
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

8-10-1992

Minimization of Exclusive Sum of Products Minimization of Exclusive Sum of Products

Expressions for Multiple-Valued Input Incompletely Expressions for Multiple-Valued Input Incompletely

Specified Functions Specified Functions

Ning Song
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation

Song, Ning, "Minimization of Exclusive Sum of Products Expressions for Multiple-Valued Input

Incompletely Specified Functions" (1992). Dissertations and Theses. Paper 4684.

https://doi.org/10.15760/etd.6568

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4684&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4684&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/
https://doi.org/10.15760/etd.6568
mailto:pdxscholar@pdx.edu

/

/
/

AN ABSTRACT OF THE THESIS OF Ning Song for the Master of Science in Electrical

and Computer Engineering presented August 10, 1992.

Title: Minimization of Exclusive Sum of Products Expressions for Multiple-Valued Input

Incompletely Specified Functions

APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE:

Marek A. Perkowski, Chair

Michael A. Driscoll 7

James L. Rein

In recent years, there is an increased interest in the design of logic circuits which

use EXOR gates. Particular interest is in the minimization of arbitrary Exclusive Sums

Of Products (ESOPs). Functions realized by such circuits can have fewer gates, fewer

connections, and take up less area in VLSI and especially, FPGA realizations. They are

also easily testable.

So far, the ESOPs are not as popular as their Sum of Products (SOP) counterparts.

One of the main reasons it that the problem of the minimization of ESOP circuits was

/

2

traditionally an extremely difficult one. Since exact solutions can be practically found

only for func~ions with not more than 5 variables the interest is in approximate solutions.

Two approaches to generate s~b optimal solutions can be found in the literature. One

approach is to minimize sub-families of ESOPs. Another approach is to minimize ESOPs

using heuristic algorithms. The method we introduced in this thesis belongs to the second

approach, which normally generates better results than the first approach.

In the second appraoch, two general methods are used. One method is to minim-

ize the coefficients of Reed-Muller forms. Another method is to perform a set of cube

operations iteratively on a given ESOP. So far, this method has acchieved better results

than other methods.

In this method (we call it cube operation approach), the quality of the results

depends on the quality of the cube operations. Different cube operations have been

invented in the past a few years. All these cube operations can be applied only when
···~

some conditions are satisfied. This is due to the limitatins of the operations. These limi-

tations reduce the opportunity to get a high quality solution and reduce the efficiency of
I

the algorithm as well. The efferts '<?f removing these limi~atin~ led to the invention of our

new cube operation, exorlink, which is introduced in this thesis. Exorlink can be applied

on any two cubes in the array without condition. All the existing cube operations in this

approach are included in it. So this is the most general operation in this approach.

Another key issue in the cube operation approach is the efficiency of the algo­

rithm. Existing algorithms perform all possible cube operations, and give li~~~~ guide to

select the operations. Our new algorithm selectively performs some of the possible

operations. Experimental results show that this algorithm is more efficient than existing

ones. New algorirrhs to minimize multiple output functions and especially incompletely

specified ESOPs are also presented. The algorithms are included in the program

EXORCISM-MY -2, which is a new version of EXORCISM-MY.

3

EXORCISM-MY -2 was tested on many benchmark functions and compared to

the results from literature. The program in most cases gives the same or better solutions

on binary and 4-valued completely specified functions. More importantly, it is able to

efficiently minimize arbitrary-valued and incompletely specified functions, while the pro­

grams from literature are either for completely specified functions, or for binary vari­

ables. Additionally, as in Espresso, the number of variables in our program is unlimited

and the only constraint is the number of input cubes that are read, so very large functions

can be minimized.

Based on our new cube operation and new algorithms, in the thesis, we present a

solution to a problem that has not yet been practically solved in the literature: efficient

minimization of arbitrary ESOP expressions for multiple-output multiple-valued input

incompletely specified functions.

MINIMIZATION OF EXCLUSIVE SUM OF PRODUCTS EXPRESSIONS FOR

MULTIPLE-VALUED INPUT INCOMPLETELY SPECIFIED FUNCTIONS

by

NINGSONG

A thesis submitted for the partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1993

TO THE OFFICE OF GRADUATE STUDIES:

The members of the Committee approve the thesis of Ning Song presented

August 10, 1992.

. Perkowski, Charr

JamesL~Hetn

APPROVED:

Rolf Schaumann, Chairman, Department of Electrical Engineering

ACKNOWLEDGMENT

I would like to thank Dr. Marek A. Perkowski, my advisor, who introduced me to

the area of Design Automation, guided me, and encouraged me in my research.

I would also like to thank Dr. Michael A. Driscoll, Dr. James L. Rein and Dr. W.

Robert Daasch for their valuable comments which helped to improve this thesis.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGMENT . iii

LIST OF TABLES... vi

LIST OF FIGURES . viii

LIST OF SPECIAL SYMBOLS . xi

CHAPTER

I

II

Ill

INTRODUCI10N

BASIC CONCEPTS AND DEFINITIONS

1

6

ll.1 Sets...................................... 6

ll.2 Functions . 8

II.2.1 Multiple Valued Functions
II.2.2 Cubical Representation
II.2.3 Incompletely Specified Functions
II.2.4 Multiple Output Functions

ll.3 Operations -. 25

II.3.1 Set Theoretic Operations
II.3.2 Cube Operations

MULTIPLE-VALUED INPUT EXCLUSIVE SUMS
OF PRODUCfS MINIMIZATION 31

ID.1 The Cost Functions . 31

lll.2 The Properties of the ESOP 32

ID.3 Basic Ideas to Minimize the ESOP 33

ill.3.1 Removing Two Equal cubes
Ill.3.2 Combining Two Cubes which Differ in
One Variable
lll.3.3 Reshaping Two Cubes which Differ by 2

IV

v

VI

VII

REFERENCES

APPENDIX

v

Ill.3.4 Increasing the Number of Cubes

ID.4 The Operations Used in Exorcism 35

m.4.1 Primary Xlinking
Ill.4.2 Secondary Xlinking
Ill.4.3 Unlinking

III.5 The Operations Used in EXMIN 40

THE MULTIPLE-VALUED EXORLINKING
OPERATION 45

IV .1 The Formula . 45

IV.2 Difference 1 Exorlinking.................... 50

IV .2.1 Difference 1 Distance 1 Ex or linking
IV .2.2 Difference 1 Distance 0 Ex or linking

IV.3 Difference 2 Exorlinking.................... 52

IV.4 Difference 3 Exorlinking.................... 61

IV.5 Summary . 62

ALGORITHM OF EXORCISM-MV-2 PROGRAM 64

V.1 The Algorithm of EXORCISM............... 64

V.2 The Algorithm of EXMIN 64

V.3 The New Algorithm......................... 66

V.4 Minimization of Multiple Output Functions 70

V.5 Minimization of Incompletely Specified
Functions............................. 73

V.6 The Algorithm ofEXORCISM-MV-2.......... 81

EVALUATION OF RESULTS OF EXORCISM-MY -2

CONCLUSION

85

93

94

98

TABLE

I

II

Ill

IV

v

VI

VII

VITI

IX

X

LIST OF TABLES

An Example of Binary Input Binary Output Function

An Example of Multiple-Valued Input Binary Output Function

Examples of Incompletely Specified Functions

An Example of Multiple-Valued Input Binary Output

PAGE

10

11

20

Incompletely Specified Function......................... 21

An Example of Multiple Output Function -23

ON-Array of the Multiple Output Function 24

Converting a Multiple Output Function to a Single

Output Function . 24

Comparison of Exorlinking with Xlinking

Comparison of Exorlinking with Operations in EXMIN .. ~

Multiple Output Function

59

59

72

XI Experimental Results of Functions with 1 Bit and 2 Bit

XII

Xlll

XIV

XV

XVI

Decoders

Experimental Results of Functions with 3 Bit Decoders

Experimental Results ofEXORCISM-MV-2

Comparison ofEXORCISM-MV-2 with EXMIN

Comparison ofEXORCISM-MV-2 with EXMIN-2

Comparison ofEXORCISM-MV-2 with EXMIN-2

85

86

87

90

90

for the Same Cost Functions............................ 91

XVII Comparison ofEXORCISM-MV-2 with EXMIN-2

for the Same Execution Time

XVIII Comparison of Our Results with ESPRESSO

XVII Comparison of Minimization of ON-Cubes with Minimization

of ON- and DC-Cubes

vii

91

92

92

FIGURE

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

LIST OF FIGURES

ON- and OFF-arrays of function f

Kamaugh map for a binary input function of 3 variables

Map for a multiple-valued input function of 2 variables

Kamaugh map for binary input cubes

Map for multiple-valued input cubes

Map for a multiple-valued input incompletely

specified function

ON-, OFF-, and DC-array of an incompletely

specified function .

ESOPs for a multiple-valued input incompletely

specified function .

Map for a multiple output function

Map and circuit for a multiple output function

Example of a disjoint sharp operation

Combining two cubes into one cube

Reshaping two cubes

Procedure of distance 1 primary xlinking

Procedure of distance 2 primary xlinking

Procedure of distance 1 secondary xlinking

Procedure of distance 2 secondary xlinking

X-MERGE .. .

PAGE

11

13

13

17

18

21

21

23

25

26

30

34

34

36

37

39

40

41

19. RESHAPE .. .

20. DUAL-COMPLEMENT

21. X-EXPAND-I

22. X-EXPAND-2

23. X-REDUCE-I

24. X-REDUCE-2

25. An example of exorlinking two terms

26. An example of exorlinking two cubes

27. Difference 1 distance 1 exorlinking

28. An example of difference 1 distance 0 exorlinking (S; ::::> R;) .. .

29. An example of difference 1 distance 0 exorlinking (S; I R;)

30. Difference 2 exorlinking (Ts ® TR and TR ® Ts)

31. Difference 2 exorlinking (S; n R; = 0, Si n R i = 0)

32. Difference 2 exorlinking (S; n R; = 0, Sj ::::> Rj)

33. Difference 2 exorlinking (S; nR; = 0, Si lRj)

34. Difference 2 exorlinking (S; ::::> R;, Sj ::::> Rj)

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Difference 2 exorlinking (S; ::::> R;, Sj c Rj)

Difference 2 exorlinking (S; ::::>R;, Sj lRj)

Difference 2 exorlinking (S; l R;, Sj l Rj)

An example of ESOP minimization by difference 2 exorlinking

An example of ESOP minimization by difference 3 exorlinking

An example of infinite loop in EXMIN

An example of performing all possible difference 2 operations .

Kamaugh maps for Example III.23

Conditionally petforming difference 2 exorlinking

Kamaugh maps corresponding to Figure 43

41

42

43

43

44

44

46

48

51

51

52

53

54

54

55

56

57

58

58

60

63

65

67

68

69

70

ix

X

45. Example of minimizing an incompletely specified function 73

46. _Linking DC-cubes 74

47. The position of DC-cubes 74

48. The size of DC-cubes 75

49. Linking DC-cubes by Saul's algorithm 76

50. An ON-cube is equal to a DC-cube 78

51. An ON-cube is contained by a DC-cube 78

52. Minimization of an incompletely specified function 80

53. Scatter plot of number of terms versus execution time 88

54. Scatter plot of number of variables versus execution time 89

LIST OF SPECIAL SYMBOLS

Page number refers to the page on which the symbol is defined or first used.

SYMBOL PAGE

Set Relations

E Is a member of 6

c Is a subset of 6

c Is a proper subset of - 7

0 Empty set 7

X Cartesian product 7

l Two sets are overlapping 27

ct. Is not a subset of 28

Set Operations

u Union of two sets 25

(\ Intersection of two sets 25

Difference of two sets 26

E9 Exclusive-OR of two sets 27

-, Complement of a set 29

Logic Operations

<f) Exclusive-OR operator 11

Cube Operations

u Supercube of two cubes 27

(\ Intersection of two cubes 27

xii

#d disjoint sharp of cubes 28

-, Complement of a cube 29

ffi Exclusive-OR of cubes 35

<P Primary xlinking 35

e Secondary xlinking 38

® Exorlinking 45

CHAPTER I

INTRODUCTION

In recent years, there is an increased interest in the design of logic circuits which

use EXOR gates [Hell 88, Sasa 90b]. Particular interest is in the minimization of arbi­

trary Exclusive Sums Of Products (ESOPs) and their various canonical sub-families such

as Consistent Generalized Reed-Muller canonical forms (CORMs) [Lui 92, Sara 92],

Kronecker Reed-Muller forms [Gree 91, Gill 91], Canonical Restricted Mixed Polarity

. -

forms (CRMPs) [Csan 92], and other. Functions realized by such circuits can have fewer

gates, fewer connections, and take up less area in VLSI and especially, FPGA realiza­

tions. They are also easily testable [Fuji 86, Prad 87]. It was shown, both theoretically

and experimentally [Sasa 90b, Sasa 91a, Sasa 91b, Sara 92, Salm 89] that ESOPs have on

average smaller numbers of terms for both "worst case" and "average" Boolean func-

tions. It was also shown that ESOPs and all their sub-families have their counterparts in

logic with multiple-valued inputs: Multiple-valued Input ESOPs (MIESOPs) [Perk 89,

Sasa 90a], Multiple-valued Input Generalized Reed-Muller forms (MIGRMs) [Scha 91],

Multiple-valued Input Kronecker Reed-M1lller forms (MIKRMs) [Scha 92], Multiple­

valued Input Generalized Reed-Muller Trees (MIGRMTs) [Perk 91], and others [Perk

92]. Logic with multiple-valued inputs (mv logic, for short) generalizes the classical

Boolean logic and finds many important applications in logic design [Sasa 78, Sasa 81,

Sasa 87, Rude 85]. MIESOPs are never worse than ESOPs, and they were shown to be

superior on several classes of functions [Sasa 90b, Sasa 91a, Sasa 91b]. Minimized

ESOP and MIESOP expressions are the starting points to technology mapping for new

EXOR-based low granularity FPGAs such as CLi 6000 series from Concurrent Logic

2

Inc. [CLi 91]. ESOPs are also a starting point to ESOP factorization procedures which

produce multi-level AND-EXOR circuits [Saul 91]. Finally, ESOPs are used as the inter­

nal function representation in GATEMAP [Salm 89] and POLO [Perk 92] design auto­

mation systems.

So far, the ESOPs are not as popular as their Sum of Products (SOP) counterparts.

One of the main reasons is that the problem of the minimization of ESOP circuits was

traditionally an extremely difficult one. Papakonstantinou [Papa 79] gave an exact algo­

rithm for 4 input functions. The algorithm from [Perk 90] has theoretically no limits on

the number of variables but 4 is its practical limit. Since exact solutions can be practi­

cally found only for functions with not more than 5 variables the interest is in approxi­

mate solutions. Two approaches to generate sub optimal solutions can be found in the

literature. One approach is to minimize sub-families of ESOPs. Another approach is to

minimize ESOPs using heuristic algorithms. Efficient programs for sub-families of

ESOPs were given in [Bess 83, Csan 92, Scha 91]. Heuristic computer programs have

been presented in [Bess 91, Flei 83, Flei 87, Hell 88, Perk 89, Robi 82, Saul 90]. In these

programs, two general methods are used. One method is to minimize the coefficients of

Reed-Muller forms [Wu 82, Bess 83, Robi 82]. Another method is to perform a set of

cube operations iteratively on minterms or disjoint cubes. Fleisher, et. al. [Flei 87]

presented an algorithm which starts from positive Reed-Muller forms and performs three

cube operations iteratively. The paper [Hell 88] introduced a new cube operation -

crosslink, and presented an algorithm based on this new operations. The algorithm from

[Hell 88] was next improved in [Perk 89], and also extended for the case of logic with

multiple-valued inputs. The unlink operation has also been added. The unlink operation

was efficiently implemented in [Saul 90]. A few more cube operations were also

included in an independent realization by Sasao [Sasa 90a], which is the only other

author that published on the most general ESOP minimization algorithms for the

3

multiple-valued input logic. Contrary to [Sasa 90a], however, the program described in

[Perk 89] assumed that the number of truth values for each variable can be different.

Although the theory presented by Sasao in [Sasa 90a] is general, the EXMIN algorithm

implemented by him, for efficiency reasons, accepts only 2-valued and 4-valued vari­

ables. It also can not deal with incompletely specified functions.

In this thesis, we present a solution to a problem that has not yet been practically

solved in the literature: efficient minimization of arbitrary ESOP expressions for

multiple-outPut multiple-valued input incompletely specified functions. This thesis

describes an approximate method that yields especially good results for the minimization

of strongly unspecified multi-output logic functions with multiple-valued inputs and

binary-valued outputs. Our program, EXORCISM-MY-2 is a new version of

EXORCISM-MY presented in [Perk 89]. The algorithm currently used in EXORCISM­

MY -2 was created after much experimentation with previous variants. A new cube opera­

tion - exorlinking is also introduced to support the new algorithm.

Our method and program are applicable to any type of multiple-valued input func­

tions, and each input variable can have an arbitrary number of logic values. For simpli­

city, 4-valued logic will be presented in most of the multiple valued logic examples.

This variant finds, among others, applications in the min~mization of PLAs in which

pairs of inputs are implemented via 2-by-4 decoders (2 inputs, 4 outputs).

AND/EXOR circuits with various kinds of function generators on inputs to the

AND plane are used t<;> realize the MIESOP expressions minimized here. Such circuits

can have smaller complexity than both the circuits which implement mixed-polarity

ESOP expressions [Perk 89], AND/XOR-Fields [Froe 91] , PLAs with decoders [Sasa

84], and networks with two variable function generators [Sasa 86]. The most important

advantage of the presented approach is that it can produce FPGA circuits that are supe­

rior (in terms of both speed and area) to those obtained using other methods for the logic

4

with multiple-valued inputs and are also very easily testable. There are several ways to

realize MIESOP circuits in modern. technologies: XOR PLAs (XPLAs, AND/XOR­

Fields), standard cells, optical and Josephson junction AND /EX OR PLAs, and especially

various types of FPGAs (like those from Xilinx, Actel, CLi, Algotronix, and Texas

Instruments) [FPGA 92]. A particularly well-suited FPGA is the recently announced CLi

6000 series from Concurrent Logic Inc. [CLi 91], since one of the most efficient uses of

its basic logic cell is the 3-input AND/EXOR function [Wu 92].

In Chapter IT, the basic concepts and definitions related to this thesis are presented.

The main concepts in this chapter are the multiple-valued input binary output incom­

pletely specified functions, the exclusive-OR sum-of-products expressions (ESOPs), and

the corresponding cube notations.

In Chapter III, we first introduce the basic ideas of ESOP minimization. Two

major programs for ESOP minimization, EXORCISM and EXMIN are then presented.

The operations used in these two programs are discussed in detail with examples.

Our new cube operation, exorlinking, is presented in Chapter IV. Exorlinking gen­

eralizes all cube operations such as xlinking, unlinking, or X-merge introduced in

EXORCISM [Hell 88, Perk 89] and EXMIN [Sasa 90a]. Contrary to the operations in

EXORCISM and EXMIN, which can be applied in certain conditions, we proved in this

chapter that exorlinking can be applied in any two cubes in arbitrary distance.· The pro­

cedure of the exorlinking operation is discussed, different examples are given, and com­

parisons with operations in EXORCISM and EXMIN are shown.

In Chapter V, we first introduce the algorithms used in EXORCISM and EXMIN.

Then our new algorithm used in EXORCISM-MY -2 is discussed. The major advantage

of our new algorithm is that it gives priority to those difference 2 operations which will

directly reduce the number of cubes in the array. By this way, our program can achieve

better results in shorter time as compared to the former algorithms. Our algorithms to

5

handle multiple output functions and incompletely specified functions are also discussed

in this chapter.

Chapter VI shows the experimental results. Then in the last chapter, Chapter VII,

we give the conclusion. The "man page" about how to use our program is presented in

the appendix with examples.

CHAPTER II

BASIC CONCEPTS AND DEFINITIONS

In this chapter, we give some basic definitions and discuss some basic concepts.

These concepts and definitions are necessary for the following chapters. More detailed

discussion on these topics can be found in [Stol 79, Gr!it 79, Brow 90].

11.1. SETS

A set is a collection of objects; the objects in the collection are called elements of

the set. Here we consider only finite sets, i.e., sets possessing a finite number of ele­

ments. We write

xeP

to denote that x is an element of a set named P .

If all the elements of set P are also elements of set Q , then we say that P is

included in (or is a subset of) Q and we represent the relation between P and Q by writ­

ing

p ~Q.

If P ~ Q and Q c P , we write

p =Q.

P = Q indicates that sets P and Q contain exactly the same elements.

If P = Q does not hold, we write

p "#Q.

P "# Q indicates that sets P and Q do not contain exactly the same elements.

7

If P is a subset of Q , and Q contains at least one element that does not belong to

P , then P is called a proper subset of Q , and we write

P cQ

to indicate the relation between P and Q . By definition, P c Q means P ~ Q and

p *Q.

The empty set is denoted by 0, and is the set comprising no elements at all. The

empty set is included in every set, i.e.,

0~P

for any set P.

We write P (k) to indicate that P contains k elements. For instance, P (2) denotes

that P contains two elements.

The Cartesian (direct, cross) product of sets P and Q , written P xQ , is the set

defined by

P x Q = { (p ,q) I p e P and q e Q}.

Thus

{p ,q} x {p ,q ,r} = {(p ,p),(p ,q),(p ,r),(q ,p),(q ,q),(q ,r)}.

We write P n (k) to signify the n -fold Cartesian product of P (k) with itself, i.e.,

pn(k) =P (k) X P (k)X · · · X P (k).

In more general cases, we write P n to denote P 1 (k 1) x P 2(k v x · · · x P n (kn), where

P 1 (k 1), P 2(k2), ... , P n (kn) are sets, and they may or may not contain the same elements.

If P 1 (k 1) = P 2(k 2) = ... = P n (kn), then P n (k) = P n. So, P n (k) is a special case of P n.

8

II.2. FUNCTIONS

11.2.1. Multiple Valued Functions

A completely specified function (function for short) f from set pn to set Q is a

subset of pn x Q, such that for each p e pn, there is a q e Q, and (p ,q) e f. We

write

f :Pn ~Q

to denote that/ takes elements from the sets P 1,P 2, ... , P n to yield elements in the set Q.

Given a function f : P n ~ Q , P n is called the domain of the function; Q is called

the co -domain of the function. If all of the sets P; (i = 1, ... , n) in the domain P con­

tain two elements, the function is a binary input function. For example,

f: P 1 (2) x P 2(2) ~ Q is a binary input function. If some of the sets in the domain con­

tain more than two elements, the function is a multiple-valued input function. For exam­

ple, f: P 1(4) x P2(4) ~ Q and f: P 1(2) x P 2(4) ~ Q are multiple-valued input func­

tions. If the co-domain of the function contains two elements only, it is a binary output

function. A binary output function is also ca]Jed a switching function. If the co-domain

contains more than two elements, it is a multiple-valued output function. Only the binary

output functions will be discussed in this thesis.

A symbol that may represent any one of the elements of set P; or Q is called a

variable.

Example ll.1: Given a set P; = { 0,1 ,2,3} which contains 4 elements. If X can assume

values 0, 1, 2, or 3, then X is a 4-valued variable.

A variable corresponding to a set in the domain is called an input variable. A vari­

able corresponding to a set in the co-domain is called an output variable.

If the domain of a function is P n, we call the function an n -input function . If n =

1, the function is a single input function. If the domain of the function is P n (2), it is an-

9

binary-input function. On the other hand, if one or more sets in the domain have more

than two elements, it is a multiple-valued multiple-input function. If the domain is

P n (k), its radix is fixed. If the domain is P 1 (k 1) x P 2(k 2) x , ... , x P n (kn), and ::3 (i ,j)

such that k; '# kj , the radix is mixed.

If p; is a positive integer, P; = {0, 1, ... , p;-1} is a set in the domain, and X; is a

variable corresponding to P;, then for any subset S; c P;, X; S; is a literal of variable X;

representing a function such that

S· {1 ifX; E S;
X; I = 0 if X; e: S;.

A literal is a function that maps from domain P; to co-domain Q (2). The variable X; can

take one of the values of 0 through p; -1. We write X = 0 to indicate that X takes value

of 0, X = 1 to indicate that X takes value of 1, etc. S; specifies the set of values of X; for

which xl; is true. For instance, for a binary logic, P; = { 0, 1 } :

X/2'is falseforbothX; =0 andX; = 1,

X;1 is true only for X; = 1,

X;o is true only for X; = 0,

X;0,1 is true for both X; = 0 and X; = 1.

For a binary logic, we also write X;1 as X; and xp as X;. So, in the case of binary logic, a

literal can be represented by a variable or its complement.

For a 4-valued logic, p; = {0,1,2,3}

xp.l.2,3 is true for any value of X;,

xp.2 is true for X; = 0 or X; = 2,

xp.2 is false for X; = 1 or X; = 3.

A product of literals, X 1s1 X2s2 ••• Xn s,, is referred to as a product term (also

called term or product for short). A product term that includes literals for all function

10

variables X b X 2, ... , Xn is called a full term. A sum of products is denoted as a sum-of­

products (SOP) expression while a product of sums is called a product-of-sums (POS)

expression. An Exclusive-Or of products will be called an ESOP. The name Multiple-

Valued Input Exclusive Sum of Products Form (MIESOP for short) will be used if we

want to emphasize that the ESOP takes multiple-valued inputs.

Example 11.2: Given a function f as specified by Table I.

TABLE I

AN EXAMPLE OF BINARY INPUT BINARY OUTPUT FUNCTION

0
0
0
1
1
1
1

z
u
1
0
1
0
1
0
1

1
0
1
0
1
1
1

Table I is called a truth table . A truth table enumerates the values of functions for

each of their possible combinations of the inputs. Each row of the truth table presents a

possible input combination and an associated output value. The set of those input combi-

nations, whose associated output values are 1, is referred to as an ON-array of the func-

tion f. The set of those input combinations, whose associated output values are 0, is

referred to as an OFF -array of the function f. In Table I, x, y, and z are binary input

variables, f is a binary output variable. Figure 1 shows the ON- and OFF-arrays off.

Please note that either ON-array or OFF-array of the function f contain the same infor­

mation as the truth table.

The function f can also be specified by the following Boolean equation:

f =X y z EB X y z EB X y z EB X y z EB X y z.

11

ON-array OFF-array

X y z X y z

0 0 1 0 0 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 0

1 1 1

Figure 1. ON- and OFF- arrays of function f.

where x Y z EB x y z EB x Y z EB x y z EB x y z is an ESOP expression. Please note that

x, y and z in Table I are variables, while in the ESOP expression they are used as

literals. Another way to write above equation is:

f = xOyOz 1 EB xOy 12 1 EB x 1yOz 1 EB x 1y 12 0 E!1 x ly lz 1.

Example II.3: In Table II, X and Y are multiple-valued variables, f is a binary output

variable.

TABLE II

AN EXAMPLE OF MULTIPLE-VALUED INPUT BINARY OUTPUT FUNCTION

0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

This function can be represented by the following equation:

f =X 0Y1 EBX1f02Ef1X2f01

whereXO,X1,X2, f1, f02, and yo1 are literals.

14

The difference of two terms is the number of variables for which the correspond-

ing literals have different sets of truth values. The distance of two terms is the number

of variables for which the corresponding literals have disjoint sets of truth values.

Example II.4: Given three terms T 1 = X oy 1, T 2 = X 1 y02, and T 3 = X 1 yo1. The differ­

ence ofT 1 and T 2 is 2, because two literals have different sets of truth values:

for X: { 0} "# { 1 },

for Y: { 1} "# {02}.

The distance ofT 1 and T 2 is also 2, because two literals have disjoint sets of truth values:

for X: {0} n {1} = 0,

for Y: { 1} n { 02} = 0.

The difference of T 2 and T 3 is 1, because only one literal has different sets of truth

values:

for X: { 1 } = { 1 },

for Y: {02} "# {01 }.

The distance of T 2 and T 3 is 0, because none of the literals have disjoint sets of truth

values:

for X: {1} n {1} "#0,

forY: {02} n {01} "#0.

We write difference (T;, Tj) = d to indicate that the difference of two terms T;

and Tj is d. Similarly, we write distance (T;, Tj) = d to indicate that the distance of T;

and Tj is d.

A map of an n -variable, p -valued input, two-valued output function consists of p n

cells . Cells that contain a 1 will be called true minterms (1-cells) while cells that contain

a 0 will be called false minterms (0-cells of the map). For a binary input function, our

13

map is a Karnaugh map. For the case of multiple-valued input functions, the maps that

we will use in this thesis generalize the concept of the Kamaugh maps. We will simply

call each of them a map .

In Example II.2, the function has 3 binary variables. So, a corresponding Karnaugh map

has 23 = 8 cells. There are 5 true minterms and 3 false minterms as shown in Figure 2.

"

I 0 1 1 0

0 1 1 1
- -

Figure 2. Karnaugh map for a binary input function of 3 variables.

In Example II.3, the function has 2 variables, and both variables have three values. So, a

corresponding map has 32 = 9 cells. There are 5 true minterms and 4 false minterms as

shown in Figure 3.

0 1 0

1 0 1

1 1 0

Figure 3. Map for a multiple-valued input function of 2 variables.

14

II.2.2. Cubical Representation

A binary vector (vector for short) is a series of symbols, where each symbol is

either a 0 or a 1. We call each 0 or 1 a bit. An m -valued switching function f of n vari-

abies X b X 2· ... , Xn can be represented by binary vectors. If the variable Xi is m -valued,

the literal xl; can be represented by a binary vector of m bits:

c·Oc.l ... cm-1
I I I

where c/ = 0 if j ~ S; and c/ = 1 if j E S;. For example, for a binary logic, each literal

can be represented by a vector of two bits as follows:

X{2J is represented as 00,

Xi 1 is represented as 01,

X;o is represented as 10,

X;O,l is represented as 11.

For a 4-valued logic, each literal is represented by a vector of 4 bits:

X;0,1,2,3 is represented as 1111,

X;0,2 is represented as 1010,

X;1,3 is represented as 0101.

A product term of n literals can be represented by n such vectors. A symbol"-" is

used for separating each vector. For instance, X P·1X 1·2X 1·3 in cubical representation is

represented by three vectors:

[1100- 0110- 0101],

which is called a cube . A cube can represent:

1. a product of literals,

15

2. a sum of literals,

3. an exclusive sum of literals.

There is no difference in the representation of these forms as a cube. For example,

both X p.1 +X 1·2 +X }·3 and X P·1 Ef) X :!·2 EB X].3 are presented as

[1100- 0110- 0101].

Where using a cube, we should specify which form the cube used to represent. We can

represent a POS, a SOP or a ESOP by an array of cubes. This way of representation is

called positional notation of cube calculus (cube notation for short). In this thesis,

without other specification, we use a cube to represent a product term, and use an array of

cubes to represent an ESOP.

Example 11.5: For binary logic, an ESOP

xyzEt>xzvEf>yzEf>xyzv

in cube notation can be represented as following 4 cubes:

[10- 10 - 10- 11]

[10-11-01-01]

[11-01-01-11]

[01 - 10- 01 - 10].

For binary logic, we can simplify the cube notation as follows:

00 is represented as £,

10 is represented as 0,

01 is represented as 1,

11 is represented as x.

So, the above example can also be represented as

OOOx

Ox 11

x 11x

1010.

Example II.6: For 4-valued logic, an ESOP

xp1x2x:J2x,p1 EBxt-3x1x13xJ EBxp1x1x:r3x21 (f) X 13x23xflxJl123
can be represented by an array of 4 cubes:

[1100- 1000- 0110- 1100]

[0011- 0100-0101- 0100]

[1100- 0100-0011- 1100]

[0 10 1 - 100 1 - 1100 - 1111].

16

The ON-array of a function can be represented by the ON-array of cubes, and the

OFF-array of a function can be represented by the OFF-array of cubes.

Example II.7: The function f of Example ll.2 can be represented by the following ON­

array of cubes:

001

011

101

110

111.

We can draw cubes on maps. On the map, each circle indicates one cube, as shown

in Figure 4a. We can also use maps to minimize the number of cubes. For instance, 5

cubes in Figure 4a is reduced to 2 cubes in Figure 4b. In other words, we can use an ON-

array of 2 cubes to express the function f of Example II.2:

xx1

110.

Example Il.8: The function f of Example ll.3 can be represented by the following ON­

array of cubes:

z
X"" 00 01

G G 0

G G G 1
-- - -- -

(a)

Figure 4. Karnaugh map for binary input cubes.

[100- 010]

[010- 101] 1

[001- 110].

17

11 10

G
(b)

Figure Sa shows these three cubes on the map. Please note that two circles connected by

an arc denote one cube [010- 101]. In ESOPs a true minterm can be covered by cubes an

odd number of times, a false minterm can be covered an even number of times. Figure

5b, 5c, and 5d show other arrays of cubes representing the same function. This means

that for a specific function, there are different ESOPs to represent it.

If A is a cube, we write A; or A [i] to denote the i- th vector of A . And we write At}

or A [i ,j] to denote the j -th bit of A;. For instance, in Example II.8, if we denote the first

cube in the array as A, then

A 1 = 100,

A2 = 010,

A 11 = 1,

A 12 = 0,

A 13 = 0,

A21 = 0,

A22 = 1,

18

(a) (b)

(c) (d)

Figure 5. Map for multiple-valued input cubes.

A23 = 0.

Please note the difference between S; the truth set of variable X; and A; the vector in a

cube corresponding to literal xfj. For a 4-valued logic, for instance, if S; = {0,1,2}, the

corresponding A; is 1110. They represent the same literal, but in two different ways.

We define the difference of two cubes as the difference of the corresponding two

terms, and the distance of two cubes as the distance of the corresponding two terms. In

other words, the difference of two cubes is the number of their vectors that are different;

the distance of two cubes is the number of their vectors that are disjoint. For instance,

given two cubes

19

A = [11 00 - 1010 - 0111]

and

B = [0110- 0100- 0101],

the difference of two cubes is 3, because A 1 ;;~; B h A 2 ;;~; B 2, and A 3 ;;~; B 3· The distance of

two cubes is 1, because only A 2 and B 2 are disjoint (A 2 n B 2 = 0). If A and B are

cubes, we write difference (A , B) = r to indicate that their difference is r, and

distance (A , B) = r to indicate that their distance is r.

Given an array of cubes, if the distance of any two cubes in the array is greater

than 0, then the array of cubes is called an array of disjoint cubes. Both the arrays

showed in Figures 4a and 4b are arrays of disjoint cubes. The array showed in Figure 5a

are also array of disjoint cubes. But the arrays showed in Figures 5b, 5c, and 5d are not

arrays of disjoint cubes. If an array of cubes is disjoint, its corresponding SOP expression

and ESOP expression represent the same function. For instance, the disjoint cubes

showed in Figure 4b can be expressed as z + x y z or z EB x y z.

II.2.3. Incompletely Specified Functions

Given a function f : P n -4 Q , if for some p e P n , there exists more than one q in

Q such that (p , q) is in f , then f is an incompletely specified function.

For a binary output function, the possible output values are 0 and 1. If the function

is incompletely specified, then for some input combinations, its output value can be

either 0 or 1. In this case, the output value is a don't care value.

When we realize an incompletely specified function, we have to fix its don't care

values to either 0 or 1.

In Table III, f is an incompletely specified function. f 1 and f 2 are two examples

to realize this function. Function g and h in Table lli are two extreme ways to realize

the function f. If we fix all the don't care values in f to 0, we get g. On the other hand,

20

TABLE III

EXAMPLES OF INCOMPLETELY SPECIFIED FUNCTIONS

0 1 0 1 {0,1} 0 1
1 0 1 { ,1} 1 0
1 1 1 1 1 1 1

if we fix all the don't care values inf to 1, we get h. If g and h are so defined, then for

any p e P n, the following relation is true:

g (p) ~ f (p) ~ h (p).

This relation shows us anther way to define or explain an incompletely specified func-

tion:

Given g : P n ~ Q and h: P n ~ Q are two completely specified functions, such that

g (p) ~ h (p) for all p e P n. If a function f is defined by the interval of g and h,

f (p) = [g (p),h (p)] 'trp E P n,

then f is an incompletely specified function.

A multiple-valued input, binary output, incompletely specified function f (

multiple-valued function, for short) is a mapping f (X b X 2, · · · , Xn)

P 1 X P 2 x · · · P n ~ Q, where X; is a multiple-valued variable, P; = { 0, 1, ... , p; - 1} is

a set of truth values that this variable may assume, and Q = 0,1,d (d denotes a don't

care value). This is a generalization of an ordinary n-input switching function

f : P n (2) ~ P (2).

Example II.9: Table IV is an example of a multiple-valued input binary output incom­

pletely specified function. Figure 6 is the corresponding map.

Given an incompletely specified function, the set of those input combinations,

whose associated output values are don't cares , is referred to as a DC -array of the func-

TABLE IV

AN EXAMPLE OF MULTIPLE-VALUED INPUT BINARY OUTPUT
INCOMPLETELY SPECIFIED FUNCTION

0
0
1
1
1
2
2
2

0

d

1

1
2
0
1
2
0
1
2

1

d

1

1
0

{0,1}
{0,1}

1

0

1

0

1
1
0

'
i
I

Figure 6. Map for a multiple-valued input incompletely specified function.

21

tion. The ON-array and OFF-array are defined as for completely specified functions. Fig­

ure 7 shows the ON- OFF- and DC-array of the function specified in Table IV.

ON-array OFF-array DC-array

X y X y X y

0 1 0 0 1 0

1 2 0 2 1 1

2 0 2 2

2 1

Figure 7. ON-, OFF- and DC-array of an incompletely specified function.

22

The cubes in the ON-array will be called ON -cubes. Similarly, the cubes in the

OFF-array and DC-array will be called OFF -cubes and DC -cubes respectively. We

write ON (f) to indicate an array of cubes for which/ = 1, OFF (f) and DC (f) to indi­

cate arrays of cubes for which/ = 0 and/ =don't care, respectively. Figure 8 shows the

different ESOPs representing the function given in Example II.9. Please note that the

don't care minterms can be covered by cubes an arbitrary number of times.

Example II.10: The corresponding ESOP expressions for Figure 8 are:

Figure 8a. xoy1 EB X 1 y2 EB x2y01,

Figure 8b. X12yo1 E9 xo1y1 EB X1Y12,

Figure 8c. yo1 EBxoyo ffiX1,

Figure 8d. 1 EB xo1 yo EB xo2y2.

11.2.4. Multiple Output Functions

A multiple output function is a mapping f : P n ~ Q m , where Q = { 0,1 ,d } . If

m=l, the function is a single output function. H m >1, it is a multiple-output function.

One way of dealing with multiple-output functions is to represent and minimize

them as a function with a single two-valued output. Let us consider a Boolean function

F with multiple outputs, that is, F (X h · · · , Xn) = (f o, ... , f m-1). We define a single­

output switching function F on n+1 variables where the variable Xn+1 takes the values

{0, ... , m-1}. F (Xb · · · ,Xn,Xn+1) = Fxn+1 (Xh · · · ,Xn) where F;(Xh · · · ,Xn)

denotes the i -th projection ofF (X h · · · , Xn), that is, fi. Therefore, only single-output

switching functions will be considered and n + 1 will denote the number of input vari­

ables.

Example 11.11: Given is a 3-input 2-output binary function F (x , y, z) = (f o, f 1) with

binary inputs specified by Table V.

23

X~ 0 1 2

01 IG
11 d I d IG
2101

(a) (b)

X~ 0 1 2

0

1

2
I '-V

(c) (d)

Figure 8. ESOPs for a multiple-valued input incompletely specified function.

TABLEV

AN EXAMPLE OF MULTIPLE OUTPUT FUNCTION

X v z I fo fl
0 0

0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 0 0
1 0 1 1 0
1 1 0 0 0
1 1 1 1 1

This function is described by an ON-array in Table VI.

TABLE VI

ON-ARRAY OF THE MULTIPLE OUTPUT FUNCTION

X

0
1
1

1
0
1

z
I
0
1
1

fo
1
1
1
1

/i
0
1
0
1

24

After transforming this ON-array of the function to the ON-array of 4-input function

F (x, y, z, v) with 2-valued input v, the ON-array ofF is shown in Table VII.

TABLE VII

CONVERTING A MULTIPLE OUTPUT FUNCTION
TO A SINGLE OUTPUT FUNCTION

X

0
0
0
1
1
1

b
1
1
0
1
1

z
1
0
0
1
1
1

v
0
0
1
0
0
1

Figure 9a and 9b are maps corresponding to Table VI. Figure 9c is a map corresponding

to Table Vll.

In Figure lOa, the ON-array of the function F is covered by an array of three cubes. The

corresponding ESOP expression of the function F is

xyEByzvEBzV.

We call this ESOP expression a solution ofF. Remember that although we transform

the multiple output function to a binary output function for easier handling, we have to

convert it back to a multiple output function as the final result. Substituting v = 0 to the

25

fO f1

' '
-

I

I 1 I
I

)) 1
I

1 1 1 1

1 1 1 1

I 1)) 1

L....-- ---

(a) (b) (c)

Figure 9. Map for a multiple output function.

solution ofF, we obtain function f o(x, y, z) = x y E9 z. Substituting v = 1 we obtain

f 1 (x, y , z) = x y E9 y z . The corresponding circuit is presented in Figure 1 Ob.

II.3. OPERATIONS

An operation is a mapping f: P n ~ P. Note that an operation is a special case of

a function. For n =1,2, the operations are called unary, and binary respectively. For

example, f : P ~ P is a unary operation, and f : P 2 ~ P is a binary operation.

II.3.1. Set Theoretic Operations

If P and Q are sets, we define the union of P and Q as

{ x I x E P or x E Q or both } .

The union of P and Q is denoted by P u Q. For example: {0,1} u {1,2} = {0,1,2};

{0,1} u {2,3} = {0,1,2,3}.

If P and Q are sets, the intersection of P and Q , denoted by P n Q , is defined as

{ x I x E P and x E Q } .

x-----1

y

(a)

~r=>- fO

~------~ r=>- fl

z--+--,-.--------+-----J

(b)

Figure 10. Map and circuit for a multiple output function.

The diff ere nee of sets P and Q, denoted by P - Q is defined as

{ x I x e P but x ~ Q } .

For example: {0,1,2}- {1} = {0,2}; {0,1}- {2} = {0,1}.

26

Please do not confuse the difference of two sets and the difference of two cubes.

The difference of two sets is a set operation. The result of the operation is a set which

contains the elements in set A but not in set B. The difference of two cubes (see page 18)

is a function which indicates how many vectors in the cubes are different.

27

If P n Q = 0, we say that P and Q are disjoint, otherwise, they are

non -disjoint. For example: sets {a ,b } and { c ,d} are disjoint; sets {a ,b } and { b ,c } are

non-disjoint. If P ¢. Q, Q ¢. P, and P n Q "# 0, we say that P and Q are overlapping.

Note that overlapping is a special case of non-disjoint. For instance, sets {p, q } and { q,

r } are overlapping, sets {p, q, r} and { q, r } are non-disjoint, but are not overlapping.

We write

PJQ

to indicate the sets P and Q are overlapping.

The exclusive -or (exor for short) of sets P and Q, denoted asP EB Q is defined as

{ x I either x e P or x e Q but not both }

By definition, P ffi Q = (P - Q) u (Q - P). For example: { 1,2} EB {2,3} = { 1,3}. In the

case of sets P and Q being disjoint, P $ Q = P u Q .

II.3.2. Cube Operations

If A is a cube, then the mapping An ~A is a cube operation. We will only dis-

cuss unary and binary cube operations in this thesis.

The super cube operation of cubes A and B is defined as follows:

A uB = [A1uB1t ... , AnUBn]

where A; u B; is a set union.

The intersection operation of cubes A and B is defined as follows:

A nB = { [A 1rlB 1, · .. , AnrlBn]
')>

if there is no such i that A; n B; = 0
otherwise

where A; nB; is a set intersection, and ')> is an empty cube.

Since we use a cube to represent a term, the operation of terms can be represented

as the operation of cubes. For instance, if two cubes A = [A 1, ... ,An] and B =

[B 1, ... , Bn] represent two terms Ts = X1 1
' ... , X~" and T R = xf I' ... , X~" respectively,

then the supercube operation of two cubes A and B

AuB = [A1uBb ... , A;-1UB;-bA;uB;,A;+luB;+b ... , AnUBn]

is equivalent to the supercube operation of two terms Ts and TR

Ts u TR = xlStURt ... X· S;-tURi-lx.S,uR,x. S;+tURi+l ... X SnuRn
t-1 1 t+l n ·

28

In cube notation, an operation between two variables is a local operation, and an

operation between two cubes is a global operation. A local operation is a set operation,

and a global operation is a cube operation. For example, the supercube operation A u B

is a globa_l operation, and A; u B; is a local operation.

Sometimes, different local or global operations may be performed on two cubes

depending on a relation between them. In cube notation, a relation between two vectors

(corresponding to a variable) is a local relation and a relation between two cubes

(corresponding to two terms) is a global relation For instance, given two cubes A =

[A 1A 2; · ·An] and B = [B 1,B 2, · · · Bn], then A c B is a global relation, and Ai c B; is

a local relation. A global relation is satisfied if all the local relations are satisfied. For

example, given:

A = [00 11 - 1100 - 111 0]

and

B =[1011-0110-1111]

we can see that A 1 c B 1 and A 3 ~ B 3, but A 2 ¢. B 2· So, A ¢. B .

The disjoint sharp operation on cubes A and B is defined as follows:

A#dB={ ~
A #dbasic B

when A nB = <t>
when A cB

otherwzse

where A #dbasic B is defined as follows:

A #dbasic B = {A h · · · A;-1, -JJ; nA;, Ai+1 nBi+b · · ·An n Bn

for such i = 1 , ... , n , that A; r:t B; }

29

In this formula, A t1 B and A ~ B are global relations. If the relation A t1 B = <1> is true

(satisfied), the resultant cube is A. If the relation A c B is true, an empty cube is gen­

erated. Otherwise the global operation A #d B is performed. A; ct. B; is a local relation,

and both A; t1 B i and -J3 i t1 A; are local operations.

Example II.12: Given two terms T 1 = y v and T 2 = x z v . They can be expressed as two

cubes:

A= [11-01-11-01]

B = [01-11-01-01].

These two cubes are shown in Figure 11a. Figure 11 b shows that A t1 B * <1> (none of the

vectors in resultant cube are empty sets). Next we check if the relation A c B is true.

Please note that A c B is equivalent to -,A u B "# 0. We can also check if the relation

A c B is false. This is equivalent to check if ::3 i, such that -J3; t1 A; * 0. Figure 11c

converts B to -J3. Here -J3 = [-J3 1;··, -J3n] is a global operation. Figure 11d intersects

A and -,B and shows that two of the local relations are true (-J3 1 t1 A 1 * 0 and

-J3 3 t1 A 3 "# 0). These two local relations are indicated by two arrows. Since the relation

A c B is false, the operation A #dbasic B should be performed. Two resultant cubes are

generated in Figure 11e and Figure 11f, respectively. Figure 11g shows the final results

in the Karnaugh map. Note that the disjoint sharp operation of cubes A and B generates

an array of disjoint cubes, which cover the minterms in cube A but not in cubeB.

30

11 10

A~~ I 01
11 01

B 01 11 01 01r---
01 -
11 CVLIQJ 01 01 01

10 B (e)

(a)

A 11 01 11 01

AH!l~ B 01 11 01 01 B 01 11 01 01

AnB 01 01 01 01 0 11 01,. 10..... 01

(b) (f)

B 01 11 01 01 X~ 00
01 11 10

I lo -,B 10 00 10 10 oo I
(c)

0110

A 11 01 11 01 11
-,B 10 00 10 10

-

-,BnA 10 00 10 00 10

t t (g)
(d)

Figure 11. Example of a disjoint sharp operation.

CHAPTER III

MULTIPLE-VALUED INPUT EXCLUSIVE SUMS
OF PRODUCTS MINIMIZATION

III.l. THE COST FUNCTIONS

The object of logic minimization is to reduce the cost function. Our primary goal

of MIESOP synthesis is to minimize the number of terms. For the circuit with the

minimum number of terms our secondary goal is to minimize the total number of connec-

tions (wires). To combine these two goals together, the cost function C to be used in our

program is:

where:

C =NT+ NI
NI;n

- NT is the total number of terms in the solution,

- NI is the total number of input wires to AND and EXOR gates in the solution,

- NI;n is the total number of input wires to AND and EXOR gates in the initial function.

After the function is minimized, the number of connections in the solution will be less or

equal to the number of connections in the initial function. So,

NI < 1.
0 < NI;n -

Since one term reduced in the solution will reduce the cost function by 1, our pro-

gram will selecte the solution which has minimum number of terms. Among the solu-

tions which have the same number of terms, the program will select the one which has

minimum number of connections. For instance, literal X012 as an input to an AND gate

requires a single wire for the 2-by-4 decoder realization of logic with 4-valued inputs.

32

xo1 is realized as X 012 xo13. It, therefore, requires two wires. Similarly X 0 =

xo12 xo13 X023 requires three wires. A product term X 0Y1 requires six wires. An ESOP

xoyl Ef> X lyO contains two terms and requires 12 wires to AND gates and 2 wires to an

EXOR gate. If this ESOP is our initial function, then the cost function is:

C =NT+ NI I Nlin = 2 + 14 I 14 = 3.

If the ESOP is minimized as x01y1 EB XlyOl, then only 10 wires to AND gates are

required. The corresponding cost function is:

C = 2 + 12 I 14 = 2.86.

For different technologies, different cost functions may be used. For instance, if

we only concern the number of terms in the final results, then we can use the cost func-

tion C =NT. On the other hand, if we only concern the number of wires, then we can use

the cost function C = NI. In chapter VI, we will try to use different cost functions to

compare our results with the results from other authors.

III.2. THE PROPERTIES OF THE ESOP

Let A, B, C denote any multiple-valued input literals, or any functions on them.

The following operations hold for multiple-valued input algebra:

1. Associative laws: A E9 (B E9 C) = (A E9 B) EB C

2. Commutative laws: A E9 B = B EB A

3. Identities:

3a. A Ef> A = 0

3b. X;s; Ef> X;Rj =X;sj ffiR;

3c. X;S; Xjsj E9 X;R; XjRj = X;S; ffi R; Xjsj tB X;R; xjsj ffi Rj

_ x.si mR;x.Rj ln x.six.sj ffiRj
- I 1 I;J;7 I 1

33

11!.3. BASIC IDEAS TO MINIMIZE THE ESOP

Given an ESOP, it can be represented as an array of cubes. We can do the follow­

ing things to minimize the function:

Ill.3.1. Removing Two Equal Cubes

According to property 3a, if any two cubes A and B in the array are equal (

difference(A ,B) = 0), they can be removed from the array.

Example Ill.1: The following array of four cubes

[0101 - 1111 - 1001 - 0101]

[0101- 0011 - 1101 - 1101]

[0101 - 1111 - 1001 - 0101]

[0 111 - 100 1 - 000 1 - 111 0]

can be reduced to an array of two cubes

[0101- 0011 - 1101 - 1101]

[0 111 - 1001 - 0001 - 111 0]'

because the first cube and the third cube in the array are identical.

Ill.3.2. Combining Two Cubes which Differ in One Variable

According to property 3b, if any two cubes in the array differ in one variable, these

two cubes can be combined to one cube.

Example lli.2: Two cubes x 101 and x 111 can be combined to one cube x 1x 1 as shown

in Figure 12.

Ill.3.3. Reshaping Two Cubes which Differ by 2

If two cubes in the array differ by 2, these two cubes can be reshaped. In other

words, they can be replaced by another pair of two cubes. The number of cubes in the

34

x~oo 01 11 10

oo I 17 , I 1\ I I
XY'1 QQ 01 11 10

ool I :L I I
01 01 ____.

~~I 1\YI"I I ~~I I --r I I

Figure 12. Combining two cubes into one cube.

array is not reduced by reshaping. However, reshaping may provide the chance to reduce

the number of cubes later.

Example III.3: Given three cubes: A =x 101 , B = 1111 and C =lOx 1. The number of

cubes can not be reduced directly, since none of them can be removed or combined.

Because that the cubes A and B differ by two, they can be reshaped to cubes A' and B'.

Then cubes B' and C can be combined to cube C' . The number of cubes are reduced

from 3 to 2. This process is shown in Figure 13.

xyv 00 01 11 10 xy v 00 01 11 10 11 10

00 A 00 A'

01 B 01 B' C'
~ ~

11 11

10 c 10 c 10

Figure 13. Reshaping two cubes.

Ill.3.4. Increasing the Number of Cubes

This seems contradictory to our goal: minimizing the number of cubes. However,
-Jj

it has been proved [Bran 91] that a set of rules (operations) can not generate a minimum

form of certain ESOPs if it satisfies the following conditions:

1. Each rule changes at most two terms at a time.

35

2. Each rule does not increase the number of the terms.

In other words, if we only use the first three methods (remove, combine, and reshape),

our solution may be a local minimum. We will discuss how to increase the number of

cubes later.

III.4. THE OPERATIONS USED IN EXORCISM

Dr. Perkowski and his former students developed an algorithm for ESOP minimi-

zation called EXORCISM [Hell 88, Perk 89]. The following operations are used in

EXORCISM.

III.4.1. Primary Xlinking

Given two terms, if their truth value sets for each variable are either equal or dis­

joint, then these two terms are primary xlinkable. For example, terms X 01Y 0Z 0U2V13

and x2y2z2U2V 13 are primary xlinkable, because their truth value sets for each variable

are either equal (variable U and V) or disjoint (variable X, Y, Z). Terms

xotyozou2v13 and X12y2z2u2v13 are not primary xlinkable, because their truth value

sets for variable X are neither equal nor disjoint.

Primary xlinking is defined by the following formula:

Ts q) TR =6) { x1 1 • • • xf.!._11xfi uR;xfit · · · x:,
for such i = 1, ... , n, that S; (l R; = 0}

S S R R .
where Ts =X 11

••• Xn" and TR =X 1 1
••• Xn" "# Ts are two terms, and all the vanables

have either equal or disjont truth value sets. We give the following two examples to

show the primary xlinking. In both examples, 4-valued variables are assumed.

Example III.4: Given two terms T 1 =XOlf1Z0V1 and T 2 =X 01Y0Z 0V1. These two terms

are primary xlinkable, since

)'

I

36

- for X: { 01} = { 01}.

- fo~Y: {1} n {0} = 0.

-for Z: {0} = {0}.

- forV: {1} = {1}.

Since the distance between two terms is 1, only one resultant term is generated, which is:

A CDB =Xo1yo1zov1.

Figure 14 shows the procedure.

Example III.5:

2 o y1

xoi,yol~

x01 jy01j zO y1

Figure 14. Procedure of distance 1 primary xlinking.

Given two terms T1 =X01 Y01Z 0V1 and T 2 =X01 Y23Z 12V1. These two terms are also pri-

mary xlinkable, since

-for X: {01} = {01 }.

-for Y: {01} n {23} = 0.

-for Z: {0} n {12} = 0.

-for V: { 1} = { 1}.

Since the distance between two terms is 2, two resultant terms are generated by primary

xlinking of terms T 1 and T 2· The result is:

T1 cp Tz=Xolz12Vl Ef>XOlyOlz012VL

Figure 15 shows the procedure.

37

yOT"j zO yl

x01 1 y23 I

~
x01 1 y01~ 2 12 vl

(a)

I xor -yrr] 1£U I vl

xOI y23 lz121~

xOI yO I 1 zOI~ ~ ,)

(b)

Figure 15. Procedure of distance 2 primary xlinking.

Ill.4.2. Secondary Xlinking

Given two terms, if there exists ~xactly one variable for which the truth value sets

associated with one term is a sub set of the truth value set associated with the other term,

and for all other variables, their truth value sets for each variable are either equal or dis­

joint, then these two terms are secondary xlinkable. For example, terms X 01Y0Z 0U2V 13

and X 1Y2Z 2U2V 13 are secondary xlinkable, because there is one variable (X) for which

one truth value set ({ 1 }) is a sub set of another ({ 01 }), and for all other variables, their

truth value sets for each variable are either equal (variable U and V) or disjoint (variable

Y, Z). Terms X01 yozou2v 13 and X l 2Y 2Z 2U 2V 13 are not secondary xlinkable, because

their truth value sets for variable X are overlapping. Terms X01 Y 01Z 0U 2V 13 and

X 1 yozzuzv 13 are also not secondary xli~able, because there are two variables (X and

Y) for which the truth value sets associated with one term are included in the truth value

sets associated with the other term.

38

Secondary xlinking is defined by the following formula:

Ts GTR =TN ffi(Ts Q)(TR <PTN))

where Ts = xfl ... xJII and TR = xf 1
••• x:ll # Ts are two terms; and there exists exactly

one variable X; such that S; ::::> R; and other variables have either disjoint or equal truth

value sets, and TN =Xf 1
••• X{.!_t xf .. -R .. Xf/.t1

••• x:".

We give the following two examples to show the secondary xlinking.

Example lli.6: Given two terms Ts =X0 lylzovl and TR =X lyOz 0v 1. These two terms

are secondary xlinkable, since

for X: {01} ::::> { 1 }.

forY: {1} n {0} = 0.

for Z: {0} = {0}.

for V: { 1} = { 1}.

The distance between two cubes is 1, but the difference between the two cubes is two, so

two resultant cube are generated. The result is:

Ts G TR =X0Y0z0Vl $ XOlfOlzOVL

Figure 16 shows the procedure. In Figure 16a, TN is generated. Figure 16b shows the

result of (TR <P TN). Figure 16c shows the result of (Ts <P (TR <P TN))

Example III.7: Given two terms Ts = XOlyOlzOVl and TR = Xly23z12Vl. These two

terms are also secondary xlinkable, since

-for X: {01} ::::> {1},

-for Y: {01} n {23} = 0,

-for Z: {0} n { 12} = 0,

-for V: { 1} = { 1}.

39

X~ yl
zO y1

~yO zO y1

x1 lyo zO yl~ IY0 zO yl

~ yO zO I xOII yO zO yl y1

(a) (b)

~ IY1 l zO yl

x01 yO I zO y1

x01 y01 zO y1

(c)

Figure 16. Procedure of distance 1 secondary xlinking.

The distance between the two terms is 2, and the difference between the two terms is

three. So, three resultant terms should be generated by secondary xlinking of terms Ts

and T R • Figure 17 shows the procedure. In Figure 17 a, TN is generated. In Figure 17b,

(TR <P TN) is generated. In figure 17c and figure 17d, two resultant cubes are generated

by (Ts <P (TR <P TN)). The result is:

Ts G TR =XOf23z12Vl EB xolz12Vl EB xmyolz012Vl.

111.4.3. Unlinking

Unlinking operations are inverse to the xlinking operations. Two unlinking opera-

tions are used in EXORCISM:

1. primary unlinking,

2. secondary unlinking.

The primary unlinking is an inverse operation to the primary xlinking and the

secondary unlinking is an inverse operation to the secondary xlinking.

40

xOl yOl zO yl fXTl y23 z12 yl

xl 1 y23 z12 yl~ I x 0 I I Y23 z12 yl

xO I y23 z12 lxOll y23 zi2 yl yl

(a) (b)

1l zO yl xOl yOl yl

x01 1 y23 I

~
x01 y23 z 12

~ x01 1 y01231 xOl y01 z01 z12 v1 v

(c) (d)

Figure 17. Procedure of distance 2 secondary xlinking.

III.5. THE OPERATIONS USED IN EXMIN

Sasao [Sasa 90a] used the following seven simplification rules in his algorithm

EXMIN. The first rule, X-MERGE, can be applied if the difference of two terms is 1.

The rest of the rules can be applied if the difference of two terms is 2 and certain condi-

tions are satisfied. In this section, we are going to show all seven rule with examples. 4-

valued logic is assumed for all the examples. Please note that for applying these rules, the

two terms can have more than one or two literals. The number of resultant terms is equal

to the difference of the two terms. Those pairs of literals which have the same truth

value sets in both terms will keep the same truth value sets in the resultant terms. Those

pairs of literals which have different truth value sets will generate different literals

according to the corresponding rules.

(1) X-MERGE

xa EBXb =X(a GJb)

41

Example III.8:

X12y01 Ef>X12y12 =X12y(01EB12) =X12yo2

as shown in Figure 18.

~

Figure 18. X-MERGE.

In example Ill.8, the difference of two terms is 1. So, X-MERGE can be applied and one

resultant term will be generated. The literal X 12 which is the same in both terms keeps

the same truth value set in the resultant term. Another pair of literals, Y01 and Y12 gen­

erate the literal Y02 in the resultant term according to the rule.

(2) RESHAPE

xayb Eaxcyd =xay(brld)Ef>X(auc)yd if(anc =0 ,b::::>d)

Example III.9:

X 1y12 Ef) X23yl =X 1y2 Ef) X 123yl

as shown in Figure 19.

x:f. o 1 2 3

0

~EifB ~

(\ ""
' ./

3 v

Figure 19. RESHAPE.

v

(3) DUAL-COMPLEMENT
X1

xa yb EB xc yd =XC f(b r'ld) ffi x<a r'!c)yb if (a c c 'b -::::J d)

Example III.10:

X 1 y 12 E9 X 123 y 1 = X 123y2 EB X 23 y 12

as shown in Figure 20.

X~ 0 1 2 3

0

1
~

2

3

Figure 20. DUAL-COMPLEMENT.

(4) X-EXPAND-1

xayb ffixcyd =xay(bud)ffiX(auc)yd =X(auc)yb EBxcy(bud)

if (a n c = 0 , b n d = 0)

Example III.11:

X23yl ffi x1y2 =X23f12 ffi Xl23y2 =X123yl EB X 1y12

as shown in Figure 21.

(5) X-EXPAND-2

xayb ffiXCfd=X(auc)yb EBxcy(br.d) if(anc =0,b:::Jd)

Example III.12:

x1y12 ffiX23f1 =X123y12 Ef7X23y2

as shown in Figure 22.

(6) X-REDUCE-1

xayb ffixcyd =X(a r.c)yb EBxcy(d r.b) if (a :::J c , b cd)

42

1\

' I

~

r "" \
J _ '0

~

h
~ r"-J

\}

Figure 21. X-EXPAND-1.

1
t----1---11---11----1

2
t----t+-HI---11----1

3

~

(\
(I '

I

\ w
Figure 22. X-EXPAND-2.

Example Ill.13:

X123yl ffiXlf12 =X23yl ffiXlf2

as shown in Figure 23.

(7) X-REDUCE-2

xayb EBxcyd =X<anc)yb EBxcy(bnd)=Xay(bnd)ffiX(anc)yd)

if (a => c , b => d)

Example Ill.14:

X123y12 ffi X23y2 =X123yl ffi X 1y2

43

44

(:j :::>
~

v "
l\.. ..1

I

I I

ll
I I
\ I

Figure 23. X-REDUCE-I.

as shown in Figure 24.

I\ v

~
I\.

\}

Figure 24. X-REDUCE-2.

CHAPTER IV

THE MULTIPLE-VALUED EXORLINKING OPERATION

IV.l. THE FORMULA

LetTs =X 151
... Xn s, and TR =X 1R

1
... Xn R, -:!= Ts be two terms. The exorlink of

terms Ts and TR is defined by the following formula:

Ts ® TR = tB {xf 1
.. • Xf.!_11X/

5
; EaR;)Xftt1

.. • x:" I for such i = 1, ... , n, that S; -:~=R;}

We will give a systematic procedure for finding exorlinks of full terms below. The

application of this procedure will be called exorlinking. The result of the procedure will

be called the exorlink of the two original full terms.

Example lll.15: To find the exorlink of a pair of two full terms, Ts =

xo1 yo2 z012 U2 V 13 and TR =X 12 Y 12 z2 U2 V 13, in a 4-valued function, we write them

vertically as shown in Figure 25a.

Each time when the polarities of the literal are different from full term to full term

in the pair it is denoted by an arrow. Each arrow will give rise to one term of the exor­

link. Let us now consider each arrow separately. The above initial pair of full terms can

then be expanded to three resultant terms for variables X, Y, and Z respectively, as

shown in Figure 25.

1. For variable X, the resultant term X 02 Y12 z2 U2 V 13 is created as shown in Fig­

ure 25b. The literal X 02 in the resultant term is generated by X 01 EB X 12. Other

literals in the resultant term are copied from the term T R .

2. For variable Y, the resultant term X01 Y01 Z 2 U 2 V 13 is created as shown in Fig­

ure 25c.

xOl

x12

t

y02

y12

t

z012 u2

z2 u2

t
(a)

xOil y02 z012 u2

x12 [2 z2 u2

x02 y12 z2 u2

(b)

y02I z012 u2

x12 y12 I z2 u2

xOl yOl z2 u2

(c)

y13

y13

y13

~ y13

y13

~ y13

I xOI y021 zOI~ u2 y13

x12 y12 z2 I lu2 ~~

xOl y02 1 zOl 1 u2 y13

(d)

Figure 25. An example of exorlinking two terms.

46

3. For variable Z, the resultant term X01 f 02 zol uz V13 is created as shown in

Figure 25d.

Under each pair of literals of different sets of values under consideration (X in the

first pair, Y in the second, Z in the third pair), we write the multiple-valued literal, with

the set of truth values being the exclusive-sum of the respective sets from the literals of

the terms. To create the result of exorlink for a resultant term, we copy the part of the

47

term to the left of the literal from the top full term, the part to the right of the literal is

copied from the bottom full term as shown. The exorlink of the initial pair of full terms

is an EXOR of exorlink terms of the second order pairs for each literal of different

values. Therefore

xOiyo2zot2u2yl3 ® x12y12z2u2vB = xo2yt2z2u2yl3 EB xotyotz2u2y13 EB

xOiyo2zotu2vl3.

This procedure can easily be further extended for any two terms in which for every

two correspondingly different literals for the same variable, X;s,. and X;R;, the sets S; and

R; are different.

Given terms Ts and TR, if the difference of two terms is r, we call Ts ® TR the

difference r exorlinking. If the distance of two terms is d, we call Ts ® TR the distance

d exorlinking.

In cube notation, a term is represented by a cube, and each literal in the term is

represented by a vector. We can write the formula of exorlinking in cube notation as fol­

lows:

A ® B = Et> { [Ab ... ,A;-},A;EBB;,B;+b ... ,Bn] I for such i = 1, ... , n, that A; *B;}

The procedure of exorlinking two cubes is the same as exorlinking two terms. Figure 26

shows the exorlinking of two cubes corresponding to the two terms given in Example

Ill.15.

Now let us prove that the exorlinking can be applied on any two cubes in the array

no matter their difference.

Given two cubes A = [A 17 A 2, ... ,An] and B = [B 1, B 2, ... , Bn] in the array:

1) Difference = 0 is trival. No resultant cube will be generated according to our for­

mula. On the other hand, if the difference of two cubes is 0, they will be removed

from the array. So, our formula is correct in this case.

48

1100- 1010- 1110- 0010- 0101

0110- 0110- 0010- 0010- 0101

t t t
(a)

1100- 1010- 1110- 0010- 0101

0110- 0110- 0010- 0010- 0101

1010 0110 0010 0010 0101

(b)

1100- 1010- 1110- 0010- 0101

0110- 0110- 0010- 0010- 0101

1100 1100 0010 0010 0101

(c)

1100- 1010- 1110- 0010- 0101

0110 - 0110 - 0010 - 0010 - 0101

1100 1010 1100 0010 0101

(d)

Figure 26. An example· of exorlinking two cubes.

2) In the case difference = 1, without loss of generality, we can assume A; 'i= B;.

According to the formula,

A ffiB =[At, ... ,A;-t,A; ffiB;,B;+b ... ,Bn].

On the other hand,

A ®B =A ffiB = [At,Az, ... ,A;, ... ,An] ffi [BbBz, ... ,B;, ... ,Bn].

Since A J = B J when i 'i= j, we can rewrite A and B as

A =[A 1, ... ,A;, B;+b ... , Bn]

and

B = [Ab ... ,A;-t,B;, ... ,Bn].

According to distributive law: A B EB A C =A (B EB C), we have

49

ABDEBACD=(ABEBAC)D=A(BffiC)D.

So,

A $B = [A1, ... ,A;,Bi+l' ... ,Bn] ffi [At, ... ,A;-l,B;, ... ,Bn]

=[A b ... , A;-b A; EBB; B;+b ... , Bn].

3) Assume our formula is correct when difference = i, i ~ 1. Without loss of general-

ity, let us assume A j -:t= B j when j ~ i and Aj = B j when j > i. Accordign to our

formula, A ® B will generate the following resultant cubes:

[A 1 ffi B b B 2, . . . , B n]

[AbA2 EBB2,B3, ... , Bn]

[A b ... , A;-b A; EBB;, B;+h···' Bn].

4) We will prove that when difference= i +1, our formula is also correct. Given two

cubes A' andB'. A'= [Ab ... ,A;, ... ,A'k·, ... ,An] andB' = [B1, ... ,B;, ... ,B'k, ... ,

Bn]. The first i literals in the two cubes are different, as in the case of cubes A and

B. Assume A' k "# B' k and i < k ~. So, difference(A', B') = i + 1. We create a

cube A" =[A 1, ... , A;, ... , B' k , ... ,An]. All the literals in A" are the same as in

A', except thatA'k is substituted by B'k·

Since A ffi A = 0, we have

A' EBB' =A' EB A" ffi A" EBB'.

Since difference(A", B') = i, according to 3), A" EBB' =

[A 1 EB B b B 2, ... , B n]

[AbA2 EBB2,B3, ... , Bn]

[Ab ... , A;-1,A; EBB;,B;+l, ... ,Bn].

Since difference(A', A") = 1, according to 2), A' E9 A" =

[A}, ... ,A'k EBB'b ... ,Bn].

So, A" E9 B" =

[A 1 E9 B h B 2· ... , Bn]

[AbA2 EBB2,B3, ... , Bn]

[Ab ... , A;-1,A; EBB;,Bi+l, ... ,Bn]

[Ab ... ,A'k fBB'b ... ,Bn].

50

These are exactly the same resultant cubes our formula will generate. So, our formula is

correct no matter the difference of the two given cubes.

In the rest of this chapter, we will discuss difference 1, difference 2, and difference

3 exorlinking. These operations are used in our EXORCISM-MV-2 algorithm. We will

also compare exorlinking with xlinking [Hell 88, Perk 89] and the operations in EXMIN

[Sasa 90a]. For convenience, we will use terms in equations, and use cube notation in

maps.

IV.2. DIFFERENCE 1 EXORLINKING

Given two terms Ts and TR, assume xs; and xR; are a pair of literals in terms Ts

and TR' respectively. Assume xS; :/= xRj and other pairs of literals in the two terms are

equal. Then these two terms are difference 1 exorlinkable. Difference 1 exorlinking of

two terms generates one resultant term. When the difference of two terms is 1, the dis­

tance of the two terms can be 0 or 1.

IV .2.1. Difference 1 Distance 1 Exorlinking

Example III.16: LetTs =X23 y23, and TR =Xl y23.

Ts ® TR =X{23} EB {1} y23 =X123y23

This operation is equivalent to distance 1 primary xlinking of EXORCISM [Hell 88, Perk

89], and X-MERGE of EXMIN [Sasa 90a].

xy o 1 2 3

0
t--;--t--t----1

1
t--;--t-::::::::t::::---1

2
1----t---tt--+----tt

3

___..

Figure 27. Difference 1 distance 1 exorlinking.

IV.2.2. Difference 1 Distance 0 Exorlinking

~1

When the difference of two terms is 1 and the distance of two terms is 0, there are

two possible cases: the two truth sets are overlapped, or one of the truth sets is contained

in the other.

Example III.17: LetTs =X123 y23 and TR =Xl y23.

Ts ® TR =Xf123J m {l} y23 =X23y23

The truth set of X in term TR is contained by the truth set of X in term Ts. The operation

is shown in Figure 28.

X
y 0 1 2 3 ~0 1 2 3

0 0

1 1
~

2 2

3 3

Figure 28. An example of difference 1 distance 0 exorlinking (S; :::> R;).

Example III.18: LetTs =X123 y23 and TR =Xol y23.

Ts ® TR =Xf123J m {01} y23 =X023y23

The truth sets of X in terms Ts and TR are overlapped (denoted asS; l R;). The opera-

52

tion is shown in Figure 29.

~

Figure 29. An example of difference 1 distance 0 exorlinking (Si l Ri).

This operation is equivalent to X-MERGE of EXMIN [Sasa 90a].

IV.3. DIFFERENCE 2 EXORLINKING

Given two terms, if two pairs of their truth sets are different (assume x 5
i :-;:. xR,

and Y 5
i :-;:. yRi), then difference 2 exorlink can be performed, and two resultant terms will

be generated.

Let us observe that difference 2 exorlink of two terms Ts and TR is different from

the difference 2 exorlink of two terms T R and Ts .

Example lll.19: Given two terms Ts = xon f13 and TR = X23 yOl:

Ts ® TR = X013 y13 ® X23 yo1 = xo12 yo1 Ef) xo13 y03

TR ® Ts =X23 yOl®X013 y13 =X012 y13 E9X23 yo3.

The procedures of these two operations are shown in Figure 30a and 30b.

As we discussed in section 11.3.1 (see page 27), if the truth sets S; and R; are dif-

ferent, there are three possibilities:

- S; nR; = 0,

·- S· XR.
' X I'

- S; :::> R; orR; :::> S;.

y13

--~

x23 yOl

x013~

xOl ~~

(a)

(b)

&; 3

x013

)a
(~

x23

Figure 30. Difference 2 exorlinking (Ts ® TR and TR ® Ts).

53

In the case of difference 2, there are many different combinations for relations S;, R; and

Sj, R j. Next, we are going to discuss each of these cases by showing examples.

1. S; rlR; = 0, Sj rlRj = 0

Given Ts = X23Yl, and TR =Xly2

Ts ® TR =X23fl®Xlf2 =X123y2 Ef> X23y12

as shown in Figure 31 a.

TR ® Ts =Xlf2Q9X23yl =Xl23yl Ef>Xlf12

as shown in Figure 31 b.

This operation is equivalent to distance 2 primary xlinking of EXORCISM [Perk 89], and

X-EXPAND-I ofEXMIN [Sasa 90a].

2. S; rlR; = 0, Sj ~Rj

Given Ts = X23y12, and TR =Xly2

T s ® T R = X 23 y 12 ® X 1 y2 = X 123 y2 E9 X 23 y 1

as shown in Figure 32a.

I

0
I

~

I
.

-- \I

(a)

I

0
I

~

Pt. ::> ~

I \
I I
\ J \I

(b)

Figure 31. Difference 2 exorlinking (S; n R; = 0, Sj n Rj = 0).

X
Yo 1 2 3 ~0 1 2 3

0 0

1 1
~

2 2

3 3
(a)

X
Yo 1 2 3 ~0 1 2 3

0 0

1 0 1

If 1\
~

2 2

3 I~ L) 3
(b)

Figure 32. Difference 2 exorlinking (S; n R; = 0, Sj ::::> Rj).

TR ® Ts =Xlf2®X23y12 =X123y12 $ Xlfl

as shown in Figure 32b.

54

55

The operation RESHAPE of EXMIN [Sasa 90a] generates the same result as Figure 32a.

The operation distance 1 secondary xlinking of EXORCISM [Perk 89], and X­

EXPAND-2 of EXMIN [Sasa 90a] generate the same result as Figure 32b.

3. S;nR;=0,SjlRj

Given Ts =X23y12, and TR =Xly23

Ts ® TR =X23y12®Xly23 =X123y23 Ef>X23yl3

as shown in Figure 33a.

T R ® T s = X 1 y23 ® X 23 y 12 = X 123 y 12 Ef) X 1 y 13

as shown in Figure 33b.

x~Oill213 x~o 1 2 3
I I I I

:Ba!l ----;a... :~
3 3

(a)

x~OI11213

:Ba!l
X~ 0 1 2. 3

ojj~j
1

----;a... I I! I 'II I

2
I I\ I I I I

3 3
(b)

Figure 33. Difference 2 exorlinking (S; n R; = 0, Sj ~ Rj)·

No compatible operation can be found in the previous literatrue.

4. S; :::> R;, Sj :::> Rj

Given Ts =X 123Y12, and TR =X23y2

Ts ® TR =X 123y12® X23y2 =X 1y2 Ef) X 123yl

as shown in Figure 34a.

TR ® Ts =X23y2(8) X123y12 =X1y12 EB X23y1

as shown in Figure 34b.

I\ 0
~

\I
(a)

~0 1 2 3

0

1
~

2

3
(b)

Figure 34. Difference 2 exorlinking (Si :::) Ri, Sj :::) R i).

56

This operation is equivalent to the secondary unlink of EXORCISM [Perk 89] and X-

REDUCE-2 of EXMIN [Sasa 90a].

5. S; :::)R;,Sj cRj

Given Ts = X123f1, and TR =X1y12

Ts ® T R =X 123y 1 ® X 1 y 12 = X 23y 12 E9 X 123 y2

as shown in Figure 35a.

This operation is equivalent to DUAL-COMPLEMENT of EXMIN [Sasa 90a].

TR ® Ts =Xly12®X123yl =X23yl ffiXlf2

as shown in Figure 35b.

This operation is equivalent to primary unlink of EXORCISM [Perk 89], and X-

x~O 1 2 3
I I I I

:Elta ~
3

(a)

~ t::>
~

v
(b)

xy o 1 2 3

0

1 (\

2 l(f'\
'I II

3

0
I '
I \
\ J

\}

Figure 35. Difference 2 exorlinking (Si ~ Ri, Sj c Rj).

REDUCE-1 of EXMIN [Sasa 90a].

6. S; =>Ri,Sj lRj

Given Ts = X 123y12, and TR =Xly23

Ts ® TR =X123y12®Xly23 =X23y23 E9X123y13

as shown in Figure 36a.

TR ® Ts =Xly23®X123y12=X23y12 E9Xlyl3

as shown in Figure 36b.

No compatible operation can be found in the previous literature.

7. S; lR;,Sj lRj

Given Ts =X23y12, and TR =X12y23

X23y12 E9 x12y23 =X13y23 E9 X23y13

as shown in Figure 37a.

Xl2y23 E9 x23y12 =Xl3yl2 E9 x12yn

57

X
Yo 1 2 3 ~0 1 2 3

0 0

1 1
~

2 2

3 3
(a)

X
Yo 1 2 3 ~0 1 2 3

0 0

1 1
~

2 2

3 3
(b)

Figure 36. Difference 2 exorlinking (S; :::> R;, Sj ~ Rj).

x~O 1 2 3
I I I I

:ttm
3

x~O 1 2 3
I I I I

:ttm
3

xy o 1 2 3

0
r-+--+--+--1

1
~ t---+--+---+------4

2
I II II :=lL II

3
(a)

1
~ r-++--~::..++--H

2
I I '~4 ''I

3
(b)

Figure 37. Difference 2 exorlinking (S; ~ R;, Sj I Rj).

as shown in Figure 37b.

58

59

No compatible operation can be found in the previous literatrue.

The following two tables comparing the difference 2 operations of exorlinking

with xlinking of EXORCISM [Perk 89] and operations of EXMIN [Sasa 90a].

TABLE VIII

COMPARISON OF EXORLINKING WITH XLINKING

-----~

S;("')R;=0 S; ("')R; =0 S;("')R;=0 S;~R; S; ~R; S;~R; S; IR;

Sj ("')Ri=0 sL~RL Sj IRj Sj~Rj Sj CRj Sj IRj Sj lRj

distance 2 distance 1 distance 1

Ts~TR primary secondary secondary

xlinking xlinking unlinking

distance 2 distance 1 distance 2

TR ~Ts primary secondary primary

xlinking unlinking unlinking

TABLE IX

COMPARISON OF EXORLINKING WITH OPERATIONS IN EXMIN

As we discussed in section III.3.3. (see page 33), difference 2 operations do not

directly reduce the number of cubes in an ESOP. However, these operations provide

opportunities for reducing the cost of ESOPs at later stages. Exorlinking has more differ-

ence 2 operations than approaches of EXMIN [Sasa 90a] and EXORCISM [Hell 88, Perk

89], which means it provides more opportunities for reducing the cost of ESOPs than

60

EXMIN or EXORCISM.

Example III.20: Given is an ESOP with three terms: T 1 =X 12y23, T 2 = X23y 12 and T 3 =

X 0Y13. Any pairs of these three terms are different by two, but no operations in EXOR­

CISM or EXMIN can be applied to these terms. We can, however, apply exorlinking to

these terms. In Figure 38, three terms T 1, T 2 and T 3 are represented by three cubes A , B

and C, respectively. A ~ B generates A' and B'; A' ~ C generates A". The ESOP with

three cubes is minimized to an ESOP with two cubes.

~

B !
X~ 0 1 2 3

I I!\ I I!\ I
0

1

2

3

Figure 38. An example of ESOP minimization by difference 2 exorlinking.

61

IV.4. DIFFERENCE 3 EXORLINKING

Difference 3 exorlink generates three resultant terms from two given terms. If S;

:::> R;, Sj n Rj = 0, and Sk n Rk = 0, the operation is equivalent to distance 2 secon­

dary xlinking of EXORCISM [Perk 89].

Difference 3 exorlinking increases the number of terms in the ESOP. However, as

we discussed in section lll.3.4. (see page 34), increasing the number of terms may help

to reduce the number of terms at the later stage and get better results.

Example III.21: In binary logic, a given ESOP with 4 cubes is as follows:

OOOx , Ox 11, x 11x , 10 10.

The ESOP is shown in Figure 39a. Any pair of these cubes differ by 3. So, there are no

difference 1 or difference 2 operations that can be performed. Performing difference 3

exorlinking on the first two cubes, we get:

OOOx ®Ox 11 = 0111 EB OOx 1 EB 0000.

Replacing the first two cubes by these three cubes, we get a new ESOP with five cubes:

0111, OOx 1, 0000, x 11x, 1010,

which is shown in Figure 39b. Two of the above cubes differ by 2: 0000 and 1010. We

can perform difference 2 exorlinking on them:

0000® 1010 = x010 EB OOxO.

After this operation, the ESOP contains five cubes:

0111, 00x1, x010, x11x, OOxO,

which is shown in Figure 39c.

Now, the cubes OOx 1 and OOxO differ by 1, we can perform difference 1 exorlinking on

them:

OOx 1 ® OOxO = OOxx.

The ESOP now contains four cubes:

62

0111, OOxx , x 0 10, x 11x ,

which is shown in Figure 39d.

Performing difference 2 ex or linking on cubes x 010 and x 11x , we obtain:

X 010 ® X 11x = XX 10 ffi X 111.

The ESOP is

0 111, OOxx , xx 10, x 111,

which is shown in Figure 39e.

Cubes 0111 and x 111 can be combined to one cube:

0111®x 111 = 1111.

The final result is an ESOP with three cubes as shown in Figure 39f. By using difference

3 exorlinking, the number of the ESOP is temporarily increased, but it helps to jump out

of the local minimum and achieve a better result

IV.5. SUMMARY

Xlinking uses one formula to present the primary xlinking for any distances.

Another formula is used for distance 2 secondary xlinking. Separate rules are used for

unlinking. There are no general formulas in EXMIN. Each operation is presented by a

separate formula. However, there are more operations in difference 1 and difference 2 in

EXMIN than in EXORCISM. That is one of the reasons that EXMIN generates better

results than EXORCISM [Sasa 90a]. Exorlinking is described by one formula. It contains

all the possible operations in xlinking approach. In other words, it can link any two

terms in a given ESOP without condition. All the operations used in EXORCISM and

EXMIN are included in exorlinking as special cases. In xlinking approach, the basic

method is to perform different cube operations iteratively to combine or reshape cubes.

More operations will provide more opportunity to minimize the ESOPs. This is the rea­

son that exorlinking is superior than xlinking and the operations in EXMIN.

63

:;..

10 10

(a)

E

rd) (c)

10 01 11 10 01 11

1 1 1 1

011 I
01

~

<~~II 111 I I\ 1/1\ 1 II 111 I 1

I I I
101 I I I \Y I

10

I I I
(e) (f)

Figure}?_._ An example of ESOP minimization by difference 3 exorlinking.

CHAPTER V

ALGORITHM OF EXORCISM-MV-2 PROGRAM

V.l. THE ALGORITHM OF EXORCISM

EXORCISM uses the following algorithm to minimize an ESOP:

1. For each pair of cubes in the ESOP, do distance I primary xlinking.

2. For each pair of cubes in the ESOP, do distance 2 primary xlinking.

3. For each pair of cubes in the ESOP, do distance I secondary xlinking.

4. For each pair of cubes in the ESOP, do distance 2 secondary xlinking.

5. If the cost is reduced, go to step I, else go to step 6.

6. Do unlinking.

7. If time has not exceeded the time limit, then go to step I, else stop.

V.2. THE ALGORITHM OF EXMIN

1. For each pair of cubes in the ESOP, do X-MERGE if possible.

64

2. For each pair of cubes in the ESOP, do the following operations if possible:

RESHAPE, DUAL-COMPLEMENT, X-EXPAND-I, AND X-EXPAND-2.

3. For the cubes modified by the above operations, do X-MERGE if possible.

4. In step 3, if X-MERGE is performed, go to step 2, else go to step 5.

5. In step 3, if X-EXPAND-I or X-EXPAND-2 is performed, go to step 2, else go to

step 6.

65

6. For each pair of cubes in the ESOP, do X-REDUCE-1 and X-REDUCE-2 if possi-

ble.

7. If the number of cubes is reduced, go to step 1, else stop.

While EXMIN has more operations for a difference 2 pair of cubes than EXOR­

CISM has, it also introduces a new problem: it may fall into an infinite loop. Sasao gave

the following example to show such a case.

Exam_Qle III.22:

~ 0 1 2 3 B ~ 0

ol(fi /1\fi)Y 0

1 2 3

B'

1 -----:;. 1

2 2

A
(a)

f
c (b) ! C A'

X
':[0 1 2 3

0

11l /~II)I
~ II """- II ~

2

(d) B" (c) B"

Figure 40. An example of infinite loop in EXMIN.

In Example III.22, an ESOP with three cubes A = [010- 1100], B = [100- 1111] and C

66

= [111 - 0110] is shown in Figure 40a. Performing X-EXPAND-2 on cubes A and B,

we get A' and B' in Figure 40b. Performing DUAL-COMPLEMENT on B' and C, we

get B" and C' as shown in Figure 40c. Performing X-EXPAND-2 on cubes A' and C',

we get cube A and C" as shown in Figure 40d. Performing DUAL-COMPLEMENT on

B" and C", we get cubes B and C, which is the original ESOP as shown in Figure 40a.

For avoiding the problem of infinite loop, Sasao separates the difference 2 opera­

tions to two groups: X-REDUCE-I and X-REDUCE-2 form one group, and the rest of

the operations form another group. Two groups of operations are performed separately

(step 2 and step 6 in above).

V.3. THE NEW ALGORITHM

As we discussed in section 4.3, the main purpose of difference 2 operations is to

provide opportunities for difference 1 or difference 0 operations. So, the new algorithm

is: instead of doing all possible difference 2 operations, perform only those difference 2

operations which will lead to difference 0 or difference 1 operations. More specifically, if

two cubes, A and B , are different by 2, then A (8) B generates resultant cubes C 1 and C 2,

B (8) A generates resultant cubes D 1 and D 2. We check the cubes C 1, C 2, D 1, and D 2

with all the cubes in the ESOP except cubes A and B . If difference 0 or difference 1

operations are possible, we perform the difference 2 operation A (8) B orB (8) A followed

by difference 0 or difference 1 operations. Otherwise, this difference 2 operation is not

performed.

Example 111.23: Given an ESOP with 5 cubes:

00 11 0 110 1111 0 1 Ox 1 Ox 1.

If we perform all the possible difference 2 operations on these cubes, the procedure is

shown in Figure 41.

67

0011 ==>--<: OxlO Ox10 OxlO

0110 OOlx 3=t OxOx OxOx

1111 1111 1111 3=t 1xx1

010x 010x OOxx OOxx

10x1 10x1 10x1 1101

(a) (b) (c) (d)

Ox10 ==>--<: Oxxx 3=t xxx1 xxx1

OxOx Ox11 . Oxll ==>--<: OxOO

1xx1 1xx1 OxxO Ox1x

OOxx OOxx OOxx OOxx

1101 1101 1101 1101

(d) (e) (f) (g)

Figure 41. An example of performing all possible difference 2 operations.

Figure 42 shows the procedure using Karnaugh maps. From one map to the next

map, two cubes are reshaped. Figure 42a shows the original ESOP with 5 cubes. After six

operations, the same function is represented by another ESOP with 5 cubes as shown in

Figure 42g. The number of cubes has not been reduced so far.

Our new approach is shown in Figure 43:

1. Perform all possible remove_equal and difference 1 exorlinking operations. In this

example, none of these operations are possible now (see Figure 43a).

2. Check if two cubes differ by 2. For instance, cube 0011 and 0110 differ by 2 as

shown in Figure 43a.

3. Check the two pairs of resultant cubes with other cubes in the array to see if we can

find two cubes that differ by 0 or by 1. In the example, cube 0011 and 0110 gen-

erate two. pairs of resultant cubes:

0110 ® 0011 = Ox 11 EB 0 11x

as shown in Figure 43bl, and

68

(a) (b) (c)

111 r-1 ll I
10

(d) (e) (f)

11
1---++--+--++~

10
I I T I I

(g)

Figure 42. Kamaugh maps for Example III.23.

0011 C3> 0110 =Ox 10 EB 001x

as shown in Figure 43b2.

We check these four resultant cubes with the rest of the cubes in the array:

1111 0 1 Ox 1 Ox 1

and we can find that cubes 011x and 010x are different by 1 as shown in Figure 43bl.

4. In step 3, if we can find two cubes that differ by 0 or different by 1, we perform the

difference 2 exorlinking and then perform the remove_equal or difference 1 exor­

linking operation. For instance, in step 3 we found two cubes 011x and 010x that

69

0011 =>-C Ox11 Ox11 Ox11

0110· Ollx ~ Olxx Olxx

1111 1111 1111]--(1x11

010x 010x

10x1 10x1 10x1 1001

(a) (b1) (c) (d)

0011 =>-C Ox10 Oxll~ xxll

0110 001x 01xx 01xx

1111 1111 1x11

010x 010x 1001 1001

10x1 10x1 (d) (e)

(a) (b2)

Figure 43. Conditionally performing difference 2 exorlinking.

differ by 1, we perform

0110 ® 0011 = Ox 11 EB 0 11x

and then we perform

011x ® 010x = Olxx

as shown in Figure 43c.

After performing remove_equal or difference 1 exorlinking, we go back to step 1. If we

can not find any two cubes that differ by 0 or by 1 in step 3, we do not perform difference

2 operation, and go back to step 2 to check other two cubes.

We continue this loop as shown in Figure 43d and 43e. H the number of cubes has

not been reduced for certain number of iterations, we go to next stage of minimization.

Figure 44 shows this approach in the Karnaugh maps. Comparing the Figure 41 with the

Figure 43, we can see that our new approach is more efficient.

70

~ ~

(a) ~ (b2) (c) ~

~

(bl) (e) (d)

Figure 44. Kamaugh maps corresponding to Figure 43.

V.4. MINIMIZATION OF MULTIPLE OUTPUT FUNCTIONS

There are two ways to minimize a multiple output function:

1. decompose the multiple output functions to single output functions, minimize each

single output function separately, and then minimize the set of functions again;

2. minimize the multiple output function directly.

Both the EXORCISM and the EXMIN use the first method. In our program, we let the

user to select which method to use. The following procedure shows our algorithm.

1. If the function is a multiple output one and the option "decomposition to single

output" is selected, then go to step 2; otherwise, go to step 5.

2. Decompose the function to a set of single output functions.

3. Minimize each single output function separately.

/
;

'
.,1

··"

. .71
4.

Combine the minimized single output functions to a multiple output function.

5. Minimize the function.

Example Ill.24 shows this procedure.

Example ITI.24: In Example II.11 (page 22), the multiple-output function F (x ,y ,z) can

be represented by the following array of cubes:

001 10

010 11

101 10

111 11.

The first three symbols in each cube represent input variables, the last two symbols

represent output variables. For instance, the first cube in the array, 001 10, means that

when input combination is x = 0, y = 0, and z = 1, the output variables f o = 1 and f 1 =

0. Since this is a two output function, we can decompose it to two single output functions

which is represented by the following array of 6 cubes:

By minimizing the first 4 cubes, we get

001 10

010 10

101 10

111 10

010 01

111 01.

01x 10

XX 1 10.

By minimizing the last two cubes, we get

010 01

111 01.

I

I

Put these 4 cubes together, we get a solution, which is

01x 10

XX 1 10

010 01

111 01.

Minimize these 4 cubes again, we get the final result:

X 11 01

XX 1 10-

0lx 11

which is the same result we showed in Example 1!.11.

72

By experimentation, we found that this method is on average better than the

method without decomposition. Table X shows the comparison. In our algorithm, by

default, the decomposition to a set of single output functions is used.

TABLE X

MULTIPLE OUTPUT FUNCTION

In Table X, cube indicates how many cubes (terms) in the solution. AND indicates

how many wires to AND gates. EXOR indicates how many wires to the EXOR gates.

Time indicates the user time on a SP ARC II station.

73

V.5. MINIMIZATION OF INCOMPLETELY SPECIFIED FUNCTIONS

An incompletely specified function can be represented by an ON-array of cubes

and a DC-array of cubes. We can minimize an incompletely specified function by minim-

izing its ON-array of cubes only. However, linking the ON-array of cubes with the DC-

array of cubes may generate better results.

Example lll.25: Given is an ESOP with one ON-cube, 01x 1, and two DC-cubes, 11x 1

_ and 1x 10, as shown in Figure 45a. The function can be represented by the ON-cube

only. By linking the ON-cube with one of the DC-cubes, we get the cube x 1x 1 as shown

in Figure 45b, which is a better result than ON-cube 01x 1.

x~ool 011 111 10

00
I 1:±:::1 I

01

11 1~ 1+~1~1
10

(a)

XY" 00 01 11 10

00

01 tlZ!:llitJ
11~
10

(b)

Figure 45. Example of minimizing an incompletely specified function.

Saul [Saul 90] pointed out that minimization of incompletely specified functions in

ESOP form is difficult, because:

1. The DC-cubes may cover some min terms which are not in the DC-array, as shown

in Figure 46.

2. The DC-array may not contain a cube that can be directly linked with a cube in

ON-array because of positions or sizes of the DC-cubes, as shown in Figure 47a

and 48a, respectively.

In Figure 46, cubes x 101 and 01x 1 are in the DC-array, and cube x 100 is an ON­

cube. We can not link the DC-cube x 101 with the ON-cube x 100, because the DC-cube

/

/

I'
#.

I

74

Figure 46. Linking DC-cubes.

x 101 contains a minterm 0101, which is a false minterm. This problem can be solved by

making the DC-array disjoint. In a disjoint DC-array, each DC-minterm is covered by a

cube once, and a false minterm is not covered by any cubes.

In Figure 47a, the ON-cube can not be linked with any one of the DC-cubes. If the

DC-cubes are in the right position, however, they can be linked as shown in Figure 47b

and 47c.

11 10

(a) (b) (c)

Figure 47. The position of DC-cubes.

In Figure 48a, the ON-cube can not be linked with the DC-cube, because the size

of the DC-cube is larger than the size of the ON -cube. If we can separate the DC-cube

properly, as shown in Figure 48b, then the ON-cube can be linked with one of the DC-

cubes, as shown in Figure 48c.

Saul [Saul 90] gave the following algorithm to link the ON-cubes with the DC-

cubes:

11 10 10

11
1 I :Y I I

11
1 I T I

10

11

10

(a) (b)

Figure 48. The size of DC-cubes.

function don't care minimize (F, inverse_D)

for (each cube) {

10

blocking_cover ~sharp (inverse_D, cube)

cube~ expand (blocking_cover, cube)

}

return F.

75

11 10

I I I I I

(c)

Here, F is the ON-array of cubes, D is the DC-array of cubes, and inverse_D is the com­

plemented DC-array of cubes. Before calling this algorithm, the DC-array is converted to

the disjoint sum of products representation, and then complemented. In the algorithm,

"for each cube" means for each cube in the ON-array F. Inverse_D covers all the min­

terms that are not covered by the DC-array. Please note that inverse_D is an array of

cubes. So, sharp(inverse_D, cube) means

for each cube cd in the inverse_D {

do cd #cube

}.

By using the sharp operation, block_cover contains the minterms that are not covered

either by DC-array or by the cube. The operation expand is carried out by expanding

each cube in such a way that it does not intersect the cube with the blocking_cover. Let

us look at _the following example to make this procedure clear.

76

Example lll.26: Given an ON-array with one cube, and a DC-array with two cubes as

shown in Figure 49a.

"
) c c c c) b b b b

c c c c . b b

10) c c c c) b b b b

(a) (b) (c)

10 xy v 00 01 11 10
-
b 00 b b b
-

-~
b b b

11 11 11

10 b b b b 10 b b b b 101 bl bl bl b

(d) (e) (f)

Figure 49. Linking DC-cubes by Saul's algorithm.

The two DC-cubes can not be linked with the ON-cube because of their positions.

According to Saul's algorithm, the following operations will be performed:

1. Generate inverse_D : Inverse_D is an array of cubes which should cover all the

minterms marked as "c" in Figure 49b. Inverse_D can be in the form of disjoint

SOPs or non-disjoint SOPs.

2. Generate block_cover: Performing the sharp operation on inverse_D and the ON­

cube, we can get an array of cubes called block_cover. Block_cover contains all

the minterms marked as "b" in Figure 49c. These minterms are not covered by

DC-cubes and are not covered by the ON-cube.

3. Expanding the ON-cube: There are three ways to expand the ON-cube 01x 1 as

shown in Figure 49d, 49e and 49f, respectively. In Figure 49d and 49e, the

77

expanded ON-cube intersects the block_cover, which means such an expanding is

impossible. So, the only possible way to expand the ON-cube is shown in Figure

49f.

Saul's algorithm has an obvious limitation: it tries to reduce the number of connec­

tions but does not consider the possibility of reducing the number of cubes. There are two

possible ways to reduce the number of cubes:

1. Remove an ON-cube if it is equal to a DC-cube.

2. Delete an ON-cube if it is contained by a DC-cube.

The following two examples show the above two cases respectively.

Example III.27: Given is an ON-array of three cubes

and a DC-array of one cube

0101

0111

1101

1111

as shown in Figure 50a. After minimizing the ON-array, we get two ON-cubes x 1x 1 and

1111 (Figure 50b). By comparing the ON-cubes with the DC-cube (Figure 50c), we find

out that the ON-cube 1111 is equal to the DC-cube 1111. We remove these two cubes,

and get the result x 1x 1 which is one cube less than the minimized ON-array (Figure

50d).

Example III.28: Given is the same ON-array as in Example III.27, and a DC-array of one

cube 111x as shown in Figure 51a. After minimizing the ON-cubes as shown in Figure

51 b, we can find out that the DC-cube 111x contains the ON-cube 1111 as shown in Fig­

ure 51c. We delete the ON-cube 1111. The result is shown in Figure 51d, which is the

same as Example III.27;

XY" 00 01 11 10
) 00
: 1 1 01

1 d 11

) 10

(a) (b)

XY" 00 01 11 10
) 00

01

® 11

) 10

(c) (d)

Figure 50. An ON-cube is equal to a DC-cube.

I

1 1

1 d

I
L__- - -

(a)

,

®
I

(c)

d

d

xy' 00 01 11 10

00
0 11 I ::4:-::: I I

11 11~11
10

(b)

X)'1 00
1
01

1
11

1
10

00
I I ::4:-::: I I

01

11 11----tf----ll\::!1~1 I
10

(d)

Figure 51. An ON-cube is contained by a DC-cube.

78

79

To check whether a DC-cube contains or is equal to an ON-cube, we use the dis-

joint sharp operation:

R f- ON-cube #d DC-cube.

If the sharp operation returns an empty cube, this means that the DC-cube contains the

ON-cube, or is equal to it. The ON-cube can then be removed.

Based on the above discussion, our approach to minimize incompletely specified

functions is described by the following procedure:

function don't care minimize (ON-array, DC-array)

for (each ON-cube) {

for (each DC-cube) {

R f- ON-cube #d DC-cube

}

if (R = <j>) remove ON-cube from ON-array

}

return ON-array.

If no more ON -cubes can be removed by this method, we can perform difference 2 ex or­

linking on the ON-array in order to reshape the ON-cubes. Example III.29 shows that

reshape may help to reduce the ON -cubes.

Example III.29: Given ON-cubes

and DC-cubes

110x

Ox 11

1110

OxlO

lOx 1

as shown in Figure 52a. The minimization is carried out by the following steps:

80

(a) (b)

(c) (d)

Figure 52. Minimization of an incompletely specified function.

1. Perform the don't care minimization procedure. None of the ON-cubes can be

removed.

2. Reshape the ON-cubes as shown in Figure 52b. Again, none of the ON-cubes can

be removed.

3. Reshape the ON-cubes as shown in Figure 52c, we get three ON-cubes:

llxx

XX 11

1011.

Since the DC-cube lOx 1 contains the ON-cube 1011, the operation

1011 #d lOx 1

generates an empty cube. So, the ON-cube 1011 can be removed. The final result is

an array of two cubes: llxx and.xx 11.

By performing sharp and difference 2 exorlinking iteratively, the number of ON-

Sl

cubes can be reduced, which serves our primary goal: minimizing the number of terms in

the ESOPs. After we tried all possible reshapes, the next step is to achieve our secondary

goal: minimizing the number of connections. This is done by trying all possible expand­

ing operations of ON-cubes, as shown in Figure 49.

The next section presents our whole algorithm.

V.6. THE ALGORITHM OF EXORCISM-MV-2

We take the disjoint cubes as our starting point. The pairs of equal cubes are

removed and difference 1 exorlinking operations are performed iteratively. Then differ­

ence 2 exorlinking operations are executed which may provide opportunities for differ­

ence 1 exorlinking. If difference 2 exorlinking can not further improve the cost function,

difference 3 exorlinking is performed. After certain loops, if no further difference 1

exorlinking operations are possible, difference 2 exorlinking operations are performed to

minimize the number of connections.

In the case of a multi-output function, by default, the function is first transformed

from a multiple-output array to single-output arrays. We minimize each single-output

array, and then minimize the whole function, by using the methods discussed in section

V.4.

For incompletely specified functions, the ON-array is minimized first. Then the

disjoint sharp operation is executed between each cube in the ON-array and the cubes in

the DC-array. If the disjoint sharp operation generates an empty cube, the ON-cube will

be removed from the ON-array. If no more cubes in the ON-array can be sharped out,

difference 2 exorlinking operations are performed in order to provide further opportuni­

ties. Next, we try to expand each ON-cube into DC-cubes. Successful application of

these operations decreases the numbers of connections.

82

Since our algorithm is a heurist one, we do not know whether or not we have got

the minimum results. So, we need some criteria to stop the program. The following

methods can be used as termination criteria:

1. Cost functions. We can use a cost function as a termination criteron. For instance,

we can stop the program if the number of terms in the current solution meets a

preset number.

2. Number of loops. We can stop the program after a certain number of loops. This

is a simple method. But the quality of the results is not guaranteed.

3. Execution time. We can stop the program if time limit has been exceeded. This is

the method used in EXORCISM.

4. Improvements of the current solution. By this method, the program is controlled

by comparing the current result with the previous result. If no improvement for a

certain number of loops, the program goes to the next step. This is the method

used in ESPRESSO and EXMIN. In our program this is the method used by

default. The user can also select other methods as options.

Algorithm to Minimize MIESOP Expressions- for Incompletely Specified Functions.

Input: ON-array and DC-array of disjoint cubes for a multi-valued input function.

1. F :=ON; D :=DC.

2. SOLUTION := F, MIN_COST := COST(F). (MIN_COST will be updated in the

steps below to reflect always the lowest cost of solutions obtained until now. This

solution is also stored).

3. If the option "do not decompose the function to single output function" is selected,

go to step 5; else go to step 4.

4. Decompose· the function to a set of single output functions. For each single output

function, perform the steps 5 to 8.

83

5. Perform all possible remove_equal operations.

6. Perform all possible difference l exorlinking operations.

7. For each pair of cubes in ESOP, check if a difference 2 exorlink is possible. If it is

possible, further check if it makes a remove_equal operation or a difference 1 exor­

link operation possible. If it is possible, perform the difference 2 exorlink opera­

tion and then perform remove_equal or difference 1 exorlink operation. Otherwise,

do nothing.

8. Check the number of cubes. If the number of cubes has not been reduced for cer­

tain number of iterations go to 9, else go to 5.

9. If the option "do not decompose the function to single output function" is selected,

go to step 11.

If the single functions have been combined to a multiple output function, go to step

11.

If all the single output functions are minimized, go to step 1 0;

else go to step 5 to minimize the next single output function.

10. Combine the single output functions to a multiple output function.

11. Perform difference 3 exorlink operation iteratively.

12. Check the number of cubes. If the number of cubes has not been reduced forcer­

tain number of iterations go to 13, else go to 5.

13. Check all possible difference 2 exorlinking operations. For each difference 2 exor­

link operation, if it reduces the cost, perform the difference 2 exorlink operation,

otherwise, do nothing.

14. If the option "don't care" is not selected, go to 21, else go to 15.

15. If Dis empty (no de cubes) go to 21, else go to 16.

84

16. Perform disjoint sharp between each cube in F and all cubes in D.

17. Minimize F again (perform the steps from 5 to 11)

18. If the number of cubes has not been reduced for certain number of iterations, go to

19, else goto 15.

19. Expand each cube in F into D if possible.

20. Check the cost. If the cost has no improvement for certain number of iterations go

to 21, else go to 19.

21. Print the output and stop the program.

CHAPTER VI

EVALUATION OF RESULTS OF EXORCISM-MV-2

Exorcism-mv-2 was tested on a set of MCNC benchmarks, as illustrated in Tables

XI, Xll, XIII. All the benchmarks are run on the Spare II station. The time is the user

time in seconds.

TABLE XI

EXPERIMENTAL RESULTS OF FUNCTIONS WITH 1 BIT AND 2 BIT DECODERS

Table XI presents, for each function, the total number of cubes, the number of

inputs to AND gates, the number of inputs to EXOR gates, and the user time. All these

data are presented first for EXOR PLAs with 1-bit and next for 2-bit decoders. Table Xll

does the same for 3-bit decoders.

While Table XI and XII present the results on arithmetic functions, Table XIll

shows the results on different kinds of functions from MCNC benchmarks. Three dif­

ferent cost functions are used for evaluating the results. Cr measures the number of

terms in the results. C L measures the number of literals in the results. C is the cost func­

tion w~ introduced at page 31.

86

TABLE XII

EXPERIMENTAL RESULTS OF FUNCTIONS WITH 3 BIT DECODERS

Figure 53 and 54 are scatter plots of number of terms versus execution time and

number of variables versus execution time respectively. Both figures show;week correla­
\

tions between the independent variables and dependent variables. From these two figures

we can see that the execution time depends more on the number of terms than on the

number of variables. Since our basic algorithm is to perform cube operations iteratively,

the execution time needed is mainly determined by the number of loops the program runs

and the number of cubes in the array. In each loop, we check the difference for each pair

of cubes. There are (n x (n -1))/2 different pair of cubes in an array of n cubes. So, if

we go through one loop only, the time complexity is 0 (n 2). Since we run the program

for many loops, we can predict intuitively that the time complexity is higher than 0 (n 2).

For analysis time complexity, we used multiple regression technique provide by a

statistical package -- SPSS. The number of terms in the initial form and the number of

variables in the form are taken as independent variables. The execution time is used as

dependent variable. The regression generates the following results:

()

3 (TERM)

Execution Time= -3.96 + 1.20 x VARS + 2.32 x Tf~tt -0.11 x e ---roo-

where V ARS is the number of variables in the form which equals to number of input vari-

87

TABLEXlli

EXPERIMENTAL RESULTS OF EXORCISM-MV-2

Input output lNlTlAL FORM MlNJMIZJ-<:1) FORM

var. var. Cr Cr, Cr CL c Time
bl2 1.5 ~ Y/ :.;~~ 2~ l()j 1.~.4() 2.0

bw 5 2~ 26 369 22 320 22.87 2.1
clip 9 5 163 1340 63 491 63.35 55.8
con1 7 2 10 44 9 37 9.84 0.1
duke2 22 29 103 -1170 79 918 79.78 91.7
ex5 8 63 183 2739 78 860 78.31 61.1
Inc 7 9 34 229 28 174 28.76 3.5
misex1 8 7 14 106 12 85 106.8 0.6
rmsex2 25 18 28 217 27 210 27.97 3.5
rd53 5 3 31 1~3 15 6~ 15.37 0.3
rd73 7 3 127 999 39 192 39.19 9.8
rd84 8 4 255 2253 58 325 58.14 46.4 I

sao2 10 4 93 893 28 277 2~.31 13.0 1

squar5 5 8 26 127 19 78 19.61 0.9
I

table3 14 14 1~2 2767 166 2506 166.9 173.3:
tableS 17 15 167 2687 156 2462 156.92 60.4
t4~1 16 1 9~0 13705 23 197 23.01 186.2 i

vg2 25 8 219 2570 184 2000 184.78 115.3 i

5xp1 7 10 71 437 32 170 32.39 4.8 I

9sym 9 1 145 1294 51 425 51.33 67.6 :
xor5 5 1 16 96 5 10 5.625 0.1 I

I

Adr4 8 5 155 1215 31 154 31.13 4.5
Log8 8 8 408 3395 95 700 95.21 266.8:
Mlp4 8 8 234 1909 62 387 62.20 38.2 :
Nrm4 8 5 313 2620 67 506 67.19 51.1 I

Rdm8 8 8 174 1295 31 152 31.12 8.5 I

Rot8 8 5 280 2355 37 262 37.11 6.4
Sqr8 8 16 505 4146 114 735 114.18 264.4
Wgt8 8 _4 314 2757 58 325 58.12 60.5

abies + number of output variables, and TERM is the number of terms in the initial form.

The above equation shows that the time complexity is 0 (n 3) which is polynomial.

Since we use the improvements of the current solution as termination criteria, if the

current solution has been improved, the program will keep looping, otherwise it will stop.

So, the execution time is not a deterministic one. The R square of the regression is 0.72,

which gives us a measurement of the randomness in the execution time. Detailed

Time
(seconds)

250

200

150

100

50

Ol ~xx

0

X

X

X
XXX

X X X X

X

100 200

X

X

X

X

X

300

X X

400

~CT

500

Figure 53. Scatter plot of number of terms versus execution time. .

88

discussion on multiple regression can be found in any standard statistics books, for

instance [Mend 87].

Table XIV and XV compare our results with those of EXMIN [Sasa 90a] and

EXMIN-2 [Sasa 92] respectively. Since no timing information are provided in [Sasa 90a]

and [Sasa 92] for these benchmarks, we can compare only cost functions in these two

tables. While Table XIV compares Cr only, Table XV compares all three cost functions.

Time
(seconds)

250

200

150

100

50

X

X X X

X
X

X X X

X X

X

X

X X

X X
0 I xx1 x x xx 1 x 1 x 1 x I ~ar.

0 10 20 30 40 50

Figure 54. Scatter plot of number of variables versus execution time.

89

Table XVI and XVll compare other benchmarks with EXMIN-2. Both time and

cost comparisons are shown in these two tables. Table XVI compares the execution time

needed for achieving approximately the same cost functions (Cr). At the end of each

loop, the cost function is checked. The program will stop if the cost of the current solu­

tion is less than or equal to the target. We can see that in most cases our program gen-

erates the same or better results in shorter time. Table XVII compares the cost functions

when the same time limits are given. Again, in most cases our program generates better

90

TABLE XIV

COMPARISON OF EXORCISM-MV-2 WITH EXMIN

TABLE XV

COMPARISON OF EXORCISM-MV-2 WITH EXMIN-2

* with 2 bit decoders

results.

Table XVIII compares numbers of resultant terms for Espresso and Exorcism-mv-

2. Table XIX shows the experimental results for the minimization of incompletely

TABLE XVI

COMPARISON OF EXORCISM-MV-2 WITH EXMIN-2
FOR THE SAME COST FUNCTIONS

TABLE XVII

COMPARISON OF EXORCISM-MV-2 WITH EXMIN-2
FOR THE SAME EXECUTION TIME

.91

specified functions. The results of minimizing ON-cubes only are compared with the

results of minimizing ON- and DC-cubes. The results show that better results are

achieved when DC-cubes are taken into account.

bl:L
bw
clip
coni
ex5
Inc
nusexl-
rmsex2
rd53
rd73
rd84
sao2
squar5
table3
tableS
t481
vg2
5xp1
9sym
xor5

TABLE XVIII

COMPARISON OF OUR RESULTS WITH ESPRESSO

Input output ESP,RF.SSO bXUKL~~M-MV-2

var. var. cube cube AND EXOR
I5 9 -43 2~ l:LJ 40
5 28 22 22 81 239
9 5 120 66 380 111
7 2 9 9 28 9
8 63 74 78 456 404
7 9 JU 28 117 57
8 7 12 12 48 37
25 18 2-s- 27 172 38
5 3 31 15 47 21
7 3 127 41 154 51
8 4 255 58 259 66
10 4 58 28 225 52
5 8 25 19 50 28
14 14 175 166 1848 658
17 15 158 156 1860 604
16 1 481 23 174 23
25 8 110 184 1807 193
7 10 65 32 117 53
9 1 86 51 374 51
5 1 16 5 5 5

TABLE XIX

COMPARISON OF MINIMIZATION OF ON-CUBES
WITH MINIMIZATION OF ON- AND DC-CUBES

92

Time
LU
2.1
32.8
0.1
61.1
3.5
0.6
3.5
0.3
11.2
46.4
13.0
0.9
173.3
228.7
201.0
115.3
4.8
67.6
0.1

CHAPTER VII

CONCLUSION

A new cube operation and algorithm for MIESOP minimization along with the

efficient program to minimize such forms have been introduced. No algorithms have

been published so far for MIESOP solutions to multi-output and incompletely specified

functions.

One approach to minimize ESOPs is to apply a set of cube operations iteratively on

each pair of cubes in the array. Our new operation -- exorlinking is the most general

opertion in this approach which can link any two cubes in the array in arbitrary distance.

All the cube operations introduced previously in the literature in this approach are the

special cases of this operation.

Exorcism-mv-2 was tested on many benchmark functions and compared to

EXMIN [Sasa 90a] and others. The program in most cases gives the same or better solu­

tions on binary and 4-valued completely specified functions. More importantly, it is able

to minimize efficiently arbitrary-valued and incompletely specified functions,_ while the

programs from literature are only for completely specified functions: those from [Saul

90] and [Bess 91] only for binary variables, and the program from [Sasa 90a] for 2-

valued and 4-valued variables. Additionally, as in Espresso, the number of variables in

our program is unlimited and the only constraint is the number of input cubes that are

read, so very large functions can be minimized.

REFERENCES

[Bess 83] Besslich, Ph.W., "Efficient Computer Method for EXOR Logic Design",
Proc. lEE, Vol. 130, PartE, CDT, No.6., pp. 203-206, 1983.

[Bess 91] Besslich, Ph. W., M.W. Riege, "An Efficient Program for Logic Synthesis of
Mod-2 Sum Expressions", Euro ASIC'91, pp. 136-141, Paris, France, 1991.

[Bran 91] Brand, D., and T. Sasaso, "On the minimization of AND-EXOR expres­
sions", 23rd IEEE Conference on Fault Tolerant Computing, pp. 1-9, 1990.

[Brow 90] Brown, F. M., "Boolean Reasoning", Kluwer Academic Publishers, 1990.

[CLi 91] Concurrent Logic, Inc., "CLi 6000 Series Field Programmable Gate Arrays.
Preliminary Information", Dec. 1991, Rev. 1.3.

[Csan 92] Csanky, L., Perkowski, M., and I. Schaefer, "Canonical Restricted Mix­
Polarity Exclusive Sums of Products and the Efficient Algorithm for Their
Minimization", accepted for the publication in lEE proc. Pt. E., May, 1992.

[Aei 83] Fleisher, H., Tavel, M., and J. Yeager, "Exclusive-OR representations of
Boolean functions", IBM J. Res. Develop., Vol. 27, pp. 412-416, July 1983.

[Flei 87] Fleisher, H., Tavel, M., and J. Yeager, "A Computer Algorithm for Minimiz­
ing Reed-Muller Canonical Forms", IEEE Trans. on Computers, Vol. C-36,
No.2, pp. 247- 250, February 1987.

[FPGA 92] Proceedings of FPGA'92, 1992 ACM First International Workshop on
Field-Programmable Gate Arrays, Hotel Durant, Berkeley, February 16-18,
1992.

[Froe 91] Froessl, J., and B. Eschermann, "Module Generation for AND/XOR-Fields
(XPLAs)", Proc. IEEE ICCD-91 Conference, pp. 26-29, 1991.

[Fuji 86] Fujiwara, H., "Logic Testing and Design for Testability", Computer System
Series, The MIT Press, 1986.

[Gr Grlitzer, G., "Universal Algebra", 2nd edition,

[Gill 91] Gilliam, P., "A Practical Parallel Algorithm for the Minimization of
Kroenecker Reed-Muller Expansions", M.S. Thesis, PSU EE Dept., 1991.

95

[Gree 90] Green, D. H., "Reed-Mueller Canonical Forms with Mixed Polarity and
Their Manipulations", lEE Proceedings, Vol. 137, PartE, No. 1, pp. 103-
113, January 1990.

[Gree 91] Green, D. H., "Families of Reed-Mueller canonical forms", International
Journal of Electronics, pp. 259-280, February 1991, No.2.

[Hell 88] Helliwell, M., and M.A. Perkowski:, "A Fast Algorithm to Minimize Multi­
Output Mixed-Polarity Generalized Reed-Muller Forms", Proc. 25-th
ACM/IEEE Design Automation Conference, pp. 427-432, June 12- June 15,
1988.

[Lui 92] Lui, P.K., and J.C. Muzio, "Boolean Matrix Transforms for the Minimization
of Modulo-2 Canonical Expansions", IEEE Trans. on Computers, Vol. 41,
No.3, pp. 342-347, March 1992.

[Mend 87] Mendenhall, W., "Introduction to Probability and Statistics", 7th edtion,
1987, PWS Publishers.

[Papa 79] Papakonstantinou, G., "Minimization of modulo-2 sum of products", IEEE
Trans. on Computers., Vol. C-28, pp. 163-167, February 1979.

[Perk 89] Perkowski, M., Helliwell, M., and P. Wu, "Minimization of multiple-valued
input multi-output mixed-radix exclusive sums of products for incompletely
specified boolean functions", Proc. of the 19th International Symposium on
Multiple-valued Logic, pp. 256-263, May 1989.

[Perk 90] Perkowski, M., and M. Chrzanowska-Jeske, "An Exact Algorithm to Minim­
ize Mixed-Radix Exclusive Sums of Products for Incompletely Specified
Boolean Functions", Proc. of the ISCAS'90, International Symposium on
Circuits and Systems, pp. 1652-1655, New Orleans, May 1990.

[Perk 91] Perkowski, M., and P. Johnson, "Canonical Multi-Valued Input Reed­
Mueller Trees and Forms", Proc. of 3rd NASA Symposium on VLSI Design,
pp.11.3.1 -11.3.13, University of Idaho, Oct 30-31, 1991.

[Perk 92] Perkowski, M., "Generalized Orthonormal Expansion and Some of Its Appli­
cations", Proc. Intern. Symp. on Multiple-Valued Logic, pp. 442 - 450, Sen­
dai, Japan, May 1992.

[Prad 87] Pradhan, D.K., "Fault-Tolerant Computing. Theory and Techniques. Vol. I."
Prentice-Hall, 1987.

[Robi 82] Robinson, J.P., and C.L. Yeh, "A Method for modulo-2 Minimization",
IEEE Trans. on Computers, Vol. C-31, pp. 800-801, August 1982.

[Rude 85] Rudell, R.L., and A.L. Sangiovanni-Vincentelli, "ESPRESSO-MY: algo­
rithms for multiple-valued logic minimization, Proc. IEEE Custom
Integrated Circuits Conf, 1985.

96

[Salm 89] Salmon, J. V., E.P. Pitty, E.P., and Abramson, M. S., "Syntactic Translation
and Logic Synthesis in Gatemap", lEE Proceedings, Vol. 136, Part E., No.4,
pp. 321-328, July 1989.

[Sara 92] Sarabi, A., and M.A. Perkowski, "Fast Exact and Quasi-Minimal Minimiza­
tion of Highly Testable Fixed-Polarity AND/XOR Canonical Networks",
Proc. 1992 IEEE Design Automation Conference, pp. 30- 35, June 1992.

[Sasa 78] T. Sasao, "An application of multiple-valued logic to a design of Programm­
able Logic Arrays", Proc. 8th Intern. Symp. on Multiple-Valued Logic
(ISMVL), pp. 65-72, May 1978.

[Sasa 81] Sasao, T., "Multiple-valued decomposition of generalized boolean functions
and the complexity of programmable logic arrays," IEEE Trans. Comput.,
Vol. C-30, pp. 635-643, Sept. 1981.

[Sasa 84] Sasao, T., "Input Variable Assignment and Output Phase Optimization of
PLA's", IEEE Trans. on Comp., Vol. C-33, No. 10, pp. 879-894, October
1984.

[Sasa 86] Sasao, T., "MACDAS: Multi-level AND-OR circuit synthesis using two­
variable genrators", Proc. of 23-rd Design Automation Conference, Las
Vegas, pp. 86-93, June 1986.

[Sasa 90a] Sasao, T., "EXMIN: A simplification algorithm for Exclusive-OR-Sum-of­
Products expressions for multiple-valued input two-valued output functions",
Proc. ISMVL-90, May 1990, pp.128-135.

[Sasa 90b] Sasao, T., and Besslich, Ph., "On the Complexity of MOD-2 Sum PLAs",
IEEE Transactions on Computers, Vol. 39., No. 2, pp. 262-266, February
1990.

[Sasa 91a] Sasao, T., "A transformation of multiple-valued input two-valued output
functions and its application to simplification of exclusive-or sum-of­
products expressions", Proc. /SMVL-91, May 1991, pp. 270-279.

[Sasa 91b] Sasao, T., "On the complexity of some classes of AND-EXOR expressions",
IEICE Technical Report FTS 91-35, October 1991.

[Sasa 92] Sasao, T., private communication between Dr. Sasao and Dr. Perkowski.

[Saul90] Saul, J. M., "An Improved Algorithm for the Minimization of Mixed Polarity
Reed-Mueller Representations", Proc. Intern. Conf on Computer Design:
VLSI in Computers and Processors, pp. 372- 375, September 17-19, 1990,

[Saul 91] Saul, J. M., "An Algorithm for the Multi-level Minimization of Reed-Muller
Representations", Proc. Intern. Conf. on Computer Design: VLSI in Comput­
ers and Processors, 1991, pp. 634-637.

97

[Scha 91] Schaefer, I., and M. Perkowski, "Multiple-Valued Input Generalized Reed­
Muller Forms", Proc. of/SMVL'91, pp. 40-48, May 1991.

[Scha 92] Schaefer, I., and M. Perkowski, "Exact Minimization of Multiple-Valued
Input Kronecker Reed-Muller Forms for Incompletely Specified Functions",
Submitted to IEEE Transactions on Computers, April1992.

[Stol 79] stoll, R. R., "Set Theory and Logic", Dover Publications, Inc. New York,
1979.

[Wu 82] Wu, X., Chen, X., and Hurst, S.L., "Mapping of Reed-Muller codfficients
and the minimisation of exclusive OR-switching functions", lEE proc. E,
Comput. & Digital Tech., 1982, pp. 15-20.

[Wu 92] Wu, L-F., Perkowski, M., "Exact and Approximate Minimization of Reed­
Muller Trees for Cellular Logic with Application to CLI6000 Field Pro­
grammable Gate Arrays", Proc. Second International Workshop on Field­
Programmable Logic and Applications, Vienna, Austria, Aug. 31 - Sept. 2,
1992.

APPENDIX

MAN PAGE OF EXORCISM-MY -2

NAME

EXORCISM-MY -2 -- EXOR Circuit Speedy Minimizer, for Multiple-valued logic,

Version ll.

SYNOPSIS

exorcism [inputfile][options].

The inputfile is an ascii file containing data of a given logic function. The

inputfile should be prepared before hand. To minimize the logic function, type

exorcism inputfile.

The optimized solution will be shown on the screen. For saving the solution in a file, type

exorcism inputf ile > output! ile

where outputfile is the output file name give~ by the user.

DESCRIPTION

Exorcism-MV-2 takes an ESOP or a disjoint SOP as input. The function can be

binary input or multiple-valued input, single output or multiple output, completely or

incompletely specified. If the function is a multiple output function, the algorithm will

translate it to a multiple-valued input description. If the function is incompletely

specified, the program will separate it to an array of ON-cubes and an array of DC-cubes.

The final result will be a minimal or near minimal logically equivalent set of product

terms to represent the ON-array and optionally terms which lies in the DC-array.

99

Comments are allowed within the input by placing a pound sign "#" as the first

character on a line. Comments and unrecognized keywords are passed directly from the

input file to standard output. Any white space (blanks, tabs, etc), except when used as a

delimiter in an embedded command, is ignored.

KEYWORDS

The following keywords can be shown in the inputfile. [d] denotes a decimal

number and [s] denotes a text string .

. i [d]

.o [d]

.pair [d]

Specifies the number of input variables, if the function is binary input and

binary output

Specifies the number of output variables, if the function is binary input

and binary output.

Specifies the number of pairs of variables which will be paired together by

using two-bit decoders. The rest of the line contains pairs of numbers

which specify the binary variables of the XPLA which will be paired

together. The XPLA will be reshaped so that any unpaired binary vari­

ables occupy the leftmost part of the array, then the paired multiple-valued

columns, and finally any multiple-valued variables .

. mv [d] [d] [d] ... [d]

. p [d]

The first d specifies the number of variables for multiple-valued functions.

The second d shows the number of binary input variables. The rest of the

line gives information of each multiple-valued variables .

Specifies the number of product terms.

100

.e (.end)

Marks the end of the input description.

EXAMPLE 1:

The first example is shown a description of a function with 4 binary input variables

and 1 binary output variable. a - indicates the output is don't care corresponding to the

input combination.

.i4

.0 1

.p7

00011

01011

1100 1

11111

1110-

1001-

0011-

.e

EXAMPLE2:

This example shows a description of a multiple-valued function with no binary

variable and 3 multiple-valued variables, where the multiple-valued variables have sizes

of 4, 4, and 3, and the last multiple-valued variable is the "output" .

. mv 3 0 44 3

.p 3

1101 1101 101

0101 0010 110

0111 0101111

101

.e

OPTIONS

The command line options can be specified anywhere on the command line and

must be separated by spaces.

-help

-s

EXAMPLE3:

Provides a quick summary of the available command line options.

provides a short summary of the execution of the program including the

initial cost of the function, the final cost, and the computer resources used.

Given an input file test6, type

exorcism test6 -s

the output will be:

#Portland State University, EXORCISM-MY Version #2, Release date 5/18/92

XPLA is test6 with 5 inputs and 1 outputs

#ON-set cost is c=31(31) in=139 out=31 tot=170

#OFF-set cost is c=1(1) in=5 out=1 tot=6

DC-set cost is c=O(O) in=O out=O tot=O

OK bytes active out of lK bytes allocated

EXORCISM Time was 0.1 sec, cost is c=8(8) in=22 out=8 tot=30

.iS

.0 1

.p 8

-0001

111111

-0-1

01--Q 1

1-11

001-1

10-0- 1

-1-1- 1

.e

-t

102

Provides a trace showing the execution of the program. After each step of

the algorithm a single line is printed which reports the processor time

used, and the current cost of the function.

-x

Suppresses printing of the solution.

EXAMPLE4:

If we type

exorcism test6 -x -s

the output will be:

#Portland State University, EXORCISM-MY Version #2, Release date 5/18/92

XPLA is test6 with 5 inputs and 1 outputs

#ON-set cost is c=31(31) in=139 out=31 tot=170

OFF-set cost is c= 1 (1) in=5 out= 1 tot=6

DC-set cost is c=O(O) in=O out=O tot=O

OK bytes active out of 1K bytes allocated

EXORCISM Time was 0.1 sec, cost is c=8(8) in=22 out=8 tot=30

-mo

Select the option "minimize the multiple output directly". The multiple

output function will not be decomposed to a set of single output functions

103

if this option is selected.

-de

Select the option "don't care". If this option is selected, the program will

minimize the ON-array with the DC-array. Otherwise, only the ON-array

-do [s]

-do echo

-do stats

will be minimized.

This option executes subprogram. [s] denotes a name of subprogram.

Some useful subprograms are listed separately below:

This echoes "-out fdr" to standard output, and to compute the complement

of a function.

Provide simple statistics on the size of the function.

EXAMPLES:

If we type

exorcism test6 -do stats

we will get the following output

#Portland State University, EXORCISM-MY Version #2, Release date 5/18/92

XPLA is test6 with 5 inputs and 1 outputs

#ON-set cost is c=31(31) in=139 out=31 tot=170

OFF-set cost is c=O(O) in=O out=O tot=O

DC-set cost is c=O(O) in=O out=O tot=O

If we use this option with the option -s, this option will be ignored.

	Minimization of Exclusive Sum of Products Expressions for Multiple-Valued Input Incompletely Specified Functions
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1548716878.pdf.pkvJ7

