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Minimization of Frequency-Weighted l2-Sensitivity
Subject to l2-Scaling Constraints for

Two-Dimensional State-Space Digital Filters
Takao Hinamoto, Toru Oumi, Osemekhian I. Omoifo and Wu-Sheng Lu

Abstract— This paper investigates the problem of frequency-
weighted l2-sensitivity minimization subject to l2-scaling con-
straints for two-dimensional (2-D) state-space digital filters de-
scribed by the Roesser model. It is shown that the Fornasini-
Marchesini second model can be imbedded in the Roesser model.
Two iterative methods are developed to solve the constrained
optimization problem encountered. The first iterative method
introduces a Lagrange function and optimizes it using some
matrix-theoretic techniques and an efficient bisection method.
The second iterative method converts the problem into an
unconstrained optimization formulation by using linear-algebraic
techniques and solves it by applying an efficient quasi-Newton
algorithm. The optimal filter structure with minimum frequency-
weighted l2-sensitivity and no overflow is then synthesized by
an appropriate coordinate transformation. Case studies are
presented to demonstrate the validity and effectiveness of the
proposed techniques.

Index Terms— 2-D digital filters, Roesser’s model, Fornasini-
Marchesini’s second model, frequency-weighted l2-sensitivity
minimization, l2-scaling constraints, no overflow, Lagrange func-
tion, bisection method, quasi-Newton method

I. INTRODUCTION

It is well known that there exist infinitely many minimal
state-space realizations for a given transfer function, and
some inherent properties such as controllability, observability,
stability, etc. are invariant within these realizations. However,
performance measures such as coefficient sensitivity, output
roundoff noise, overflow oscillations, etc. may be significantly
varying among the realizations. Consider a transfer function
with coefficients of infinite accuracy, which meets certain
design specifications including stability. When the transfer
function is implemented by a state-space model with a finite
binary representation, truncation or rounding of the state-space
model is required to satisfy the finite word length (FWL)
constraints. As a result, the characteristics of the stable filter
might be so altered that the filter may become unstable. This
motivates the study of the coefficient sensitivity minimization
problem. To date, several techniques have been reported for
synthesizing the state-space descriptions with minimum co-
efficient sensitivity. The techniques can be divided into two
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main classes: those for l1/l2-mixed sensitivity minimization
[1]-[5] and those for l2-sensitivity minimization [6]-[11]. In
[6]-[10], it has been argued that the sensitivity measure based
on a sole l2-norm is more natural and reasonable relative
to the l1/l2-mixed sensitivity minimization. For 2-D state-
space digital filters, the l1/l2-mixed sensitivity minimization
problem [12]-[17] and l2-sensitivity minimization problem
[10],[17]-[20] have also been investigated. It has been realized
that solutions for frequency-weighted sensitivity minimization
would be of practical use as these solutions allow to emphasize
or de-emphasize the filter’s sensitivity in certain frequency
regions of interest. Synthesis procedures of the optimal FWL
2-D filter structures that minimize the frequency-weighted
sensitivity measure have been considered [15]-[18]. However,
the minimization methods proposed in the above work do
not impose constraints on the scaling of the design variables.
As a result, elimination of overflow cannot be ensured. More
recently, the minimization problem of l2-sensitivity subject to
l2-scaling constraints has been explored for 1-D and a class of
2-D state-space digital filters [21]-[23]. It is well known that
the use of scaling constraints can be beneficial for suppressing
overflow [24],[25]. However, frequency-weighted sensitivity
measure has not yet been considered in [21]-[23].

In this paper, we investigate the problem of minimizing a
frequency-weighted l2-sensitivity measure subject to l2-scaling
constraints for 2-D state-space digital filters described by the
Roesser local state-space (LSS) model [26]. We then proceed
by introducing an expression for evaluating the frequency-
weighted l2-sensitivity, and formulating the minimization
problem for the frequency-weighted l2-sensitivity measure
subject to l2-scaling constraints. Next, two iterative methods
are developed for solving the constrained optimization prob-
lem. The first iterative method introduces a Lagrange function,
and makes use of some matrix-theoretic techniques and an effi-
cient bisection method. The second iterative method relies on a
technique that converts the constrained optimization problem
into an unconstrained optimization formulation and utilizes
an efficient quasi-Newton method with closed-form formula
for gradient evaluation. Finally, case studies are presented to
demonstrate the validity and effectiveness of the proposed
techniques.

One of the contributions made in this paper is to show that
either the Fornasini-Marchesini (FM) second LSS model
[27] or its transposed-structure model [22],[28] can be
imbedded in the Roesser model as a special case. This
justifies the use of the Roesser model in our studies. Another
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contribution is that a bisection method is applied to obtain
the Lagrange multipliers, which makes it possible to attain
considerably faster convergence than the algorithm reported
in [22]. Moreover, unlike [21] and [22], the present paper
investigates a frequency-weighted l2-sensitivity measure under
l2-scaling constraints. Although this extension is technically
manageable, to the best of our knowledge, this is the first time
a frequency-weighted l2-sensitivity measure under l2-scaling
constraints is addressed in the l2/l2 framework for state-space
digital filters.

Throughout the paper, In stands for the identity matrix
of dimension n × n, ⊕ is used to denote the direct sum
of matrices, the transpose (conjugate transpose) of a matrix
A is indicated by AT (A∗), and the trace and ith diagonal
element of a square matrix A are denoted by tr[A] and (A)ii,
respectively.

II. PROBLEM FORMULATION

2.1 System Models

Consider a stable, separately locally controllable and sepa-
rately locally observable LSS model for 2-D recursive digital
filters[

xh(i + 1, j)

xv(i, j + 1)

]
=

[
A1 A2

A3 A4

][
xh(i, j)

xv(i, j)

]
+

[
b1

b2

]
u(i, j)

y(i, j) =
[
c1 c2

] [
xh(i, j)

xv(i, j)

]
+ d u(i, j)

(1)
which was originally proposed by Roesser [26],[29], where
xh(i, j) is an m × 1 horizontal state vector, x v(i, j) is an
n × 1 vertical state vector, u(i, j) is a scalar input, y(i, j) is
a scalar output, and A1, A2, A3, A4, b1, b2, c1, c2, and d
are m × m, m × n, n × m, n × n, m × 1, n × 1, 1 × m,
1× n, and 1× 1 real constant matrices, respectively. A block
diagram of the LSS model in (39) is shown in Fig. 1. The

Fig. 1. The block diagram of the Roesser LSS model.

transfer function of the LSS model in (39) is given by

H(z1, z2) = c(Z − A)−1b + d (2)

where A, b, and c are (m + n)× (m + n), (m + n)× 1, and
1 × (m + n) real constant matrices defined by

A =

[
A1 A2

A3 A4

]
, b =

[
b1

b2

]
, c =

[
c1 c2

]
,

respectively, and Z = z1Im⊕z2In. For the sake of simplicity,
the LSS model in (39) is denoted hereafter by (A, b, c, d)m,n.

Alternatively, an LSS model for a class of 2-D recursive
digital filters can be described by [22],[28][

x(i + 1, j + 1)

y(i, j)

]
=

[
A′

1 A′
2

c′1 c′2

][
x(i, j + 1)

x(i + 1, j)

]

+

[
b′

d

]
u(i, j)

(3)

where x(i, j) is an N × 1 local state vector, u(i, j) is a scalar
input, y(i, j) is a scalar output, and A′

1, A
′
2, b

′, c′1, c
′
2, and d

are N × N , N × N , N × 1, 1 × N , 1 × N , and 1 × 1 real
constant matrices, respectively. The transfer function of the
LSS model in (3) is given by

D(z1, z2) = (z−1
1 c′1 + z−1

2 c′2)

· (In − z−1
1 A′

1 − z−1
2 A′

2

)−1
b′ + d.

(4)

If we define

x(i, j + 1) = xh(i, j), x(i + 1, j) = xv(i, j) (5)

then the LSS model in (3) can then be imbedded in that of
(39) as a special case as follows:[

xh(i + 1, j)

xv(i, j + 1)

]
=

[
A′

1 A′
2

A′
1 A′

2

][
xh(i, j)

xv(i, j)

]
+

[
b′

b′

]
u(i, j)

y(i, j) =
[
c′1 c′2

] [
xh(i, j)

xv(i, j)

]
+ d u(i, j)

(6)
where m = n = N . It is noted that D(z1, z2)T can be viewed
as a transfer function of the FM second LSS model [27], which
reveals that the LSS model of D(z1, z2)T can be realized
by a transposed structure of that in (6). Therefore, the LSS
model in (39) is more general than either the LSS model in
(3) or the FM second LSS model [27] (and vice versa with
the same dimension, but increased number of coefficients
[27]) . In addition, we note that the technique reported in [22]
has merely treated the l2-sensitivity minimization problem for
the LSS model in (3) subject to l2-scaling constraints. Recall
that the total numbers of the coefficients in (39) and (3) are
(m + n)2 + 2(m + n) + 1 and 2N2 + 3N + 1, respectively.
This means that the LSS model in (39) has less number of
the coefficients than that of (3) when their local state vectors
possess the same dimension, i.e., m + n = N . Under these
circumstances, it is worthwhile to consider the more general
problem of minimizing the frequency-weighted l2-sensitivity
for the LSS model in (39) subject to l2-scaling constraints,
because its solutions will make it possible to emphasize or de-
emphasize the filter’s sensitivity in certain frequency regions of
interest, and because the LSS model in (39) owns less number
of the coefficients in case m + n = N .

2.2 A Frequency-Weighted l2-Sensitivity Measure

Suppose that the LSS model in (39) is implemented by FWL
fixed-point arithmetic with a B-bit fractional representation,
and is realized with coefficient matrices
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Ã = A + ΔA, b̃ = b + Δb

c̃ = c + Δc, d̃ = d + Δd
(7)

where ΔA, Δb, Δc, and Δd stand for the quantization errors
of the coefficient matrices. The transfer function of the FWL
realization is then expressed as

H̃(z1, z2) = c̃(Z − Ã)−1b̃ + d̃. (8)

Let {pi, i = 1, 2, · · · , M} be the set of the ideal parameters of
a realization and let {p̃i, i = 1, 2, · · · , M} be its FWL version
where p̃i = pi + Δpi with Δpi indicating the corresponding
parameter perturbation. If all Δpi are sufficiently small in
magnitude, then the first-order approximation of the Taylor
series expansion yields

ΔH(z1, z2) = H̃(z1, z2) − H(z1, z2)

�
M∑
i=1

∂H(z1, z2)
∂pi

Δpi.
(9)

Obviously, smaller ∂H(z1, z2)/∂pi for i = 1, 2, · · · , M yield
smaller transfer function error ΔH(z1, z2). For a fixed-point
implementation of B bits, the parameter perturbations can
be considered to be independent random-variables uniformly
distributed within the range [−2−B−1, 2−B−1]. Under these
circumstances, a measure of the transfer function error can
statistically be defined as

σ2
ΔH =

1
(2πj)2

∮
|z1|=1

∮
|z2|=1

E[|ΔH(z1, z2)|2]dz1dz2

z1z2

(10)
where E(·) denotes the ensemble-average operation. Since
Δpi’s are uniformly-distributed independent random variables,
it follows that

E[|ΔH(z1, z2)|2] =
M∑
i=1

∣∣∣∣∂H(z1, z2)
∂pi

∣∣∣∣
2

σ2 (11)

where
σ2 = E[(Δpi)2] =

1
12

2−2B.

Thus, if the measure

So =
1

(2πj)2

∮
|z1|=1

∮
|z2|=1

M∑
i=1

∣∣∣∣∂H(z1, z2)
∂pi

∣∣∣∣
2

dz1dz2

z1z2
(12)

is minimized then the minimum variance σ2
ΔH can be attained

because of the relation σ2
ΔH = Soσ

2. The measure in (12) is
referred to as an l2-sensitivity measure.

The frequency-weighted l2-sensitivity of the LSS model in
(39) is defined as follows.

Definition 1 : Let X be an m×n real matrix and let f(X)
be a scalar complex function of X , that is differentiable with
respect to all the entries of X . The sensitivity function of
f(X) with respect to X is then defined as [5]

SX =
∂f(X)

∂X
, (SX )ij =

∂f(X)
∂xij

(13)

where xij denotes the (i, j)th entry of matrix X .

Definition 2 : In order to take into account the sensitivity of
the transfer function in a specified frequency band, or even
at some discrete frequency points, the weighted sensitivity
functions are defined as [5],[17]

δH(z1, z2)
δA

= WA(z1, z2)
∂H(z1, z2)

∂A

δH(z1, z2)
δb

= WB(z1, z2)
∂H(z1, z2)

∂b

δH(z1, z2)
δcT

= WC(z1, z2)
∂H(z1, z2)

∂cT

(14)

where WA(z1, z2), WB(z1, z2), and WC(z1, z2) are scalar,
stable, causal functions of the complex variables z1 and z2.

Notice that δ in (14) is not meant to be a derivative operator,
but rather a notation for defining the weighted parameter
sensitivity.

Definition 3 : Let X(z1, z2) be an m × n complex matrix
valued function of the complex variables z1 and z2. The l2
norm of X(z1, z2) is then defined by

||X(z1, z2)||2
=

(
tr

[
1

(2πj)2

∮
Γ1

∮
Γ2

X(z1, z2)X∗(z1, z2)
dz1dz2

z1z2

]) 1
2

(15)
where j =

√−1 and Γi = {zi : |zi| = 1} for i = 1, 2.
From (2) and Definitions 1-3, the overall frequency-

weighted l2-sensitivity measure for the LSS model in (39) can
be defined as

S =
∥∥∥∥δH(z1, z2)

δA

∥∥∥∥
2

2

+
∥∥∥∥δH(z1, z2)

δb

∥∥∥∥
2

2

+
∥∥∥∥δH(z1, z2)

δcT

∥∥∥∥
2

2

=
∥∥WA(z1, z2)[F (z1, z2)G(z1, z2)]T

∥∥2

2

+
∥∥∥WB(z1, z2)GT (z1, z2)

∥∥∥2

2
+ ‖WC(z1, z2)F (z1, z2)‖2

2

(16)
where

F (z1, z2) = (Z − A)−1b, G(z1, z2) = c (Z − A)−1.

It follows that the frequency-weighted l2-sensitivity measure
in (16) can be written as

S = tr[MA] + tr[W B] + tr[KC ] (17)

where MA, W B , and KC are obtained by the following
general expression:

X =
1

(2πj)2

∮
Γ1

∮
Γ2

Y (z1, z2)Y ∗(z1, z2)
dz1dz2

z1z2

with Y (z1, z2) = WA(z1, z2)[F (z1, z2)G(z1, z2)]T for X =
MA, Y (z1, z2) = WB(z1, z2)GT (z1, z2) for X = W B , and
Y (z1, z2) = WC(z1, z2)F (z1, z2) for X = KC .

2.3 Problem Formulation

Define a state-space coordinate transformation by [26],[29][
xh(i, j)

xv(i, j)

]
=

[
T −1

1 0

0 T −1
4

] [
xh(i, j)

xv(i, j)

]
(18)
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where T 1 and T 4 are m×m and n×n nonsingular matrices,
respectively. New realizations can then be characterized as
(A, b, c, d)m,n with

A = T −1AT , b = T −1b, c = cT (19)

where T = T 1 ⊕ T 4. For a new realization, the frequency-
weighted l2-sensitivity measure in (17) is changed to

S(P ) = tr[MA(P )P ]+tr[W BP ]+tr[KCP−1]

= tr[NA(P )P−1] + tr[W BP ] + tr[KCP−1]
(20)

with P = TT T = P 1 ⊕ P 4 and

MA(P ) =
1

(2πj)2

∮
Γ1

∮
Γ2

Y (z1, z2)P−1Y ∗(z1, z2)
dz1dz2

z1z2

NA(P ) =
1

(2πj)2

∮
Γ1

∮
Γ2

Y ∗(z1, z2)P Y (z1, z2)
dz1dz2

z1z2

where Y (z1, z2) = WA(z1, z2)[F (z1, z2)G(z1, z2)]T .
If l2-scaling constraints are imposed on the horizontal and

vertical state vectors xh(i, j) and xv(i, j), we require that [30]

(K1)ξξ = (T−1
1 K1T

−T
1 )ξξ = 1 for ξ = 1, 2, · · · , m

(K4)ζζ = (T−1
4 K4T

−T
4 )ζζ = 1 for ζ = 1, 2, · · · , n

(21)
where

K =
1

(2πj)2

∮
Γ1

∮
Γ2

F (z1, z2)F ∗(z1, z2)
dz1dz2

z1z2

=

[
K1 K2

K3 K4

]

is the local controllability Gramian for the LSS model in (39)
with an m × m submatrix K1 and an n × n submatrix K4

along its diagonal [29].
Thus, the l2-scaling constrained frequency-weighted l2-

sensitivity minimization problem can be formulated as fol-
lows: Given matrices A, b, and c, obtain a block-diagonal
nonsingular matrix T = T 1 ⊕ T 4 which minimizes S(P ) in
(20) subject to l2-scaling constraints in (21).

III. PROBLEM SOLUTION

3.1 A Constrained Optimization Method

Solving the optimization problem formulated above consists
of several steps. First, we relax the problem of minimizing
S(P ) in (20) subject to l2-scaling constraints in (21) into the
problem

minimize S(P ) in (20)

subject to tr[K1P
−1
1 ] = m and tr[K4P

−1
4 ] = n.

(22)

If tr[K1P
−1
1 ] = m (tr[K4P

−1
4 ] = n) is satisfied, then an m×

m (n × n) orthogonal matrix U1 (U4) matrix can always be
constructed so that T 1 = P

1/2
1 U1 (T 4 = P

1/2
4 U4) satisfies

l2-scaling constraints in (21) [22]. This justifies the relaxation
made in (22).

In order to solve problem (22) for P = P 1⊕P 4, we define
the Lagrange function of the problem as

J(P , λ1, λ4)

= tr[M 1(P )P 1] + tr[M 4(P )P 4] + tr[W 1BP 1]

+ tr[W 4BP 4] + tr[K1CP−1
1 ] + tr[K4CP−1

4 ]

+ λ1(tr[K1P
−1
1 ] − m) + λ4(tr[K4P

−1
4 ] − n)

(23)

where λ1 and λ4 are the Lagrange multipliers, and

MA(P ) =

[
M1(P ) M 2(P )

M3(P ) M 4(P )

]

W B =

[
W 1B W 2B

W 3B W 4B

]
, KC =

[
K1C K2C

K3C K4C

]

with an m × m submatrix and an n × n submatrix along its
diagonal for each matrix. Using the formula for evaluating
matrix gradient [31, p.275]

∂ [tr(MX)]
∂X

= M T

∂[tr(MX−1)]
∂X

= −(X−1MX−1)T

(24)

we compute

∂J(P , λ1, λ4)
∂P 1

= M 1(P ) − P −1
1 N1(P )P −1

1 + W 1B

−P −1
1 K1CP −1

1 − λ1P
−1
1 K1P

−1
1

∂J(P , λ1, λ4)
∂P 4

= M 4(P ) − P −1
4 N4(P )P −1

4 + W 4B

−P −1
4 K4CP −1

4 − λ4P
−1
4 K4P

−1
4

(25)
where

NA(P ) =

[
N 1(P ) N2(P )

N 3(P ) N4(P )

]

with an m × m submatrix N1(P ) and an n × n submatrix
N4(P ) along its diagonal. Setting ∂J(P , λ1, λ4)/∂P 1 = 0
and ∂J(P , λ1, λ4)/∂P 4 = 0, it follows that

P 1F 1(P )P 1 = G1(P , λ1)

P 4F 4(P )P 4 = G4(P , λ4)
(26)

where
F 1(P ) = M 1(P ) + W 1B, F 4(P ) = M4(P ) + W 4B

G1(P , λ1) = N 1(P ) + K1C + λ1K1

G4(P , λ4) = N 4(P ) + K4C + λ4K4.

The equations in (26) are highly nonlinear with respect to
P 1 and P 4. Namely, P iF i(P )P i for i = 1, 4 has a rational
type R/D of nonlinearity, where the degree of the nonlinearity
of R is m + n + 1 and the degree of the nonlinearity of D is
m+n, while Gi(P , λi) for i = 1, 4 depends on P linearly. An
effective approach for solving these equations is to relax them
into the following recursive second-order matrix equations:

P
(k+1)
1 F 1(P (k))P (k+1)

1 = G1(P (k), λ
(k+1)
1 )

P
(k+1)
4 F 4(P (k))P (k+1)

4 = G4(P (k), λ
(k+1)
4 )

(27)
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with initial condition P (0) = P
(0)
1 ⊕ P

(0)
4 = Im+n. Noting

that P WP = M has the unique solution [5]

P = W − 1
2 [W

1
2 M W

1
2 ]

1
2 W − 1

2 (28)

where W > 0 and M ≥ 0 are symmetric, the unique
solutions P

(k+1)
1 and P

(k+1)
4 of (27) are found to be

P
(k+1)
1 = F 1(P (k))−

1
2 [F 1(P (k))

1
2

·G1(P (k), λ
(k+1)
1 )F 1(P (k))

1
2 ]

1
2 F 1(P (k))−

1
2

P
(k+1)
4 = F 4(P (k))−

1
2 [F 4(P (k))

1
2

·G4(P (k), λ
(k+1)
4 )F 4(P (k))

1
2 ]

1
2 F 4(P (k))−

1
2 .
(29)

Here, the Lagrange multipliers λ
(k+1)
1 and λ

(k+1)
4 can be

efficiently obtained using a bisection method [32] so that

f1(λ
(k+1)
1 ) = m − tr[K̃

(k)

1 G̃
(k)

1 (λ(k+1)
1 )] = 0

f4(λ
(k+1)
4 ) = n − tr[K̃

(k)

4 G̃
(k)

4 (λ(k+1)
4 )] = 0

(30)

are satisfied where

K̃
(k)

1 = F 1(P (k))
1
2 K1F 1(P (k))

1
2

K̃
(k)

4 = F 4(P (k))
1
2 K4F 4(P (k))

1
2

G̃
(k)

1 (λ(k+1)
1 ) = [F 1(P (k))

1
2 G1(P (k), λ

(k+1)
1 )F 1(P (k))

1
2 ]−

1
2

G̃
(k)

4 (λ(k+1)
4 ) = [F 4(P (k))

1
2 G4(P (k), λ

(k+1)
4 )F 4(P (k))

1
2 ]−

1
2 .

The iteration process continues until

|J(P (k), λ
(k+1)
1 , λ

(k+1)
4 ) − J(P (k−1), λ

(k)
1 , λ

(k)
4 )| < ε (31)

for a prescribed tolerance ε > 0. If the iteration is terminated
at step k, then P (k) is claimed to be a solution point.

It is noted that a straightforward extension of the iterative al-
gorithm reported in [22] for updating λ1 and λ4 does not work
well in this case, where we do not require tr[KP−1] = m+n,
but both tr[K1P

−1
1 ] = m and tr[K4P

−1
4 ] = n. In addition,

the bisection method offers an exponential convergence rate
of (1/2)L where L is the number of iterations used. As such,
accurate solutions of the Lagrange multipliers λ

(k+1)
1 and

λ
(k+1)
4 in (30) can be identified with just a few iterations.

In our simulation studies, the bisection method was found
considerably faster than the iterative algorithm proposed in
[22].

All the Gramians can be evaluated by truncating the corre-
sponding infinite summations, see Appendix I for details.

3.2 An Unconstrained Optimization Method

By defining

T̂ = T̂ 1 ⊕ T̂ 4 = (T 1 ⊕ T 4)T (K1 ⊕ K4)−
1
2 , (32)

it follows that

T −1
i KiT

−T
i = T̂

−T

i T̂
−1

i for i = 1, 4. (33)

Thus, a convenient way to eliminate the l2-scaling constraints
in (21) is to choose T̂

−1

1 and T̂
−1

4 as

T̂
−1

1 =

[
t11

||t11|| ,
t12

||t12|| , · · · ,
t1m

||t1m||

]

T̂
−1

4 =

[
t41

||t41|| ,
t42

||t42|| , · · · ,
t4n

||t4n||

] (34)

where t1i is an m × 1 vector for i = 1, 2, · · · , m and t4j

is an n × 1 vector for j = 1, 2, · · · , n. With (34), all the
diagonal elements of T̂

−T

1 T̂
−1

1 and T̂
−T

4 T̂
−1

4 are found to be
unity. Taking (32) and (34) into account, we conclude that the
coordinate transformation matrix T of the form

T = T 1 ⊕ T 4 = (K1 ⊕ K4)
1
2 (T̂ 1 ⊕ T̂ 4)T (35)

automatically satisfies the l2-scaling constraints in (21). By
substituting (35) into S(P ) in (20), the frequency-weighted
l2-sensitivity measure can be expressed as

Jo(x) = tr[T̂ M̂A(P̂ )T̂
T
]+tr[T̂ Ŵ BT̂

T
]+tr[T̂

−T
K̂C T̂

−1
]

(36)
with

x = (tT
11, t

T
12, · · · , tT

1m, tT
41, t

T
42, · · · , tT

4n)T

M̂A(P̂ ) =
1

(2πj)2

∮
Γ1

∮
Γ2

Ŷ (z1, z2)P̂
−1

Ŷ
∗
(z1, z2)

dz1dz2

z1z2

where P̂ = T̂
T
T̂ and

Ŷ (z1, z2) = (K1 ⊕ K4)
1
2 Y (z1, z2)(K1 ⊕ K4)−

1
2

Y (z1, z2) = WA(z1, z2)[F (z1, z2)G(z1, z2)]T

Ŵ B = (K1 ⊕ K4)
1
2 W B(K1 ⊕ K4)

1
2

K̂C = (K1 ⊕ K4)−
1
2 KC(K1 ⊕ K4)−

1
2 .

This shows that the problem of obtaining the block-diagonal
nonsingular matrix T = T 1 ⊕ T 4 which minimizes S(P )
in (20) subject to the l2-scaling constraints in (21) can be
converted into an unconstrained optimization problem of ob-
taining an (m2 + n2)× 1 vector x which minimizes Jo(x) in
(36).

Applying a quasi-Newton algorithm to minimize Jo(x) in
(36), in the kth iteration the most recent point xk is updated
to point xk+1 as [33]

xk+1 = xk + αkdk (37)

where

dk = −Sk∇Jo(xk), αk = arg min
α

Jo(xk + αdk)

Sk+1 = Sk +
(

1 + γT
k
Skγk

γT
k
δk

)
δkδ

T

k

γT
k
δk

− δkγT
k
Sk+Skγk

δT

k

γT
k
δk

S0 = Im2+n2 , δk = xk+1 − xk

γk = ∇Jo(xk+1) −∇Jo(xk).

Here, ∇Jo(x) is the gradient of Jo(x) with respect to x, and
Sk is a positive-definite approximation of the inverse Hessian
matrix of Jo(x). The algorithm starts with a trivial initial point
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x0 obtained from an initial assignment T̂ = Im+n, and this
iteration process continues until

|Jo(xk+1) − Jo(xk)| < ε (38)

where ε > 0 is a prescribed tolerance.
The implementation of (37) requires the gradient of Jo(x),

which can be efficiently evaluated using closed-form expres-
sions, see Appendix II for details.

IV. CASE STUDIES

In this section, we examine the proposed algorithms by
applying them to a recursive 2-D state-space digital filter. In
addition, the algorithms are applied to a 2-D filter utilized in
[22] and the results are compared with those obtained by the
method of [22].

Example 1 : Consider a 2-D stable recursive digital filter
realization (Ao, bo, co, d)2,2 where [30, p. 971]

Ao =

⎡
⎢⎢⎣

1.88899 −0.91219 −1.00000 0.00000
1.00000 0.00000 0.00000 0.00000
0.02771 −0.02580 1.88899 1.00000

−0.02580 0.02431 −0.91219 0.00000

⎤
⎥⎥⎦

bo =
[

0.219089 0.000000 −0.028889 0.091219
]T

co =
[

0.028889 −0.091219 −0.219089 0.000000
]

d = 0.08900.

After carrying out the l2-scaling for the above realization with
a diagonal coordinate matrix

T o = diag{9.336421, 9.336414, 1.065102, 0.986642},

we obtain the 2-D state-space digital filter (A, b, c, d)2,2

characterized by

A =

⎡
⎢⎢⎣

1.888990 −0.912189 −0.114080 0.000000
1.000001 0.000000 0.000000 0.000000
0.242899 −0.226156 1.888990 0.926336

−0.244141 0.230041 −0.984729 0.000000

⎤
⎥⎥⎦

b =
[

0.023466 0.000000 −0.027123 0.092454
]T

c =
[

0.269720 −0.851658 −0.233352 0.000000
]

d = 0.08900

where A = T o−1AoT o, b = T o−1bo, and c = coT o. The
2-D state-space digital filter (A, b, c, d)2,2 now satisfies the
l2-scaling constraints. The frequency-weighting functions used
in this example were given by a 2-D nonrecursive low-pass
digital filter with the following unit-sample response [34, p.
895]:

wA(i, j) = wB(i, j) = wC(i, j)

= 0.256322 exp[−0.103203{(i− 4)2 + (j − 4)2}]
for (0, 0) ≤ (i, j) ≤ (20, 20), and zero elsewhere.

Using (A.1) and (A.2) with truncation (0, 0) ≤ (i, j) ≤
(150, 150) to evaluate the Gramians KC , W B , MA and K,

it was found that

KC =⎡
⎢⎢⎣

32.944701 32.414885 2.177594 −2.390760
32.414885 32.944694 2.732580 −2.852159
2.177594 2.732580 4.347875 −4.136567

−2.390760 −2.852159 −4.136567 4.056383

⎤
⎥⎥⎦

W B =

103

⎡
⎢⎢⎣

0.429952 −0.378923 0.215338 0.250313
−0.378923 0.344207 −0.219002 −0.242021

0.215338 −0.219002 3.257832 2.969311
0.250313 −0.242021 2.969311 2.795534

⎤
⎥⎥⎦

MA =

105

⎡
⎢⎢⎣

0.599216 −0.523300 0.711632 0.788400
−0.523300 0.466607 −0.639356 −0.707249

0.711632 −0.639356 6.203669 5.638379
0.788400 −0.707249 5.638379 5.322915

⎤
⎥⎥⎦

K =⎡
⎢⎢⎣

1.000000 0.978030 0.164886 −0.167063
0.978030 1.000000 0.132847 −0.133855
0.164886 0.132847 1.000000 −0.985382

−0.167063 −0.133855 −0.985382 1.000000

⎤
⎥⎥⎦

In what follows, we evaluate the frequency-weighted l2-
sensitivity of the 2-D state-space digital filter (A, b, c, d)2,2.
Later on, this sensitivity measure will be used as a bench-
mark in the examination of the performance of the proposed
algorithms. Using (17), the frequency-weighted l2-sensitivity
of the LSS model (A, b, c, d)2,2 was found to be

S = 126.614237× 104.

As will be seen next, the proposed algorithms are able to de-
duce an equivalent state-space realization with much reduced
frequency-weighted l2-sensitivity.

4.1 Application of the Lagrange method

Choosing P (0) = P
(0)
1 ⊕ P

(0)
4 = I4 in (29) as an initial

estimate and a tolerance ε = 10−8 in (31) as well as in the
bisection method, it took the Lagrange-based algorithm 10
iterations to converge to the solution

P opt =
[

1.639466 1.715106
1.715106 1.828836

]
⊕

[
0.901558 −0.915221

−0.915221 0.962667

]

or equivalently,

T opt =
[

1.142108 0.578841
1.110711 0.771464

]
⊕

[
0.266022 −0.911477

−0.094157 0.976628

]
.

The minimized frequency-weighted l2-sensitivity measure in
(23) corresponding to the above solution was found to be

J(P opt, λ1, λ4) = 4.076278× 104

with λ1 = −16880.585503 and λ4 = 16962.901711, and
the optimal state-space filter structure (A, b, c, d)2,2 (that
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minimizes (20) subject to the l2-scaling constraints in (21))
was synthesized by substituting matrix T opt into (19) as

A =

⎡
⎢⎢⎣

0.930636 −0.144497 −0.098301 0.336809
0.140565 0.958354 0.141528 −0.484919
0.024994 −0.000749 0.958805 0.115614

−0.021475 0.036943 −0.175791 0.930185

⎤
⎥⎥⎦

b =
[

0.076010 −0.109434 0.332103 0.126685
]T

c =
[ −0.637897 −0.500899 −0.062077 0.212695

]
.

The profile of the frequency-weighted l2-sensitivity measure
J(P , λ1, λ4) and the profiles of the Lagrange multipliers λ1

and λ4 for the first 10 iterations are shown in Figs. 2 and 3,
respectively.

2 4 6 8 10
4

4.2

4.4

4.6

4.8

5

x 10 4

k

J
 (P
(k
) , 

λ 1(
k+
1)
, λ
4(k
+1
) )

Fig. 2. Profile of J(P , λ1, λ4) during the first 10 iterations.
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Fig. 3. Profiles of λ1 and λ4 during the first 10 iterations.

4.2 Application of the quasi-Newton method

By choosing T̂ = I2⊕I2 (therefore T = (K1⊕K4)1/2 in
(32)) as an initial estimate and a tolerance ε = 10−8 in (38),
the quasi-Newton algorithm took 16 iterations to converge to
the solution

T̂
opt

=
[

0.906814 0.694991
−0.169732 1.129830

]
⊕

[
0.838552 0.582931

−0.400572 0.939425

]

or equivalently,

T opt =
[

1.142108 0.578841
1.110711 0.771464

]
⊕

[
0.266022 −0.911477

−0.094157 0.976628

]

and the minimized frequency-weighted l2-sensitivity was
found to be

Jo(T̂
opt

) = 4.076278× 104.

We see that the results obtained by this method are identical to
those obtained by the Lagrange-based method. The profile of
the l2-sensitivity measure Jo(T̂ ) during the first 16 iterations
is shown in Fig. 4.

0 5 10 15
4.05

4.1

4.15

4.2

4.25

4.3

4.35
x 10 4

k

J o(
x k)

Fig. 4. Profile of Jo(T̂ ) during the first 16 iterations.

We now explain the effectiveness of the optimal realization
that minimizes the frequency-weighted l2-sensitivity subject to
l2-scaling constraints. The magnitude response of the original
realization (A, b, c, d)2,2 is shown in Fig. 5, where the max-
imum value and the l2-norm (which corresponds to a square
root of the summation of squared values at 201×201 sampling
points) were 11.975265 and 133.212501, respectively. When
all coefficients in the original realization were rounded to
power-of-two representation with 8 bits after binary point, the
magnitude-response deviation between the original realization
and that with rounded coefficients is shown in Fig. 6, where
the maximum deviation and the l2-norm were 4.141411 and
22.563131, respectively. Alternatively, when all coefficients in
the optimal realization were rounded in the same manner, the
magnitude-response deviation between the original realization
and the optimal one with rounded coefficients is shown in
Fig. 7, where the maximum deviation and the l2-norm were
0.617833 and 2.323280, respectively. From these figures and
data, it is observed that the coefficient sensitivity of the optimal
realization is considerably lower than that of the original
realization.

Example 2 : Let a 2-D stable recursive digital filter realiza-
tion be specified by (Ao, bo, co, d)4,4 where

Ao =

[
Ao

1 Ao
2

Ao
1 Ao

2

]
, bo =

[
bo
1

bo
2

]
, co =

[
co
1 co

2

]
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Fig. 5. Magnitude response of the original realization.

Fig. 6. Magnitude-response deviation between the original
realization and that with rounded coefficients.

with

Ao
1 =

⎡
⎢⎢⎣

0.0 0.481228 0.0 0.0
0.0 0.0 0.510378 0.0
0.0 0.0 0.0 0.525287

−0.031857 0.298663 −0.808282 1.044600

⎤
⎥⎥⎦

Ao
2 =

⎡
⎢⎢⎣
−0.226080 0.776837 0.024693 −0.000933
−0.843550 1.610400 −0.309366 0.065898
−1.260339 2.005100 −0.453220 0.203118
−1.121498 1.636435 −0.590516 0.562890

⎤
⎥⎥⎦

bo
1 = bo

2 = [ 0.0 0.0 0.0 0.198473 ]T

co
1 = [ −0.567054 0.231913 0.197016 0.239932 ]

co
2 = [ 0.464344 0.441837 −0.061100 0.105505 ]

d = 0.009430.

This 2-D filter was obtained by imbedding the LSS model
of Example 2 in [22] into the Roesser LSS model. By
performing the l2-scaling for the above realization with a
diagonal coordinate matrix

T o = diag{1.000001, 1.000002, 1.000003, 1.000003,

1.000001, 1.000002, 1.000003, 1.000003}

Fig. 7. Magnitude-response deviation between the original
realization and the optimal one with rounded coefficients.

and then applying the same frequency-weighted functions as
in Example 1 to the resulting realization (A, b, c, d)4,4, the
frequency-weighted l2-sensitivity in (17) was found to be

S = 394.423680× 103

with truncation (0, 0) ≤ (i, j) ≤ (100, 100) in (A.1) and (A.2).

4.3 Application of the Lagrange method

Choosing P (0) = P
(0)
1 ⊕ P

(0)
4 = I8 in (29) as an initial

estimate and a tolerance ε = 10−8 in (31) as well as in the
bisection method, it took the Lagrange-based algorithm 104
iterations to converge to the solution

P opt =

⎡
⎢⎢⎣

3.947574 3.057718 2.498923 2.123649
3.057718 2.599605 2.183384 1.861281
2.498923 2.183384 1.894674 1.650080
2.123649 1.861281 1.650080 1.483679

⎤
⎥⎥⎦

⊕

⎡
⎢⎢⎣

2.234666 1.993263 1.781601 1.653502
1.993263 1.814492 1.653747 1.534665
1.781601 1.653747 1.556000 1.464299
1.653502 1.534665 1.464299 1.432256

⎤
⎥⎥⎦

or equivalently,

T opt =

⎡
⎢⎢⎣

0.614712 1.232311 1.040088 0.984546
0.899544 0.797151 0.663356 0.845538
0.874957 0.504513 0.679077 0.642997
0.727174 0.269835 0.705983 0.619414

⎤
⎥⎥⎦

⊕

⎡
⎢⎢⎣

0.531664 0.880708 0.800816 0.731468
0.620875 0.737566 0.617178 0.709996
0.753633 0.564844 0.551426 0.604084
0.723352 0.347355 0.658078 0.596067

⎤
⎥⎥⎦ .

The minimized frequency-weighted l2-sensitivity measure in
(23) corresponding to the above solution was found to be

J(P opt, λ1, λ4) = 4.670177× 103

with λ1 = 5.955188 and λ4 = −14.111003. The profile of the
frequency-weighted l2-sensitivity measure J(P , λ1, λ4) and
the profiles of the Lagrange multipliers λ1 and λ4 for the
first 104 iterations are shown in Figs. 8 and 9, respectively.
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Fig. 8. Profile of J(P , λ1, λ4) during the first 104 iterations.
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Fig. 9. Profiles of λ1 and λ4 during the first 104 iterations.

4.4 Application of the quasi-Newton method

By choosing T̂ = T̂ 1 ⊕ T̂ 4 = I8 in (37) as an initial
estimate and a tolerance ε = 10−8 in (38), the quasi-Newton
algorithm took 54 iterations to converge to

T̂
opt

=

⎡
⎢⎢⎣

3.056671 −2.673365 0.575882 −0.429287
−0.331629 2.142411 −0.401503 −0.192081
−2.530651 0.932586 0.553002 −0.136935

1.754363 −0.312582 0.624509 0.515370

⎤
⎥⎥⎦

⊕

⎡
⎢⎢⎣

1.307170 −0.419919 0.045538 −0.194118
0.762443 0.830435 −0.297531 0.062104

−0.405202 0.189220 0.976564 −0.250656
1.071478 −0.069804 0.315533 0.828727

⎤
⎥⎥⎦

or equivalently,

T opt =

⎡
⎢⎢⎣

0.690639 0.697890 −0.986414 1.417930
0.205523 0.802226 −0.589043 1.251725
0.091157 0.584768 −0.335877 1.196490

−0.023116 0.340604 −0.305900 1.128518

⎤
⎥⎥⎦

⊕

⎡
⎢⎢⎣

0.595272 0.843931 0.159783 1.068904
0.406418 0.767684 0.282059 0.990157
0.270942 0.580437 0.379363 1.000879
0.148987 0.449337 0.230545 1.074708

⎤
⎥⎥⎦ .

The minimized frequency-weighted l2-sensitivity in (36) was
found to be

Jo(T̂
opt

) = 4.670177× 103

which is identical to the minimum value of the frequency-
weighted l2-sensitivity measure, obtained by the Lagrange-
based method. The profile of the l2-sensitivity measure Jo(T̂ )
during the first 54 iterations is shown in Fig. 10.

0 10 20 30 40 50
4000

5000

6000

7000

8000

9000

k

J o(x
k)

Fig. 10. Profile of Jo(T̂ ) during the first 54 iterations.

To compare the technique reported in [22] with the proposed
ones, the optimal realization derived in Example 2 of [22] was
imbedded in the Roesser LSS model by using (6). Then the
frequency-weighted l2-sensitivity of the resulting imbedded
model was computed from (17) as

S = 5.564659× 103.

It is observed that this value is 1.192 times greater than
the minimized frequency-weighted l2-sensitivity obtained by
the proposed techniques. Moreover, the proposed Lagrange-
based method attains considerably faster convergence than
that reported in [22], which required 2000 iterations for its
convergence.

V. CONCLUSION

We have investigated the problem of minimizing the
frequency-weighted l2-sensitivity subject to l2-scaling con-
straints for 2-D state-space digital filters described by the
Roesser LSS model. It has been shown that the FM second
LSS model can be imbedded in the Roesser LSS model as a
special case. Two iterative methods have been developed to
solve the problem at hand. The first iterative method is based
on the introduction of a Lagrange function and makes use of
an efficient bisection method. In our simulation studies, the
bisection method was found to be considerably faster than
the iterative method proposed in [22]. The second iterative
method relies on the conversion of the constrained optimiza-
tion problem into an unconstrained optimization formulation
and utilizes an efficient quasi-Newton algorithm. The optimal
state-space realization with minimum frequency-weighted l2-
sensitivity and no overflow has then been constructed by
applying an appropriate coordinate transformation. Our com-
puter simulation results have demonstrated the validity and
effectiveness of the proposed techniques.
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[
xh(i + 1, j + 1)

xv(i + 1, j + 1)

]
=

[
A1 A2

0 0

][
xh(i, j + 1)

xv(i, j + 1)

]

+

[
0 0

A3 A4

][
xh(i + 1, j)

xv(i + 1, j)

]

+

[
b1

0

]
u(i, j + 1) +

[
0

b2

]
u(i + 1, j)

y(i, j) =
[
c1 c2

] [
xh(i, j)

xv(i, j)

]
+ d u(i, j)

(39)

APPENDIX I

COMPUTATIONS OF GRAMIANS
The matrices KC , W B , and MA can be computed using

KC =
∞∑

i=0

∞∑
j=0

fC(i, j)f T
C (i, j)

W B =
∞∑

i=0

∞∑
j=0

g T
B (i, j)gB(i, j)

MA =
∞∑

i=0

∞∑
j=0

H T
A (i, j)HA(i, j)

(A.1)

where

A(1,0) =
[

A1 A2

0 0

]
, A(0,1) =

[
0 0

A3 A4

]

A(0,0) = Im+n , A(−i,j) = 0 (i ≥ 1), A(i,−j) = 0 (j ≥ 1)

A(i,j) = A(1,0)A(i−1,j) + A(0,1)A(i,j−1)

= A(i−1,j)A(1,0) + A(i,j−1)A(0,1), (i, j) > (0, 0)

f (i, j) = A(i−1,j)

[
b1

0

]
+ A(i,j−1)

[
0
b2

]

g (i, j) = cA(i−1,j)

[
Im 0
0 0

]
+ cA(i,j−1)

[
0 0
0 In

]

H(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

f (k, r)g (i − k, j − r)

fC(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

wC(k, r)f (i − k, j − r)

gB(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

wB(k, r)g (i − k, j − r)

HA(i, j) =
∑ ∑

(0,0)≤(k,r)<(i,j)

wA(k, r)H (i − k, j − r)

with partial ordering for integer pairs (i, j) [26, p. 2], and
wA(k, r), wB(k, r), and wC(k, r) denoting the unit-sample
responses of frequency-weighting functions WA(z1, z2),
WB(z1, z2), and WC(z1, z2), respectively.

The local controllability Gramian K and the other Gramians

MA(P ), NA(P ) and M̂A(P̂ ) can be computed using

K =
∞∑

i=0

∞∑
j=0

f (i, j)f T (i, j)

MA(P ) =
∞∑

i=0

∞∑
j=0

H T
A (i, j)P−1HA(i, j)

NA(P ) =
∞∑

i=0

∞∑
j=0

HA(i, j)PHT
A(i, j)

M̂A(P̂ ) =
∞∑

i=0

∞∑
j=0

Ĥ
T

A(i, j)P̂
−1

ĤA(i, j)

(A.2)

where

ĤA(i, j) = (K1 ⊕ K4)−
1
2 HA(i, j)(K1 ⊕ K4)−

1
2 .

APPENDIX II

GRADIENT EVALUATION OF Jo(x)

∂Jo(T̂ )
∂tij

= lim
Δ→0

Jo(T̂ ij) − Jo(T̂ )
Δ

= 2β1 − 2β2 + 2β3 − 2β4

(A.3)

where T̂ ij is the matrix obtained from T̂ = T̂ 1 ⊕ T̂ 4 with a
perturbed (i, j)th component, which is given by [35, p. 655]

T̂ ij = T̂ +
ΔT̂ gije

T
j T̂

1 − ΔeT
j T̂ gij

, T̂
−1

ij = T̂
−1− Δgije

T
j

gij = ∂

{
tj

||tj ||
}

/∂tij =
1

||tj ||3 (tijtj − ||tj ||2ei)

β1 = eT
j M̂A(T̂ ) T̂ gij

β2 = eT
j T̂

−T

[ ∞∑
p=0

∞∑
q=0

ĤA(p, q)T̂
T
T̂ Ĥ

T

A (p, q)

]
gij

β3 = eT
j T̂ Ŵ BT̂

T
T̂ gij , β4 = eT

j T̂
−T

K̂c gij

with

{t1, t2, · · · , tm+n} = {t11, t12, · · · , t1m}∪{t41, t42, · · · , t4n}.
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