alpha \sum_{j \in J_{0}}\left[C \alpha a^{-6} q_{j}^{2}+a^{-3}\left|q_{j}\right|\left\|\sum_{j=1}^{M} q_{j} \bar{c}_{j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}+a^{-3}\left\|\mu_{a j}\right\|_{L^{\infty}\left(\Omega_{s}\right)}\right. \\
& \left.+\beta^{-1} a^{-3} \log \left(2 \alpha / \theta_{0}\right)\right]\left|\sigma_{j}(\alpha)\right| .
\end{aligned}
$$

Since $J_{0} \neq \emptyset$, this is strictly negative if $\alpha>0$ is sufficiently small. The case that $J_{1}=\emptyset$ can be treated similarly.

Acknowledgments. The author thanks Dr. Jianwei Che, Dr. Joachim Dzubiella, and Dr. Benzhuo Lu for helpful discussions on the background of the underlying problem.

REFERENCES

[1] R. Allen, J.-P. Hansen, and S. Melchionna, Electrostatic potential inside ionic solutions confined by dielectrics: A variational approach, Phys. Chem. Chem. Phys., 3 (2001), pp. 4177-4186.
[2] M. Z. Born, Volumen und Hydratationswärme der Ionen, Phys., 1 (1920), pp. 45-48.
[3] I. Borukhov, D. Andelman, and H. Orland, Steric effects in electrolytes: A modified Poisson-Boltzmann equation, Phys. Rev. Lett., 79 (1997), pp. 435-438.
[4] D. L. Chapman, A contribution to the theory of electrocapillarity, Phil. Mag., 25 (1913), pp. 475-481.
[5] J. Che, J. Dzubiella, B. Li, and J. A. McCammon, Electrostatic free energy and its variations in implicit solvent models, J. Phys. Chem. B, 112 (2008), pp. 3058-3069.
[6] T. Chou, Physics of cellular materials: Basic electrostatics, IPAM Lecture Notes (2002).
[7] J. B. Conway, A Course in Functional Analysis, Springer-Verlag, Berlin, 1985.
[8] M. E. Davis and J. A. McCammon, Electrostatics in biomolecular structure and dynamics, Chem. Rev., 90 (1990), pp. 509-521.
[9] P. Debye and E. Hückel, Zur theorie der elektrolyte, Physik. Zeitschr., 24 (1923), pp. 185-206.
[10] B. Derjaguin and L. Landau, A theory of the stability of strongly charged lyophobic sols and the coalescence of strongly charged particles in electrolytic solution, Acta Phys.-Chim. USSR, 14 (1941), pp. 633-662.
[11] M. Fixman, The Poisson-Boltzmann equation and its applications to polyelectrolytes, J. Chem. Phys., 70 (1979), pp. 4995-5005.
[12] F. Fogolari and J. M. Briggs, On the variational approach to Poisson-Boltzmann free energies, Chem. Phys. Lett., 281 (1997), pp. 135-139.
[13] F. Fogolari, P. Zuccato, G. Esposito, and P. Viglino, Biomolecular electrostatics with the linearized Poisson-Boltzmann equation, Biophys. J., 76 (1999), pp. 1-16.
[14] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin, 1998.
[15] M. K. Gilson, M. E. Davis, B. A. Luty, and J. A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, J. Phys. Chem., 97 (1993), pp. 3591-3600.
[16] M. Gouy, Sur la constitution de la charge électrique a la surface d'un électrolyte, J. de Phys., 9 (1910), pp. 457-468.
[17] D. C. Grahame, The electrical double layer and the theory of electrocapillarity, Chem. Rev., 32 (1947), pp. 441-501.
[18] P. Grochowski and J. Trylska, Continuum molecular electrostatics, salt effects and counterion binding - A review of the Poisson-Boltzmann model and its modifications, Biopolymers, 89 (2008), pp. 93-113.
[19] J.-P. Hansen and H. LÖwen, Effective interactions between electric double layers, Annu. Rev. Phys. Chem., 51 (2000), pp. 209-242.
[20] V. Krald-Iglic and A. Iglic, A simple statistical mechanical approach to the free energy of the electric double layer including the excluded volume effect, J. Phys. II (France), 6 (1996), pp. 477-491.
[21] W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa, 3 (1963), pp. 43-77.
[22] B. Lu, X. Cheng, T. Hou, and J. A. McCammon, Calculation of the Maxwell stress tensor and the Poisson-Boltzmann force on a solvated molecular surface using hypersingular boundary integrals, J. Chem. Phys., 123 (2005), p. 084904.
[23] B. Lu, X. Cheng, J. Huang, and J. A. McCammon, Order N algorithm for computation of electrostatic interaction in biomolecular systems, PNAS, 103 (2006), pp. 19314-19319.
[24] B. Lu, D. Zhang, and J. A. McCammon, Computation of electrostatic forces between solvated molecules determined by Poisson-boltzmann equations using a boundary element method, J. Chem. Phys., 122 (2005), p. 214102.
[25] E. J. MacShane, Integration, Princeton University Press, Princeton, NJ, 1947.
[26] E. S. Reiner and C. J. Radke, Variational approach to the electrostatic free energy in charged colloidal suspensions: General theory for open systems, J. Chem. Soc. Faraday Trans., 86 (1990), pp. 3901-3912.
[27] B. Roux and T. Simonson, Implicit solvent models, Biophys. Chem., 78 (1999), pp. 1-20.
[28] K. A. Sharp and B. Honig, Calculating total electrostatic energies with the nonlinear PoissonBoltzmann equation, J. Phys. Chem., 94 (1990), pp. 7684-7692.
[29] K. A. Sharp and B. Honig, Electrostatic interactions in macromolecules: Theory and applications, Annu. Rev. Biophys. Biophys. Chem., 19 (1990), pp. 301-332.
[30] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, 3rd ed., North-Holland, Amsterdam, 1984.
[31] E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.
[32] K. Yosida, Functional Analysis, 6th ed., Springer-Verlag, Berlin, 1994.

[^0]: *Received by the editors January 3, 2008; accepted for publication (in revised form) December 9, 2008; published electronically March 20, 2009. This work was supported by the U.S. National Science Foundation (NSF) through the grant DMS-0451466 and DMS-0811259, by the NSF Center for Theoretical Biological Physics with the NSF grant PHY-0822283, and by the U.S. Department of Energy through the grant DE-FG02-05ER25707.
 http://www.siam.org/journals/sima/40-6/71235.html
 ${ }^{\dagger}$ Department of Mathematics and the NSF Center for Theoretical Biological Physics, University of California, San Diego, 9500 Gilman Drive, Mail code: 0112, La Jolla, CA 92093-0112 (bli@math. ucsd.edu).

