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MINIMIZATION OF �1−2 FOR COMPRESSED SENSING∗

PENGHANG YIN† , YIFEI LOU† , QI HE† , AND JACK XIN†

Abstract. We study minimization of the difference of �1 and �2 norms as a nonconvex and
Lipschitz continuous metric for solving constrained and unconstrained compressed sensing problems.
We establish exact (stable) sparse recovery results under a restricted isometry property (RIP) con-
dition for the constrained problem, and a full-rank theorem of the sensing matrix restricted to the
support of the sparse solution. We present an iterative method for �1−2 minimization based on the
difference of convex functions algorithm and prove that it converges to a stationary point satisfying
the first-order optimality condition. We propose a sparsity oriented simulated annealing procedure
with non-Gaussian random perturbation and prove the almost sure convergence of the combined al-
gorithm (DCASA) to a global minimum. Computation examples on success rates of sparse solution
recovery show that if the sensing matrix is ill-conditioned (non RIP satisfying), then our method is
better than existing nonconvex compressed sensing solvers in the literature. Likewise in the magnetic
resonance imaging (MRI) phantom image recovery problem, �1−2 succeeds with eight projections.
Irrespective of the conditioning of the sensing matrix, �1−2 is better than �1 in both the sparse signal
and the MRI phantom image recovery problems.
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1. Introduction. Compressed sensing (CS) has been a rapidly growing field of
research in signal processing and mathematics stimulated by the foundational papers
[8, 6, 22, 23] and related Bregman iteration methods [57, 33]. A fundamental issue in
CS is to recover an n-dimensional vector x̄ from m � n measurements (the projection
of x̄ onto m n-dimensional vectors), or in matrix form given b = Ax̄, where A is the
so-called m × n sensing (measurements) matrix. One can also view x̄ as coefficients
of a sparse linear representation of data b in terms of redundant columns of matrix A
known as dictionary elements.

The conditioning of A is related to its restricted isometry property (RIP) as well
as the coherence (maximum of pairwise mutual angles) of the column vectors of A.
Breakthrough results in CS have established when A is drawn from a Gaussian matrix
ensemble or random row sampling without replacement from an orthogonal matrix
(Fourier matrix), then A is well-conditioned in the sense that if x̄ is s-sparse (s is
much less than n), m = O(s log n) measurements suffice to recover x̄ (the sparsest
solution) with an overwhelming probability by �1 minimization or the basis pursuit
(BP) problem [6, 15]:

(1.1) min
x

‖x‖1 subject to Ax = b.

In the above formulation, the �1 norm works as the convex relaxation of �0 that counts
the nonzeros. Such a matrix A has incoherent column vectors. On the other hand, if
columns of A are coherent enough, such as those arising in discretization of continuum
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imaging problems (radar and medical imaging) when the grid spacing is below the
Rayleigh threshold [25], �1 minimization may not give the sparsest solution [25, 55].

In the past decade, great efforts have been devoted to exploring efficient and stable
algorithms for solving the BP problem and its associated �1-regularized problem (also
called lasso [47]):

(1.2) min
x

1

2
‖Ax− b‖22 + λ‖x‖1,

where λ > 0 is a free parameter. The Bregman iterative method, now known to
be equivalent to the augmented Lagrangian method, was proposed to solve the BP
problem by Yin et al. [57]. There are many state-of-the-art algorithms available for
the lasso problem (1.2), such as the split Bregman [33], which is equivalent to ADMM
[5, 27], FPC [34], FISTA [2], and others [49, 54, 58, 50].

Nonconvex (concave) functions, such as the �p (quasi-)norm (p < 1) [12, 13] and
the log-det functional [10], have also been proposed as alternatives to �0. Such non-
Lipschitz continuous metrics usually require additional smoothing in minimization to
avoid division by zero and to enhance sparsity. A general class of penalty functions
satisfying unbiasedness, sparsity, and continuity can be found in [24, 41]. While
nonconvex metrics are generally more challenging to minimize, they have advantages
over the convex �1 norm. Simply put, nonconvex CS enables one to reconstruct the
sparse signal of interest from substantially fewer measurements.

On the computational side, researchers have observed that under certain condi-
tions on the sensing matrix A (e.g., when columns of A are sufficiently randomized),
several nonconvex CS solvers do produce solutions of better quality [10, 14, 38, 19, 26],
even though none of them theoretically guarantees convergence to a global minimum.
Algorithms that directly tackle the �0 minimization include compressive sampling
matching pursuit (CoSaMP) [43], which is a greedy method among variants of orthog-
onal matching pursuit [48], the iterative hard thresholding (IHT) algorithm [4, 3], and
the penalty decomposition method [42], whereas iteratively reweighted least squares
(IRLS) [19, 14, 38] and iteratively reweighted �1 (IRL1) [17, 61, 10, 26] can be applied
to minimize nonconvex proxies of �0. Particularly for minimization of the �p norm,
empirical studies [14, 53] show that whenever p ∈ [1/2, 1), the smaller the p, the
sparser the solutions by minimizing the �p norm. On the other hand, for p ∈ (0, 1/2],
the performance has no significant improvement as p decreases. Xu et al. thus pro-
posed an iterative half thresholding algorithm [52, 53, 59] specifically for solving �1/2
regularization.

In this paper, we study minimization of the nonconvex yet Lipschitz continuous
metric �1−2 for sparse signal recovery and compare it with various CS solvers. �1−2

was first addressed in [28] by Esser, Lou, and Xin in the context of nonnegative least
squares problems and group sparsity with applications to spectroscopic imaging. A
contour plot of the �1−2 metric can be seen in Figure 1. Here we mainly discuss the
constrained �1−2 minimization problem,

(1.3) min
x∈Rn

‖x‖1 − ‖x‖2 subject to Ax = b,

and the unconstrained one,

(1.4) min
x∈Rn

1

2
‖Ax− b‖22 + λ(‖x‖1 − ‖x‖2),

where A ∈ R
m×n is an underdetermined sensing matrix of full row rank and b ∈

R
m \ {0}. We shall focus on the theoretical aspects such as sparsity of minimizers
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Fig. 1. Contours of three sparsity metrics. The level curves of �1 − �2 approach the x and y
axes as the values get small, hence promoting sparsity.

and convergence of minimization algorithms and refer to the companion paper [40]
for more extensive computational study with applications to imaging problems.

The rest of the paper is organized as follows. After presenting preliminaries, we
prove an exact (stable) sparse recovery theorem via the constrained �1−2 minimization
(1.3) under a RIP condition of the sensing matrix A in section 2. We then prove the full
rank property of the sensing matrix A restricted to the support of a local minimizer
for the �1−2 minimization problem. As a corollary, we infer that the number of
local minimizers of either (1.3) or (1.4) is finite. In section 3, we show an iterative
computational method for (1.4) based on the difference of convex functions algorithm
(DCA) and establish the convergence of the method to a stationary point where the
first-order optimality condition holds. In section 4, we further analyze a sparsity
oriented simulated annealing algorithm for approaching a global minimizer almost
surely. In section 5, we compare our DCA-�1−2 method with various CS solvers
numerically. For ill-conditioned matrices A, such as an oversampled discrete cosign
transform (DCT) matrix, DCA-�1−2 is the best, as seen from the success rate versus
sparsity plot. In this regime of A, exact recovery is still possible provided that the
peaks of the solution are sufficiently separated. We also evaluate the three metrics
on a two-dimensional example of reconstructing magnetic resonance imaging (MRI)
from a limited number of projections. In this application, we minimize the metrics
on the image gradient, where the image is a Shepp–Logan phantom of dimensions
256× 256. Using �1−2, we observed that 8 projections suffice for exact recovery, while
IRLS for �1/2 minimization takes 10. Still at 8 projections, the relative recovery error
is a factor of 2× 106 larger under the split Bregman for �1. The concluding remarks
are in section 6.

Notation. Let us fix some notation. For any x, y ∈ R
n, 〈x, y〉 = xTy is their

inner product. supp(x) := {1 ≤ i ≤ n : xi �= 0} denotes the support of x, and
‖x‖0 := | supp(x)| is cardinality of supp(x). Br(x) = {y ∈ R

n : ‖y−x‖2 < r} denotes
the n-dimensional Euclidean ball centered at x with radius r > 0. Let T ⊆ {1, . . . , n}
be an index set, and let |T | be the cardinality of T . Moreover, for A ∈ R

m×n,
AT ∈ R

m×|T | is the submatrix of A with column indices T . Im is the identity matrix
of dimension m. The sgn(x) is the signum function defined as

sgn(x) :=

⎧⎪⎪⎨
⎪⎪⎩
1 if x > 0,

−1 if x < 0,

0 if x = 0.
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2. Theory of �1−2 minimization.

2.1. Preliminaries. RIP, introduced by Candès and Tao [8], is one of the most
used frameworks for CS, which characterizes matrices that are nearly orthonormal.

Definition 2.1. For T ⊆ {1, . . . , n} and each number s, s-restricted isometry
constant of A is the smallest δs ∈ (0, 1) such that

(1− δs)‖x‖22 ≤ ‖ATx‖22 ≤ (1 + δs)‖x‖22
for all subsets T with |T | ≤ s and all x ∈ R

|T |. The matrix A is said to satisfy the
s-RIP with δs.

Sensing matrices with small δs are suitable for reconstruction of sparse signals [8,
9]. It has been shown that with overwhelming probability, random Gaussian, random
Bernoulli, and random partial Fourier matrices satisfy the RIP (with small restricted
isometry constants) [8, 18, 44]. Given a deterministic matrix A, it is generally NP-
hard, however, to verify whether A is a RIP matrix [1]. Another commonly used CS
concept is the so-called mutual coherence, or coherence [21] for short.

Definition 2.2. The coherence of a matrix A is the maximum absolute value of
the cross-correlations between the columns of A, namely,

μ(A) := max
i�=j

|AT
i Aj |

‖Ai‖2‖Aj‖2 .

Coherence is closely related to the RIP yet is easy to examine. Specifically,
a matrix satisfying some RIP tends to have small coherence or to be incoherent.
Conversely, a highly coherent matrix is unlikely to possess small restricted isometry
constants.

2.2. Exact and stable recovery. We have the following fundamental proper-
ties of the function ‖x‖1 − ‖x‖2, which will be frequently invoked later in the proofs.

Lemma 2.1. Suppose x ∈ R
n \ {0}, Λ = supp(x) and ‖x‖0 = s; then

(a) (n−√
n)mini |xi| ≤ ‖x‖1 − ‖x‖2 ≤ (

√
n− 1)‖x‖2,

(b) (s−√
s)mini∈Λ |xi| ≤ ‖x‖1 − ‖x‖2 ≤ (

√
s− 1)‖x‖2,

(c) ‖x‖1 − ‖x‖2 = 0 if and only if s = 1.
The proof is given in the appendix.
A RIP-based sufficient condition was derived in [9] for exact recovery of BP (1.1).

Here we derive an analogous condition for that of �1−2 minimization, demonstrating
the capability of �1−2 to promote sparsity.

Theorem 2.1. Let x̄ be any vector with sparsity of s satisfying

a(s) =

(√
3s− 1√
s+ 1

)2

> 1,

and let b = Ax̄. Suppose A satisfies the condition

(2.1) δ3s + a(s)δ4s < a(s)− 1;

then x̄ is the unique solution to (1.3).
Proof. The proof generally follows the lines of [9]. Let x be any feasible solution

satisfying the constraint Ax = b yet with a smaller objective value, i.e.,

(2.2) ‖x‖1 − ‖x‖2 ≤ ‖x̄‖1 − ‖x̄‖2.
We write x = x̄+ v with v ∈ ker(A) and want to show v = 0.
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Letting Λ = supp(x̄), we further decompose v as v = vΛ + vΛc . Then (2.2)
becomes

‖x̄+ vΛ + vΛc‖1 − ‖x̄+ vΛ + vΛc‖2 ≤ ‖x̄‖1 − ‖x̄‖2.
On the other hand,

‖x̄+ vΛ + vΛc‖1 − ‖x̄+ vΛ + vΛc‖2
= ‖x̄+ vΛ‖1 + ‖vΛc‖1 − ‖x̄+ vΛ + vΛc‖2
≥ ‖x̄‖1 − ‖vΛ‖1 + ‖vΛc‖1 − ‖x̄‖2 − ‖vΛ‖2 − ‖vΛc‖2.

So v must obey the following inequality constraint:

(2.3) ‖vΛ‖1 + ‖vΛ‖2 ≥ ‖vΛc‖1 − ‖vΛc‖2.
Arrange the indices in Λc in order of decreasing magnitude of vΛc and divide Λc

into subsets of size 3s. Then Λc = Λ1∪Λ2∪· · ·∪Λl, where each Λi contains m indices
probably except Λl. Denoting Λ0 = Λ ∪ Λ1 and using the RIP of A, we have

0 = ‖Av‖2 =

∥∥∥∥∥AΛ0vΛ0 +

l∑
i=2

AΛivΛi

∥∥∥∥∥
2

≥ ‖AΛ0vΛ0‖2 −
∥∥∥∥∥

l∑
i=2

AΛivΛi

∥∥∥∥∥
2

≥ ‖AΛ0vΛ0‖2 −
l∑

i=2

‖AΛivΛi‖2

≥
√
1− δ4s‖vΛ0‖2 −

√
1 + δ3s

l∑
i=2

‖vΛi‖2(2.4)

Now we set an upper bound on
∑l

i=2 ‖vΛi‖2. For each t ∈ Λi, i ≥ 2,

|vt| ≤ min
r∈Λi−1

|vr| ≤
‖vΛi−1‖1 − ‖vΛi−1‖2

3s−√
3s

,

where the second inequality follows from Lemma 2.1(a). Then it follows that

‖vΛi‖2 ≤
√
3s

‖vΛi−1‖1 − ‖vΛi−1‖2
3s−√

3s
=

‖vΛi−1‖1 − ‖vΛi−1‖2√
3s− 1

and

(2.5)
l∑

i=2

‖vΛi‖2 ≤
l−1∑
i=1

‖vΛi‖1 − ‖vΛi‖2√
3s− 1

≤
∑l

i=1 ‖vΛi‖1 −
∑l

i=1 ‖vΛi‖2√
3s− 1

.

Note that in (2.5)

l∑
i=1

‖vΛi‖1 = ‖vΛc‖1 and

l∑
i=1

‖vΛi‖2 ≥
√√√√ l∑

i=1

‖vΛi‖22 = ‖vΛc‖2.

Combining (2.5) and (2.3) gives

l∑
i=2

‖vΛi‖2 ≤ ‖vΛc‖1 − ‖vΛc‖2√
3s− 1

≤ ‖vΛ‖1 + ‖vΛ‖2√
3s− 1

≤ (
√
s+ 1)‖vΛ‖2√

3s− 1
=

‖vΛ‖2√
a(s)

.
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So it follows from (2.4) that

0 ≥
√
1− δ4s‖vΛ0‖2 −

√
1 + δ3s√
a(s)

‖vΛ‖2 ≥
√
1− δ4s‖vΛ0‖2 −

√
1 + δ3s√
a(s)

‖vΛ0‖2.

Since (2.1) amounts to

√
1− δ4s −

√
1 + δ3s√
a(s)

> 0,

we have vΛ0 = 0. This implies v = 0, which completes the proof.
Remark 2.1. Equation (2.1) can be rewritten as

δ3s < a(s)(1 − δ4s)− 1.

Note that the RIP condition for exact recovery of BP derived in [9] reads

(2.6) δ3s + 3δ4s < 2,

or equivalently

δ3s < 3(1− δ4s)− 1.

The condition (2.1) required for �1−2 exact recovery appears more stringent than (2.6)
for �1 recovery since a(s) < 3 (and thus also stronger than the RIP for �p recovery
with 0 < p < 1 [12]). However, this does not mean the �1 norm is superior to �1−2 in
terms of sparsity promoting. On the contrary, in section 5 it will be shown numerically
that the �1−2 penalty consistently outperforms �1. Besides possible technical issues
lying in the proof (e.g., the estimate in (2.3) is in fact not sharp), another explanation
can be that a RIP-based condition is just a sufficient condition to guarantee that a
measurement matrix A fits for exact reconstruction. It happens that two matrices
have exactly the same performance and yet one satisfies RIP whereas the other does
not [60].

Remark 2.2. The assumptions of Theorem 2.1 require a(s) = (
√
3s−1√
s+1

)2 > 1,

which implies s ≥ 8. Then a natural question is whether the uniqueness of x̄ still
holds for the case 1 ≤ s ≤ 7. First of all, when s = 1, any minimizer of ‖x‖1 − ‖x‖2
other than x̄ must be 1-sparse (and be a feasible solution of Ax = b). So the RIP
condition to guarantee uniqueness is just δ2 < 1. When s ≥ 2, we redefine a(s) as

(
√
6s−1√
s+1

)2. It is easy to check that a(s) > 1 for s ≥ 2. By a similar argument, we can

show that the following RIP condition suffices for the uniqueness of x̄:

δ6s + a(s)δ7s < a(s)− 1.

Similar to [7], we also establish the following stable recovery of �1−2 when mea-
surements are contaminated by noises.

Theorem 2.2. Under the assumptions of Theorem 2.1 except that b = Ax̄ + e,
where e ∈ R

m is any perturbation with ‖e‖2 ≤ τ , we have that the solution xopt to the
variant of problem (1.3)

min
x∈Rn

‖x‖1 − ‖x‖2 subject to ‖Ax− b‖2 ≤ τ

obeys ‖xopt − x̄‖2 ≤ Csτ for some constant Cs > 0 depending on δ3s and δ4s.
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Proof. Let Λ be the support of x̄ and xopt = x̄+ v. Then starting from ‖xopt‖1−
‖xopt‖2 ≤ ‖x̄‖1 − ‖x̄‖2 and repeating the arguments in the proof of Theorem 2.1, we
obtain

(2.7)

l∑
i=2

‖vΛi‖2 ≤ ‖vΛ‖2√
a(s)

and

(2.8) ‖Av‖2 ≥
(√

1− δ4s −
√
1 + δ3s√
a(s)

)
‖vΛ0‖2.

From (2.7) it follows that

‖v‖2 =
√√√√‖vΛ0‖22 +

l∑
i=2

‖vΛi‖22 ≤
√
‖vΛ0‖22 +

‖vΛ‖22
a(s)

≤
√
1 +

1

a(s)
‖vΛ0‖2,

so (2.8) becomes

(2.9) ‖Av‖2 ≥
√
a(s)(1 − δ4s)−

√
1 + δ3s√

1 + a(s)
‖v‖2.

On the other hand, since ‖Ax̄− b‖2 ≤ τ and ‖Axopt − b‖2 ≤ τ , by the triangular
inequality,

(2.10) ‖Av‖2 = ‖(Axopt − b)− (Ax̄− b)‖2 ≤ ‖Ax̄− b‖2 + ‖Axopt − b‖2 ≤ 2τ.

Combining (2.9) and (2.10), we have ‖v‖2 ≤ Csτ , where

Cs :=
2
√
1 + a(s)√

a(s)(1− δ4s)−
√
1 + δ3s

> 0.

Remark 2.3. The upper bound Csτ of the approximation error basically relies on
how well the RIP condition (2.1) is satisfied. Cs is O(1) if δ3s and δ4s are small and
a(s) 
 1.

2.3. Sparsity of local minimizers. Next we shall prove that local minimizers
of the problems (1.3) and (1.4) possess certain sparsity in the sense that they only
extract linearly independent columns from the sensing matrix A, whether A satisfies
any RIP or not. In other words, minimizing �1−2 will rule out redundant columns of
A. It is worth noting that similar results were proved in [9] for the �p unconstrained
problem using the second-order optimality condition. This demonstrates an advantage
of nonconvex sparsity metrics over the convex �1 norm.

Theorem 2.3. Let x∗ be a local minimizer of the constrained problem (1.3) and
Λ∗ = supp(x∗). Then AΛ∗ is of full column rank, i.e., the columns of AΛ∗ are linearly
independent.

Proof. The proof simply uses the definition of local minimizer. Suppose the
columns of AΛ∗ are linearly dependent; then there exists v ∈ ker(A) \ {0} such that
supp(v) ⊆ Λ∗. For any fixed neighborhood Br(x

∗) of x∗, we scale v so that

‖v‖2 < min

{
min
i∈Λ∗

|x∗
i |, r

}
.
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Consider two feasible vectors inBr(x
∗), x̂ = x∗+v and x̆ = x∗−v. Since supp(v) ⊆ Λ∗,

we have supp(x̂) ⊆ Λ∗ and supp(x̆) ⊆ Λ∗. Moreover,

(x∗ ± v)i = x∗
i ± vi = sgn(x∗

i )(|x∗
i | ± sgn(x∗

i )vi) ∀i ∈ Λ∗.

The above implies sgn(x̂i) = sgn(x̆i) = sgn(x∗
i ) ∀i ∈ Λ∗ since

|x∗
i | ± sgn(x∗

i )vi ≥ |x∗
i | − |vi| ≥ min

i∈Λ∗
|x∗

i | − ‖v‖2 > 0 ∀i ∈ Λ∗.

In other words, x∗, x̂, and x̆ are located in the same orthant. It follows that

(2.11) ‖x∗‖1 =
1

2
‖x̂+ x̆‖1 =

1

2
‖x̂‖1 + 1

2
‖x̆‖1

and

(2.12) ‖x∗‖2 = 1

2
‖x̂+ x̆‖2 <

1

2
‖x̂‖2 + 1

2
‖x̆‖2.

Equation (2.11) holds since x̂ and x̆ are in the same orthant, and (2.12) holds because
of the fact that x̂ and x̆ are not collinear since they both satisfy the linear constraint
Ax = b. So

‖x∗‖1 − ‖x∗‖2 >
1

2
(‖x̂‖1 − ‖x̂‖2 + ‖x̆‖1 − ‖x̆‖2)

≥ min{‖x̂‖1 − ‖x̂‖2, ‖x̆‖1 − ‖x̆‖2},
which contradicts the assumption that x∗ is a minimizer in Br(x

∗).
Local minimizers of the unconstrained problem share the same property.
Theorem 2.4. Let x∗ be a local minimizer of the unconstrained problem (1.4).

Then the columns of AΛ∗ are linearly independent.
Proof. We claim that x∗ is also a local minimizer of the following constrained

problem:

min
x∈Rn

‖x‖1 − ‖x‖2 subject to Ax = Ax∗.

Suppose not. Then ∀r > 0, there exists x̆ ∈ Br(x
∗) such that Ax̆ = Ax∗ and

‖x̆‖1 − ‖x̆‖2 < ‖x∗‖1 − ‖x∗‖2.
This implies

1

2
‖Ax̆− b‖22 + λ(‖x̆‖1 − ‖x̆‖2) < 1

2
‖Ax∗ − b‖22 + λ(‖x∗‖1 − ‖x∗‖2).

Thus for any r > 0, we actually find a x̆ ∈ Br(x
∗) yielding a smaller objective of (1.4)

than x∗, which leads to a contradiction because x∗ is assumed to be a local minimizer.
Thus the claim is validated.

Using the claim above and Theorem 2.3, we have that the columns of AΛ∗ are
linearly independent.

By Theorems 2.3 and 2.4, we readily conclude the following facts.
Corollary 2.1.

(a) Suppose x∗ is a local minimizer of (1.3) or (1.4), since rank(A) = m, the
sparsity of x∗ is at most m.

(b) If x∗ is a local minimizer of (1.3), then there is no such x ∈ R
n satisfying

Ax = b and supp(x) ⊆ Λ∗, i.e., it is impossible to find a feasible solution
whose support is contained in supp(x∗).

(c) Both the numbers of local minimizers of (1.3) and (1.4) are finite.
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3. Computational approach. In this section, we consider the minimization of
the unconstrained �1−2 problem (1.4).

3.1. Difference of convex functions algorithm. The DCA is a descent meth-
od without line search introduced by Tao and An [45, 46]. It copes with the mini-
mization of an objective function F (x) = G(x) −H(x) on the space R

n, where G(x)
and H(x) are lower semicontinuous proper convex functions. Then G−H is called a
DC decomposition of F , whereas G and H are DC components of F .

The DCA involves the construction of two sequences {xk} and {yk}, the candi-
dates for optimal solutions of primal and dual programs, respectively. To implement
the DCA, one iteratively computes{

yk ∈ ∂H(xk),

xk+1 = argminx∈Rn G(x) − (H(xk) + 〈yk, x− xk〉),

where yk ∈ ∂H(xk) means that yk is a subgradient of H(x) at xk. By the definition
of subgradient, we have

H(x) ≥ H(xk) + 〈yk, x− xk〉 ∀x ∈ R
n.

In particular, H(xk+1) ≥ H(xk) + 〈yk, xk+1 − xk〉; consequently
F (xk) = G(xk)−H(xk) ≥ G(xk+1)− (H(xk) + 〈yk, xk+1 − xk〉)

≥ G(xk+1)−H(xk+1) = F (xk+1).

The fact that xk+1 minimizes G(x) − (H(xk) + 〈yk, x − xk〉) was used in the first
inequality above. Therefore, the DCA iteration (3.1) yields a monotonically decreasing
sequence {F (xk)} of objective values, resulting in its convergence provided F (x) is
bounded from below.

The objective in (1.4) naturally has the following DC decomposition:

(3.1) F (x) =

(
1

2
‖Ax− b‖22 + λ‖x‖1

)
− λ‖x‖2.

Note that ‖x‖2 is differentiable with gradient x
‖x‖2

∀x �= 0 and that 0 ∈ ∂‖x‖2 for

x = 0; thus the strategy to iterate is as follows:

(3.2) xk+1 =

{
argminx∈Rn

1
2‖Ax− b‖22 + λ‖x‖1 if xk = 0,

argminx∈Rn
1
2‖Ax− b‖22 + λ‖x‖1 −

〈
x, λ xk

‖xk‖2

〉
otherwise.

It will be shown in Proposition 3.1 that ‖xk+1 − xk‖2 → 0 as k → ∞, so a reasonable
termination criterion for (3.2) can be

(3.3)
‖xk+1 − xk‖2
max{‖xk‖2, 1} < ε

for some given parameter ε > 0.
The DCA in general does not guarantee a global minimum due to the nonconvex

nature of the problem [45]. One could in principle prove convergence to the global
minimum by the branch and bound procedure (as done in [39]), but the cost is often
too high. A good initial guess is therefore crucial for the performance of the algorithm.
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The experiments in section 5 will show that the DCA often produces a solution that is
close to global minimizer when starting with x0 = 0. The intuition behind our choice
can be that the first step of (3.2) reduces to solving the unconstrained �1 problem. So
basically we are minimizing �1−2 on top of �1, which possibly explains why we observed
in the experiments that �1−2 regularization initialized by x0 = 0 always outperforms
�1 regularization. Hereby we summarize DCA-�1−2 in Algorithm 1 below.

Algorithm 1. DCA-�1−2 for solving (1.4).

Define ε > 0 and set x0 = 0, n = 0.
for k = 0, 1, 2, . . . , Maxoit do
if xk = 0 then
xk+1 = argminx∈Rn

1
2‖Ax− b‖22 + λ‖x‖1

else
xk+1 = argminx∈Rn

1
2‖Ax− b‖22 + λ‖x‖1 −

〈
x, λ xk

‖xk‖2

〉
end if

end for

3.2. Convergence analysis. Assuming each DCA iteration of (3.2) is solved
accurately, we show that the sequence {xk} is bounded and ‖xk+1 − xk‖2 → 0, and
limit points of {xk} are stationary points of (1.4) satisfying the first-order optimality
condition. Note that ker(ATA) is nontrivial, so both the DC components in (3.1)
only have weak convexity. As a result, the convergence of (3.2) is not covered by the
standard convergence analysis for the DCA (e.g., Theorem 3.7 of [46]), because strong
convexity is otherwise needed.

Lemma 3.1. For all λ > 0, F (x) = 1
2‖Ax − b‖22 + λ(‖x‖1 − ‖x‖2) → ∞ as

‖x‖2 → ∞, and therefore F (x) is coercive in the sense that the level set {x ∈ R
n :

F (x) ≤ F (x0)} is bounded ∀x0 ∈ R
n.

Proof. It suffices to show that for any fixed x ∈ R
n \ {0}, F (cx) → ∞ as c → ∞.

F (cx) =
1

2
‖cAx− b‖22 + cλ(‖x‖1 − ‖x‖2)

≥ 1

2
(c‖Ax‖2 − ‖b‖2)2 + cλ(‖x‖1 − ‖x‖2).

If Ax = 0, i.e., x ∈ ker(A) \ {0}, since rank(A) = m, we have ‖x‖0 ≥ m + 1 ≥ 2.
Lemma 2.1(c) implies ‖x‖1 − ‖x‖2 > 0, so

F (cx) =
1

2
‖b‖22 + cλ(‖x‖1 − ‖x‖2) → ∞ as c → ∞.

If Ax �= 0, the claim follows as we notice that c‖Ax‖2 − ‖b‖2 → ∞ as c → ∞.
Lemma 3.2. Let {xk} be the sequence generated by the DCA (3.2). For all k ∈ N,

we have
(3.4)

F (xk)− F (xk+1) ≥ 1

2
‖A(xk − xk+1)‖22 + λ(‖xk+1‖2 − ‖xk‖2 − 〈yk, xk+1 − xk〉) ≥ 0,

where yk ∈ ∂‖xk‖2.
Proof. A simple calculation shows

F (xk)− F (xk+1) =
1

2
‖A(xk+1 − xk)‖22 + 〈A(xk − xk+1), Axk+1 − b〉

+ λ(‖xk‖1 − ‖xk+1‖1 − ‖xk‖2 + ‖xk+1‖2).(3.5)
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Recall that xk+1 is the solution to the problem

min
x∈Rn

1

2
‖Ax− b‖22 + λ(‖x‖1 − 〈x, yk〉)

with yk ∈ ∂‖xk‖2. Then the first-order optimality condition holds at xk+1. More
precisely, there exists wk+1 ∈ ∂‖xk+1‖1 such that

(3.6) AT(Axk+1 − b) + λ(wk+1 − yk) = 0.

Left multiplying (3.6) by (xk − xk+1)T gives

(3.7) 〈A(xk − xk+1), Axk+1 − b〉+ λ(〈wk+1 , xk〉 − ‖xk+1‖1) + 〈yk, xk+1 − xk〉 = 0,

where we used 〈wk+1, xk+1〉 = ‖xk+1‖1. Combining (3.5) and (3.7), we have

F (xk)− F (xk+1) =
1

2
‖A(xk+1 − xk)‖22 + λ(‖xk‖1 − 〈wk+1, xk〉)

+ λ(‖xk+1‖2 − ‖xk‖2 − 〈yk, xk+1 − xk〉)
≥ 1

2
‖A(xk+1 − xk)‖22 + λ(‖xk+1‖2 − ‖xk‖2 − 〈yk, xk+1 − xk〉)

≥ 0.

In the first inequality above, ‖xk‖1 − 〈wk+1, xk〉 ≥ 0 since |wk+1
i | ≤ 1 ∀1 ≤ i ≤ n,

while the second one holds because yk ∈ ∂‖xk‖2.
We now show the convergence results for Algorithm 1.
Proposition 3.1. Letting {xk} be the sequence of iterates generated by Algo-

rithm 1, we have
(a) {xk} is bounded.
(b) ‖xk+1 − xk‖2 → 0 as k → ∞.
(c) Any nonzero limit point x∗ of {xk} satisfies the first-order optimality condi-

tion

(3.8) 0 ∈ AT(Ax∗ − b) + λ

(
∂‖x∗‖1 − x∗

‖x∗‖2

)
,

which means x∗ is a stationary point of (1.4).
Proof.
(a) Using Lemma 3.1 and the fact that {F (xk)} is monotonically decreasing, we

have {xk} ⊆ {x ∈ R
n : F (x) ≤ F (x0)} is bounded.

(b) If x1 = x0 = 0, we then stop the algorithm producing the solution x∗ = 0.
Otherwise, it follows from (3.4) that

F (0)− F (x1) ≥ λ‖x1‖2 > 0,

so xk �= 0 whenever k ≥ 1. In what follows, we assume xk �= 0 ∀k ≥ 1. Since

{F (xk)} is convergent, substituting yk = xk

‖xk‖2
in (3.4), we must have

‖A(xk − xk+1)‖2 → 0,(3.9)

‖xk+1‖2 − 〈xk, xk+1〉
‖xk‖2 → 0.(3.10)
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We define ck := 〈xk,xk+1〉
‖xk‖2

2
and en := xk+1 − ckxk. Then it suffices to prove

ek → 0 and ck → 1. It is straightforward to check that

‖ek‖22 = ‖xk+1‖22 −
〈xk, xk+1〉2

‖xk‖22
→ 0,

where we used (3.10). Then from (3.9) it follows that

0 = lim
k→∞

‖A(xk−xk+1)‖2 = lim
k→∞

‖A((ck−1)xk−ek)‖2 = lim
k→∞

|ck−1|‖Axk‖2.

If limk→∞ ck−1 �= 0, then there exists a subsequence {xkj} such that Axkj →
0. So we have

lim
kj→∞

F (xkj ) ≥ lim
kj→∞

1

2
‖Axkj − b‖22 =

1

2
‖b‖22 = F (x0),

which is contradictory to the fact that

F (xkj ) ≤ F (x1) < F (x0) ∀kj ≥ 1.

Therefore ck → 1, ek → 0, and thus xk+1 − xk → 0 as k → ∞.
(c) Let {xkj} be a subsequence of {xk} converging to x∗ �= 0, so the optimality

condition at the kjth step of Algorithm 1 reads

0 ∈ AT(Axkj − b) + λ∂‖xkj‖1 − λ
xkj−1

‖xkj−1‖2
or

(3.11) −
(
AT(Axkj − b)− λ

xkj−1

‖xkj−1‖2

)
∈ λ∂‖xkj‖1.

Here ∂‖x‖1 =
∏n

i=1 SGN(xi) ⊂ R
n with

SGN(xi) :=

{
{sgn(xi)} if xi �= 0,

[−1, 1] otherwise.

Since, by (b), xkj → x∗, we have, when kj is sufficiently large, supp(x∗) ⊆
supp(xkj ) and sgn(x

kj

i ) = sgn(x∗
i ) ∀i ∈ supp(x∗), which implies

∂‖xkj‖1 ⊆ ∂‖x∗‖1.
Then by (3.11), for large kj we have

(3.12) −
(
AT(Axkj − b)− λ

xkj−1

‖xkj−1‖2

)
∈ λ∂‖x∗‖1.

Moreover, since x∗ is away from 0,

lim
kj→∞

AT(Axkj − b)− λ
xkj−1

‖xkj−1‖2
= lim

kj→∞
AT(Axkj − b)− λ

xkj

‖xkj‖2 + λ

(
xkj

‖xkj‖2 − xkj−1

‖xkj−1‖2

)

= AT(Ax∗ − b)− λ
x∗

‖x∗‖2 .

Let kj → ∞ in (3.12) and note that ∂‖x∗‖1 is a closed set. Then (3.8) fol-
lows.
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By choosing appropriate regularization parameters, we are able to control the
sparsity of x∗.

Theorem 3.1. For all s ∈ N, there exists λs > 0 such that for any parameter
λ > λs in (1.4), we have ‖x∗‖0 ≤ s, where x∗ �= 0 is a stationary point generated by
Algorithm 1.

Proof. By the optimality condition (3.8), there exists w∗ ∈ ∂‖x∗‖1 satisfying

(3.13) w∗
i =

{
sgn(x∗

i ) if i ∈ supp(x∗),
∈ [−1, 1] otherwise

such that

−AT(Ax∗ − b) = λ

(
w∗ − x∗

‖x∗‖2

)
.

Since by (3.13) ‖w∗‖2 ≥√‖x∗‖0, taking the �2 norm of both sides gives
(3.14)

‖AT(Ax∗ − b)‖2 = λ

∥∥∥∥w∗ − x∗

‖x∗‖2

∥∥∥∥
2

≥ λ

(
‖w∗‖2 − ‖ x∗

‖x∗‖2 ‖2
)

≥ λ
(√

‖x∗‖0 − 1
)
.

On the other hand,

(3.15) ‖AT(Ax∗ − b)‖2 ≤ ‖AT‖2‖Ax∗ − b‖2 = ‖A‖2‖Ax∗ − b‖2 ≤ ‖A‖2‖b‖2,

where we used

1

2
‖Ax∗ − b‖2 ≤ 1

2
‖Ax∗ − b‖2 + λ(‖x∗‖1 − ‖x∗‖2) = F (x∗) ≤ F (x0) =

1

2
‖b‖2.

Combining (3.14) and (3.15), we obtain

√
‖x∗‖0 ≤ ‖A‖2‖b‖2

λ
+ 1 or ‖x∗‖0 ≤

(‖A‖2‖b‖2
λ

+ 1

)2

.

Moreover,

(‖A‖2‖b‖2
λ

+ 1

)2

< s+ 1 ⇐⇒ λ > λs :=
‖A‖2‖b‖2√
s+ 1− 1

.

In other words, if λ > λs, then ‖x∗‖0 < s + 1. ‖x∗‖0 and s are integers, so ‖x∗‖0
≤ s.

3.3. Solving the subproblem. Each DCA iteration requires solving a �1-
regularized convex subproblem of the following form:

(3.16) min
x∈Rn

1

2
‖Ax− b‖22 + 〈x, v〉+ λ‖x‖1,

where v ∈ R
n is a constant vector. This problem can be done by the alternating

direction method of multipliers (ADMM), a versatile algorithm first introduced in
[32, 29]. A recent result on the O(1/n) convergence rate of ADMM was established
in [36]. Just like the split Bregman [33], the trick of the ADMM form is to decouple
the coupling between the quadratic term and the �1 penalty in (3.16). Specifically,
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(3.16) can be reformulated as

min
x,z∈Rn

1

2
‖Ax− b‖22 + 〈x, v〉 + λ‖z‖1 subject to x− z = 0.

We then form the augmented Lagrangian

Lδ(x, z, y) =
1

2
‖Ax− b‖22 + 〈x, v〉 + λ‖z‖1 + yT(x− z) +

δ

2
‖x− z‖22,

where y is the Lagrange multiplier, and δ > 0 is the penalty parameter. ADMM
consists of the iterations⎧⎪⎨

⎪⎩
xl+1 = argminx Lδ(x, z

l, yl),

zl+1 = argminz Lδ(x
l+1, z, yl),

yl+1 = yl + δ(xl+1 − zl+1).

The first two steps have closed-form solutions which are detailed in Algorithm 2. In
the z-update step, S(x, r) denotes the soft-thresholding operator given by

(S(x, r))i = sgn(xi)max{|xi| − r, 0}.
The computational complexity of Algorithm 2 mainly lies in the x-update step. Since
A ∈ R

m×n and b ∈ R
m, the computational complexity of ATA+ δI is O(mn2 + n) =

O(mn2) and that of ATb − v + δzk − yk is O(mn + n) = O(mn). Moreover, the
inversion of matrixATA+δI requiresO(n3). Therefore, the computational complexity
of Algorithm 2 per iteration is O(n3 +mn2 +mn) = O(n3 +mn2).

Algorithm 2. ADMM for subproblem (3.16).

Define x0, z0 and u0.
for l = 0, 1, 2, . . . , MAXit do
xl+1 = (ATA+ δI)−1(ATb− v + δzl − yl)
zl+1 = S(xl+1 + yl/δ, λ/δ)
yl+1 = yl + δ(xl+1 − zl+1)

end for

According to [5], a stopping criterion of Algorithm 2 is given by

‖rl‖2 ≤ √
nεabs + εrelmax{‖xl‖2, ‖zl‖2}, ‖sl‖2 ≤ √

nεabs + εrel‖yl‖2,
where rl = xl − zl, sl = δ(zl − zl−1) are primal and dual residuals, respectively, at
the lth iteration. εabs > 0 is an absolute tolerance and εrel > 0 a relative tolerance.

4. Hybrid simulated annealing. In this section, we employ a technique called
simulated annealing (SA) to traverse local minima to reach a global solution. Combin-
ing the DCA with SA, we propose a hybrid SA (HSA) DCA. There are many generic
SA algorithms; see Kirkpatrick, Gelatt, and Vecchi [37], Geman and Geman [30], Ha-
jek [35], Gidas [31], and the references therein. In addition, this technique has many
applications to image processing, such as Carnevali, Coletti, and Patarnello [11].

The term “annealing” is analogous to the cooling of a liquid or solid in a phys-
ical system. Consider the problem of minimizing the cost function F (x). The SA
algorithm begins with an initial solution and iteratively generates new ones, each
of which is randomly selected among the “neighborhood” of the previous state. If
the new solution is better than the previous one, it is accepted; otherwise, it is ac-
cepted with certain probability. The probability of accepting a new state is given by
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exp(−Fnew−Fcurr

T ) > α, where α is a random number between 0 and 1, and T is a
temperature parameter. The algorithm usually starts with a high temperature and
then gradually goes down to 0. The cooling must be slow enough so that the system
does not get stuck into local minima of F (x). The HSA algorithm can be summarized
as follows:

1. Choose an initial temperature T and an initial state xcurr, and evaluate
F (xcurr).

2. Randomly determine a new state xnew, and run the DCA to get the near
optimal solution DCA(xnew).

3. Evaluate F (DCA(xnew)). If F (DCA(xnew)) < F (xcurr), accept DCA(xnew),
i.e., xcurr = DCA(xnew); otherwise, accept DCA(xnew) if

exp(−F (DCA(xnew))−F (xcurr)
T ) > α, where α is a random number between 0

and 1.
4. Repeat steps 2 and 3 for some iterations with temperature T.
5. Lower T according to the annealing schedule, and return to step 2. Continue

this process until some criteria of convergence is satisfied.
There are two important aspects in implementing SA. One is how to lower the

temperature T. Kirkpatrick, Gelatt, and Vecchi [37] suggest that T decays geometri-
cally in the number of cooling phases. Hajek [35] proves that if T decreases at the
rate of d

log k , where k is the number of iterations and d is some certain constant, then
the probability distribution for the algorithm converges to the set of global minimum
points with probability one. In our algorithm, we follow Hajek’s [35] method by
decreasing T at the rate of d

log k , with some constant d.
Another aspect is how to advance to a new state based on the current one in

step 2. One of the most common methods is to add randomGaussian noise, such as the
method in [51]. We generate the Gaussian perturbation by the following probability
density function:

p(x, Tk) =

n∏
i=1

1√
2π(Tk + β)

exp(−x2
i /2(Tk + β)),(4.1)

where the temperature Tk = T0

log(k) , and β is a constant. We assume that there is only

one iteration in each cooling scheme, i.e., the temperature Tk decreases after each
iteration. Then we have the following theorem.

Theorem 4.1. If we choose the kth new state by the probability density func-
tion given in (4.1), then the HSA algorithm converges to the global minimum F ∗ in
probability.

Proof. The proof is similar to Corollary 1 in [51]. We assume that there exists a
bounded set E ⊂ R

n containing all the global minima. Letting ri = maxx,y∈E |yi −
xi|, 1 ≤ i ≤ n, it suffices to show that there exist constants C > 0 and k0 > 0 such that
minx,y∈E p(y−x, Tk) ≥ C

k ∀k > k0. Taking k0 = 1 and C = 1
(2π)N/2(T0+β)N/2 exp(‖r‖2

2/2β)
,

since 0 ≤ Tk ≤ T0, we have the following inequalities for all k ≥ 1:

min
x,y∈E

p(y − x, Tk) = min

n∏
i=1

1√
2π(Tk + β)

exp(−(yi − xi)
2/2(Tk + β))

≥ 1

(2π)n/2(Tk + β)n/2 exp(‖r‖22/2(Tk + β))

≥ 1

(2π)n/2(T0 + β)n/2 exp(‖r‖22/2β)
= C ≥ C/k.
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However, due to the presence of a large number of local minima, this Gaussian
perturbation method would converge slowly. To overcome this difficulty, we propose
a novel perturbation method. First, let us define the space V = {x ∈ R

n : xi =
0, 1 or − 1} and Vs = {x ∈ V : ‖x‖0 ≤ s}. Note that given any x ∈ R

n, sgn(x) ∈ V,
where the signum function applies elementwise. Define the mapping W from R

n to V

byW (x) = sgn(S(x, ν)) for some small number ν > 0, where S is the soft-thresholding
operator. Denote the DCA function by DCA(x) being an output of DCA initialized
by x. We randomly choose the new state xnew ∈ Vs for some 0 < s < n such that
‖xnew −W (DCA(xcurr))‖2 ≤ η.

The idea of this perturbation method is to keep the sparse properties of the current
state and perturb inside the space Vs. Hence, we call this perturbation method the
sparse perturbation method.

To prove the convergence to global minima of this hybrid SA with sparse pertur-
bation, we shall work with the following assumption.

Assumption 4.1. If x∗ is a global minimizer of the cost function F over R
n,

then there is a global minimizer of the cost function J(x) := F (DCA(x)) denoted by
x∗
J ∈ argminx∈V J(x) such that x∗ = DCA(x∗

J ).
The above assumption says that a global minimizer of F can be reached by a local

DCA descent from a global minimizer of J defined over a smaller set V whose elements
are vectors with components 0,±1. This assumption is akin to an interesting property
of the Bregman iteration of �1 minimization [56], where if the nth step iteration gets
the signs and support of an �1 minimizer, the minimizer is reached at the (n + 1)th
step. Though one could minimize F directly as stated in Theorem 4.1, the passage to
a global minimum of F from that of J via DCA is observed to be a shortcut in our
numerical experiments, largely because the global minima of F in our problem are
sparse. Under this assumption, we aim to show that the sequence W (xcurr) converges
to a global minimizer of J over space Vs. By our algorithm, for each state x ∈ V,
we have a neighborhood of x, U(x) ⊂ V, where we generate the next state. We also
assume that there is a transition probability matrix Q such that Q(x, y) > 0 if and
only if y ∈ U(x).

We only need one iteration in each cooling scheme, because the temperature Tk

decreases after each iteration, and limk→∞ Tk = 0. Denote the sequence of states
by x1

curr, x
2
curr, . . . and the initial state by x0. Define yk = W (xk

curr). Given yk = i,
a new potential next state xk

new is chosen from the neighborhood set U(i) with the
conditional probability P(xk

new = j|yk = i) = Q(i, j). Then we update the algorithm
as follows. If J(xk+1

new ) ≤ J(yk), yk+1 = xk+1
new . If J(x

k+1
new ) > J(yk),

(4.2) yk+1 =

{
xk+1
new with probability exp(−(J(xk+1

new )− J(yk))/Tk),

xk
new otherwise.

In summary,

P(yk+1 = j|yk = i) = Q(i, j) exp

(
−max(J(j)− J(i)), 0)

Tk

)
for j ∈ U(i) ⊂ V.

By the above updating method, the SA algorithm is best understood as a non-
homogeneous Markov chain yk in which the transition matrix is dependent on the
temperature Tk. Denote the set of the global minimizers of J on V by V

∗. We aim to
prove that

lim
k→∞

P(yk ∈ V
∗) = 1.
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To motivate the rationale behind the SA algorithm, we assume that the temper-
ature Tk is kept at constant value T. In addition, we assume that yk is irreducible,
which means that for any two states i, j ∈ V, we can choose a sequence of states
y0 = i, y1, . . . , yl = j for some l ≥ 1 such that yk+1 ∈ U(yk), 1 ≤ k ≤ l − 1. We
also assume that Q is reversible, i.e., there is a distribution a(i) on V such that
a(i)Q(i, j) = a(j)Q(j, i) ∀i, j ∈ V. One simple choice for Q is

(4.3) Q(i, j) =

{
1

|U(i)| if j ∈ U(i),

0 otherwise.

We then introduce the following lemma.
Lemma 4.1. Under the above assumptions, the state sequence {yk} generated by

the SA algorithm satisfies

lim
T→0

lim
k→∞
Tk=T

P(yk ∈ V
∗) = 1.

Proof. Since the temperature Tk = T ∀k, the sequence yk is a homogeneous
Markov chain. Assume that its associated transition matrix is PT . Define a probability
distribution by

πT (i) =
a(i)

ZT
exp

(
−J(i)

T

)
,

where ZT =
∑

i a(i) exp(−J(i)
T ). A simple computation shows that πT = πTPT . So

πT is the invariant distribution for the Markov chain yk. By the reversibility of Q and
the irreducibility of yk, the Markov ergodic convergence theorem implies that

P(yk ∈ V
∗) =

∑
i∈V∗

πT (i).

Since J(i) > J(j) ∀i ∈ V \ V∗, j ∈ V
∗, and limT→0 πT (i) = 0 ∀i ∈ V \ V∗, we have

lim
T→0

lim
k→∞
Tk=T

P(yk ∈ V
∗) = 1.

To extend the convergence result to the case where limk→∞ Tk = 0, we introduce
the following concept.

Definition 4.1. We say that the state i communicates with V
∗ at height h if

there exists a path in V such that the largest value of J alone the path is J(i) + h.
The main theorem is given as follows.
Theorem 4.2. Let d∗ be the smallest number such that every i ∈ V communicates

with V at height d∗. Then the SA algorithm sequence yk converges to the global minima
set V∗ with probability one if and only if

∞∑
k=1

exp(−d∗/Tk) = ∞.

The detailed proof is given in [35]. By the theorem, we just need to choose
Tk = d/ log(k), where d ≥ d∗. To estimate d∗, we can simply set d∗ = |Vs|, since Vs

is a finite space.
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5. Numerical results. In this section, we present numerical experiments to
demonstrate the efficiency of the DCA-�1−2 method. We will compare it with the
following state-of-the-art CS solvers:

• ADMM-lasso [5], which solves the lasso problem (1.2) by ADMM;
• the greedy method CoSaMP [43], which involves a sequence of support de-
tections and least squares;

• the accelerated version of IHT (AIHT) [4] that solves

min
x∈Rn

‖Ax− b‖22 subject to ‖x‖0 ≤ s

by hard thresholding iterations;
• an improved IRLS-�p algorithm [38] that solves the unconstrained �p problem
with 0 < p < 1,

(5.1) min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖pp;

• reweighted �1 [10] which is at heart a nonconvex CS solver based on the IRL1
algorithm attempting to solve

min
x∈Rn

n∑
i=1

log(|xi|+ ε) subject to Ax = b;

• half thresholding [52] (Scheme 2) for �1/2 regularization, i.e., (5.1) with p =
0.5.

Note that all the proposed methods except ADMM-lasso are nonconvex in nature.
Sensing matrix for tests. We will test the commonly used random Gaussian

matrix, which is defined as

Ai
i.i.d.∼ N (0, Im/m), i = 1, . . . , n,

and the random partial DCT matrix

Ai =
1√
m

cos(2iπξ), i = 1, . . . , n,

where ξ ∈ R
m ∼ U([0, 1]m), whose components are uniformly and independently

sampled from [0,1]. These sensing matrices fit for CS, being incoherent and having
small RIP constants with high probability.

We also test a more ill-conditioned sensing matrix of significantly higher coher-
ence. Specifically, a randomly oversampled partial DCT matrix A is defined as

Ai =
1√
m

cos(2iπξ/F ), i = 1, . . . , n,

where ξ ∈ R
m ∼ U([0, 1]m) and F ∈ N is the refinement factor. Actually it is the

real part of the random partial Fourier matrix analyzed in [25]. The number F is
closely related to the conditioning of A in the sense that μ(A) tends to get larger as F
increases. For A ∈ R

100×2000, μ(A) easily exceeds 0.99 when F = 10. This quantity is
above 0.9999 when F increases to 20. Although A sampled in this way does not have
good RIP by any means, it is still possible to recover the sparse vector x̄ provided
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its spikes are sufficiently separated. Specifically, we randomly select the elements of
supp(x̄) so as to satisfy the following condition:

min
j,k∈supp(x̄)

|j − k| ≥ L.

Here L is called the minimum separation. For traditional inversion methods to work,
it is necessary for L to be at least 1 Rayleigh length (RL) which is unity in the
frequency domain [25, 20]. In our case, the value of 1 RL is nothing but F .

5.1. Selection of parameters. The regularization parameter λ controls data
fitting and sparsity of the solution. For the noiseless case, a tiny value should be
chosen. When measurements are noisy, a reasonable λ should depend on the noise
level. In this case, λ needs to be tuned empirically (typically by a cross-validation
technique). Although our convergence result is established on the assumption that
the sequence of subproblems is solved exactly by Algorithm 2, it suffices for practical
use that the relative tolerance εrel and absolute tolerance εabs are adequately small.

Figure 2 shows that in the noiseless case, the relative error ‖x∗−x̄‖2

‖x̄‖2
is linear in the

tolerance at moderate sparsity level when εrel ≤ 10−3 and εabs = 10−2εrel. Here x̄
is the test signal and x∗ is the recovered one by DCA-�1−2 from the measurements
b = Ax̄. δ in Algorithm 2 should be well chosen, since sometimes the convergence
can be sensitive to its value. Boyd et al. [5] suggest varying δ by iteration, aiming
to stabilize the ratio between primal and dual residuals as they both go to zero. We
adopt this strategy when having noise in measurements. More precisely,

δl+1 =

⎧⎪⎨
⎪⎩
2δl if ‖rl‖2 > 10‖sl‖2,
δl/2 if 10‖rl‖2 < ‖sl‖2,
δl otherwise.

Recall that rl and sl are the primal and dual residuals, respectively. In the noiseless
case where λ is always set to a small number, it turns out that just taking δ = 10λ
works well enough.
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Fig. 2. Relative error versus relative tolerance using random Gaussian matrix (blue/dash line
circle) and oversampled DCT matrix (red/solid line square) with F = 10, L = 2F . Relative tolerance
εrel = 10−1, 10−2, . . . , 10−6 and absolute tolerance εabs = 10−2εrel. A ∈ R128×1024 , ‖x̄‖0 = 24,
λ = 10−8, and δ = 10−7. The relative error is averaged over 10 independent trials.
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Fig. 3. Success rates using incoherent sensing matrix. m = 64, n = 256, s = 10, 12, . . . , 36.
Left: random Gaussian matrix. Right: random partial DCT matrix.

5.2. Exact recovery of sparse vectors. In the noiseless case, we compare the
proposed methods in terms of success percentage and computational cost.

Test on RIP matrix. We carry out the experiments as follows. After sampling a
sensing matrix A ∈ R

m×n, we generate a test signal x̄ ∈ R
n of sparsity s supported on

a random index set with independent and identically distributed. Gaussian entries.
We then compute the measurement b = Ax̄ and apply each solver to produce a
reconstruction x∗ of x̄. The reconstruction is considered a success if the relative error
is

‖x∗ − x̄‖2
‖x̄‖2 < 10−3.

We run 100 independent realizations and record the corresponding success rates at
various sparsity levels.

We chose εabs = 10−7 and εrel = 10−5 for DCA-�1−2 in Algorithm 2. In the
outer stopping criterion (3.3) in Algorithm 1, we set ε = 10−2. MAXoit and MAXit

are 10 and 5000, respectively. For ADMM-lasso, we let λ = 10−6, β = 1, ρ = 10−5,
εabs = 10−7, εrel = 10−5, and the maximum number of iterations maxiter = 5000.
For CoSaMP, maxiter = 50, the tolerance tol = 10−8. The tol for AIHT was
10−12. For IRLS-�p, p = 0.5, maxiter = 1000, tol= 10−8. For rewighted �1, the
smoothing parameter ε was adaptively updated as introduced in [10], and the outer
stopping criterion adopted was the same as that of the DCA-�1−2. We solved its
weighted �1 minimization subproblems using the more efficient YALL1 solver (avail-
able at http://yall1.blogs.rice.edu/) instead of the default �1-MAGIC. The tolerance
for YALL1 was set to 10−6. For half thresholding, we let maxiter = 5000. In ad-
dition, CoSaMP, AIHT, and half thresholding require an estimate on the sparsity of
x̄, which we set to the ground truth. All other settings of the algorithms were set to
default ones.

Figure 3 depicts the success rates of the proposed methods with m = 64 and
n = 256. For both the Gaussian matrix and the partial DCT matrix, IRLS-�p with
p = 0.5 has the best performance, followed by reweighted �1. DCA-�1−2 is comparable
to half thresholding and CoSaMP, which outperform both ADMM-lasso and AIHT.

Test on highly coherent matrix. Fixing the size of A at 100 by 2000 and
L = 2F , we repeat the experiment and present the results in Figure 4 for F = 10
(left) and 20 (right). Note that in this example, the task of nonconvex CS has become
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Fig. 4. Success rates using randomly oversampled partial DCT matrices with m = 100, n =
2000, s = 5, 7, 9, . . . , 35, minimum separation L = 2F .
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Fig. 5. Left: Comparison of success rates of HSA algorithms using randomly oversampled
partial DCT matrices with m = 100, n = 1500, s = 15, 17, . . . , 35, minimum separation L = 2F .
Right: Comparison of CPU time using random Gaussian matrix with n = 28, 29, . . . , 213, m =
n/4, s = m/8. All the resulting relative errors were roughly 10−5 except those of CoSaMP (about
10−15).

more challenging since ill-conditioning of the sensing matrix A makes it much easier
for the solvers to stall at spurious local minima. Here we do not take CoSaMP and
AIHT into consideration in the comparison, because preliminary results show that
even with x̄ at a low sparsity level, they do not work for a matrix of large coherence
at all (in terms of exact reconstruction). In this example, the DCA-�1−2 is the best and
provides robust performance regardless of large coherence of A. In contrast, the other
nonconvex solvers clearly encounter the trapping of local minima and perform worse
than the convex ADMM-lasso. Moreover, by comparing the two plots in Figure 4,
one can tell that their reconstruction qualities suffer a decline as A becomes more and
more coherent.

The left plot of Figure 5 shows the success rates for DCA-�1−2 with and without
aid of HSA methods. For each HSA method, we apply at most 100 iterations. The
matrix size is 100 × 1500, F = 20, and the minimum separation L = 2F . We also
compare the two different perturbation methods, referred to as HSA with Gaussian
perturbations and HSA with sparse perturbations. Both of these HSA methods can
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improve the reconstruction capability of the plain DCA-�1−2. However, HSA with
sparse perturbations has the best performance. On the other hand, though the limit
point of DCA-�1−2 is not known theoretically to be a global minimum, in practice
it is quite close. This can be seen from Figure 5, where the additional improvement
from the HSA is at most about 15% in the intermediate sparsity regime.

Comparison of time efficiency under Gaussian measurements. The com-
parison of CPU time using random Gaussian sensing matrix and nonconvex CS solvers
is presented in the right plot of Figure 5. For each n, we fix m = n/4 and s = m/8
and run 10 independent realizations. Parameters (mainly the tolerances) for the al-
gorithms were tuned such that all resulting relative errors were roughly 10−5, except
for CoSaMP. CoSaMP stands out as its success relies on correct identification of the
support of x̄. Once the support is correctly identified, followed by least squares min-
imization, it naturally produces a solution of perfect accuracy (tiny relative error)
which is close to the machine precision. It turns out that AIHT enjoy the best overall
performance in terms of time consumption, being slightly faster than CoSaMP. But
CoSaMP did provide substantially higher quality solutions in the absence of noise.
When n > 1000, DCA-�1−2 is faster than the other regularization methods like IRLS-
�p and half thresholding. This experiment was carried out on a laptop with 16 GB
RAM and a 2.40-GHz Intel Core i7 CPU.

5.3. Robust recovery in presence of noise. In this example, we show ro-
bustness of DCA-�1−2 in the noisy case. White Gaussian noise is added to the
clean data Ax̄ to get contaminated measurements b by calling b = awgn(Ax,snr) in
MATLAB, where snr corresponds to the value of signal-to-noise ratio (SNR) mea-
sured in dB. We then obtain the reconstruction x∗ using DCA-�1−2 and compute the
SNR of reconstruction given by

10 log10
‖x∗ − x̄‖22

‖x̄‖22

with
‖x∗−x̄‖2

2

‖x̄‖2
2

being the relative mean squared error. Varying the amount of noise,

we test DCA-�1−2, ADMM-lasso, half thresholding, CoSaMP, and AIHT on both the
Gaussian matrix and the ill-conditioned oversampled DCT. For Gaussian measure-
ments, we chose n = 1024, m = 256, and s = 48. For oversampled DCT, n = 2000,
m = 100, s = 15, F = 10, and the minimum separation L = 2F . At each noise level,
we run 50 times and record the average SNR of reconstruction (in dB).

Table 1 shows the results under Gaussian measurements. Choosing an appropriate
value of λ is necessary for both DCA-�1−2 and ADMM-lasso to function well, and for
this we employ a “trial and error” strategy. CoSaMP and AIHT do not need such
a parameter, whereas half thresholding embraces a self-adjusting λ during iterations.
As a trade-off, however, they all require an estimate on the sparsity of x̄, for which we
used the true value in the experiment. With this piece of crucial information, it then
appears reasonable that they perform better than DCA-�1−2 and ADMM-lasso when
there is not much noise, producing relatively smaller SNR of reconstruction. Table 2
shows the results for oversampled DCT with F = 10. In this case, we do not display
the result for CoSaMP since it yields huge errors. Half thresholding and AIHT are
not robust as suggested by Table 2. In contrast, DCA-�1−2 and ADMM-lasso perform
much better, still doing the job under a moderate amount of noise. Nevertheless, due
to the large coherence of A, their performance dropped compared to that in the
Gaussian case. In either case, DCA-�1−2 consistently beats ADMM-lasso.



A558 PENGHANG YIN, YIFEI LOU, QI HE, AND JACK XIN

Table 1

SNR of reconstruction (dB) under Gaussian measurements. n = 1024, m = 256, s = 48. Each
recorded value is the mean of 50 random realizations.

snr (dB) DCA-�1−2 ADMM-lasso Half thresholding CoSaMP AIHT
50 −38.8116 −37.1611 −48.2594 −43.4206 −48.3623
40 −29.2398 −27.6103 −37.3863 −32.8737 −36.9471
30 −19.5802 −18.3454 −26.0555 −21.2330 −25.1658
20 −11.0752 −9.8646 −11.5311 −8.1797 −10.6132
10 −3.6700 −3.1970 −1.4126 1.1522 −1.4048

Table 2

SNR of reconstruction (dB) using overampled DCT matrix. n = 2000, m = 100, s = 15, F =
10, L = 2F . Each recorded value is the mean of 50 random realizations.

snr (dB) DCA-�1−2 ADMM-lasso Half thresholding AIHT
50 −35.2119 −25.9895 −3.8896 −3.8393
35 −17.0934 −12.2916 −4.2793 −3.7375
20 −3.1806 −3.0157 −2.6428 −0.8141

5.4. MRI reconstruction. We present a two-dimensional example of recon-
structing MRI from a limited number of projections. It was first introduced in [6] to
demonstrate the success of CS. The signal/image is a Shepp–Logan phantom of size
256 × 256, as shown in Figure 6. In this case, it is the gradient of the signal that is
sparse, and therefore the work [6] is to minimize the �1 norm of the gradient, or the
so-called total variation (TV),

(5.2) min ‖∇u‖1 subject to RFu = f,

where F denotes the Fourier transform, R is the sampling mask in the frequency
space, and f is the data. It is claimed in [6] that 22 projections are necessary to
have exact recovery, while we find 10 projections suffice by using the split Bregman
method.

Our proposed �1−2 on the gradient is expressed as

(5.3) min |∂xu|+ |∂yu| −
√
|∂xu|2 + |∂yu|2 subject to RFu = f.

It is anisotropic TV. We apply the technique of DCA by linearizing the �2 norm of
the gradient,

uk+1 = arg min
u,dx,dy

|dx|+ |dy| − (dx, dy)
T(∂xu

k, ∂yu
k)√|∂xuk|2 + |∂yuk|2

+
μ

2
‖RFu− f‖22 +

λ

2
‖dx − ∂xu‖22 +

λ

2
‖dy − ∂yu‖22.(5.4)

Let (tx, ty) = (∂xu
k, ∂yu

k)/
√|∂xuk|2 + |∂yuk|2 at the current step uk. The subprob-

lem to obtain a new solution uk+1 can be solved by the split Bregman method, as
detailed in Algorithm 3. Note that the matrix to be inverted in the algorithm is
diagonal.

Figure 6 shows the exact recovery of 8 projections using the proposed method. We
also compare with the classical filtered back projection (FBP) and �1 on the gradient
or TV minimization, whose relative errors are 0.99 and 0.1, respectively. A similar
work is reported in [12], where 10 projections are required for �p (p = 0.5) on the
gradient.
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Algorithm 3. The split Bregman method to solve (5.4).

Define u = dx = dy = bx = by = 0, z = f and MAXinner, MAXouter.
Let D and DT be forward and backward difference operators, respectively.
for 1 to MAXouter do
for 1 to MAXinner do
u = (μRTR− λFΔFT)−1(μFTRz + λDT

x (dx − bx) + λDT
y (dy − by))

dx = S(Dxu+ bx + tx/λ, 1/λ)
dy = S(Dyu+ by + ty/λ, 1/λ)
bx = bx +Dxu− dx
by = by +Dyu− dy

end for
z = z + f −RFu

end for

Shepp–Logan phantom sampled projections

FBP, ER=0.99 L1, ER = 0.1 L1 − L2, ER = 5× 10−8

Fig. 6. MRI reconstruction results. It is demonstrated that 8 projections are enough to have
exact recovery using �1 − �2. The relative errors are provided for each method.

6. Concluding remarks. We have studied CS problems under a nonconvex
Lipschitz continuous metric �1−2 in terms of exact and stable sparse signal recovery
under RIP condition for the constrained problem and full rank property of the re-
stricted sensing matrix for the unconstrained problem. We also presented an iterative
minimization method based on DCA, its convergence to a stationary point, and its
almost sure convergence to a global minimum with the help of an SA procedure. If
the sensing matrix is well-conditioned, computational examples suggest that IRLS-�p
(p = 1/2) is the best in terms of the success rates of sparse signal recovery. For a highly
coherent matrix, DCA-�1−2 becomes the best. In either regime, DCA-�1−2 is always
better than ADMM-lasso. The MRI phantom image recovery test also indicates that
�1−2 outperforms �1/2 and �1.
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In future work, we plan to investigate further why �1−2 improves on �1 in a robust
manner.

Appendix. Proof of Lemma 2.1.
Proof of Lemma 2.1.
(a) The upper bound is immediate from the Cauchy–Schwarz inequality. To show

the lower bound, without loss of generality, let us assume

|x1| ≥ |x2| ≥ · · · ≥ |xn|.

Let t = �√n�; then we have

(6.1) ‖x‖2 ≤
t∑

i=1

|xi|+ (
√
n− t)|xt+1|.

To see this, we square both sides,

n∑
i=1

|xi|2 ≤
t∑

i=1

|xi|2+
t∑

i=1

t∑
j=1
j �=i

|xi||xj |+2(
√
n−t)|xt+1|

t∑
i=1

|xi|+(
√
n−t)2|xt+1|2,

or equivalently,

n∑
i=t+1

|xi|2 ≤
t∑

i=1

t∑
j=1
j �=i

|xi||xj |+ 2(
√
n− t)|xt+1|

t∑
i=1

|xi|+ (
√
n− t)2|xt+1|2.

Then (6.1) holds because

n∑
i=t+1

|xi|2 ≤
n∑

i=t+1

|xt+1|2 = (n− t)|xt+1|2

and

t∑
i=1

t∑
j=1
j �=i

|xi||xj |+ 2(
√
n− t)|xt+1|

t∑
i=1

|xi|+ (
√
n− t)2|xt+1|2

≥
t∑

i=1

t∑
j=1
j �=i

|xt+1|2 + 2(
√
n− t)|xt+1|

t∑
i=1

|xt+1|+ (
√
n− t)2|xt+1|2

= ((t2 − t) + 2(
√
nt− t2) + (

√
n− t)2)|xt+1|2

= (n− t)|xt+1|2.
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It follows from (6.1) that

‖x‖1 − ‖x‖2 ≥ ‖x‖1 −
(

t∑
i=1

|xi|+ (
√
n− t)|xt+1|

)

= (t+ 1−√
n)|xt+1|+

n∑
i=t+2

|xi|

≥ (t+ 1−√
n)|xn|+

N∑
i=t+2

|xn| = (n−√
n)|xn|

= (n−√
n)min

i
|xi|.

(b) Note that ‖x‖1 − ‖x‖2 = ‖xΛ‖1 − ‖xΛ‖2, and (b) follows as we apply (a) to
xΛ.

(c) If ‖x‖1 − ‖x‖2 = 0, then by (b)

0 = ‖x‖1 − ‖x‖2 ≥ (s−√
s)min

i∈Λ
|xi|.

So s−√
s ≤ 0 and thus s = 1.

The other direction is trivial.
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