
UC Irvine
ICS Technical Reports

Title
Minimization of memory and network contention for accessing arbitrary data patterns in SIMD
systems

Permalink
https://escholarship.org/uc/item/8p7668pj

Authors
Seiden, Steven S.
Al-Mouhamed, Mayez A.

Publication Date
1993-06-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8p7668pj
https://escholarship.org
http://www.cdlib.org/

Minimization of Memory and Network Contention
for Accessing Arbitrary Data Patterns

. in SIMD System~

Steven S. Seiden and Mayez A. Al-Mouhamed
::::::- ~-

ICS-UCI Technical Report 93-29

June 18, 1993

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Minimization of Memory and Network Contention
for Accessing Arbitrary Data Patterns in SIMD

Systems

Steven S. Seiden* and Mayez A. Al-Mouhamedt

ICS-UCI Technical Report 93-29

June 18, 1993

Abstract

Non-uniform memory and network access is a majar source oí performance degra
dation in SIMD supercomputers. We investigate the problem oí finding general XOR
schemes to minimize memory conflicts and network contention for accessing arrays with
arbitrary data templates, defined by template bases.

The XOR-matrix is defined so that each column corresponds to a distinct vector in
the union oí all templates bases. A restriction oí the XOR-matrix to a given template
is formed by concatenation oí the columns corresponding to the template basis. We
prove that a necessary and sufficient condition for conflict-free and network-contention
free access far the Baseline network is that certain sub-matrices of every template's
restricted matrix be non-singular. A new characterization of the baseline network and
XOR-matrices is proposed. Finding an XOR-matrix far accessing arbitrary templates
is proved to be an NP-complete problem.

To minimize memory and network contention, a heuristic algorithm is proposed for
finding XOR-matrices. The algorithm determines successive rows, from the bottom up.
Given the previous row, the algorithm determines: 1) the constraints required by each
template's restricted matrix 2) and the row solution by solving a set of simultaneous
equations. To avoid backtracking, a randomized approach is used. The time complexity
of the heuristic is O(tpn2), where t, 2P, and n, are the number oí templates, the number
of processors, and the number of distinct vectors of template bases, respectively.

Evaluation shows that the proposed XOR-schemes significantly reduce memory and
network contention compared to interleaving and XOR-schemes that are optimized far
a set of static reference reference templates.

* Department of Information and Computer Science, U niversity of California, Irvine, CA 92717.
tDepartment of Information and Computer Science, University of California, Irvine, CA 92717. On leave

from King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

1

Keywords: Memory Conflicts, Multi-Stage Networks, NP-completeness,
Parallel Memories, Storage Schemes

1 Introduction

When high performance computers are used, non-uniform access to parallel memories and
network contention are responsible for significant performance degradation (15, 1], especially
in SIMD systems. Generally, subdividing the main memory into units that operate in parallel
<loes not linearly increase the system bandwidth.

Memory interleaving has been widely used because it optimally maps sequential array
addresses into successive memory units. Operations on arrays require most of the available
bandwidth for SIMD computers. Sequential addresses form arithmetic sequences, or strides,
where successive addresses differ by a constant amount. Because significant degradation
occurs when the stride is not relatively prime to the number of memories, more sophisticated
storage schemes were investigated in order to eliminate or reduce memory and network
conflicts. The use of a prime number of memories (15] significantly outperforms regular
interleaving but requires computationally expensive [9] address translation.

Improving the performance of scalar access to parallel memories has also been ip.vestigated
for long-instruction-word (LIW) computers [8]. LIWs have rnultiple functional units that
operate in lock-step and fetch data required by parallel operations from multiple rnernory
modules. Conflict-free allocation of data may not always exist, but a high percentage of
memory conflids can be avoided [8] by using a very low degree of data duplication.

For load/store operations in SIMD computers, network and memory contention cause
all the PE's to wait until the completion of the last data transfer [5]. By restricting the
type of access to sorne fixed data patterns, conflict-free access [5, 2, 14] to rows, columns,
and diagonals of arrays were proposed on the basis of row rotations. In this case, adequate
data organization enables load/ store operations to execute in a parallel fashion (one cycle)
because each PE maps its array element to a distinct path through the network and to
a distinct mernory unit. Another approach [16] uses matrices of control patterns for the
interconnection network to cause the dynamic permutation of data. The drawbacks of these
approaches are: dependence on the array size, dependence on the number of memories, and
cornplex address transformations. vVhile these approaches are useful, several researchers
recognized (6, 13] that restricting the conflict-free access to sorne fixed templates was not
realistic assumption for general computing.

Based on skew storage, a more flexible approach [5, 6, 10, 19], called XOR-schemes was
proposed based on linear bitwise transformation of addresses. The efficiency of XOR-schemes
stem from the fact that modulo-2 arithmetic can be implernented using the logicaLand and
exclusive-or operators. This approach requires the use of a number of processors and
rnemory units which is a power of 2, in addition to sorne compile-time knowledge of the
accessed ternplates. By considering mainly the memory requirements, these schemes were
further analyzed and several variants were proposed (6, 11, 17]. In the following we present
sorne of these variants.

2

PE 1 PE 2 PE P Processors

Network

Ml M2 MP Memories

Figure 1: Structure of a SIMD architecture

For vector processors, an XOR-scheme can be found [9] by factoring the stride into two
integers, the first being a power of 2, and the other being relatively prime to 2. This results
in optimized stride access. In addition, this scheme outperforms regular interleaving for
other strides provided that memory units are augmented by sorne buffering capabilities.

In [6], it is shown that a necessary and sufficient condition for conflict-free memory
access of a given template is that the image by the storage scheme of the template basis
is linearly independent. While the XOR-scheme of a single template can be easily found,
no general methods were proposed for finding the XOR-scheme for composite templates. In
sorne specific cases, the combined scheme is found for a set of templates.

Because of the excessive cost of crossbar switches, multistage networks such as the
Benes [3], Omega (14], and Baseline [18], were analyzed with respect to their permissible
permutations. In most cases, confüct-free access to the network is obtained for sorne fixed
data templates. For row, colum~, diagonals, and square blocks, a scheme [4] based on
composite linear permutations was proposed .for the Omega network.

While all these approaches are useful, they either: 1) treat only the parallel memory
characterization, or 2) treat memory and network aspects by considering only a reference set
of static templates. In this work, we consider an SIMD computer that consists of a number
of processing elements and memory uni ts connected by a network, as displayed in Figure l.
Our objective is to find a methodology for combining the requirements of composite data
templates in a general and coherent X O R-scheme. We shall present a complete approach
for finding the XOR-matrix that minimizes memory and network contention for accessing
arbitrary data templates in SIMD systems. We restrict ourselves to the Baseline network.

This paper is organized as follows. Section 2 describes the notation used and background.
Section 3 defines templates and XOR-schemes. Characterizations of the Baseline network and
non-singular matrices are presented in Section 4. The memory and network requirements
for. conflict-free access of arbitrary data templates and their NP-completeness aspects are
presented in Section 5. An algorithm for finding XOR-schemes is presented in Section 6.
Section 7 presents performance evaluation, and Section 8 concludes this work and outlines
future extensions.

3

2 Notation

Our study of XOR-schemes makes use of concepts from linear algebra. XOR-schemes operate
on integers as bit vectors. We set forth the notation we shall use, and briefly review sorne·
concepts.

In general, we denote abstract objects such as vector spaces and templates using capital
cursi ve letters, i.e. the vector space V. Set are denoted using capital italic letters, i.e. the set
S. Integers and vectors are denoted using small italic letters, i.e. the vector x. Components
of vectors are denoted by subscripting. The ith component of the vector x is Xi· Bits of
integers are referred to in a similar fashion. The binary representation of a d bit integer x
is Xd-l ... x 1x 0 . In other words, the zeroth bit (least significant) of x is xa, the first bit is x1

etc
We can identify the set of integers in the range [O : 2d - 1] with the d dimensional vector

space over Z2 , the integers modulo 2. The vector (x 0 , x 1 , ... , Xd-l) corresponds to the integer
x = Xd-l ... x 1x 0 . Each bit of the integer is a component of the vector. Note that the order
of the bits in the vector is the reversa! of the order in the binary representation. We adopt
this convention to be consistent with preceding literature. For example, 13 in binary is 1101,
and so the vector representation of 13 is (1, O, 1, 1).

In the field Z2 , addition and multiplication are defined thus:

EB O 1
o o 1
1 1 o

X Ü 1
o o o
1 o 1

We use the symbol EB to denote ·addition in Z2 , and to denote addition of vectors over Z2 •

Note that if we let 1 be the Boolean value true, and O be the Boolean value false, addition
corresponds to logical exclusive-or, and multiplication corresponds to logical and. Adding
two vectors in Z~ corresponds to taking the bitwise exclusive-or of the binary representa
tions of the corresponding integers. For example, (1, 1, O, 1) EB (O, 1, 1, O) = (1, O, 1, 1), this
corresponding to the bitwise exclusive-or of 11 and 6, which is 13. Multiplying a vector by
the scalar 1 gives back that vector, while multiplying a vector by the scalar O results in the
zero vector.

A set of vectors in a vector space are hnearly independent if and only if no non-zero linear
combination of them is zero. Formally, if we have a set of vectors { v0 , ... , Vn-l} then they
are linearly independent if and only if the linear combination:

aovo EB · · · EB ªn-1 Vn-1

where each ai is a scalar, is zero exactly when all ai are zero.
The vector space Z~ is generated by an ordered set of basis vectors. The basis of a vector

space is linearly independent. Further, the basis spans the space, every vector in the space
can be represented as a unique linear combination of the basis vectors. One possible basis
of z~ is the set:

Va (1, Ü, Ü, ... , Ü)

4

V1 (0, 1, 0, ... , 0)

Vn-1 (O, O, O, ... , 1)

This basis is known as the canonical basis of Z~. In this paper, we will always use canonical
bases. We illustrate these concepts with a small example. Let V = Z~. The canonical basis
of this vector space is:

Vo (1, O)

V1 (0,1)

We can express all four vectors in V as linear combinations of these two:

(0,0) Ovo EB Ov1

(1, O) 1 vo EB Ov1

(O, 1) Ovo EB lv1

(1, 1) lvo EB 1 V1

Let </> be a function. Then we say </> is linear if </>(x EB y) = </>(x) EB c/>(y) and </>(ex) = c<f>(x).
Suppose </> is a linear function 1> : z~ 1-+ Z'!I'. The function </> is represented by an m X n
matrix <P over Z2 • We apply </>to a vector x by matrix multiplication:

<P(xo, x1, ... , Xn-1) = <11 • (~~ l
l Xn-1

The upper left-most entry of <P is <P 0 ,0 . We denote the ith row of <P by <I>i,*' and the jth
column of <P by <P*,j. The columns of <f> represent the values oí </> on the basis vectors of Z~.
Le., if Vj is the jth basis vector, <P*,j is the value of </>(Vj). </> will be onto if and only if <I> has
full rank.

Since </> produces a vector, we wish to consider how </> produces each component of that
vector. We define </>i (x) to be the i th com ponent of the vector </>(x). In other words:

</>(Xo, . .. , Xn-1) = (</>o(Xo, . .. , Xn-1), . .. , <f>m-1 (Xo, · · ·, Xn-1))

Or more succinctly:
</>(x) = (</>o(x), ... , <f>m-1(x))

The matrix representing </Ji is <Pi,*·
Given a subset S of the basis of Z~, we can create a restriction of </> to S denoted by

<f>8 . Since the basis of Z~ is an ordered set, an ordering of Sis imposed by the ordering of

the basis. The matrix representing the restricted function is denoted <P 8 . Formally, if S is a
subset of the basis Vo, . .• , Vn-1 of Z~, and m is the size of S, then </J8 is defined by:

. s (cP (X) = (cPio (X), .. · , cPim-1 X))

where Vii is the jth member of S. The matrix <P 8 consists of the columns <P*,io ... <P*,im-l,

concatenated in that order.
We give a small example. Let </>: Z~ ~ Z~. We assume that the basis V of Z~ is:

Vo (1,0,0,0)

V1 (0,1,0,0)

V2 (0,0,1,0)

V3 (0,0,0,1)

Let <P be defined by the matrix:

Note that we have labeled each column with the basis vector to which it corresponds. Le.~

the value of </>(va) = (O, 1, O), </>(v1) = (1, O, O) etc Let S = { v0, v2, v3 }. Then the matrix
representing <f>

8 is:

3 XOR-schemes

(
0

º1· <Ps =
o
o
1

We now formally define XOR-schemes. First we formalize the relationship between array
positions and vectors. We then formally define templates with respect to XOR-schemes.
Finally, we define XOR-schemes themselves.

3.1 Definition of Vector Spaces U sed

We wish to identify each array position (a, b) with a unique vector. The row index a
can be identified with the vector (a0 , • •• , ªd-l) and the column index b can be identi
fied with (b0 , ••. , bd-l). Consequently, array position (a, b) can be uniquely identified with
(ao, ... , ªd-1' b0 , .•• , bd-1). We also identify each memory unit number e with (co, ... , Cp-1).

We now define formally the vector spaces to which we have been alluding.

6

Tí 72 13 74

CD

CD

CD

CD

Figure 2: From left to right Tí ... 74

We define a vector space F = Z~ to represent horizontal indices. We define F =
{fo, fl, ... , fd-d to be the canonical basis of F. So we have:

fo (1,0,0, ... ,0),

fl (0,1,0, ... ,0),

Íd-1 (O, O, O, ... , 1)

Each row index has a unique representation as a vector in :F. We similarly define vector
spaces g for column indices and 'H for memory unit numbers, with canonical bases G =
{go, gi, ... , 9d-d and H = { ho, hi, ... , hp_i}, respectively.

The Cartesian product of the vector spaces :F and g is a new vector space V = :F x g
with basis FU G. Let n = 2d. We denote this combined basis as V = {v0 , vi, ... , Vn-d,
where Vo = fo, V1 = fi, Vd = 90 etc T'his vector space is isomorphic to z~. Any position'
(a, b) in the array is uniquely associatecl with a vector in V. This vector can be expressed as
a linear combination of the basis elements:

aovo EB • • · EB ªd-l Vd-l EB bovd EB • • · EB bd-l Vn-l

We refer to the elements of the basis V using either f's and g's, or v's, depending on which
is notationally convenient.

3.2 Data Templates

A template is a pattern on array element locations. Templates are used to describe the
access patterns of an algorithm. A particular instantiation of a template is called a template
instance. Given a set of templates, we would like to find a fundion that allows us to access
them all in a conflict-free manner. By this we mean that for all given templates, for all

7

template instances, all of the elements of any template instance map to distinct memory
units.

XOR-schemes can handle a large class of useful templates, such as rows, columns, square
and rectangular blocks etc However, a restriction of XOR-schemes is that they can handle
only non-overlapping templates. We now define formally what is meant by a template, with
respect to XOR-schemes.

We define a template ~ by a basis Ti, which is a nonempty subset of V. We assume all
template bases are of size p. Notice that there is a definite distinction between the definition
of a template ~' which is a pattern, and its basis Ti, which is a set of vectors.

This is best explained by looking at sorne examples such as the templates that are il
lustrated on Figure 2. Let p and d both be 3. Our basis is V== {fo~f1,/2,go,g1,g2}, or
alternatively V== {vo,v1, ... ,v5}. Consider the template Tí de:fined by Ti== {fo,Ji,/2}.
The set of ternplate instances described are all non-overlapping columns of eight elements.
Every element in a template instance is a linear cornbination:

where the b's are constant, and the a's are allowed to vary. The position with all the varying
bits set to zero is the template instance's origin. ((O, O, O, b0 , bi, b2) is the origin in our
example). Intuitively, we are letting the bits of a vary, while the bits of b rernain :fixed. By
allowing different sets of bits to becorne variable, we generate templates of different shapes.
Let Ti ha ve basis T2 == {fo, f1 , gi}. Then, in Ti all template instances are four elernents tall.
Since g0 is ornitted, this ternplate skips a column. Thus, we have two 4 X 1 sub-arrays, spaced
two columns apart. We define T3 by T3 == {Ji, /2, gi}. This template is four 1 X 2 sub-arrays
spaced two rows apart. We let Tt have basis T4 =={fo, fi,g0 }. It is a 4 X 2 sub-array.

3.3 XOR-Schemes

An XOR-scheme is a linear function </> : F x g f-7 1-l, which is represented by a p x n matrix
<I>.

An XOR-scheme </> allows con:flict-free access to ~ if and only if </> maps each linear
cornbination of Ti to a unique elernent of 1i [6]. In other words, </>T¡ must be onto. For
con:flict-free access to all templates, </>T¡ must be onto for all Ti.

4 The Baseline Network

We consider SIMD systems in which the PE's are interconnected to the memories by using
multi-stage networks that basically are permutation networks such as the Baseline, Omega,
Delta, etc. Their basic elernent is the 2 x 2 switch, but the characteristics of the permutations
each network can pass depend on its topology. The Baseline network is considered here as
the data-alignment system between the memory units and the processors. To simplify the
notation, we assume that processor addresses and corresponding data travel through the

8

P-1

p
P+l

2P-1

¡··
o o
1 1

IBp
(X)

P-1 P-1

o
1

IBp
(Y)

2
3

2i
2i+l

2P-2
P-1 : 2P-1

:i==== ... = .. = .. = ... ::::1 .. .

Figure 3: Structure of IB(p+ 1)

inverted-baseline and baseline, respectively. In this section, we define the inverted baseline
network, and study its structure and properties.

The 1-stage inverted baseline network IBl consists of a single switch with two inputs
and two outputs. The switch can perform both of the possible permutations of outputs to
inputs, (~D and (~~):

º~º
1~1

and

º~º l~l

The 2-stage network IB2 consists of four switches connected in the following manner:

..
a: o o o o: o
1 ¡ 1 IB 1 1 1 IBl 1 ~ 1

o o o o : 2
1 IB 1 1 1 IBl 1 ; 3

.

Note that this network can perform 16 permutations, but the total number of possible
permutations is 24. For instance, IB2 cannot perform the identity permutation (~i;~). In
general, the p-stage inverted baseline network IBn has P == 2P inputs and outputs. We
define IB(p + 1) recursively in terms of IBp as is shown in Figure 3. IB(p + 1) uses two
copies of IBp, which we shall call X and Y, and P individual switches. The inputs of X are
inputs O through P - 1 of the network. The inputs of Y are inputs P through 2P - 1 of
the network. The ith single switch has its outputs O and 1 as outputs 2i and 2i + 1 of the

9

2
3

4
.5

6
7

o o
1 IBl 1

2
3

o o 6

----...---. 1 IBl 1 :r 7
.t::::::=~ :,

i Stage2i' . Stage3~r
1 : ,

_ ~J:a~e_ ~ ~ Phase 2 1 Phase 3 :
~==================~------------~

Figure 4: Stages and phases of IB3

network, respectively. Input O of this switch is connected to the ith output of X, and input
1 connected to the ith output of Y. ,

We define a sub-network of a network to be sorne subset of the switches in that network.
From the definition of IBp, we know that it consists of two sub-networks which are copies of
IB(p-1), and 2p-l sub-networks which are copies of IBl. However, this is not the only way
to partition the network into sub-networks. We may also consider the network in terms of
its stages. For instance, the three stages of IB3 are illustrated in Figure 4. Note that each
stage consists of 4 switches, and has 8 inputs and outputs. The inputs of the first stage are
the inputs of the network, and the outputs of the last stage are the outputs of the network.
In general, it is easily seen that IBp will have 2p-l switches in each of its stages. Proof of
this follows directly from the recursive definition of IBp.

We consider other useful sub-networks. We can see from the previous example that stage 1
consists of four copies of IBl (which are just single switches), and stages 1 and 2 combined
consist of two copies of IB2. We call the sub-network consisting of stages 1 through ·i a
phase, or more specifically phase i. We see that in a p stage network, phase i will consist
of 2p-i copies of IBi. Proof of this also follows directly from the definition of IBp. We
call these copies sub-phases, and number them from top to bottom. Sub-phase O receives
inputs O through 2i-1, and produces outputs O through 2i -1; Sub-phase 1 receives inputs 2i
through 2 · 2i -1, and produces outputs 2i through 2 · 2i -1; etc The phase structure of
IB3 can also be seen in Figure 4.

4.1 Routing

We study how a message passes through the network from a given source to a given destina
tion. By doing so, we will gain a better understanding of which permutations the network
can handle.

10

Consider a message passing from input O of IB3 to output 5. We refer the reader to
Figure 4. The message passes through the first switch of stage 1 and reaches output 1 of
stage l. This output is connected to input 2 of stage 2. The message then passes through
the second switch of stage 2 and exists stage 2 via output 2. Finally, the message enters
input 4 of stage 3, passes through the third switch, and exists through output 5. Let us
express this in a more concise form, using numbers in binary:

000 ---+ 001 ---+ 010 ---+ 101

The leftmost number is the source, and the rightmost is the destination. The numbers
in between represent the position of the message after each stage. Consider sorne other
examples. The routing from 4 to 7 is:

100 ---+ 101 ---+ 111 ---+ 111

and from 7 to O is:
111 ---+ 11 o ---+ 100 ---+ 000

Now consider again the routing from O to 5, and notice how the source position is transformed
into the destination position:

ooo ---+ oo[[] ---+ oITQJ ---+ lm]

We have placed .a box around the bits of the destination position. At each stage, the bits
of the destination are 'shifted in' to replace those of the source. Reconsidering the previous
examples, we see that this pattern of 'shifting in' holds. We prove that it holds in the general
case.

Theorem 4.1 Given a p-stage network, !et posi(s, d) be the position of a message passing
Jrom input s to destination d after the ith stage. Then:

(1)

in binary representation} where dj i:s tlu j th bit of d, and Sj is the j th bit of s. (The least
significant bit is the zeroth} etc . ..)

Proof The proof is by induction. The base case is posp(s, d) == d == dp-l ... d0 • We assume
that:

posi+l (s, d) == sp-1 ... Si+i dp-1 ... dp-i-1

and we show that:

posi(s, d) == Sp-1 ... sidp-1 ... dp-i

Since the message enters phase (i + 1) of the network at:

S == Sp-1 ... So

11

an~ exits at:

Sp-1 ... Si+ldp-1 · · · dp-i-1

it is apparent that the message passes through sub-phase:

T = Sp-1 ... Si+i

The starting position of the message relative to this sub-phase is

t = Si ... So

The exiting position relative to this sub-phase is:

Note that:

and that:

e = dp-1 ... dp-i-1

Sp-l Si+l Ü Ü

+ o o dp-l . . . dp-i-1

s T · 2i+i + t
Sp-1 Si+l Ü Ü

+ o Ü Si So.

Since sub-phase T is a copy of IB(i + 1), consider again Figure 3. If t < 2i (i.e. Si = O)
then the message originated in the upper copy of IBi, as illustrated in the figure. Its exiting
position relativ~ to this upper copy must have been:

f = le/2J = dp-l ... dp-i

Therefore:
T · 2i+i + f
Sp-1 Si+l Ü Ü

+ O O Odp-1 dp-i

s p- 1 Si+l Odp- l dp-i

Sp-l Si+l Sidp-1 dp-i

If t ~ 2i (i.e. Si == 1) then the message originated in the lower copy of IBi, as illustrated in
the figure. Its exiting position relati ve to this lower copy must have been:

J' = 2i + le/2J = Idp-1 ... dp-i

So, once again:

posi(s, d) - T · 2i+i + f'
== Sp-1 Si+l o o

+ o o Idp-1 dp-i

Sp-l Si+l ldp-1 dp-i

Sp-l Si+l Sidp-1 dp-i

11

12

4.2 Linear Permutations

Let </;be a linear function from Zj onto Zj. Then </>is a permutation on Zj, and we say that
</> is a linear permutation. </> is defined by a p x p matrix <I>.

We may also consider </> as a permutation of the numbers [O : 2P - 1], by identifying each
integer x, having binary representation Xp-l .•. x 0 , with the vector (x0 , ••• , Xp_ 1). We wish
to know if the inverted baseline network can perform </>. From Equation (1) we find that:

posi(s, <jJ(s)) is the position of a message going from s to </>(s), after the ith stage. Since we
always refer to a message going from s to <f>(s), we shall abbreviate posi(s, <f>(s)) to psi(s). If
<I> is the matrix of </;, the matrix of ps¡(s) is:

<I>p-i,O <I>p-i,i-1 <I>p-i,p-1

<I>p-1,0 <I>p-1,i-1 <I>p-1,p-1

o o 1 o o o
o o o 1 o o (2)

o o o o 1 o
o o o o o 1

We define:

. (~p-i,O ...
~p-:i,i-1)

<I>[i] = : .
<I>p-1,0 ... <I>p-1,i-1

(3)

Note that <I>[i] is just the i xi sub-matrix in the upper-left comer of matrix (2), and the i xi
sub-matrix in the lower-left of <I>.

Theorem 4.2 psi is onto if and only 1f <I>[i] is non-singular.

Proof psi will be onto if and only if its matrix (2) is non-singular. The matrix (2) contains
the identity matrix in its lower-right hand comer. We can cancel any entry <I>j,k = 1 where
p - i ~ j ~ p - 1 and O ~ k < i, by adding row k to row j. This lea ves the identity in
the lower right quadrant, matrix (3) in the upper-left quadrant, and zeros in the remaining
quadrants. Therefore, the non-singularity of (2) depends on its upper-left quadrant, which
is matrix (3). •

We now characterize linear permutations </; which the inverted baseline network can
perform. We say that an p x p matrix <I> is sub-non-singular if and only if <I>[i] is non-singular

for 1 ~ i ~ p - 1.

13

Theorem 4.3 A linear permutation </> on Z~ can be performed by !Bp, ij and only if its
matrix <I> is sub-non-singular.

Proof If two messages are mapped to the same output of a single switch in the network,.
the permutation will fail. If sorne sub-matrix <I>[i] is singular, then psi is not onto, and two
messages will be mapped to the same output of sorne switch in the ith stage. 11

4.3 Sub-Non-Singular Matrices

We find the number of p X p matrices l\II over Z2 which are sub-non-singular. Suppose the
number of such matrices of a given size is small compared to the number of non-singular
matrices of that size. Then the types of templates that could be handled using XOR-schemes
on a computer with an inverted baseline network computer is severely restricted. We show
this is not the case. Furthermore, since the proof we give is constructivé, it will aid us in
devising an algorithm for creating XOR-schemes.

Let us denote the number of p X p matrices which are sub-non-singular by Sp. Examining
the small cases, it is obvious that S1 = l. With a little work, we find the set of 2 x 2 matrices
which are sub-non-singular:

and so S2 = 4. We now show that:

Theorem 4.4 Let Sp be the number of sub'-non-singular p x p matrices over Z2 • Then:

{'t - 2(p-l)p
:Jp - (4)

Proof Suppose we are given an arbitrary p x p matrix M. Assume ,t,~at M[i) is sub-non
singular. Then by performing row and column operations, we can transform l\ll such that
M[i] is the mirror image of the identity matrix thus:

bi-1 bi-2 bl bo e

o o o 1 ªº
o o 1 o ª1

o 1 o o ªi-2

1 o o o ªi-1

We examine the matrix M[i + l]. We denote the entry in the upper'"right comer as e, the
entries below e as a0 , •• . , ªi-1' and the entries to the left of e as b0 , • .• , bi-l · By examining
these quantities, we can determine whether l\ll[i + 1) is non-singular. lf all ai and bi are zero,

14

and e in one, it is easily seen that JVI[i + 1] is non-singular. But what if this not the case?
The fact that M[i] is the mirror-identity makes it easy to cancel the a/s and b/s using row
and column operations. JVI[i + 1] will be non-singular, if and only if, after these operations
e= l. If aj= 1, add the column containing bj to column (i - 1) of M. This changes aj to'
zero. Similarly, if bj = 1 and we add the row containing aj to row (p - 1 - i) of M, this
changes bj to zero. These operations may affect e as follows:

• If aj = bj = O there is no change to c.

• If ªi = 1, bj = O there is no change to c.

• If aj = O, bj = 1 there is no change to c.

• If aj = bj = 1 then e is :flipped.

In the last cas~, both aj and bj are one. If we choose to cancel aj first, the value of bj = 1
is added to e, changing it from a one to a zero, or vice-versa. If we choose to cancel bj first,
the value of aj = 1 is added to e, and e is again changed. In all other cases, we c~n cancel
aj and bj without affecting c. The non-singularity of M[i + 1] will therefore depend on two
factors: the initial value of e, and the number of flips. Counting the number of ways we get O
flips, we find that we can do so in 3i ways, because there are three ways each a-b pair can be
assigned without causing a :flip. There are i3i-l ways we can get one flip, and i(i - 1)3i-2 /2

ways we can get two :flips. In general, there are G) 3i-j ways we can get j flips. If e is

initially zero, M[i + 1] is non-singular exactly when there are an odd number of flips. This

can happen in l::o::;j::;i,oddi Q)3i-j different ways. If e is initially one, M[i + 1] is non-singular

exactly when there are an even number of flips. This happens in l::o::;j::;i,eve~i G) 3i-j ways.

The total number of ways is simply ¿~=o G)3i-j.

We have assumed that all 4i values of a's and b's are possible. We show that this
assumption is valid, at all steps. The proof is by induction. Consider M after M[i] has· been
transformed to the mirror-identity:

Xj-1,i-1 X J-1,0 dj-1 Yj-1,0 Yj-1,j-1

Xo,i-1 xo,o do Yo,o Yo,j-1
bi-1 bo e eo ej-1
o 1 ªº zo,o Zo,j-1

1 o ªi-1 Zi-1,0 Zi-1,j-1

where j = p - i - l. Any previous operations could affect only the a's, b's, x's and z's.
The values of e~ the d's, e's and y's have not been changed. In canceling the a's and b's, we
may change the values of the d's and e's. Our inductive hypothesis is that there exist initial
entry values such that all values of the a's, b's, x's and z's are possible. This is true for

15

i = 1, because we have yet to perform any operations, all entries of lvl are still at their initial
values. Assuming the inductive hypothesis for i, we show that it is true for i + l. Consider
an arbitrary dk. The value of dk may be changed when we cancel sorne b¿ by adding the row
containing a¿ to the row containing c. This adds Xt,k to dk. Since all values of dk and xú
are arbitrary, it is easily seen that dk can assume an arbitrary value after this operation.
Since several Xt,k 's may be added to dk, we extend this argument by induction to cover an
arbitrary number of operations. We argue similarly for arbitrary ek.

If there are Si ways that lvl[i] can be non-singular, then there are:

ways that lvl[i + 1] can be non-singular. Combining this with our value for S1 we ha ve:

Since Sp is always a power of four, let Sp = log4 Sp. Then s0 =.O and Sp+l = Sp +p. We have:

Therefore, we have:

p-1

Sp LÍ
i=O
(p- l)p

2

•
Note that the proof of this theorem implies a 8(p3

) algorithm for determining the sub
non-singularity of a matrix. The na.ºive algorithm is to test each of the p sub-matrices
independently. Since the best known algorithm for determining non-singularity takes more
than 8(n2) time, the nai've algorithm would take more than 8(p3

) time.
We now compare the number of non-singular matrices to the number of sub-non-singular

matrices.

Theorem 4.5 Let Up be the number of p x p matrices over Z2 that are non-singular. Then:

p

Up = II (2P - 2i-l) (5)
i=l

Proof If we are given a p x p non-singular matrix then the :first column contains one or
more non-zero entries. There are:

~ (~)
16

ways that this can occur. Being that this is the case, pick sorne non-zero arbitrarily. Let a
be the row containing this non-zero. Cancel the remaining non-zeros, using row operations.

Consider the second column. The entry in row a rnay be arbitrary. We rnust have at
least one non-zero in sorne other row in this colurnn. The nurnber of ways this can occur is:

2~ (p ~ 1)
i=l i

In general, considering the jth colurnn, we will already have j - 1 non-zeros in previous
columns, each in a different row. For these rows, arbitrary entry values are allowed in
column j. In the rernaining rows, at least one non-zero rnust appear. So we have:

2j-1 2= p - ~ + p-j+l (. 1)
i=l i

distinct sets of entries for this colurnn which ensure non-singularity.
We now show that all these sets of entries are possible, the sequence of row operations

performed do not elirninate any pgssibilities. Consider the colurnn j syrnbolically. We denote
the initial values in this column ao, a1, ... , ap-1 · The final values are aci, ai, . .. , a~_ 1 . Since
we perforrn only row operations, each a~ is the sum of ak and sorne other a's. So each a~
can be represented by a linear equation:

a' o
a' k

bo,oao EB bo,1a1 EB • · • EB bo,p-lªp-1

bk,oao EB bk,1 a1 EB · · • EB bk,p-1 ªp-1

bp-1,oao EB bp-1,1 a1 EB • • · EB bp-1,p-1 ap-1

And so given an assignment to the b's, the question is whether we can find a set of a values
which result in a given arbitrary set of a' values. We can rnake this assignrnent if and only
if the matrix B = (bk,l) is non-singular. Suppose Bis singular. Then we can perforrn sorne
sequence of row operations which cancels sorne row f of B. However, since we perform only
row operations on the original matrix, this irnplies that if we perforrn this same sequence of ·
operations on the original matrix, the entire row f is canceled. This implies that the original
matrix is singular.

Putting this all together, we ha ve:

p - rr 2j-l (2p-j+l - 1)
j=l

p

II (2P - 2j-l)

j=l

17

111111

Corollary 4.1 The ratio of p X p non-singular matrices to matrices is:

p 2i - 1 1 3 2P - 1
Vp = n -2i- = 2 . 4 . . . 2P

i=l

Furthermore, Vp converges as p goes to infinity.

Proof Let Rp = 2P
2

• This is the number of distinct p x p matrices over Z2 • We ha ve:

Rp Rp

2P2 Tif=l (1 - 2i-l-p)

Rp

== fw- 2i-l-p) == fw- r') == ÍI (~: - ~.)
i=l i=l i=l

p 2i - 1
= II--r

i=l

To show that Vp converges, we use the fact that:

ai < O for all i

will converge if and only if:

i=l

converges. Since (2i - 1) /2i = 1 - 2-i we see that (6) will converge if and only if:

f (!)i
i=l 2

converges. This geometric series is known to converge to l.

We compute Vp for sorne small values of p:

p Vp p Vp p Vp
1 0.5000000000 12 0.2888586115 23 0.2887881295
2 0.3750000000 13 0.2888233504 24 0.2887881123

3 0.3281250000 14 0.2888057220 25 0.2887881037
4 0.3076171875 15 0.2887969084 26 0.2887880994

5 0.2980041504 16 0.2887925017 27 0.2887880972

6 0.29334 78355 17 0.2887902984 28 0.2887880962

7 0.2910560556 18 0.2887891967 29 0.2887880956

8 0.2899191179 19 0.2887886459 30 0.2887880954

9 0.2893528696 20 0.2887883705 31 0.2887880952

10 0.2890702984 21 0.2887882328 32 0.2887880952

11 0.2889291508 22 0.2887881639 33 0.2887880951

18

(6)

•

5 XOR-schemes and the Network

Suppose </>is an XOR-scheme for a set of templates. We need to know that a given template
will not only be accessed conflict-free, but that the XOR-scheme will map each template
instance in such a way that the network can perform the mapping. We say that </> is network
contention-free if and only if all template instances of all templates are mapped by </> in such
a way that the network can perform the mappings.

Theorem 5.i' Let </> be an XOR-scheme for a template set T = {'Jí, ... , 7;}, with matrix
<I>. Then </> is confiict-free and network-contention-free for the in verted baseline network if
and only if <I>T¡ is sub-non-singular for all i.

Proof Consider </> restricted to sorne template ~. Then this restricted </> must be a linear
permutation, if it is to be conflict-free. The matrix <I>T¡ must therefore be sub-non-singular.
So <I>T¡ must be sub-non-singular for all i. •

5.1 NP-Completeness

We show that the problem of finding an XOR-scheme which allows conflict-free and network
contention-free access for a given set of templates is tractable for p = 2, but NP-complete
for p > 2. We consider the following abstract problem. We are given:

• A vector space Z = Z~.

• A set of n variables V = {Vi 1 O ::=; i ::=; n - 1}.

• A set T of p-tuples of variables, T = { (Vio, ... , Vip_i) 1 O ::=; Íj ::=; n - 1 }. Each Vi must
appear in sorne tuple.

The vectors assigned to the variables of a tuple form the columns of the a p x p matrix.
For example, if (v0, v1) is a tuple, ancl v0 and v1 are assigned (~) and (i), respectively, then

the matrix corresponding to this tu ple is (~i). We want to find an assignment of vectors
in Z such that the matrices corresponding to all tuples are sub-non-singular. We call this
problem Sub-Non-Singular Satisfaction (SNSS).

This problem can easily be solved for p = 2. A 2 x 2 matrix is sub-non-singular only
if its lower left entry is non-zero. So if a variable ap~ears as the first ítem in a tuple, that
variable must be assigned one of two values, (~) or \D. If a variable appears as the second
item in a tuple, and is not as the first item in any other tuple, then it may be assigned one
of three values, (~), (~) or (i). Any two variables which appear in the same tuple must be
assigned different vectors, or the corresponding matrix will be singular. We build a graph
to represent this problem. Each vertex in the graph represents a variable. There is an edge
between two vertices if and only if the variables they appear together in sorne tuple. We
call this the confiict graph of the problem. Let X be the set of vertices corresponding to

19

G)
(~)

(~)

Figure 5: Example for SNSS with p = 2

variables that appear first in sorne tuples, and thus can be assigned only two values. Let
Y be the remaining vertices, which can be assigned three values. No two vertices in Y
are adjacent, because each edge corresponds to a matrix which must have a first column.
Therefore all edges will be between two ver tices in X, or between a vertex in X and one
in Y. We two-color the vertices in X. The vertices in Y can all be colored with the third
color. This coloring corresponds directly to assigning values· to the variables. We call this
algorithm XIB2. Construction of the conflict graph requires O(t) time, and coloring requires
O(n) time, so the complexity of algorithm XIB2 is O(n + t).

We illustrate this with a small example. Suppose we have variables v0 , ••• , v6 and:

Ti = (va, v4),

Ts (va, v1),

T2 = (v1, vs),

T6 = (v1, v2),

T3 = (v2, vs),

T1 = (V2, V3),

T4 = (v3, v6)
Ts = (v3, va)

The set of vertices which appear in the first position of sorne tuple is X = { v0 , v1 , v2, v3}.
The set of vertices which appear only in the second position of tuples is Y = { v4 , vs, v6}.
The conflict graph of this problem is illustrated in Figure 5. One possible coloring is shown
in the figure.

Theorem 5.2 Sub-Non-Singular Saüsfaction is NP-complete for p == 3.

Proof Given an assi_gnment of vectors to variables, we can easily verify that each tuple
corresponds to a sub-non-singular matrix, in polynomial time. So SNSS is in NP.

We now show that SNSS for p = ;3 is NP-hard. The proof is by reduction from four
coloring (12]. Let G be an arbitrary graph. Let n be the number of vertices in G, and m be
the number of edges. We wish to know if G has a four-coloring. Construct a variable for each
vertex. The variables v0 , . .. , Vn-l correspond directly to the vertices v0 , ... , Vn-1 · Construct
also 2m 'slack' variables, s0 , •• • , s2m-l · For each edge ei == (Vj, vk) in G, we construct two
tuples (vj, s2i, vk) and (vk, s2i+1, Vj)· Note that since both Vj and Vk are the first item in a
tuple, they both must be assigned vectors which have a non-zero in their bottom entry. So
the matrices corresponding to the two tuples constructed for ei are:

v· J S2i Vk Vk S2i+1 v· J

u ? f) u ? f) Ei == ? and Ef == ?
? ?

20

The vectors that may be assigned to Vj and Vk are:

Note that Vj and Vk will be linearly independent if and only if they are assigned different
vectors from this set. Furthermore, this is the only restriction that must hold between Vj

and Vk.

We show that assigning values to the variables v0 ,, .. , Vn-1' s0 , ... , s2m-1' subject to the
above restriction, corresponds exactly to four-coloring G. Suppose Gis four-colorable, then
if vertex Vi has color j we assign z j to vector Vi. The slack variables can then easily be
assigned, since each slack variable appears in only one tuple. Suppose we have an assign
ment of vectors to variables, then if variable Vi is assigned Zj we assign vertex i color j. The
coloring is proper, since if two adjacent vertices have the same color this implies that the
matrix corresponding to the edge between them is non-singular. Since SNSS can be used to
solve any four-coloring problem, via a polynomial time transformation, SNSS is NP-hard. •

Corollary 5.1 Sub-Non-Singular Satisfaction is NP-complete foral! p 2: 3.

Proof (Sketch) We can easily generalize the proof for p = 3, so that in general an SNSS
problems corresponds exactly to an arbitrary 2P-1-coloring problem. Each edge in an arbi
trary graph corresponds to two p x p matrices. The first and last columns of these matrices
correspond to the colors of the vertices incident on that edge. The middle columns of the
matrices are slack columns. •

6 Heuristic Approach to SNSS

We presentan efficient algorithm for fincling an XOR-scheme for a given template set, if one
exists. This algorithm outperforms na'ive backtracking. Further, by not allowing the algo
rithm to backtrack, we derive a practica! algorithm for finding approximate XOR-schemes,
XOR-schemes in which sorne templates may not be accessed conflict-free.

The idea is to construct the matrix of the XOR-scheme one row at a time, from the
bottom up. We assume that, for each template, the matrix <I>T¡[j] is sub-non-singular, and
attempt to construct the row <I>p-j,* so that each <I>T¡ [j + 1] is sub-non-singular. We use
algorithm XIB2, along with the idea from the proof of Theorem 4.4, in the construction.

We illustrate the algorithm by an example with p = 3. Suppose we are given the template
set:

Ti { vo, v1, v2}, T2 = { v1, v2, v3}

T3 { V3, V4, vs}, T4 = { V1, V3, v4}

21

X y

G) (~)

(~) (~)

G) G)
Figure 6: Example

We construct the bottom two rows of ~ using algorithm XIB2. For each ~T¡, we wish
to ensure that the 2 X 2 sub-matrix in its lower-left corner is sub-non-singular. We can
accomplish this by constructing a matrix for the reduced template set:

r; {vo,v1}, T~ = {v1,v2}

T~ { V3, V4}, T~ = {Vi, V3}

Note that T/ is just Ti with the highest ordered vector removed. The vectors appearing
first in sorne templa te T/ are X = { v0, v1, v3}. The vectors appearing only second in sorne
template (or in no templa te) are y = { V2' V4, V5}. The conflict graph, and one possible
coloring, are shown in Figure 6. Since v5 <loes not appear in any T', we arbitrarily assign
it (i). The bottom two rows of our matrix have been determined. We let x 0 , ••• , x 5 be the
values in the top row:

We must now ensure that each 3 X 3 matrix is non-singular. So considering for instance Ti,
we must assign x0 , xi, and x 3 in such a way that the matrix:

is non-singular. The first step is to get the mirror identity matrix in the lower right 2 x 2
sub-matrix, using only row operations. If column operations are used, the values of the x's
are affected. We achieve this in our example by adding the second row to the third:

(7)

22

Note that we do not want to change the original matrix and so we denote this row reduced
" '

matrix <I>T1
• We now ha ve the matrix in the format specified by the theorem. In terms of

Theorem 4.4, we have:

Matrix (7) will be non-singular, and thus sub-non-singular, if e = 1 and the number of pairs
ai = bi = 1 is even, or if e = O and the number of pairs ai = bi = 1 is odd. Since the va1ues
of the a's are fixed, we can express this as a linear equation over Z2•

bo EB b1 EB e = 1

Or, in terms of x's:

Row reducing <I>T2 we get:
V1 V2 V3

(Y T r)
And so for <I>T2 to be non-singular, we must ha ve:

The remaining conditions are:

.T3 EB X5 1

.l' l , D X 3 EB X 4 1

One solution for this system of simultaneous equations is:

Xo = Ü, X1=1, X2 = Ü, X3 = Ü, X4 = Ü, X5 = 1

So the final matrix is:
Vo V1 V2 V3 V4 V5

o 1 o o o

D <I> == o 1 1 1
1 o 1 o

In general, the algorithm is:

l. Determine the bottom two rows of the matrix using algorithm XIB2.

23

2. Create each remaining row, working from the bottom up.
For i in 2 top - 1 loop:

(a) For each templa te 'Tj do:

l. Obtain a mat~ix <PT1 by reducing the matrix <PTJ so that it has the mirror
identity matrix in its lower-left corner, using only row operations. Operations
do not affect the matrix <P.

11. Use the ith column of this matrix to determine the equation associated with
this template. Let the basis of 'Tj be v.e0, . .. , v.ep-l, and Yk = <P~~k-l,.e¡. Then
the equation is:

i-1

X.e¡ EB EB x.ekYk = 1
k=O

(8)

(b) Solve the system of simultaneous equations. Assign entry <Pp-i-l,k the value Xk.

We call this algorithm XIB. Note that we do not have to row reduce from scratch each time
we perform Step i. If we have available the result of the previous iteration, we can row
reduce this partially reduced matrix, and reduce the time complexity of this step from O(p3

)

to O(p2). There are several points to note about algorithm XIB:

• In Step 1, there may be several different ways which algorithm XIB2 could color the
conflict graph. The selection of a coloring may affect the ability of XIB to find a
solution in Step 2.

• In Step (b), the set of equations may not ha ve a unique solution. The selection of a
solution may affect the abiiity of the algorithm to find a solution for a later row.

Since there are potentially several alternatives at Steps 1 and (b), one possibility is to use
backtracking to exhaustively search for a solution. It is also possible to use heuristics to
guide the selection at these steps, wi t h or without backtracking. We consider only non
backtracking solutions, since the higli cost of backtracking prohibits its use in practical
systems.

6.1 Analysis

We analyze the time complexity of algorithm XIB, in the case where no backtracking is
allowed. ·

Algorithm XIB makes an initial call to algorithm XIB2, and then runs in p - 2 phases.
Let t be the number of templates. Each phase constructs t equations. Constructing each
equation requires O(p2

) time, if we use the pa.rtia.lly reduced ma.trix from the previous phase.
The total construction time is O(tp2). Solving the resulting set of simulta.neous equations
can be done in O(tn2) time, since we ha.ve t equa.tions in n unknowns. Since p ::; n, the
total time required for a phase is O(tn2

). The total complexity of a.lgorithm XIB is therefore
O(ptn2), where t, 2P, and n, are the number of templa.tes, the number of processors, and the
number of distinct vectors of the templa.te bases, respectively.

24

6.2 Approximate Solutions

Suppose that a conflict-free and network-contention-free XOR-scheme cannot be found. vVe
wish to find an XOR-scheme which minimizes the 'amount' of conflict. More precisely, each.
of our templates is given a weight, and we wish to find an XOR-scheme where the sum of the
weights of the violated templates is minimized. There are two places were algorithm XIB
can fail to find a solution, Steps 1 and (b).

Suppose that algorithm XIB fails in Step 1. This occurs if the subgraph X is not two
colored. In this case, we wish to find an approximate two-coloring of X. We simplify
the situation by assuming that each template has a weight of l. Each edge in the graph
corresponds directly to sorne template, and so to minimize the weight of violated templates,
we wish to find a two-coloring of X which violates the mínimum number of edges. Garey,
Johnson, and Stockmeyer [7] have shown this problem to be NP-complete.

Suppose that algorithm XIB fails in Step (b). This occurs if a solution to a set of
equations is not found. In this case, we wish to find an approximate solution to the set of
equations. Each equation in the set corresponds directly to sorne template, and so we wish
to find an approximate solution which violates the mínimum weighted set of equatjons. We
show that this problem is NP-hard: We are given:

• A field F.

• A set of variables V= { vo, ... , Vn-d·

• A set of simultaneous linear equations over V, each with a weight.

The problem is to find an approximate solution to the equations, in which the sum of the
weights of the violated equations is minimized. We call the problem Approximate Linear
Solution (ALS).

Theorem 6.1 Approximate Linear Solution is NP-hard.

Proof We can use an algorithm for ALS to solve the problem of finding an optimal ap
proximate two-coloring, which is NP-complete [7]. Suppose we are given an arbitrary graph ·
G, and we wish to find an approximate two-coloring which violates the mínimum number of
edges. Let F = Z2 • For each vertex v¡ of G we create a variable Vi. For each edge (vi, Vj),

we create an equation:
Vi EB Vj = 1

and give it weight l. It is easily seen that an optimal approximate solution to the result
ing system of ·equations corresponds directly toan optimal approximate two-coloring of G. •

And so finding a best approximate XOR-scheme is impractical. We need a metric
by which approximate XOR-schemes can be judged. An XOR-scheme will be network
contention-free if the XOR-scheme is an onto mapping at each stage of the network, for all
templates. Consider the mapping of a single template. If the template is mapped network
contention-free assign it a cost of one. If contention occurs at one stage, then every switch of

25

that stage is mapping both of its inputs onto one of its outputs. The inputs must be serial
ized, and thus its cost is two. In general, if contention occurs at e stages the cost is 2c. Given
the matrix of an XOR-scheme restricted to sorne template NI = <I>T, we must determine the
number of stages of the network at which contention will occur. If contention first occurs at'
stage i, then NI[i] has rank less than i. Contention will occur at stage i + 1 if and only if
the rank of _j\J(i + 1] is not greater than that of <I>T['i]. If the rank of each subsequent matrix
is greater than its predecessor, no further contention will occur. In general, at each stage j
where contention occurs, we have rank(M[j]) == rank(M[j - l]). We define rank(NI[O]) ==O.
Let:

C. _ { O if rank(M[j]) = rank(M[j - 1])
i - 1 otherwise (9)

We define the subrank of a p x p matrix NI as follows:

p

subrank(M) == L ci (10)
i=l

Suppose we are given a weight for each template basis. This weight reflects the frequency of
access of the templat<:. Such information might be determined from profiling information,
or be estimated by the compiler. The cost of an XOR-scheme <I> for a set of templates with
bases T1 , ..• , Tt, and weights wi, ... , Wt is:

t
cost(<I>) = L Wi2p-subrank(<PTi) (11)

i=l

In particular, the cost of an XOR-scheme that is network-contention-free will be L Wi·

6.3 A Randomized Algorithm

Consider the following implementation of algorithm XIB:

• In Step 1, if more than one possible coloring of the graph exists, select a coloring
randomly (all colorings are equally likely). If no coloring exists, create an approximate
two-coloring, by alternately coloring vertices along a random walk through the graph.

• In Step (b), if more than one solution exists, pick one randomly. If no solution exists,
pick an approximate solution randomly.

• Algorithm XIB is performed repeatedly, until an XOR scheme within pre-set perfor
mance parameters is found, oran iteration limit is reached. In the later case, the best
XOR-scheme found is used.

We call this randomized algorithm RXIB.

26

t p == 3 p == 4 p == 5 p == 6
3 100.0 100.0 100.0 100.0
4 99.8 99.8 99.7 98.8
5 99.4 98.9 97.4 96.8
6 98.5 96.7 93.9 88.9
7 96.2 94.7 89.0 82.1
8 95.7 88.l 78.8 67.7
9 89.3 81.5 68.4 53.5

10 86.2 73.8 55.7 34.9
11 83.0 65.6 43.4 21.4
12 76.l 50.9 29.7 8.7

Figure 7: Percentages of cases where an optimum XOR-scheme was found

7 Performance Evaluation

Evaluation is carried out by: 1) statistically testing the proposed approach and comparing
to other schemes by considering the amount of memory and network contention as the
performance function, and 2) comparing our methodology to other proposals.

7.1 Experimental evaluation

We implemented RXIB, and tested it on randomly generated sets of template bases. We
iterated until a network-contention-free XOR-scheme was found, or the limit of ten tries
was exceeded. The number of processors p ranges from 23 to 26 , and the number templates
t ranges from 3 to 12. One thousand cases were generated for each combination of these
parameters. All templates were given a weight of l. Two criteria are presented. First, the
percentages of cases where an optimum solution was found are displayed in Figure 7, i.e. a
memory and network contention-free XOR-scheme was found. Optimum access time for any ·
given template is one cycle; optimally accessing t templates requires t cycles.

Second, average percent deviations of the cost of the best XOR-scheme found from the
cost of a memory and network contention-free scheme is displayed in Figure 8. In other
words, if e is the cost of best XOR-scheme found for a particular template set, the deviation
is 100· (c/t-1). The deviations displayed in the figure are averaged over one thousand cases.
Our scheme finds near optimum solutions for small numbers of templates and moderate
numbers of processors. For the cases where the optimum solution is not found, the average
deviation of our scheme from the optimum access time is moderate in all studied cases.
The degradation smoothly increases with either increasing the number of templates or the
number of processors.

In a second experiment, testing was carried out with resp.ect to combining power of
2 stride access. Template sets, consisting of templates representing strides 2°, ... , 2t, were
created for t ranging from 1 to 6, and p ranging from 3 to 6. Algorithm XIB found a memory

27

t p=3 p=4 p=5 p=6
3 o.o o.o o.o o.o
4 o.o o.o 0.1 0.3
5 0.1 0.2 0.5 0.7
6 0.2 0.6 1.0 2.0
7 0.6 0.8 1.6 2.9
8 0.6 1.6 3.1 5.2
9 1.3 2.3 4.2 7.1
10 1.5 3.0 5.7 11.5
11 1.7 3.9 7.8 14.5
12 2.3 5.4 9.9 19.4

Figure 8: Average percentage increasing over the optimum access time

and network-contention free XOR-scheme for all of the above combined sets of strides.
Comparison of the proposed scheme was carried out with respect to row-major inter

leaving (INT) and to a static-sto.rage-scheme (SSS) that is optimized for a reference set of
templates: row, column, and both diagonals [4]. These schemes were tested in similar con
ditions to our approach as stated above. The INT scheme causes the average access time to
be 6, 9.37, 13.59, and 18.64 fold the optimum access time for 23

, 24, 25
, and 26 processors,

respectively. Similarly, the SSS scheme causes the average access time to be 4.23, 5.31, 5.79,
and 5.84 fold the optimum access time for the same number of processors. No significant
dependence over the number of templates was observed for INT and SSS. By comparing to
the previous schemes, our proposed XOR-matrix significantly minimizes the memory and
network contention for arbitrary data templates under the studied conditions.

7.2 Comparison to other Contributions

In most related research [6], network aspects are not considered and the problem is reduced ·
to confiict-free access to parallel memories. The work presented in [6] has the merit of
finding the necessary and sufficient condition for confl.ict-free access of parallel memories for
one template but no method is presented for finding the XOR-scheme in case of composite
templates nor are the network issues addressed.

For SIMD vector processors that inherently use pipelined bus architecture, the problem (9,
10, 19] is to improve multi-stride access to interleaved memories. These approaches <leal with
memory organization and memory buffering in order to maximize memory throughput. A
general method is proposed in (9, 10] for finding the dynamic address transformation that
optimizes the access for one stride and increases the throughput for other strides compared
to low order interleaving. In (19], similar transformation is proposed through the use of all
the address bits and a XOR-matrix so that its most right square sub-matrix is of full rank.

In our case, we have presented an efficient approach for finding XOR-schemes for com
bined data templates. The XOR-matrix is defined so that each of its columns corresponds

28

to a distinct vector of the basis of the template set, i.e. non-redundant representation. This
methodology shows how arbitrary composite templates can be handled by a unique XOR
matrix for which the condition to confl.ict-free access can be easely formulated. While it
is simple to find the XOR-matrix of one template, we proved that finding combined XOR
scheme is an NP-complete problem.

In sorne other contributions where the network aspects are considered, the problem is
restricted to finding dedicated XOR-schemes for a well defined set of templates [4, 17]. For
example, minimizing memory and network contention for a subset of rows, columns, diago
nals, and square blocks was proposed in (4]. This leads to XOR-schemes that are optimized
for a given set of reference templates. In (17], network contention has been analyzed with
respect to conflict-free access to a fixed set of strides. This enables finding the XOR-matrix
to be used as part of the processor's address translation. Our proposed method has the ad
vantage of being a general approach incorporating both memory and network requirements
in a XOR-scheme. Heuristic approaches have been proposed to minimize the global conflict
in accessing arbitrary data templates. While only the Baseli~1e network is considered heré,
all other multi-stage networks require similar characterization [4].

The proposed method for synthesizing XOR-schemes can be used as a compiler tool
to generate dynamic address translation matrices to be used with array referencing. By
identifying the accessed templates at compile-time, each array is associated an XOR-matrix
that is optimized for a given type of data templates. Within our assumptions, this general
approach may dramatically reduce contention in SIMD systems.

8 Conclusions

We investigated the problem of finding general XOR-schemes to dynamically minimize mem
ory and network contention in accessing arrays with arbitrary data templates in SIMD com
puters.

To enable the use of multi-stage networks, we assumed that the number of processors
and memories is a power of 2. This approach requires previous knowledge of the accessed
templates for each array. The proposed XOR-scheme is based on a non-redundant repre
sentation, each column of the XOR-matrix corresponds to a distinct vector of the template
bases. A flexible XOR-matrix scheme was defined for combined data templates.

Characterization of the Baseline multi-stage network was presented, with respect to the
requirements on the address transformation. The notion of non-singular binary matrices has
been extensively analyzed because of its critical importance towards achieving con:flict-free
access to both memory and multi-stage networks. Each restriction of the XOR-matrix to
a given template should be sub-non-singular in order to guarantee conflict-free access. We
proved that finding the XOR-matrix for accessing arbitrary data templates is an NP-complete
problem.

To minimize memory and network contention, a heuristic algorithm was proposed for
finding the XOR-matrix with the above stated constraints for each template restriction. The
heuristic operates on successive rows and propagates the constraints of each template to the

29

next row. The row solution of the XOR-matrix was found by global constraint satisfaction
along that -row. To avoid backtracking, a randomized approach is used. Evaluation shows
that the proposed XO R-schemes significantly reduce the memory and network contention
compared to interleaving and XOR-schemes that are optimized for a set of static reference
templa tes.

The contributions of this work are: 1) a general and compact XOR-scheme for combined
data templates, 2) characteriza.tion of necessary and sufficient conditions for conflict free
access of memory and network, 3) an efficient algorithm for automating the process of finding
the combined XOR-matrix.

By applying the proposed approach at the compiler level, significant speedup is expected
compared to the traditional memory interleaving technique and other static schemes. Future
extension may address the problem of finding more efficient heuristics to further reduce
the average deviation from the optimum solution. Reducing the time complexity of the
heuristic is interesting to speedup compile-time processing. Extending the present approach
to arbitrary multi-stage networks and other type of networks is one of our objectives.

9 Acknowledgments

Thanks to Professor Daniel Hirschberg for listening critically to the various proofs and for
his remarks concerning the presentation of this report.

References

[1 J BAILEY, D. Vector computer memory bank contentions. IEEE Transactions on Com
puters C-36 (Mar 1987), 293-298.

[2] BATCHER, K. The multidimensional access memory in STARAN. IEEE Transactions
on Computers C-26 (Feb 1977), 174-177.

[3] BENES, V. E. Mathematical Theory of Connecting Networks and Telephone Traffic.
Academic Press, New York, 196.5.

(4] BOPPANA, R. V., AND RAGHAVENDRA, C. S. Efficient storage schemes for arbitrary
size square matrices in parallel processors with shuffie-exchange networks. In Proceedings
of the International Conference on Parallel Processing (1991), pp. 365-368.

[5] BUDNIK, P., AND KucK, D. The organization and use of parallel memories. IEEE
Transactions on Computers C-20, 12 (Dec 1971), 1566-1569.

[6) FRAILONG, J. M. J. W., AND LENFANT, J. XOR-schemes: A flexible data organi
zation in parallel memories. In Proceedings of the International Conference on Parallel
Processing (1985), pp. 276-283.

30

[7] GAREY, M. R., JOHNSON, D. S., AND L., S. Sorne simpli:fied NP-complete graph
problems. Theoretical Computer Science 2 (1976), 237-267.

[8] GUPTA, R., AND SOFFA, M. L. Compile-time techniques for improving scalar ac
cess performance in parallel memories. IEEE Transactions on Parallel and Distributed
Systems 2, 2 (Apr 1991), 138-148.

[9] HARPER III, D. T. Block, multistride vector, and FFT accesses in parallel memory
systems. IEEE Transactions on Parallel and Distributed Systems 2, 1(Jan1991), 43-51.

[10] HARPER III, D. T. Increased memory performance during vector accesses through
the use of linear address transformations. IEEE Transactions on Computers 41, 2 (Feb
1992), 227-230.

[11] HARPER III, D. T., AND JUMP, J. Vector access performance in parallel memories
using a skewed storage scheme. IEEE Transactions on Computers C-36, 12 (Dec 1987),
1440-1449.

(12] KARP, R. M. Reducibility among combinatoria! problems. In Complexity of Computer
Computations. Plenum Press, 1972, pp. 85-103.

[13] KucK, D. J., AND SAMEH, A. H. Parallelcomputationofeigenvaluesofrealmatrices.
Information Processing 71) North Holland (1972), 1266-1272.

(14] LAWRIE, D. Access and alignment of data in an array processor. IEEE Transactions
on Computers C-24, 12 (Dec 1975), 1145-1155.

[15] LAWRIE, D., AND VüRA, C. The prime memory system for array accesses. IEEE
Transactions on Computers C-31, 12 (May 1982), 435-442.

[16] LENFANT, J. Parallel permutations of data: a benes network. IEEE Transactions on
Computers C-21 (Jul 1978), 637 6n.

[17) NORTON, A., AND MELTON, E. :\ class of boolean linear transformations for conflict
free power-of-two stride access. I 11 Proceedings of the International Conference on Par
allel Processing (1987), pp. 247-:2:)LL

[18] SIEGEL, H. J. Interconnection networks for SIMD machines. Computer, 12 (Jun 1979),
57-67.

(19] Som, G. S. High-bandwidth interleaved memories for vector processors-A simulation
study. IEEE Transactions on Computers 42, 1 (Jan 1993), 34-44.

31

