
MINIMIZATION OF SUPERVISOR CONFLICT

FOR MULTIPROCESSOR COMPUTER SYSTEMS

A THESIS

Presented to

The Faculty of the Division of Graduate

Studies and Research

by

Randy J. Raynor

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

in the School of Information and Computer Science

Georgia Institute of Technology

June, 1974

MINIMIZATION OF SUPERVISOR CONFLICT

FOR MULTIPROCESSOR COMPUTER SYSTEMS

Approved:

jifclri M. Gwyimf" J r j / , ChaiAan

r r \-~ - — - - , i

Michael D. Kelly <T

Donovan B. Y o u n g \ I

Date approved by Chairman: S/ZSyyCi-

ii

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor, Dr. John Gwynn,

for his support, ideas, and constructive criticism throughout my grad­

uate career. Our numerous discussions have been of inestimable value

to me.

The members of my guidance and reading committees, Drs. Robert

Cooper, Michael Kelly, and Donovan Young deserve my thanks for their

continued support and encouragement during my research and for their

careful reading of my thesis drafts. I would also like to thank Dr.

Donald Chand of Georgia State University and Dr. James Browne of The

University of Texas at Austin for reading and commenting on this thesis.

A note of thanks goes to Mr. Bill Brown of Univac and to the

Office of Computing Services of Georgia Tech for their assistance in

setting up the special use of the Univac computer. This research was

partially supported by NSF Grant GN-655.

Finally, special thanks are given to my wife, Vickie. Her

assistance, patience, and impatience were an essential contribution

to the completion of this thesis.

Ill

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ±±

LIST OF TABLES v

LIST OF ILLUSTRATIONS vi

SUMMARY vii

Chapter

I. INTRODUCTION 1

1.1 Goals of This Research
1.2 Summary of Following Chapters
1.3 Note on Terminology

II. MULTIPROCESSOR SYSTEM DESIGN

2.1 Design Alternatives
2.2 Survey of Existing Systems
2.3 Process of Multiprocessor Design
2.4 Studies on the Problem of Supervisor Queueing
2.5 Survey of Current Scheduling Techniques

III. REDUCTION OF SUPERVISOR QUEUEING THROUGH PERFORMANCE
DESIGN 30

3.1 Clustered Resource Scheduling
3.2 Simulation Model Description
3.3 Preliminary Considerations

IV. SIMULATION RESULTS 67

4.1 Initial Investigation
4.2 Model Definition Experiments
4.3 Algorithm Development Experiments
4.4 Evaluation of CRS

V. CONCLUSIONS AND FUTURE WORK 118

5.1 Conclusions
5.2 Extension of CRS

TABLE OF CONTENTS (Continued)

IV

Page

BIBLIOGRAPHY 123

VITA 130

V

LIST OF TABLES

Table Page

1. Mix Distribution 57

2. Submodel Validation 74

3. Full Model Validation 76

4. Algorithm Development Experiment IB 81

5. Algorithm Development Experiment 1A 83

6. Mix Distribution for Algorithm A 85

7. Example Mix Distribution 86

8. Prescheduling: Case A 91

9. Prescheduling: Case B 93

10. Mix Size: Case A 96

11. Mix Size: Case B 98

12. Tuning 100

13. Block Size 101

14. Forecasting Errors 105

15. Forecast Routine Comparison 112

16. Load Conditions 115

17. Relative Effectiveness 116

vi

LIST OF ILLUSTRATIONS

Figure Page

1. Job Flow for Madnick's Model 23

2. Flow Chart for One Job 28

3. Supervisor Schedule 33

4. Scheduling Job P 33

5. Scheduling Job P2 34

6. Attempt to Schedule Job P3 35

7. Proper Scheduling of Job P' 36

8. Blocked Supervisor Schedule 38

9. Blocked Scheduling of Job ?i 38

10. Blocked Scheduling of Job P 39

11. Inaccurate Scheduling of Job P Caused by Blocking 40

12. Job Flow for GASP Model 43

13. Queueing Theory Results 52

14. No Clustering, No Queueing 54

15. Queueing Caused by Clustering 54

16. Example of CRS 60

17. Corresponding Model of CRS 60

18. Hardware Support for CRS 65

19. Job Bias 71

20. Normal Supervisor Schedule 89

21. Prescheduling of Job k 89

22. Processing Cycle Time Series 110

Vll

SUMMARY

An investigation is made into a basic design problem of multi­

processor computer systems resulting from queueing of requests for the

supervisor. For this study, a computer system simulator is constructed

which represented a portion of the structure of a generalized multi­

processor system. A methodology is developed to enable the scheduling

of tasks to processors such that subsequent queueing of requests for the

supervisor would be reduced, thereby increasing throughput.

The capability to accomplish this is based on an assumed knowl­

edge of the exact processing and I/O requirements of the tasks in the

system's workload. A general analysis studies the effects of inac­

curacies in this knowledge on the methodology. Then an estimate of the

expected degree of accuracy of this information is determined by apply­

ing several forecasting techniques to task-characteristic data obtained

through software monitoring of actual programs.

A set of experiments is performed and statistically analyzed

which compares the methodology developed here with conventional tech­

niques using system throughput as the basic measure of improvement ob­

tained. Results indicate that significant improvement could be obtained,

e.g., throughput is increased by seven per cent for a 21 processor sys­

tem under specified conditions.

CHAPTER I

INTRODUCTION

1.1 Goals of This Research

1.1.1 Description of the Problem

In a multiprocessor system, the handling of interrupts generated

by jobs in the processors is assigned to a supervisory program and as­

sociated data base. The two basic philosophies for deciding which

processor executes the supervisor are master-slave and floating execu­

tive control (78). In either case, queueing of requests to the super­

visor may occur. With the master-slave structure, the master processor

can handle only one request at a time. With floating executive control,

while any processor can execute the supervisor, only one processor can

be allowed to access the supervisor's data base; at a time.

A processor which is waiting to use the supervisor is not doing

useful work. Therefore, queueing of"requests to the supervisor causes

a degradation in the performance of the system. Previous studies have

indicated that this degradation is significant for large multiprocessor

systems (66).

1.1.2 Summary of the Methodology

Jobs in the system's workload are characterized by their process­

ing and I/O requirements. Supervisor queueing will be reduced by using

this information to schedule jobs to processors such that they request

the use of the supervisor when the supervisor is predicted to be avail­

able. This methodology will be developed and evaluated via a computer

2

system simulator which is of a sufficient level of detail to model the

flow of tasks through the system's major resources.

The capability to accomplish this is based on an assumed knowl­

edge of the exact processing and I/O requirements of the tasks in the

system's workload. A general analysis will study the effects of inac­

curacies in this knowledge on the methodology. Then a realistic esti­

mate of the expected degree of accuracy of this information will be

determined by applying several forecasting techniques to task-character­

istic data obtained through software monitoring of actual programs.

A set of experiments will be performed comparing the methodology

developed here with conventional techniques, using system throughput as

the basic measure of the improvement obtained. Since the experiments

are essentially Monte Carlo in nature, sufficient care will be taken in

their design to assure reasonable statistical confidence.

1.2 Summary of Following Chapters

Chapter II provides an extensive survey of multiprocessor computer

systems, problems inherent in these systems, and techniques which are

used to solve these problems. Included is the concept of system design

which allows the system to react dynamically to the workload in order

to improve performance.

Chapter III develops the methodology for the reduction of super­

visor queueing. The simulation models used to develop the scheduler

are described, and expected results are intuitively described.

The results of the simulation studies are given in Chapter IV,

and Chapter V provides possible extensions of the methodology to other

areas of application and summaries with conclusions about the feasibil-

3

ity of the methodology.

1.3 Note on Terminology

This thesis assumes a basic understanding of computer science

concepts and uses standard computer science terminology without includ­

ing definitions except where deemed necessary. The reader is referred

to standard computer science texts (6,96) for those terms with which

he is not familiar.

4

CHAPTER II

MULTIPROCESSOR SYSTEM DESIGN

A multiprocessor computer system is one which has more than one

central processing unit. Multiprocessing should not be confused with

multiprogramming which refers to the interleaved execution of many

programs which are, themselves, executed sequentially (96). Multi­

programming makes no reference to the number of processors involved in

this execution.

2.1 Design Alternatives

2.2.2 Structural Alternatives

There are many different types of multiprocessing systems; Flynn

has developed a scheme for catagorizing them (40). This scheme is based

on the notion of streams. The four classifications arise from the

multiplicity of two types of streams: streams of instructions, and

streams of data. Flynn's SISD classification includes those systems

which are based on a single instruction stream (SI) and a single data

stream (SD). Most of the current single processor systems fall into

this category. Computers which have a single instruction stream and a

multiple data stream (SIMD) include array processors like the Illiac IV,

pipelined processors like the Solomon, and associative processors (40).

The multiple instruction stream, single data stream organization (MISD)

is not practical today. The last category, multiple instruction stream,

multiple data stream (MIMD) has two variants. The first is called a

5

Shared Resource Multiprocessor. This includes systems which have

"skeleton" or incomplete processors which share system resources as

in the CDC 6600 (6). The second is called a True Multiprocessor System.

Here several physically complete and independent SI processors execute

separate tasks or subtasks.

Another separate classification of multiprocessor systems uses

more of the current terminology in its specification of six categories

(7). The first category, parallel processing, involves multiple pro­

cessors which are assigned to independent subtasks of a task which can

be processed simultaneously. The major problem with this type of pro­

cessing is in deciding how to break a task into subtasks. The second

category, pipeline processing, has several different arithmetic pro­

cessing units which perform one part of a single operation and then pass

the result on to the next "processor" until the entire operation is

completed. With this structure, the same operation can be at various

degrees of completion on different data. Recall that Flynn classified

this as SIMD. The third category, network processing, involves com­

puters which have special function subsystems which may themselves be

multiprocessor systems. This is similar to Flynn's MIMD Shared Resource

Structure. The fourth category includes multiprocessor systems which

have specialized hardware processors to perform functions like inter­

preting. The fifth category uses conventional multiprogramming on sys­

tems with more than one processor. This is like Flynn's MIMD True

Multiprocessors. The last category, called Independent Computing, has

subsystems hardware partitioned into distinct entities.

6

2.1.2 Justification for Multiple Processors

This research will involve one specific category: True Multi­

processor Systems. Before going into some of the details of the design

of this type of system, some justifications will be given for multi­

processor systems in general, and True Multiprocessor Systems in par­

ticular (98). Hereafter, True Multiprocessor Systems will be referred

to simply as multiprocessor systems.

The first obvious advantage of having multiple processing units

is the increase in throughput, even though it may not be true that a

two processor system can do twice as much work as one processor. A

system which has multiple processing units will usually have multiple

channels, multiple card readers, multiple disk subsystems etc. This

multiplicity provides both increased efficiency and increased reliabil­

ity. Multiple resources are more efficient when they service requests

from the same queue rather than from different queues because this

structure prevents one resource from being idle while a queue exists

at a similar resource. Increased reliability results from redundant

components if the system is designed such that: failing components can

be dynamically configured out of the system. This capability is usually

referred to as graceful degradation. Also, large multiprocessing sys­

tems can accommodate large programs which would require more resources

than are usually available on single processor systems. Another advan­

tage which one large system has over many small ones is that memory

would be more effectively utilized because only one copy of large data

files, compilers, operating system, etc., would be needed.

The previous discussion has indicated the advantages of multi-

7

processor systems, but there is one important factor which makes these

systems feasible: The cost of processing units has been reduced much

faster than the cost of some other system resources (7).

Based on justifications such as these, it has been suggested

that a trend toward multiprocessor systems is expected in the near

future (7). In 1968 Witt explained that it was at that time undeter­

mined how well multiprocessor systems could meet expectations (98).

There are currently many design problems which must be considered be­

fore their effectiveness is determined. Some of the design considera­

tions for multiprocessor systems will be discussed in the next section.

2.1.3 Special Considerations for True Multiprocessor Systems

When a multiprocessor system is under design, there are many

design problems which must be considered and then resolved. One such

problem is the technique for maintaining control over the processors.

Since the supervisor is the control mechanism, the question which must

be resolved is: Which processor(s) will be allowed to execute the

supervisor?

There are two basic structual alternatives. First, there is the

master-slave control (6). In this situation, one specific processor,

the master, is the one and only one allowed to execute the supervisor.

The other processors, the slaves, execute only problem programs. In

some cases, the master is also allowed to execute problem programs.

This structure implies that if the job in a slave processor causes an

interrupt, that slave must wait for the master to handle that interrupt.

If the master was already handling a previous interrupt, then a queue

of requests for the supervisor will develop. This structure eliminates

8

one of the advantages of multiprocessor system—graceful degradation.

If the master processor fails, then the entire system must stop.

The second design alternative, floating supervisor control, does

provide for graceful degradation. In this situation, the supervisor is

considered a resource which any processor can request. Thus, when a

job in a processor generates an interrupt, that processor can request

the use of the supervisor to handle that interrupt. If there were only

one non-reentrant copy of the supervisor, then only one processor could

use the supervisor at a time. If there were more than one copy, or if

it were reentrant, then more than one processor could possibly be using

the supervisor at the same time.

However, there would have to be limits placed on the simultaneous

use of the supervisor. A "critical race" would occur if one processor

were trying to change the supervisor's data base while another processor

was trying to access that data base (14). For example, if two proces­

sors were using the job scheduling algorithm at the same time, they

could both select the same job to execute.

The usual technique for dealing with this problem is the use of

a LOCK-UNLOCK flag (14,33). When one processor wanted to use the super­

visor, it would LOCK other processors from having access to it. Upon

completion, it would UNLOCK the supervisor. Note that this could be

applied to the supervisor as a whole, or separate locks could be used

for separate parts of the supervisor which access distinct parts of the

supervisor's data base. The use of locks could become expensive in

terms of both time and complexity of the supervisor. Some examples of

these control structures will be given in a later section.

9

There are other structual questions besides control which must

be resolved in the design of a multiprocessor system. The current de­

sign of core memory would prevent the access of memory by more than one

processor at a time. The first step in alleviating this situation is

to organize central memory into blocks of memory, such that different

blocks can be accessed simultaneously by different processors. But

having more than one memory block introduces the problem of how the

processors will be connected to the memory blocks.

Critchlow has described three current techniques for implementing

this connection (32). One would be a time-shared bus in which proces­

sors and memory blocks are connected only long enough for the transfer,

and then the connector is switched to satisfy another processor-memory

transaction. A slightly more expensive and somewhat faster technique

would be to hardware connect each processor to several particular mem­

ory blocks; thereby allowing them to access only those blocks. The

fastest, most general, and most expensive technique is called a crossbar

switch. Here every processor is connected to every memory block.

Based on a simulation model of a multiprocessor system with a

crossbar switch, Lehman studied the problem of specifying the number of

memory blocks necessary to support a given number of processors (6).

His results indicate that a memory/processor ratio of 4/1 may be neces­

sary. An extensive study of this problem through analytic models has

been made by Bhandarkar (8).

Another design problem which must be considered involves the

decision as to which processor will be allocated to handle external

interrupts such as an I/O complete interrupt. Some of the alternatives

10

include: 1) the processor which initiated the I/O activity, 2) a des­

ignated processor which handles all such interrupts 3) a processor

selected by some algorithm. Goutanis has developed a sophisticated

scheme which fits into this last category (46).

In summary, three problem areas in multiprocessor system design

have been discussed: one which deals with communication among proces­

sors; one which deals with communication between processors and memory;

and one which deals with communication between processors and channels.

Before proceeding with a detailed investigation of one of these areas,

some examples of existing multiprocessor designs will be given.

2.2 Survey of Existing Systems

There are a large number of multiprocessor computers currently

in operation or under design. Most computer manufacturers have mainline

products based on a multiprocessor structure, and there are many instal­

lations which have built multiprocessor systems out of single processor

systems. Several examples of these systems will now be discussed (84).

First, they will be described by specifying the maximum number of major

components to indicate the degree of multiplicity. Second, the basic

characteristics of the operating system, such as the scheduling algo­

rithm, will be mentioned as an indication of the degree of sophistica­

tion of design. Also, any special features important to this research

will be mentioned.

2.2.1 Mainline Products

The Burroughs 700 series of computers includes several which have

multiprocessing capabilities: the B5700, the B6700, and the B7700. The

11

B5700 allows up to two processors and four channels. One of these pro­

cessors is designated to execute the supervisor and problem programs,

and the other, only problem programs. The B6700 allows up to three

processors and 12 channels while the B7700 can accommodate eight pro­

cessors, 32 channels, and eight independent memory modules. Both of

these systems are based on the floating supervisory control scheme.

The operating system, MCP, supports batch, real-time, and time­

sharing operations. The Burroughs virtual memory scheme is based on

program segmentation. Job scheduling uses a dynamic priority assign­

ment, but with provisions which allow adjustments in the mix to balance

the load on the machine by keeping as much of the system as possible

busy at the same time.

The Univac 1110 (1108) will support up to six (four) processors

and 96 (64) channels. All processors are allowed to execute both super­

visory and problem programs.

The EXEC operating system schedules jobs from its virtually un­

limited mix according to a priority scheme. The scheduler also has the

capability to take into consideration job deadlines.

The Honeywell 615/625/635 and the newer 6000 are multiprocessor

machines. The maximum number of processors on the 615 is three, and

the 6000 can support up to four.

The GECOS III operating system is advanced in design and scope.

Incorporated in GECOS III are extensive techniques for event tracing

and utilization monitoring (20). Jobs are scheduled from a maximum mix

of 63 according to a timesliced round robin priority scheme. The 600

series utilizes a master-slave control philosophy.

12

The design of the CDC 6400/6500/6600/7600 multiprocessor systems

is quite different from those systems previously described. Basically

these machines have either one or two central processors and seven to

twenty peripheral processors. Each peripheral has 4K of memory and

there are usually 32 independent 4K banks of central memory which pro­

vide a connection between the central processor and the peripheral pro­

cessors. The peripheral processors control input/output functions and

provide work for the central processor, which is an extremely fast arith­

metic unit. The 7600 can have up to 24 I/O channels.

One of the peripheral processors is designated to execute the

operating system, and thereby act as the master processor for the system.

The operating system, SCOPE 3, maintains timesharing and local and re­

mote batch facilities. Job scheduling is accomplished through an exten­

sive priority system.

The CDC machines are considered to be the biggest and fastest of

the commercially available computers. They are often used in scientific

environments, where such power is effectively utilized (6,28,84).

2.2.2 Special Products

Since 1968 the IBM facility at Gaithersburg, Maryland, has had a

system designated M65MP which is composed of two model 65 computers con­

nected both directly and through common main storage (98). The model

65 operating system was only slightly modified to accommodate this

structure. Basically, the resource allocation was modified so that

peripherals of eigher CPU could be used by either CPU. The various com­

ponents of the supervisor were classified into two groups. One group

contained those routines which would be affected if both processors

13

tried to execute them simultaneously. A simple lock was provided to

prevent such simultaneous access. The other group contained those rou­

tines which would not be affected by simultaneous execution.

Prior to the M65MP, another dual processor system was developed

from combining an IBM 709 with a 704 (58). In this system the 704 acted

as the master processor and was not allowed to execute problem programs.

Another IBM multiprocessor system, 9020, was designed to handle

real-time air route traffic control (33,67). This system could incor­

porate up to four mid-range 360 CPU's, nine channels, and twelve inde­

pendent main storage elements. A floating supervisor control scheme was

used which locked out parts of the supervisor which accessed a common

data base to prevent the race condition. The scheduling algorithm was

extended beyond the usual capabilities to allow the dynamic rescheduling

of an interrupted job while another processor handled the interrupt

generated by the job. This permitted the shortest possible elapsed

times for critical real-time jobs.

Burroughs developed a multiprocessing system with real-time capa­

bilities similar to that in the IBM 9020 called the D825 (6). The maxi­

mum system configuration consisted of four processors, 16 4K memory

modules, and 20 channels. The AOSP operating system was designed to

allow floating supervisor control. The scheduling algorithm was a dy­

namic priority scheme which insured maintenance of specified procedure

relations among jobs.

NASA in Houston has developed a multiprocessor system consisting

of two UNIVAC 1106's, four UNIVAC 1108's, and a large complement of

peripherals (76). Northouse has developed a load-balancing scheduling

14

algorithm for this system which will be discussed in some detail later

(76).

The Hughes Aircraft Company has designed the H-3118 multiproces­

sor system consisting of three processors and eight 16K memory banks

(78). A single LOCK was used to refer to the entire supervisor so that

only one processor could access it at a time.

Carnegie Mellon University is in the process of designing and

constructing a multiprocessor system based on up to 16 miniprocessors,

in particular, 16 PDP ll's. Supporting research has investigated in

detail some of the problems in multiprocessor systems as previously

described. Analytic models of the memory interference problem have

been developed (8), and studies of the structure of the operating sys­

tem have begun (99). The operating system will be designed around a

kernel which contains the basic mechanisms for building an operating

system but no specific policies such as scheduling philosophies.

2.3 Process of Multiprocessor Design

Thus far, various justifications for multiprocessor systems, var­

ious design philosophies, and various examples have been given. Also,

one effect of the current technology on the feasibility of the systems,

i.e., the reduction in processor cost, has been introduced. Now a very

important area of technology which has improved the feasibility of these

systems will be described—the tools of computer system design and anal­

ysis. More specifically, the techniques of performance evaluation and

modeling will be discussed in their relation to design of multiprocessor

systems and research described by this thesis.

15

2.3.1 Techniques of System Design

The current single processor systems have only recently reached

a complexity requiring sophisticated techniques of analysis, as witness­

ed by the growth of the area of performance evaluation in the last ten

years. On the other hand, the design problems previously mentioned for

multiprocessor systems make these systems so complex to begin with that

careful analysis of these problems is mandatory. Therefore, most of the

multiprocessor systems described were developed through the use of per­

formance evaluation tools during the design stage. The empirical per­

formance analysis techniques such as the instruction mix, the kernel,

and the benchmark (2,56) are not of concern here; however modeling, both

analytic and simulation, and monitoring will be discussed in detail.

While graph theory, mathematical progra.mming, and decision theory

have been used in performance evaluation, queueing theory has been the

principal analytic tool (5,70,90). The state of a computer system is

described by the specification of which jobs are in which of the oper­

ating system's queues. Correspondingly, the state of a network of queues

is described by the specification of the number of customers in each

queue. While the identification of individual tasks is lost in the

queueing theory representation, the basic structure of this model is

close to that of the real system. At first, it may appear that this

relationship would provide the ultimate tool for performance evaluation.

However, in practice, it has often been found that as more detail is

added to these models, the assumptions necessary to provide a solvable

model tend to reduce their validity.

The application of queueing theory to computer systems modeling

16

began in the early sixties. Surveys of this early work are available

in (27,65). Basic to these models are assumptions about interarrival

and service distributions. Several studies have been made to validate

these assumptions (26,36,44). More recent work has begun to use spe­

cially developed queueing theory models in attempts to model the partic-

ular idiosyncracies of various batch and time-sharing configurations

(21,62,87). While entire configurations can be modeled, this level of

detail sometimes does not allow accurate investigation of particular

components; so models are often made of a single component. This ap­

proach is taken, for example, in the study of paging (61,77) and memory

interleaving (8,16). Several studies have been made to optimize par­

ticular aspects of computer performance. Buzen has developed a queueing

network model of a multiprogramming system to analyze optimal assign­

ment of requests to interchangeable resources of different 'speeds'

(17). Sapiro has studied the possibility of controlling waiting time

by optimizing the service rate (83). Several models of complex multi­

processor systems have been developed. A basic model uses a finite

source queueing model to characterize the interaction between the prob­

lem programs and the operating system (66). Other work has built onto

this basic model to provide a more realistic representation (29,81).

The importance of the application of queueing theory can be seen in the

fact that the first symposium by the Association for Computing Machinery

Special Interest Group on Measurement and Evaluation consisted almost

entirely of analytic models (37).

Simulation of complex computer systems by computer programs has

evolved to be the most widely used technique of performance evaluation

17

(51). The flexibility of simulation allows researchers to investigate

any matters of concern in any degree of detail. However, this power

has its costs: The manpower required to develop simulation models is

sometimes prohibitive to the degree that its cost approaches that of

actual system development (9).

With no engineering experience in this area, designers of current

multiprocessor systems have typically had to resort to simulation to

examine the alternatives in structure (58,67). However, as multiproces­

sor systems increase in size, simulation will become difficult, and may­

be even impractical (53).

One of the difficult problems in devising a simulation model is

deciding which features of the actual system are relevant to the prob­

lem and should be included in the model. If a large amount of detail is

included, the model will be more accurate, but it will also take longer

to program, debug, and execute. On the other hand, if only major fac­

tors are considered then the program may execute relatively quickly; but

its validity would be in doubt. The two major levels of detail are the

microscopic—where the major unit or transaction is the instruction, and

the macroscopic—where the major transaction is the task (97). Within

each level, a minimal set of variables which characterize the system

relative to the purpose must be developed. As input, some of these vari­

ables describe the workload and system configuration desired for a given

analysis. As output, other variables describe the results of applying

the workload to that configuration.

Numerous descriptions of attempts to simulate specific systems

have pervaded the literature. Probably the most well known was the pre-

18

installation simulation of an IBM 360/67 at Stanford by Nielson (73,74).

His simulator was used to determine how to alter the original system

specifications to correct for a memory bottleneck. Since then, a vari­

ety of simulators have been written for specific batch and time-sharing

systems (43,52,69,82), information retrieval systems (45), real-time

systems (67,91), and specific operating system algorithms (88). One

slightly more general simulator was designed to model any of a series

of computers—the 360 series (57,58). Most of these efforts were re­

ported as successful, but validation of their models was weak or non­

existent.

The structure of these models was usually event oriented. That

is, a calendar of future events is maintained; and after one event has

been simulated, time is advanced to the time of the next event. Here an

event usually corresponds to an I/O interrupt (64). One well known

simulator which does not fit this pattern is SCERT (48,55). Instead of

simulating the events, a table of empirically derived data is examined

to determine the probable results of the event. As with event oriented

simulators, the accuracy of this method has been questioned (51).

Many of the simulators such as those mentioned above were written

in general purpose simulation languages such as GPSS (95) in order to

remove much of the burden of bookkeeping from the designer so he could

put his efforts toward more constructive ends. However, it was found

that these languages imposed restrictions which were cumbersome to cir­

cumvent (24). A simulation language based on FORTRAN, GASP, eliminated

these restrictions by allowing the user to program in FORTRAN when nec­

essary (80) .

19

Several languages have been developed specifically for simulating

computer systems (51). IBM has developed a language called Computer

Systems Simulator, CSS, to evaluate System/360 hardware and software

configurations (85). As with Lockheed's LOMUSS (52) and RAND's ECSS

(74), CSS has special statements to simplify hardware and software spec­

ification. These languages, however, execute very slowly.

Simulation programs, whether written in FORTRAN or one of the

special languages, have one invariable feature—garbage in, garbage out.

While accurate representation of the system's configuration is not a

perfected science, most "garbage" results stem from inadequate character­

ization of the workload. It is not enough to know that a certain sci­

entific application is "compute bound"; specific information on how

tasks behave is needed.

To this end, techniques of monitoring the activities of computers

have been developed to trace the flow of tasks through the system and

then provide this information to a simulation model. Trace-driven sim­

ulation modeling has proven to be the current most effective means to

model complex computer systems for performance evaluation (23,75,92).

Besides providing input to simulators, monitoring techniques are

effective in themselves for providing information for performance eval­

uation. Monitoring techniques are generally classified as either hard­

ware or software. A hardware monitor is a device, external to the com­

puter, which records the activity of the system by means of a number of

probes attached to selected signal lines within the computer hardware.

Types of things which can be determined in this manner include: pro­

cessor idle time, overhead time, channel and device active time, and

20

processor-I/O overlap time. Excellent results have been obtained from

research efforts using this type of monitor (1,3,4,11). A software

monitor is a program which gathers data from operating system tables

and registers. Unlike the previous method, software monitors degrade

the performance of the system (64). However, they can provide detailed

information which cannot be hardware monitored (10,50,59). Both meth­

ods require data reduction and reporting techniques (31).

For the most part, the decision to monitor has been made after

the system was completely designed and running. Much effort was there­

fore put into designing monitoring techniques which did not require

much alteration in the system. The techniques developed through these

efforts made it feasible to incorporate monitors into the basic design

of new systems (13,19,20,71). With these new systems, it is possible

to trace various events to various levels of detail. With real-time

output, operators have been able to spot trouble areas and initiate cor­

rective measures (86).

2.3.2 Performance Design

Some of the techniques of performance evaluation have been dis­

cussed. Initially, it was stated that these tools were necessary for

analysis of alternative structures during the design of multiprocessor

systems. However, there is an even more important place for these tech­

niques in the design of computer systems—an area which we refer to as

performance design. Performance design is concerned with the use of

performance evaluation techniques as an integral part of the structure

of the operating system in such a way that the operating system uses

the techniques to monitor the computer system's performance and dynam-

21

ically alter the system to make it more responsive to the immediate

requirements of the workload.

The real-time output of monitored information has provided an

important first step in this area, but the analysis of this information

must be performed by the computer, not the operator. There appear to

be two approaches to providing the operating system with the capability

to perform this analysis. The first approach consists of providing the

operating system with a set of heuristic rules based on empirical knowl­

edge gained through the investigation of computer system principles by

simulation. As queueing theory develops, a second approach will become

available: providing the operating system with the capability to predict

theoretically the proper action of certain portions of the system. Thus,

the further development of the techniques of monitoring, simulation and

analytic modeling are crucial to the future development of a dynamic

operating system.

Performance design is the approach taken in this research to

solve a specific problem in multiprocessor design which is described in

the next section.

2.4 Studies on the Problem of Supervisor Queueing

Recall that the two design alternatives for the control of multi­

processor systems are master-slave and floating executive control. In

both of these cases, a job generates an interrupt which causes a request

for the supervisor. If the supervisor or its data base is in use at the

time such a request is made, then that request is queued until the super­

visor becomes available. An important point is that while such a request

22

is waiting on the queue, the processor which was executing the inter­

rupted job remains idle. The more a processor waits on the supervisor

queue, the more this idleness decreases the system's throughput. The

effect this queueing has on the throughput for a two-processor system

is probably small; but as the number of processors increase, the effect

could conceivably become substantial. Studies which analyzed the mag­

nitude of this effect are described below.

2.4.1 Simulation Modeling

A simulation study of a multiprocessor system has been made by

Lehman (6). His main concern was with memory interference, but he did

analyze supervisory queueing to some extent. However, the results of

his simulation are not directly applicable to true multiprocessor sys­

tems because his model was of a large matrix multiplication problem

executed in parallel—one row's operation on each processor. His results

indicate that processors were idle 0.8% of the time because of supervisor

queueing in a system which had 16 processors and 64 memory modules during

the matrix multiplication.

2.4.2 Queueing Theory Modeling

Madnick (66) interpreted the standard finite source queueing model

with quasirandom input to express the performance degradation in terms

of three parameters: E, the average time a task processes between inter­

rupts; L, the average time the supervisor is held by a processor to

handle an interrupt; and N, the number of processors.

The flow of jobs through his model could be represented as in

Figure 1. Jobs are selected from an infinite population, _a, which have

exponentially distributed processing times and are put into the proces-

23

EXIT

L CONTROL J
1

Figure 1. Job Flow for Madnick's Model

24

sors, b_. At the end of the processing time, the job requests the use of

the supervisor, £, to handle an interrupt. At the end of the super­

visor's exponentially distributed service time, the job triggers the

random selection (from a.) of another job for the processor, d_, and then

leaves the system, e_.

While this model ignores many features of real systems, it does

seem to represent the essential characteristics of the supervisor queue-

ing problem.

The model is based on a set of steady-state probabilities P^,

i=0,...,N. Each probability P^ corresponds to a state of the system S^,

which represents the case when i processors are attempting to use the

supervisor (one processor using it and i-1 on the queue). A queue

exists when the queueing system is in any of the states S-, i=2,...,N.

If the system is in state So, then the queue length is one; if the sys­

tem is in state S3, then the queue length is 2; etc. Thus, the average

queue length is

N

Q = £ (i-l)P. , (1)

i = 2

where

*i-afer®\

and

25

Equations (1), (2), and (3) provide an expression for Q in terms of N,

L, and E:

N

E — ^
(E/L)1 (N-i)!

Q = i w

E *
. (E/L) 1 (N-i)!
1=0

The derivation of (4) is available in any queueing theory text

(30), with E and L usually expressed as l/y and 1/p, respectively. Based

on monitored data, Madnick concluded that a reasonable estimate of L/E

would be between .001 and .010.

This model indicates that the performance degradation due to

supervisor queueing is significant. For example, based on L/E = .05

and 21 processors, an average of 2.8 processors would be idle. Complete

elimination of this degradation, if possible, would increase throughput

by 16%. Other authors besides Madnick have also discussed the severity

of this problem (40,67).

This research will seek to reduce this degradation by scheduling,

as described in this next chapter, using the concept of performance de­

sign.

2.5 Survey of Current Scheduling Techniques

2.5.1 Workload Independent Techniques

The previous survey of current multiprocessor systems demonstrated

that schedulers for multiprocessor systems are currently much like those

for single processor systems. They are based on a first-come-first-

26

serve (FCFS) or roundrobin search of the mix with some form of priority

and usually a time-slice (96). The requirements for a job to enter the

mix are usually simply core and device requirements as specified in the

job control language. Except for these requirements, the selection of

jobs to process is, in general, independent of the characteristics of

the jobs.

2.5.2 Workload Dependent Techniques

Recently, some schedulers have begun to base their selection on

other job characteristics. One of these has been tested for use on one

of the multiprocessor systems previously described (76). The job char­

acteristics considered here are: 1) CPU time, 2) number of tape drives,

3) number of input cards, 4) programming language 5) number of disk

files, and 6) number of output pages. The scheduler uses this informa­

tion to assign jobs to classes which indicate their ability to utilize

the system. When the scheduler is activated to select a job, it will

first select a class which has characteristics which will make the total

workload meet some performance criteria, like load balancing. Then a

job is selected from this class. While the characteristics of each class

are initially determined from information on job control cards, they are

updated based on the class's actual running characteristics. Thus this

scheduler is a straightforward, but sophisticated, extension of selec­

tion for mix entry based on device and core requirement.

IBM's VS2 Release 2 uses a scheduling algorithm aimed at workload

balancing (54). Jobs are placed into performance groups according to

the demands which they are expected to place on the system. The sched­

uler then selects jobs according to two basic requirements. Jobs are

27

selected from performance groups which are expected to balance the work­

load and such that the various performance groups meet predefined levels

of activity. This scheme, however, is not as sophisticated as the one

previously described because jobs are manually placed into performance

groups through a special control card parameter and the group's attri­

butes cannot be modified when the jobs' actual demands on the system do

not meet the demands expected for that performance group.

Another scheduler tested for the Burroughs B5700 dual processor

system was based on quite a different characterization of the workload

(79). For each job, when the job was swapped out, processor utilization

by that job was computed for the period during which the job was swap­

ped in. This was done each time a job was swapped in and out, providing

a series of samples of processor utilization. This series was used to

forecast, using a dynamic double exponential smoothing formula, the

expected processor utilization which would occur the next time the job

was scheduled to run. The description here has been for processor

utilization, but similar statistics were also gathered on core and I/O

utilization. Based on these three job characteristics the scheduler

would select a job which would provide the optional system utilization.

Another way to characterize jobs in the workload would be thru

a flow chart representation, as in Figure 2. This representation is

based on the fact that a job's activity can be broken down into two

categories: processing and I/O. A job will process until an I/O in­

struction causes an I/O initiate interrupt to be generated. It will

then perform I/O until completion, at which time an I/O complete inter­

rupt will be generated. This procedure will be repeated with alternat-

28

PROCESSOR:

CHANNEL:

r

TIME

t , t , . . . : I/O INITIATE INTERRUPT

t_, t. , . . . : I/O COMPLETE INTERRUPT 2 4

Figure 2. Flow Chart for One Job

29

ing processing and I/O cycles.

Several factors have been ignored in this description. First

the activity of the supervisor, and of other jobs, has not been repre­

sented. This was left out because Figure 2 represents only one job,

not the entire workload. Another point which needs to be clarified is

that not all I/O instructions initiate I/O device activity. Actually

an I/O instruction will initiate I/O activity only if previous I/O

instructions have filled the I/O buffer. Therefore, the I/O cycle would

perhaps be better interpreted as the time during which a job is blocked

from processing due to I/O activity. Likewise, the processing cycle

could be interpreted as the length of time a job processes before being

blocked from processing due to an I/O activity.

This representation is extremely useful because it captures the

points of allocation and de-allocation of two major system resources:

processors and channels.

Representations similar to this have been used in several studies

(43,63,82,89). One of these represents a job only by its processor

cycles (89). Through an intercept software monitor in the interrupt

handler, the length of each processing cycle of all jobs is monitored.

Based on a job's history of processing cycles, an estimate of the length

of the next processing cycle would be determined through a forecasting

technique for every job in the mix. The scheduling algorithm would

select a job which had the shortest predicted processing cycle.

The processor-I/O cycle representation will be used to support a

scheduling algorithm, described in the next chapter, which aims at mini­

mizing the problem of queueing of requests to the supervisor.

30

CHAPTER III

REDUCTION OF SUPERVISOR QUEUEING
THROUGH PERFORMANCE DESIGN

3.1 Clustered Resource Scheduling

A specific problem in multiprocessor design, queueing of request

to the supervisor, has been identified and explained. The concept of

improving system performance through the incorporation of some tools of

performance evaluation into the operating system has been introduced.

The technique of using the scheduling algorithm to implement perfor­

mance design into the system has been supported by citing examples.

The rest of this thesis will deal with the design and analysis

of a scheduling algorithm based on performance design which will at­

tempt to reduce performance degradation caused by queueing of requests

to the supervisor in a large multiprocessing system.

3.1.1 The Basic Scheduling Algorithm

A natural solution to the problem of processor lockout would be

to schedule tasks to processors such that a processor would request the

supervisor at a time when no other processor needs it (67). Since a

processor requests the supervisor when its task generates an interrupt,

implicit in this solution is the assumption that, for every task in the

mix, the length of time until each task generates its next interrupt is

known. While this is not generally known, recall that this information

could be forecast from previous processing cycles of the job, as in

(89).

31

Another assumption implicit in the above solution is that the

length of time a processor holds the supervisor in order to handle an

interrupt is known. This, too, is not known, but a reasonable estimate

could probably be made for each type of interrupt. Such an estimate

could be based on either recent history of that type of interrupt, or

on supervisor instruction timings and knowledge of the lengths of the

various queues which the supervisor must search for any particular type

of interrupt. This research will assume that this information is avail­

able .

The algorithm to implement this solution could be expressed as

a two-table search (47). Table 1 would have an entry for each ready

job in the mix specifying the time until the next interrupt and the

supervisor time required to handle that type of interrupt. Table 2

would have a schedule of supervisor idle periods which would indicate

when, in the near future, the supervisor has been predicted to be avail­

able. When the supervisor finished handling an interrupt, then a task

would be scheduled for the processor released by the interrupted task.

To find a task, Table 1 would be searched in an order specified by task

priority, or some other external criteria. For each task, a decision

would be made as to whether the supervisor had an idle period correspond­

ing to the period from the current time plus processor cycle time to the

current time plus processor cycle time plus supervisor time. A match

would cause the task to be scheduled for the processor and the period

when the task would cause the processor to use the supervisor to be

eliminated from the table of supervisor idle periods. This algorithm

will be hereafter referred to as Clustered Resource Scheduling (CRS).

32

3.1.2 Example Situation

For example, consider the period of time represented in Figures

3 through 7. Figure 3 shows the supervisor schedule. The S's indicate

periods of supervisor time that have already been allocated. The cur­

rent scheduling point is at the end of one of these periods. Figure 4

represents the selection of a job which will process from the current

schedule point for some length of time, Pi, and then use the supervisor

for some length of time S,. The next schedule point will, of course,

correspond to the end of the next supervisor period. At this point, a

job will be scheduled which will process for P2 time units and hold the

supervisor for S2 time units, as in Figure 5. Figure 6 shows that a

job of processing length Po could not be scheduled at the current sched­

ule point because its request for the supervisor would overlap with a

previously scheduled request. An alternative selection, P~, is illus­

trated in Figure 7.

3.1.3 The Modified Scheduling Algorithm

If this algorithm could always find a job to meet the processing

cycle length and supervisor service length requirement, and if the pre­

dicted information was accurate, then unnecessary queueing of requests

to the supervisor could be eliminated. Recall that according to

Madnick's queueing model, this could mean a 16% increase in throughput

in a large multiprocessor system, corresponding to a very large addition­

al amount of work.

However, if the scheduler must always find a job in the mix which

meets both requirements, then the mix may have to be very large. If the

mix is very large, then a search of the mix could be very time-consuming.

33

t t t
CURRENT NEXT
TIME INITIATE

Figure 3. Supervisor Schedule

TIME

t t t
CURRENT
TIME

NEXT
INITIATE

Figure 4. Scheduling Job P

34

t t t
CURRENT
TIME

NEXT
INITIATE

Figure 5. Scheduling Job P

35

t t t
CURRENT
TIME

Figure 6. Attempt to Schedule Job P,

36

t t t
CURRENT
TIME

*2

Figure 7. Proper Scheduling of Job P

37

Thus it becomes questionable whether the algorithm as described above

would be cost-effective. If this algorithm would take twice as long to

execute as, perhaps, FCFS, then the load on the supervisor would be

doubled; and this would probably overshadow any benefits gained through

the algorithm.

With this problem in mind, a modified algorithm has been design­

ed that is based on a parameter which provides a tradeoff between the

percentage of maximum improvement achievable and the efficiency of

operation.

The modified algorithm is similar to the original except that

supervisor time is allocated in integer multiples of a fixed block of

time. The block size is the parameter which provides the tradeoff. A

lower limit on the block size is one time unit. This case would func­

tion exactly like the original algorithm. As the block size increases

the algorithm would become faster, but the effectiveness in reducing

queueing would be reduced. The cause of the reduction in effectiveness

is illustrated in the following example.

Consider the case where the block size is equal to the average

supervisor service time. Consider, also, the additional restriction

that one and only one block of supervisor time will be allocated to each

supervisor request. With these constraints, the same data used in the

previous example is used in Figures 8 to 11 to illustrate the modified

algorithm.

3.1.4 Example Situation

Figure 8 represents the supervisor's schedule marked off by

blocks. In Figure 9, the selection of a job which will process for P^

38

t t t
CURRENT
TIME

NEXT
INITIATE

TIME

Figure 8. Blocked Supervisor Schedule

t t t
CURRENT
TIME

NEXT
INITIATE

Figure 9. Blocked Scheduling of Job P

39

t t t
CURRENT
TIME

NEXT
INITIATE

Figure 10. Blocked Scheduling of Job P.

40

t t t
CURRENT
TIME

Figure 11. Inaccurate Scheduling of Job P~ Caused by Blocking

41

time units is accompanied by an indication, 1, that the block of super­

visor time during which the processing period ends is no longer avail­

able. A processing period of length P2 is represented in Figure 10,

just as was done in Figure 5, Figure 11 shows that a processing period

length of P3 could be selected next. Recall that in Figure 6, the

original algorithm would not allow this because the supervisor utiliza­

tion would overlap. The resulting supervisor queueing degrades the

effectiveness of the algorithm.

This example has introduced two basic algorithm parameters:

block size and maximum number of blocks allowed to be allocated for any

one supervisor request. These and other parameters necessary for the

complete specification of the algorithm will not be detailed here, but

rather will be discussed in Chapter 4 through a series of experiments

which guided the development of the complete algorithm.

It should be pointed out that the supervisor schedule could be

implemented simply as a one-dimensional array, with each element in the

array corresponding to one block of time. The array would have to be

large enough so that the largest processing cycle could be scheduled.

It would not have to be infinite since the block corresponding to the

last element of the array could be followed by the block corresponding

to the first element of the array, as in a circular list.

3.2 Simulation Model Description

3.2.1 Simulation Approach

Two simulation models were developed for the study of this algo­

rithm. A preliminary study used a model programmed in GPSS which was

4?

based on Madnick's model of a computer system. This model allowed two

scheduling algorithms: First-Come-First-Serve, and CRS. The purpose

of this model was to determine if there were any special problems or

considerations which should be taken into account in the design of the

second, more detailed model.

The second model, which was programmed in GASP, was implemented

for this study on the Burroughs B5700 operated by the School of

Information and Computer Science at Georgia Tech. This simulator

was based on a more realistic computer system model.

3.2.2 Computer System Model Flow Diagram

Just as Madnick's model was described by the Job Flow Diagram

in Figure 1, the GASP model is described in Figure 12.

The parameters of a job's processing cycle distribution are se­

lected from a specified population, and various other job characteristics

are selected from their distributions, _a. A specified number of these

jobs are placed in a finite mix, b_. A job is selected from the mix in

a specified order by a specified scheduling algorithm, £, and is placed

in an available processor, d_. Meanwhile, the mix position it left re­

mains vacant until the job returns to the mix from point rn. At the end

of the job's processing cycle, it requests the use of the supervisor, e_.

After the supervisor's service time, the scheduler is triggered to enter

a job from the mix into the available processor, _f. Also, the job which

was using the supervisor does one of two possible things. If it has

completed all of its cycles, it exits the system, £j then another job

is triggered to enter the mix position made available, h_. If it has

not completed all of its cycles, it proceeds to the channel queue, ̂ i, to

43

Figure 12. Job Flow for GASP Model

44

wait until a channel, j_, becomes available so that the I/O cycle may be

processed. After completion of a job's I/O cycle, the job goes to

point k. where several alternatives are available which deal with the

method of handling the I/O complete interrupt. These will be detailed

later. In either case, when the job leaves the supervisor, Ĵ , it re­

enters its mix position, m.

While this model is more realistic than Madnick's model, it is

not meant to model all features of computer systems. However, the

model should be accurate enough to give a reasonable indication of the

effectiveness which CRS would have in a real system. The major dif­

ference between Madnick's model and the detailed model is with respect

to the input process to the supervisor. The input process for the

detailed model is more restricted than that for Madnick's model. This

restriction is, of course, caused by the finite mix and the I/O cycle

delay. The effect of this restriction should be a decrease in the vari­

ety of jobs available for selection. Accurate representation of this

factor is essential for any study of a methodology which is dependent

on such variety.

3.2.3 Model Structural Alternatives

The system control design alternative assumed in this model is

floating executive control. Furthermore, it is assumed that all the

parts of the supervisor represented in this model utilize the same LOCK-

UNLOCK flag. The prior assumption is desirable and the latter, reason­

able. For example, consider the following straightforward attempt to

break the supervisor components modeled in this study into distinct

sections: 1) routines which handle I/O initiate bookkeeping, 2) rou-

45

tines which handle I/O complete, and 3) routine which schedules jobs.

This breakdown would be infeasible since all three categories usually

access the mix.

Other attempts to divide the data base into distinct parts would

meet similar problems. There is necessarily a large amount of inter­

action among the various functions of the supervisor in order to provide

each with knowledge of what the other is doing. Thus a single LOCK-

UNLOCK flag associated with the data base not only eliminates many oper­

ating system design problems but also simplifies the basic structure of

the supervisor and correspondingly reduces the problem of system debug­

ging.

The memory design is assumed to be an interleaved multi-module

core-resident design with crossbar connection with processors, such

that physical memory interaction does not affect performance. This

assumption could be replaced with the assumptions that the supervisor

resides alone in one particular module, and that memory interference

has a uniform effect on problem program performance. With either as­

sumption, the problem of memory interference can be ignored.

A third design alternative involves the technique for assigning

processors to handle I/O complete interrupts. Prior to considering

several alternatives, it should be pointed out that no mention has been

made of allocating part of the supervisor's time to handle I/O completes.

Clustered Resource Scheduling was not applied for this case for two

reasons. First, it may be considerably more difficult to forecast the

I/O cycle length than the processor cycle length. A large component of

the I/O cycle is usually rotational delay. The variance in this com-

46

ponent is probably at least an order of magnitude larger than the total

time required to handle an I/O complete. A second reason for not sched­

uling I/O complete usage is that an I/O complete service time is much

smaller than an I/O initiate service interval, and therefore may not

drastically degrade performance. For example, consider the situation

where the block size equals the average supervisor time and the maximum

number of blocks allocated for any I/O initiate is one. If you assume

that every block is eventually allocated, then an I/O operation will be

initiated at every block. From this it is reasonable, but not complete­

ly accurate, to assume that, on the average, one I/O complete will occur

during each block. If this was the case, then the proper block size

would be the sum of the I/O initiate service time and the I/O complete

service time. Thus, the I/O complete actually does not need to be

accounted for directly in the supervisor scheduling.

The problem of selecting a processor to handle an I/O complete

interrupt would be eliminated if channels were designed so that they

could handle these interrupts. It would not be unreasonable to require

channels to reassign themselves to the next request at the completion

of the current I/O operation. After all, processors do their correspond­

ing reassignment.

Assuming the above capability is not available, this model handles

I/O completes in two basic ways. The first one uses an algorithm which

determines a processor to interrupt to handle the I/O complete: select

at random, select the processor with the longest time remaining until

its I/O initiate interrupt, or select the processor with the shortest

time remaining until its I/O initiate interrupt. The second technique

47

is to delay the handling of the I/O complete until the next I/O initi­

ate occurs. This last alternative is desirable because it reduces the

amount of processor switching between supervisor state and problem

program state and correspondingly reduces the number of times the sched­

uling algorithm must be called. However, this assumes a nominal average

delay; any excessive delays would have to be controlled by some method.

3.2.4 Simulation Parameters

Besides the I/O complete algorithm, other model input parameters

include: mix size, number of processors, number of channels, and sched­

uling algorithm. The three scheduling algorithms available are CRS,

FCFS, and Round Robin. As the concept of a time slice may not be valid

for large multiprocessor systems, this is not explicity included in any

scheduling algorithm. Also, the distributions for processing cycles,

I/O cycles, numbers of cycles, priority, I/O initiate service time, and

I/O complete service time must be specified. Each of these distribu­

tions is specified for the mix as a whole except for the processor cycle

distribution. For that one, each job in the mix can follow its own,

different distribution.

This last capability is important, as it is related to the major

difference between the GASP model and Madnick?s model that was mentioned

in section 3.2.2. To represent fully the restrictions introduced by a

finite mix, it is important to consider the effect of characteristics

of individual jobs in the mix. If a particular job has the character­

istic that it always has short processing cycles, then the mix position

associated with that job will provide the scheduler with only short

cycles for possibly a very long time, thereby affecting the variety of

48

the jobs in the mix.

A large number of statistics are gathered during simulation,

many of which were motivated by the preliminary study. Each time a job

finishes processing, the following information about that job is printed:

1) job number;

2) number of processing cycles, assuming every job starts and

ends with a processing cycle;

3) priority;

4) total processing time—sum of processing cycle lengths;

5) total I/O time—sum of I/O cycle lengths;

6) arrival time—time at which job first entered the mix;

7) exit time—time at which job left mix, i.e., current time;

8) total ready time—total time during which job was avail­

able to process, but was not processing.

Also, for the purpose of determining when statistical equilibrium is

reached, the average supervisor queue length is printed at every job

exit.

At the end of the simulation the following information is print­

ed:

1) average (minimum, maximum, and standard deviation of)

length of supervisor queue and a histogram of the number

in the queue versus the percent of time which that number

were in the queue;

2) average (minimum, maximum, and standard deviation of)

length of channel queue;

3) average number of processors busy;

49

4) average number of channels busy;

5) percent of time that the supervisor was busy;

6) average (etc.) processor cycle length generated by random

number generator;

7) average (etc.) I/O cycle generated;

8) average I/O initiate service time generated;

9) average (etc.) waiting time of a job on the supervisor

queue;

10) average (etc.) waiting time on the channel queue;

11) average processor cycle length of jobs selected by sched­

uling algorithm;

12) histogram of processor cycle selected (in terms of the

number of blocks) versus the number of these selected;

13) histogram of processor cycle selected (in terms of the

number of blocks) versus the average time that they waited

in the ready state before being selected;

14) histogram of processor cycle lengths of ready jobs in the

mix (in terms of number of blocks) versus the number of

these (This could also be printed at specified intervals

during the simulation.);

15) average number of different processor cycle lengths (in

terms of the number of blocks) of ready jobs in the mix;

16) total problem program processing done;

17) total I/O done;

18) throughput: (16) + (17).

50

3.2.5 Special Simulation Considerations

In an experimental study, it is important to evaluate results

only after proper use of statistical tests of confidence. Just as

important is the proper design of a simulation model. A concerted ef­

fort was made to insure a statistically valid design.

First, a random number generator was chosen which had been thor­

oughly tested (63). In the previous section, it was mentioned that

every time a job exits the mix, the average supervisor queue length was

printed. This can be used to insure that statistical equilibrium is

reached. There is a set of values for input parameters which reduces

the full model to Madnick's model. This provides a means for validating

the simulation model.

Two variance reduction techniques were also incorporated. The

model was designed to insure that the same sequence of job parameter

values would be generated when different design alternatives were com­

pared—a separate random number generator was used for each different

job parameter. For example consider the alternatives of using a normal

versus a uniform distribution for the I/O cycle. The technique for

generating a normal sample requires six random numbers while a uniform

sample requires only one. If one random number generator was used for

all parameters, then changing the I/O cycle distribution would, for

example, also affect the number of cycles of jobs. The second variance

reduction technique is the option of using the antithetic random number

sequence.

51

3.3 Preliminary Considerations

3.3.1 Results of Queueing Model

The graphs in Figure 13 represent the expected supervisor queue

length as a function of the number of processors in the configuration

for several values of L/E, based on Madnick's model (66). One important

point is made clear by these graphs: For each value of L/E, there is

some number of processors such that adding one more processor causes an

increase in the average supervisor queue of one. That is, after this

point, adding an additional processor will provide no increase in through­

put.

The cause of this effect is that the supervisor becomes 100% busy

at this point. System designers must be careful to take this factor

into account. It would be very poor design if a 16 processor system

was controlled by a supervisor which could not support but 12 proces­

sors before becoming a system bottleneck. No type of scheduling could

eliminate the idleness caused by such design.

3.3.2 Supervisor Utilization

Chapter II expressed the average queue length, Q, in terms of E,

L, and N. An alternative form of this is (49):

Q = N - ̂ (1 - PQ) (5)

Since P is the probability that the supervisor is idle and has no queue,

(1 - Pn) is the probability that the supervisor is busy, i.e., the super­

visor utilization.

<i - V • l i r
2 1

 <«>

52.

10 20 30 40

NUMBER OF PROCESSORS

Figure 13. Queueing Theory Results

53

A previous example stated that if L/E = .05 and N=21, then Q=2.8. For

this case,

(1-P0) = <
21'['8> = if^- = .87 - 877. (7)

3.3.3 Supervision Queueing and Randomness

Thus, in the above case, there exists a queue but the supervisor

is not totally utilized. To understand this situation, consider Figures

14 and 15. The arrows indicate the arrival of a request for the super­

visor, and the blocks represent the amount of time used by the super­

visor to handle the requests.

In Figure 14, the first request occurs at time S and that request

is serviced from time S to just prior to time U. At time U a second

request occurs which is serviced from U to just prior to W. Again at

time W a third request occurs which is serviced from W to just prior to

Y. Assume that the sequence of events just described repeats itself,

Starting at time Y. If the time between any two adjacent letters (i.e.

S-U, U-W, etc) is considered a time unit, then this example could be

described by the parameters: N=3, L=2 time units and E=4 time units.

Notice that the requests occur in such a way that the queue will always

be empty.

In Figure 15, the first request does not occur until time T, and

the second and third requests occur almost immediately thereafter. Thus,

from time S to time T, the queue is empty. From time T to time V, the

queue length is two and the supervisor is servicing the first request.

From time V to time X, the queue length is one and the supervisor is

servicing the second request. From time X to time Y the queue is empty.

54

QUEUE
LENGTH {

2.

1.

L 0-

t t t

Figure 14. No Clustering, No Queueing

QUEUE
LENGTH 1

::

Ttt
Figure 15. Queueing Caused by Clustering

55

Therefore, the average queue length in this case is:

(1x0 + 2x2 + 1x2 + 1x0)/6 = 1. (8)

Notice that this second example would have the same average parameter

values as the first example: N=3, L=2, E=4 ((2+4+6)/3).

These examples are intended to show that the reason a queue will

build up is due to the fact that sometimes requests for service occur

in clusters. Requests occur in clusters because of the randomness of

the interrequest time distribution. In Figure 14, the interrequest

times for the three processors were all two time units. In Figure 15,

the interrequest times were different: 2 time units, 4 time units, and

6 time units. While the examples are obviously extreme cases, the

clustering of requests will occur in general.

3.3.4 CRS and Randomness

It has been demonstrated that the randomness in a workload is a

factor which contributes to the degradation of a computer's performance.

It has been stated that CRS requires a large variety of jobs in the

workload. Thus, CRS needs and actually benefits from the variety which

is normally detrimental. That is, CRS makes use of an "undesirable"

characteristic of the workload. This point is very important, as it

demonstrates the power of performance design.

These comments indicate that perhaps First-Come-First-Serve would

be a superior scheduling philosophy if the workload had little variety,

but CRS would be better if it had much more variety. The question of

how much more variety is necessary for CRS is a difficult one, but one

which can be answered for an important special case.

56

Consider the situation where the block size is the average super­

visor service time and the maximum number of blocks which can be allo­

cated for each request is one. At the end of any current service time,

there would be less than N processors executing problem programs and

thus less than N blocks of supervisor time scheduled for the service of

those future requests. If there were at this time N different processor

cycle lengths (measured in blocks) in the mix, then there must be at

least one job which could be scheduled into the supervisor's schedule.

Thus, based on the distribution of processor cycles of jobs in the mix,

the mix size could be determined by requiring that at least N different

jobs be available at all times. A method to accomplish this is developed

below.

Assume that the block size is I, the number of jobs in the mix

is M, and the processing cycles of the jobs in the mix follow the dis­

tribution function F(x). Also, if X is the largest possible processing

cycle size, define K as X/I.

Table 1 exemplifies the number of jobs in the mix which have a

processing cycle of length 1,2,...,K.

Define p. as the probability that a sample, Z, from F(x) will

fall in block i. Then:

P. = Prob((i-l)I < Z <, il) i = 1,...,K (9)

Pi = F(il) - F((i-l)I) i = 1,...,K (10)

Define P* as the probability that, of M jobs, ri fall in block 1, r2

fall in block 2,...,rK fall in block K. Using the multinomial dis-

57

Table 1. Mix D i s t r i b u t i o n

Number Number of
of Jobs of

Blocks This Size

1 4
2 3
3 5
4 0
5 1
6 2
7 7
8 3

58

tribution,

* M! r r r
P = —:—7= r 1 2 ... rK (11)

rl ! r2 ! •••rK! Pl P2 PK

Define P. as the probability that j of the K blocks are non-empty, when

the total number of jobs is M. Then

P. = ^ p , (12)
j <V2...rK>

where <r,r2« ••!"£> is all sets such that

K
a) £ r. = M ,

i=l L

and b) at least j of the r. are non-zero (13)

Thus, for the previous case, the proper mix size, M , could be deter­

mined by

M = smallest M such that P„ > 6 (14)

where 6 is the desired acceptance level, i.e., the probability that the

scheduling algorithm can find a job to schedule and N is the number of

processors. , .

M = M + N + (maximum number of busy channels)

+ (maximum supervisor queue) + (maximum channel queue)

+ (supervisor utilization) (15)

That is, M is equal to the number of jobs which must be available in

59

the mix, M , plus the number of jobs busy at the various resources in

the system. It should be noted that this derivation is contingent on

the assumption that the mix distribution, F(x), is stable.

If the number of blocks allocated for each request is not limited

to one, then the analysis becomes much more difficult. However, it is

certain that a larger mix would be necessary for this case than the

previous case. Before a job is scheduled in this case, it must meet

two requirements: a processor cycle length that ends at an empty block

and a supervisor service time that ends before the next busy supervisor

block. In the previous case, only the first requirement was necessary.

Thus, more variety of jobs in the mix is necessary for the case when

the number of blocks allocated is unlimited. While the formulation of

M is not explicitly used in what follows, it does demonstrate the type

of analysis which can be made for that case.

3.3.5 Amount of Improvement Through CRS

Recall that the example of section 3.1.4 demonstrated that the

use of blocks introduces some queueing into the behavior of the system.

Figure 16 provides a similar example. Job P2 interrupts at the end of

the block numbered two and job P^, at the beginning of block three.

Thus, job Po is likely to still be using the supervisor when job P^

makes its request.

To provide an estimate of the amount of queueing introduced,

consider the model in Figure 17. The arrows indicate a request for the

supervisor. Assume that every block contains one and only one arrow

and that the service time for every request is constant and equal to the

block size. Also assume that each request arrives uniformly between the

60

BLOCK #: 1 3 4

Figure 16. Example of CRS

TIME

REQUESTS:

QUEUE 0 -
LENGTH: .

1 •

f tt t t

Figure 17. Corresponding Model of CRS

61

beginning of the block and the end of the block. Under these assump­

tions, the supervisor queue must always be of either length zero or

length one. This is indicated in the example.

After the initial transients of blocks one and two, the system

would reach equilibrium. The request which occurs in block four is

actually handled in block five (i.e. from the beginning of block five

to the end of block five). This means that the request which occurs in

block five must wait on the queue until the beginning of block six.

This is true for every block after the initial transient. On the aver­

age, a request will occur in the middle of a block. Therefore, on the

average, the queue will be empty from the beginning of the block to the

middle of the block and will be of length one from the middle of the

block to the end of the block. This indicates that the average queue

length will be 1/2.

While this simple model does provide an estimate of the queueing

introduced by blocks, it is inaccurate for two reasons. First, queueing

would tend to be less since a request will probably not occur in every

block. Second, queueing would tend to be more since supervisor service

times are not likely to be exactly constant. The effect of the inter­

action of these two factors is, perhaps, best studied through simula­

tion.

3.3.6 Supervisor Load

"Load" is a queueing theory concept which can be useful in ana­

lyzing and extending the results of Madnick's model. The "offered load"

is defined as the mean number of requests per service time and is denoted

by the symbol "a" (30). This is essentially a measure of the demand

67

placed on the server. For queueing systems with one server and the

restriction that requests for service wait on a queue until being

served, the offered load is equal to the server utilization (30).

Based on Madnick's model and equation 6, the offered load can be spec­

ified as in equation 16:

a = j k (N-Q) (16)

Notice that the Q on the right side of equation 16 is not an

independent variable, but rather is dependent on L, E, and N. This

reflects the fact that the offered load can not be computed directly

but depends on the system to which the load is offered (30).

The "intended offered load," a , is defined as the load that

would be offered if the system had as many servers as needed so that

queueing could not occur. For our situation, this would correspond to

having N processors and N supervisors. It can be shown that (30):

a* " N [ui] (17)

The intended offered load is in general useful in this model

because it provides an upper bound for the offered load. For our sit­

uation, it can be used to provide an estimate of the number of proces­

sors that would fully utilize the supervisor, for a given L/E ratio.

For example, consider the case where L = 2, E = 4, and N = 3.

On the average, each of the three processors would use the supervisor

for 2 time units and then would process for 4 time units. If these

processors each use the supervisor for a third of the time (2/2+4),

63

then it would be reasonable to expect the processors together would use

the supervisor all of the time. This was illustrated in Figure 14

assuming L and E were constant. If they were random, full utilization

could be attained by scheduling such that all the periods of supervisor

utilization exactly filled the supervisor schedule.

Based on Madnick's model, the upper bound on utilization desired

would be

a* = 100% . (18)

From equat ions 17 and 18,

i-N[tk] ; a')

or

N = 1 + | . (20)

Equation 20 provides the bound on the number of processors for full

supervisor utilization under perfect scheduling. This relation could

be used by system designers to determine the maximum feasible number of

processors which the supervisor could support for a given L/E ratio.

This relation can be used in this study to help interpret the

graphs in Figure 13 as they relate to the effectiveness of CRS. If the

values of N as specified in equation 20 was plotted on Figure 13, it

would be evident that this is the point on the curve at which the rela­

tion between the queue size and the number of processors becomes almost

linear. This should be expected, as equation 20 was derived by con-

64

sidering the supervisor as being 100% utilized. Thus, if N < 1 + E/L,

the entire queue, as specified in equation 4, could theoretically be

eliminated through CRS. The additional queueing introduced by N > 1 +

E/L could not be eliminated by any scheduling algorithm, since the

supervisor would already be 100% busy.

3.3.7 Implementation Considerations

Several points should be made about the actual implementation of

this algorithm. First, it is expected that some of the information

required by this algorithm is likely to be needed by other parts of the

supervisor (54,79). For example, processing cycle lengths may be part

of the system accounting data. Another factor which would tend to de­

crease the overhead incurred by this algorithm is that there is likely

to be hardware support for the supervisor of a larger multiprocessor

system (32).

The introduction of allocation by blocks makes hardware support

of this algorithm particularly simple. For example, consider the spe­

cial case in which the block size is the average supervisor time and

only one block is allocated for each request. The supervisor schedule

could be maintained as a hardware register, as illustrated in Figure 18.

A "1" could indicate an available block and "0" could indicate a pre­

viously scheduled block. The current time would correspond to the left

end of the register, and time could be elapsed by a simple one bit shift

to the left. This register would need to be long enough to permit the

scheduling of the longest jobs in the mix.

The variety of jobs in the mix could be represented in another

register, as in Figure 18. A "1" in the itn bit from the left would

65

SUPERVISOR SCHEDULE REGISTER MIX REGISTER

1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 1

\ /

AND

I
1 0 0 0 0 1 0 0 0 0 1 1 0

JOB SELECTION REGISTER

Figure 18. Hardware Support for CRS

66

indicate that there is at least one job in the mix which has a process­

ing cycle i blocks long. The search for jobs which could be scheduled

at the current time could then be accomplished by simply AND-ing the

supervisor schedule register and the mix register into a third register,

as in Figure 18. A "1" in this register would point to a job in the mix

which meets the scheduling requirements. One of these could then be

selected on a basis of some external criterion such as priority or on

an internal basis such as scheduler optimization. A content-addressable

memory could be effectively used to support this part of the search.

Thus, CRS could be made as fast as much simpler, static scheduling algo­

rithms through the intelligent use of hardware technology.

67

CHAPTER IV

SIMULATION RESULTS

4.1 Initial Investigation

4.1.1. Model Description and Validation

The initial investigation was intended to determine if there

were any special problems or considerations which should be taken into

account in the second, more detailed, model. As previously stated, my

model for this investigation was based on Madnick's model of a computer

system. Scheduling was via CRS with blocks.

The simulation program consisted of about 140 GPSS statements.

Due to the restrictive nature of GPSS, 95% of these statements were nec­

essary to represent CRS, with the remaining 5% representing the computer

system model.

To help validate the simulation model, an initial experiment was

performed with FCFS scheduling. The validation experiment demonstrated

that the GPSS simulation model gave results essentially the same as that

given by equation 4.

4.1.2 CRS Effectiveness

In general, the initial investigation indicated that CRS could

be an effective means for eliminating supervisor queueing (47). For

example, if N = 21 and L/E = .05, then FCFS scheduling would give an

average supervisor queue length of 2.8. CRS gave an average queue

length of 0.7 to 1.7, depending on various parameter values. These

results were assuming no forecasting errors.

68

Intuitive expectations were generally supported by the experi­

mental results. A decrease in the block size resulted in an increase

in cost, in terms of simulation run time, and an increase in effective­

ness, in terms of supervisor queueing. With the block size equal to

the average supervisor time, supervisor queueing could not be reduced

below an average of one half.

The development of the GPSS model provided some useful ideas

concerning the implementation of CRS in the simulation model. While

some of the problems resolved here would not be encountered in an actual

implementation, several problems were basic to the development of the

algorithm. Some of these problems could be intuitively explained, but

were not so obvious that they were initially anticipated. •

For example, consider the technique for maintaining a pointer

which indicates the current time on the supervisor schedule. It was

initially thought that this pointer could be adjusted at the end of a

service interval by pointing to the end of the block which corresponded

to the supervisor request just handled. This, of course, implies that

a block is not simple marked as "taken," but rather is marked as "taken

by job X."

Since some queueing does occur, the time at which a service in­

terval was scheduled to complete does not always correspond to the actual

time at which it completes. Therefore, at each schedule point, the

pointer must be computed from the actual time by taking a clock reading

modulo the block size, and taking that result modulo the number of

blocks in the supervisor schedule. This, of course, assumes that the

supervisor schedule is implemented as a circular list. For example, if

69

there were 100 blocks in the supervisor schedule and the block size

was 50 time units, then a clock reading of 21475 time units would point

to block: (21475 mod 50) mod 100 = 429 mod 100 = 29.

The preliminary investigation also indicated the importance of

having additional tuning factors in the algorithm besides simply the

block size. When more than one block can be allocated for a request,

then the question arises as to whether to allocate an additional block

when, for example, only an additional half of a block is actually needed.

The portion of a block needed before an additional block is allocated

was found to be a useful tuning factor.

For example, consider two alternative values of such a tuning

factor: a) 90% and b) 25%. That is, in case (a), an additional block

will be allocated only if 90% of an additional block is needed. If the

block size were 100 time units and the supervisor time for a particular

request were 370 time units, case (a) would allocate three blocks while

case (b) would allocate four blocks. In general, the higher the per­

centage, the less idleness would be scheduled into the supervisor's

schedule and the more queueing would be introduced. While it may at

first seem that 50% would be the best value of this timing factor, it

must be determined whether this would schedule too much idleness into

the supervisor schedule.

4.1.3 Job Selection Bias

The initial investigation pointed out an inherent problem with

CRS: Jobs with short processing cycle tend not to be selected for sched­

uling. It is not unusual for non-trival scheduling algorithms to be

biased against jobs with some particular characteristic. The usual tech-

70

nique for dealing with this problem is dynamic priority assignment,

i.e., the longer a job stays in the mix unscheduled, the higher the

priority of that job is raised. Eventually these jobs reach a suffi­

ciently high priority to insure that they get scheduled. While dynamic

priority assignment does prevent jobs from remaining idle too long,

excessive use of it could be detrimental to the primary goal of a sched­

uling algorithm since high priority jobs must be scheduled regardless of

any performance criteria.

An investigation was made to determine the cause of the bias.

The results of this investigation are explained through an example which

follows.

Assume that I, M, F(x), K, and P. are as defined in section 3.3.4.

Also assume that L=I, M is large, the smallest processing cycle is one

block, and the supervisor schedule could be as illustrated at the top

of Figure 19. Ignoring any blocks which may have been scheduled prior

to the current time, tQ, consider the next job selection. At time t„,

the selected job could request any of the blocks 1,2,...,K. Thus, by

time tQ, each of the blocks 1,2,...,K have had one opportunity to be

filled. This, also, is illustrated in Figure 19. Assuming the next job

is scheduled at time ti, then blocks 2,3,...,K would have had two op­

portunities to be filled, tQ and t-̂ , and block K+l would have had only

one opportunity, t,. Continuing this process, after time t„ ,, block K

would have had K opportunities, block K+l, K-l opportunities, ..., and

block K+(K-1), 1 opportunity. Thus, after the initial transient of

blocks 1,2,...,K-l; equilibrium is reached in which the blocks closer

to the current time have had many more opportunities to be scheduled

71

TIME: t0 tl t2 t3 t4 V l 'K+3

BLOCK NO. OF
SUPERVISOR SCH:

NUMBER OF
SCHEDULE
ATTEMPTS BY
TIME:

'K-l

'K

'K+l

'K+2

1 2 3 4 K K+l K+2 K+3 2K-1 2K 2K+1 2K+2

1 1 1 1 1

— 2 2 2 ... 2 1

— 3 3 ... 3 2 1

4 4 3 2 1

K K-l K-2 K-3 • • • 1 K K-l K-2 K-3 • • • 1

K K-l K-2 2 1 K K-l K-2 2 1

K K-l 3 2 1 K K-l 3 2 1

K 4 3 2 1 K 4 3 2 1

Figure 19. Job Bias

72

than blocks farther away. The probability that each of these blocks

have actually been filled is, of course, dependent on F(x). If, for

example, F(x) is the uniform or exponential distribution, then the prob­

ability that the blocks close to the current time have been filled is

much more than the probability that the blocks farther away have been

filled. Thus, it is likely that jobs with short processing times will

not be able to be selected. The effect of this bias will be explained

in section 4.3.2.

In summary, the preliminary investigation has indicated that CRS

can effectively increase system throughput by reducing supervisor queue-

ing but has inherent shortcomings which must be dealt with in a way

which will not interfere with the main purpose of CRS.

The next several sections describe the results of experimenta­

tion with the more detailed GASP simulation model.

4.2 Model Definition Experiments

Four experiments were performed which serve to analyze the GASP

computer system model with respect to Madnick's computer system model

and the CRS scheduler.

4.2.1 Submodel Validation

The first model definition experiment helps validate the correct­

ness of the GASP simulation program by specifying GASP parameters such

that the detailed computer system model is reduced to a form equivalent

to that assumed in Madnick's analytic model and then comparing the

results of the simulation with the analytic results.

One of the parameters used to accomplish this was the number of

processing cycles of the jobs; this was specified as one. This, of

73

course, implies that there would be no I/O cycles. The scheduling algo­

rithm was FCFS, which is the same as in Madnickfs model under these con­

ditions. The processing cycle and supervisor service distributions

were both exponential. Various L/E ratios and number of processors

were used, with the results given in Table 2. The fourth column of

Table 2 is the queue length provided by the queueing theory model, and

column five is the average queue length from four replications with the

GASP simulator. The last column indicates the results of the statisti­

cal verification of this experiment. The null hypothesis that the

simulation queue length has an average value equal to the queueing

theory result is tested against the alternate hypothesis that they are

not equal. This and later statistical tests are standard; so, the de­

tailed computation will not be given here. The result for this experi­

ment was that the null hypothesis was not rejected at the 95% level.

It should be noted that while the number of replications for

this and other experiments is nominal, the intent of the experiments is

not to prove anything, but rather to help guide the development and anal­

ysis. Due to the large number of model parameters, and possible param­

eter values, any attempt to prove anything for all cases would be hope­

less.

4.2.2 Full Model Validation

The next experiment was similar to the first, except that simula­

tion parameters were chosen to exemplify the full capabilities of the

GASP model.

The mix size was restricted to 80 jobs. The processor cycle

lengths were specified to be uniformly distributed, and the parameters

74

Table 2. Submodel Validation

Run L/E Number Expected Average Reject
of Queue Simulated Hypothesis

Processors Length :u Queue HQ: X=nQ at

95% level

Length :u
Length:X

HQ: X=nQ at

95% level

1 .050 21 2.76 2.53 No
2 .050 30 9.18 9.10 No
3 .050 15 .930 .92 No
4 .034 21 .998 1.08 No
5 .034 30 3.46 3.45 No
6 .034 15 .374 .397 No
7 .071 21 4.79 4.54 No
8 .071 30 13.01 12.26 No
9 .071 15 1.61 1.76 No

75

for each jobs processing distribution were generated from a uniform

distribution. The mean processor cycle length was 10,000 time units.

The I/O cycles followed a uniform distribution around 10,000. The I/O

initiate service time was exponentially distributed with various means

and the I/O complete service time was uniformly distributed with a mean

of 30 time units. 1/0 complete interrupts were handled when they oc­

curred by interrupting the processor which has the longest processing

time remaining. The number of processing cycles of the jobs followed a

uniform distribution with a mean of eleven. Various numbers of proces­

sors were used, with the number of channels equal to the number of pro­

cessors.

The results of this experiment are given in Table 3. The simu­

lated queue lengths were again close to the values predicted by the

queueing theory model, but not as close as in the first experiment. The

average absolute difference between X and \i. in Table 2 was .199 and in

Table 3 was .276, an increase of 38%. In spite of this increase in dif­

ference, only Run 6 was shown to be significantly different.

4.2.3 I/O Complete Technique Comparison

The third model definition experiment compared the two basic

techniques for handling I/O complete interrupts that were described in

section 3.2.3. As that description explained, it should be expected

that throughput would be better for the case of delayed handling of I/O

complete interrupts since this case does not require processors to be

reassigned as often as the case where I/O complete interrupts are han­

dled immediately. Other model parameters follow Run 1 of the previous

experiment, except that CRS is used instead of FCFS. The block size

76

Table 3: Full Model Validation

Run L/E Numb er Expected Average Reject Null
of Queue Simulated Hypothesis

Processor Length :\iQ Queue Length :\iQ

Length:X

1 .050 21 2.76 2.74 No
2 .050 30 9.18 8.30 No
3 .050 15 .930 1.07 No
4 .034 21 .998 1.00 No
5 .034 30 3.46 3.58 No
6 .034 15 .374 .439 Yes
7 .071 21 4.79 4.43 No
8 .071 36 13.01 12.2 No
9 .071 15 1.61 1.70 No

77

was equal to the average supervisor time, and there was no limit placed

on the number of blocks allocated for each request. It was also assumed

that the length of all processing cycles was exactly known.

The basic measure for comparison in this and later experiments

was throughput—the total processing and I/O done in a specified inter­

val, i.e., during the specified elapsed time of the simulation run. The

average throughput for delayed I/O complete was X2=6.625 x 10
6 time

units during a period of 200000 time units for four replications. (The

Mxl0 " will hereafter be understood.) For non-delayed 1/0 complete, the

average throughput was XT=6.143. To determine if the improvement gained

through delaying the handling of the 1/0 complete was significant, the

null hypothesis that the two means were equal was tested against the

alternate hypothesis that they were not equal. At the 95% level, the

null hypothesis was rejected, indicating that the difference was signif­

icant. Therefore, the remaining analysis will follow the delay 1/0

complete alternative.

4.2.4 Channel Queueing Effect

The last model definition experiment considers the effect of the

number of channels in the computer configuration on CRS. The mix

size is related to the average number of jobs waiting for a channel.

For example, if the average length of the channel queue is five, then

the number of jobs available for selection by the scheduling algorithm

is five less than if the average channel queue length was zero. Thus

the variety of jobs available to CRS is affected by the number of chan­

nels in the configuration.

It seems reasonable to suspect that the reduction in variety

78

caused by channel queueing could be partially offset by increasing the

maximum number of jobs allowed in the mix by the corresponding amount.

An experiment to test this theory was carried out by first making a

simulation run with enough channels so that there would be no channel

queueing and obtaining an average throughput, X-̂ . In the second run,

the number of channels was restricted so that there would be some queue­

ing. Finally, a third run was made with a restricted number of channels

but with the maximum number of jobs allowed in the mix increased by the

size of the channel queue in run two, and it gave a throughput of X2*

With four replications, X = 6.76 and X2 = 6.63. The null hypoth­

esis; HQ*. X^=X2« At the 95% level, the null hypothesis was not rejected.

Another important factor was that the channel queue did not increase

significantly from run two to run three. These results indicate that

the effect of the number of channels in the configuration is just like

the effect of the mix size—both affect the variety of jobs in the mix.

For this reason, the interaction between the number of channels in the

configuration and CRS was not directly studied, but rather was incor­

porated into the study of the relation between the mix size and CRS,

which will be discussed later.

4.3 Algorithm Development Experiments

Eight experiments were performed which completely develop CRS

based on the computer system defined in the last section. These experi­

ments are primarily concerned with the elimination of the bias in job

selection which was introduced in section 4.1.3.

4.3.1 Mix Search Technique

The first two experiments analyze the possibility of eliminating

79

the bias by searching through the mix in a particular order when search­

ing for a job to meet the requirements of CRS. The example of 4.1.3

indicated that the bias against jobs with short processing cycles was

caused by the fact that the periods of time close to the current time

in the supervisor schedule had more opportunities to be filled than

periods farther away. It seems reasonable to suspect that, through

searching the mix in a particular order, it may be possible to schedule

jobs such that available periods of supervisor time would exist for

short jobs as well as long jobs.

Seven search algorithms were compared. Algorithm A ordered the

mix according to the amount of time each job had been ready to process.

The mix was then searched so that jobs which had been waiting for a

processor the longest would be considered for scheduling first. This

is obviously a desirable search technique since it attempts to keep

jobs from remaining idle too long. Algorithms B through G ordered the

mix according to the size of the next processing cycle of each job in

the mix. Algorithm B searched the mix on a basis of shortest processing

time first. This approach to eliminating the bias against short jobs

could be interpreted as giving "first choice" of available space to

short jobs. As will be indicated in the results which follow, these

first two algorithms did not eliminate the problem; so, the following

modifications were examined. Algorithm C searched the mix on a basis of

longest processing time first. Algorithm D alternated between longest

first and shortest first; that is, one time the longest job in the mix

would be selected; and the next time the shortest job in the mix would

be scheduled. Algorithm E alternated between longest first and shortest

80

first after every third scheduling of a job instead of after every

scheduling. Finally, Algorithm F and G alternated after every 15th and

25th scheduling, respectively. It was initially believed that these

algorithms which alternate would provide some randomness in the filling

of the supervisor schedule not provided by the previous algorithms.

Most of the model parameters for this experiment were adopted

from the experiments of section 4.2. However, this experiment, as well

as the rest of the experiments in this section, were performed under

two basic cases. Case A specifies the block size to equal the average

supervisor service time and restricts the number of blocks allocated

for each request to one. Case B allows the block size to vary in

general, but for this experiment sets it to equal the average super­

visor service time. This case also allows the number of blocks allo­

cated for each request to vary as needed. Implicit in case A is the

assumption one block of time is often enough to complete service and

that an extraordinary number of blocks is seldom needed. This is

reasonable because the functions associated with the handling of an

I/O initiate interrupt include various bookkeeping duties plus the

search for a job to schedule. Approximately the same bookkeeping duties

would be performed at each I/O initiate interrupt, so this could pos­

sibly be represented by a constant distribution. The distribution of

the time required to search the mix would depend on the scheduling algo­

rithm. For CRS, the search time would vary, perhaps uniformly, between

the time required to consider the first job in the mix to the time re­

quired to consider the last job in the mix.

The results for case B are given in Table 4. The second column

Table 4: Algorithm Development Experiment IB

Algorithm Average
Throughput

A 9.39
B 9.53
C 9.22
D 9.64
E 9.34
G 9.30

No Job
/o

16.
21.
73.
27.
30.
37.

82

gives the average throughput for four replications, and the third

column indicates the percent of time that CRS could not find a job

which met the processing and supervisor service time requirements.

When this occurred, CRS would arbitrarily select the job with the

shortest processing cycle for scheduling and therefore introduce ad­

ditional queueing of requests to the supervisor.

The various throughputs were compared by a one-way analysis of

variance. In this (and later) experiments, the null hypothesis that the

mean throughput for all treatments (algorithms) were equal was tested

against the alternate hypothesis that the means were not all equal. At

the 95% level, the null hypothesis was not rejected.

The "NO JOBS" percents indicate that none of the algorithms suc­

cessfully eliminated the job bias: Bias against selection of a partic­

ular type of job results in more jobs of that type in the mix and less

jobs of other types which results in not enough variety to meet the

needs of CRS. However, some of the algorithms were obviously better

than others at minimizing the degree of the bias.

The results for case A are in Table 5. Algorithm G was not con­

sidered in this case. The NO JOB statistics followed the same pattern

as in Table 4, but were numerically smaller. The cause of this reduc­

tion was that the jobs selected in case B must meet two requirements

(processor cycle length and supervisor service time) while those select­

ed in case A need meet only one (processor cycle length).

However, the bias against short jobs was present for every algo­

rithm in case A. For example, the distribution of the processing cycle

lengths (in terms of number of blocks) for algorithm A after 200,000 time

83

Table 5. Algorithm Development Experiment 1A

Algorithm Average No Job
Throughput %

A 6.76 0
B 6.75 0
C 6.41 36.
D 6.64 13.
E 6.67 12.
F 6.54 17.

84

units of simulation is given in Table 6. Another indication of the

presence of the bias was the histogram of the average length of time

that a job of a specified processing cycle length waited in the mix

ready to process. For algorithm A again, jobs which had a processing

cycle length of one block waited an average of 81000 time units in a

ready state, those of length two waited 50000 time units, those of

length three waited 43000 time units, those of length four waited 38000

time units, those of length five waited 34000 time units, etc. The av­

erage waiting time was 39000; so, short jobs had to wait longer than the

average.

4.3.2 Prescheduling

These results indicated that a different approach to eliminating

the bias would be necessary. It has been previously stated that a

dynamic priority allocation scheme could be used, but would probably

degrade the performance of the system. This expectation was verified

through simulation, but the details of that experiment will not be

given here. Prior to describing the methodology developed to solve the

bias problem, an example of the problem will be given to motivate the

approach.

Consider the example distribution of jobs in the mix given in

Table 7. Assume that jobs entering the mix have processing cycles uni­

formly distributed between 1 and 20 blocks long but that the current mix

distribution has more small jobs due to the bias. In the example, the

number of available jobs is forty. Thus, if there were no bias, there

should be twenty different jobs, with two of each size. But due to the

bias, there are only ten different jobs—those of length 1,2,3,4,5,6,7,

85

Table 6. Mix Distribution for Algorithm A

Number Number of Number Number of
of Jobs of of Jobs of

Blocks This Size Blocks This Size

1 8 21 1
2 6 22 0
3 3 23 1
4 2 24 1
5 0 25 1
6 2 76 1
7 1 27 2
8 2 28 0
9 3 29 1
10 2 30 1
11 1 31 3
12 0 32 4
13 0 33 1
14 1 34 1
15 4 35 1
16 2 36 1
17 3 33 0
18 1 38 0
19 2 39 3
20 1 40 0

86

Table 7. Example Mix Distribution

Number Number of
of Jobs of

Blocks This Size

1 12
2 7
3 7
4 4
5 1
6 3
7 1
8 3
9 0
10 1
11 0
12 0
13 0
14 1
15 0
16 0
17 0
18 0
19 0
20 0

87

8,10, and 14. Therefore the bias problem not only provides poor per­

formance, in terms of turnaround time, for small jobs, but also is

detrimental to the performance of CRS since it reduces the variety of

the jobs in the mix.

If one of the jobs one block long could be scheduled, then two

desirable effects would result. First, one of the small jobs which had

waiting in the mix for a long time would get processed. Second, the

variety of the jobs in the mix would be increased if the next processing

cycle of that job was of length 9,11,12,13,15, etc.

To accomplish this, define T as a limit on the number of the same

size jobs allowed in the mix at the same time. For example, a value of

three may be used for T for the case in Table 7. Thus, the expected

number of like jobs would be two, and the maximum number of like jobs

would be three.

There would be two situations when a job would need to be added

to the distribution of available jobs: when a job first entered the

mix and after an I/O complete interrupt. When either of these two

situations occurred, then the number of jobs already in the mix of the

same size as the job to be added would be compared to T . If this number

was less than T , then the job would simply be added to the mix. If this

number was equal to T , then the job would be added to the mix and a "pre-

scheduling" algorithm would be invoked.

This algorithm would remove that one of the T+1 jobs of the same

size as the new job which had been in the mix the longest. This job

would then be prescheduled; that is, it would be scheduled to be sched­

uled some time in the future and the associated supervisor blocks would

88

be allocated.

For example, consider the situation illustrated in Figure 20.

The current time is at the end of the block prior to block one, and the

S's indicate the blocks previously allocated to jobs i, n, j, and m.

Suppose that at the current time a job of size three was added to the

mix and there were already T jobs of that size in the mix. The one of

those that had been in the mix the longest, job k, would be selected

for prescheduling. Assume that job k requires two blocks of supervisor

time. If job k was to be normally scheduled, then it would be placed

into a processor and blocks four and five would be allocated. However,

there is no processor available and blocks four and five are not avail­

able. So instead, blocks farther down the supervisor schedule are

allocated. Figure 21 illustrates that blocks ten and eleven could be

selected. The distance of the allocated blocks to the current time

should be random, but must be longer than the processing cycle length.

If the I/O initiate for job k is to occur in block ten, and the job

processes for three blocks, then job k must start processing at the end

of the interrupt handled in block six. Thus, at the end of the handling

of an interrupt and prior to the normal scheduling procedure, CRS would

need to decide if a prescheduled job needs to be scheduled. An easy way

to accomplish this would be to maintain a preschedule array as illus­

trated in Figure 21. When job k was allocated blocks ten and eleven, a

"k" would be placed in block six of the preschedule array. At the end

of the handling of the interrupt for job j, CRS would determine that it

must schedule job k.

Thus the prescheduling procedure can force biased jobs to be

89

BLOCK #: 1 2 3 4 5 6 7 8 9 10 11 12

S.
l

S.
l n

S.
J

S.
J m

t
CURRENT
TIME

Figure 20. Normal Supervisor Schedule

BLOCK*: 1 2 3 4 5 6 7 8 9 10 11 12

S.
l

S.
l

S.
1

S.
J

s.
3

m

t
CURRENT
TIME

PRESCHEDULE ARRAY

Figure 21. Prescheduling of Job k

90

executed without degrading the performance of CRS. In fact, it could

possibly improve the performance since a maximum variety of jobs in the

mix is maintained.

A question which must be considered with regard to this procedure

is the extent to which the procedure should be applied. Prescheduling

can be thought of as a means of reserving space in the supervisor sched­

ule for jobs which otherwise would have difficulty finding space. If

prescheduling is used too extensively, most of the supervisor's sched­

ule could be reserved, leaving no room for normal scheduling.

The second pair of algorithm development experiments analyze

this problem by comparing various threshold values. The results for

case A are given in Table 8.

The maximum variety of jobs, as specified by the processing cycle

distribution, was 40, and the mix size was 100. So, on the average if

20 jobs were elsewhere in the system, there should have been two avail­

able jobs of each size in the mix. The tested values for the maximum

number of jobs of each size allowed in the mix were 2, 4, 5, 6, and 8.

The average throughput for four replications were compared by a one-way

analysis of variance as before, and the null hypothesis that all means

were equal was not rejected at the 95% level. Thus, if prescheduling

eliminated job bias, it did so without degrading the performance of the

algorithm.

The fourth column of Table 8 indicates the average percent of the

jobs scheduled which had been prescheduled. The 68% for run 1 was found

to be too high for the reason suspected: The supervisor schedule was so

full of reserved spaces that not enough room was available for normal

91

Table 8. Prescheduling: Case A

Run Threshold Average Percent of
Throughput Schedules

Prescheduled

1 2 6.66 67.7
2 4 6.76 10.9
3 5 6.78 4.7
4 6 6.75 1.2
5 8 6.76 0.

92

scheduling. This was evidenced by a NO JOB percent of 3.1 and by

examination of the supervisor schedule during simulation. The NO JOB

percents for all other alternatives were zero. The threshold for run 5

was too high, since prescheduling was never performed. The intermediate

threshold in run 3 resulted in a reasonable prescheduling percent of 4.7

and a slightly higher average throughput than the other alternatives.

For this case, the histogram of the average waiting time versus the pro­

cessing cycle size verified the elimination of the bias. Jobs one block

long waited an average of 40000 time units, those two blocks long, 42000

time units, those three blocks long, 42000 time units, those four blocks

long, 47000 time units, those f ive blocks long, 41000 time units, those

six blocks long, 34000 time units, etc. The average waiting time for

all sizes was 40000 time units. The remaining case A experiments re­

ported in this chapter maintain a prescheduling percent of about 5.

The results for case B are given in Table 9. Just as in case A,

the null hypothesis that the mean throughput for all alternatives were

the same was not rejected at the 95% level. The prescheduling percent­

age followed the same pattern as in case A. A threshold of six provided

a reasonable percentage of 4.0.

For case B, the percentage of time that no job could be found to

meet the CRS requirements was higher at every threshold value than for

algorithm A with no prescheduling. This indicated that, for case B,

prescheduling did more harm than good. After further investigation,

this was found actually to be true.

To help explain the cause of this phenomenon, consider the exam­

ple which was given in Figure 21. Recall that job k was prescheduled

Table 9. Preschedul ing : Case B

93

Run Threshold Average
Throughput

Percent of
Schedules

Prescheduled

NO JOB
%

1 2 9.13 45.6 28.6
2 3 9.34 31.2 23.4
3 4 9.22 14.9 20.2
4 6 9.35 4.0 16.0
5 8 • 9.32 .79 17.2

94

for blocks 10 and 11 and had a processing cycle length of three blocks.

Suppose, instead, that the processing time for job k was four blocks.

The k for the preschedule array would have then been placed in block

five. But no supervisor service interval ends in block five, so job k

could not have been scheduled at the proper time.

An attempt was made to alleviate this problem by removing any

job which was unsuccessfully prescheduled and re-prescheduling that job

for a later time. However, since most of the preschedule jobs were

small, it was discovered that often the blocks freed by removing the

prescheduled job from the supervisor schedule would never be refilled.

Thus, for case B, the prescheduling of jobs reserved space which

was never used. This not only reduced the amount of available space in

the supervisor schedule, but also artifically scheduled idleness for

the supervisor.

So prescheduling, as defined here, was found to be a very ef­

fective means of dealing with the job bias problem for case A, but

counter-productive for case B.

4.3.3 Mix Size Comparison

Up to this point, a mix size of 100 has been used. The following

pair of experiments analyzes the effects of the mix size on CRS.

Some of the current single and dual processor systems allow very

large mixes, sometimes more than a hundred jobs. It is doubtful that a

system with 21 processors could maintain a hundred jobs for each proces­

sor. The mix sizes compared here are in the more reasonable range of

from four to twelve jobs for each processor.

Any scheduling algorithm does not depend on the mix size itself,

95

but rather on the number of jobs in the mix available for scheduling.

CRS depends on the number of different jobs in the mix available for

scheduling. As previously mentioned, the number of jobs available is

affected by the I/O boundness of the jobs and the number of channels

available. This study assumes there are enough channels to handle most

requests. If this were not the case for any particular system, then

the proper mix size for that system would have to be adjusted according

to the average channel queue length to obtain a number of available jobs

equivalent to that associated with the mix size found to be appropriate

by this study.

The results for case A are given in Table 10. The null hypoth­

esis that the throughputs were the same was not rejected at the 99%

level, indicating that all of the mix sizes tested were of sufficient

size to support CRS.

Column 4 gives the average number of different jobs available.

The average, for every case, is above the 21 needed to insure a job is

available to meet the requirements of CRS, as described in section 3.3.4.
»

The measured s.tandard deviation for run 1 was 1.8. Assuming a normal

distribution, this would indicate that a mix size of 84 would provide

at least 25 different jobs in the mix 98% of the time.

The increment in mix size from run 1 to run 2 provided for a

much larger increase in the number of different jobs than the increment

from run 2 to run 3. To further insure that a job could be found for

scheduling, advantage was taken of this nonlinear relationship by con­

cluding that a mix size of 100 seemed appropriate for this case. This

size mix resulted in a 98% probability that at least 28 different jobs

96

Table 10. Mix Size: Case A

Run Mix Size Average Average Number
Throughput of Different Jobs

1 84
2 126
3 168
4 210

6.73 28.3
6.83 55.4
7.01 38.3
7.03 39.3

97

would be available in the mix.

Table 11 summarizes the results for case B. Just as in case A,

the null hypothesis that all throughputs were equal was not rejected.

The throughput figures here were adjusted because the larger mix sizes

required longer simulation before reaching equilibrium.

The standard deviations of the number of different jobs varied

from 3.4 for run 1 to 4.4 for run 5. Also the average number of dif­

ferent jobs for a given mix size was lower for case B than case A.

These two results, combined with the fact that case B requires more

variety than case A as explained in 3.3.4, indicate that a larger mix

is necessary for case B.

Table 11 indicates that the difference in the average number of

different jobs for each increase in the mix size becomes small after a

mix size of 168 jobs is reached. Assuming a normal distribution as

before, associated with this mix size is a 98% probability that there

will be at least 24 different jobs in the mix. No mix size larger than

this substantially increased the variety of jobs in the mix or substan­

tially decreased the NO JOB percentage. So, for lack of a better alter­

native, it was concluded that a mix size of 168 was the minimal neces­

sary for this case.

4.3.4 Tuning

As indicated in section 4.1.2, a decision must be made as to how

much of an additional block is needed before one additional block is

allocated. Of course, this only applies to the case where more than

one block can be allocated. The effectiveness of this as a tuning

parameter will now be analyzed through an experiment which considers

98

Table 11. Mix Size: Case B

Run Mix Size Average Average Number
Throughput of Different Jobs

1 84 31.28 24.0
2 126 31.21 29.7
3 168 31.16 31.9
4 210 30.99 33.4
5 252 31.41 33.6

99

several alternatives.

The second column of Table 12 indicates the percent of a block

needed before an additional block is allocated. For example, if the

block size is 100, and a service interval is 260, then runs 1, 2, and

3 would allocate three blocks while runs 4 and 5 would allocate only

two blocks. The restriction is made that at least one block is always

allocated.

The null hypothesis that all throughputs were equal was rejected

at the 9570 level, indicating that this was a useful tool for tuning the

system. Run 4 provided for a 4.4% increase in throughput over run 1.

Column four indicates the corresponding difference in supervisor queue

length caused by the difference in the amount of idleness scheduled

into the supervisor schedule.

4.3.5 Block Size

Another parameter which can be modified for case B is the size

of the block. Recall that the use of this parameter as a basis for a

cost-effective tradeoff was the primary motivation for the introduction

of blocks. It was initially believed that as the size of the block got

smaller, CRS would become more accurate and therefore more effective.

Of course, the accuracy obtained in this way would be limited by the

accuracy of the forecasting of processor cycle lengths to some extent.

Table 13 gives the results of a comparison between the use of

the block size equal to the average supervisor time, run 1, and a much

smaller size, run 2. The size of the block in run 2 was chosen as

small enough to represent the effects of small blocks but large enough

to allow the simulator to fit into the Burroughs' memory. The average

100

Table 12. Tuning

Run Percent of Average
Block Needed Average Supervisor

Before Allocated Throughput Queue

1 20 13.99 2.58
2 40 14.15 2.57
3 60 14.22 2.07
4 80 14.61 1.73
5 100 14.49 1.85

Table 13. Block Size

101

Run Block Size Average Average
Throughput Supervisor

Utilization

1 500 15.01 82.4%

2 60 15.79 83.6%

102

throughputs for four replications of each run were compared by testing

the null hypothesis that they were equal against the alternate hypoth­

esis that they were not equal. The null hypothesis was rejected at the

957o level, indicating that the use of the smaller block size improved

throughput by about 5%. However, the average supervisor utilization

did not show a corresponding increase. The null hypothesis that they

were equal was not rejected at the 95% level. These two contradictory

results prompted further investigation into the scheduling process for

small block sizes. It was noticed that there was still a bias in the

selection of jobs with respect to the size of the processing cycle.

But this was not the cause of the contradictory results. It was dis­

covered that there was another type of bias. There was a tendency to

select jobs which had short supervisor service times. This caused pro­

cessors to spend less time in the supervisor state and more time in the

problem program state; this resulted in less use of the supervisor and

more problem program throughput. Thus, the 5% increase in throughput

for the smaller block size was the result of this bias.

4.3.6 Summary of Algorithm Development Experiments

One consistent theme has pervaded the results of the algorithm

development experiments as well as the preliminary considerations of

section 3.3. The case where the number of blocks allocated for each

request was limited to one provided superior results in every instance

as compared to the case when no limit was made. In section 3.3, esti­

mates were made of the mix size and the quantity of queueing introduced

by blocking for case A, but no estimates could easily be made for case

B. Hardware support for case B would be more complex than that for

103

case A as described in section 3.3.7. The comparison of the mix search

alternatives indicated that the bias was more pronounced in case B, and

it was also shown that it could not be efficiently eliminated through

prescheduling. Case B required at least a 50% larger mix than case A,

and the reduction of the block size for case B could not be done with­

out introducing another bias.

All of these facts pointed toward the same conclusion: CRS with

case B was not a feasible approach. The problems associated with case

B could possibly be reduced through considerable extension of the

methodology, but the complexity introduced would probably be prohibi­

tive.

Therefore, it was concluded that CRS would be feasible only with

prescheduling and with only one block allocated for each request.

This, then, completely specifies CRS. The next section will

determine the effectiveness of CRS by comparing it to a standard sched­

uling algorithm.

4.4 Evaluation of CRS

4.4.1 Effect of Forecasting Error

During the developmental experiments, it was assumed that the

algorithm had exact knowledge of all processing cycle lengths. However,

before the true advantage of CRS over standard algorithms can be deter­

mined, the error in the forcasts of processing cycle lengths must be

included in the model.

Forecasting errors were assumed to be normally distributed with

a mean of zero. The mean throughputs for various standard deviations of

104

error were compared, with the results in Table 14. The null hypothesis

that the average throughputs from four replications were all equal was

rejected at the 95% level, indicating that forecasting error does cause

a significant degradation in the performance of CRS.

The average simulated throughput from four replications for FCFS

scheduling was 6.16. Based on this information, column four of Table

14 indicates the percent increase in throughput over FCFS for CRS at

each level of forecasting error. From this it is evident that the

advantage of CRS is so large that even fairly substantial forecasting

errors do not degrade the effectiveness of CRS below a worthwhile

quantity.

4.4.2 Estimation of Actual Forecasting Error

The obvious question at this point would be which run of Table

14 corresponds to a realistic error distribution. An indication of the

answer to this question was obtained, as well as an indication of the

complexity of the forecasting technique necessary.

The Univac 1108 on campus was used to obtain a sequence of pro­

cessing and I/O cycles for a small set of programs. Several programs

were selected which were available for modification. Included were a

FORTRAN production program, a COBOL production program, and several

other randomly selected FORTRAN programs.

All of these programs but one had to be initially modified to run

on the Univac. Then two subroutines were added which read the Univac's

interval clock. One subroutine read the processor-time clock, and the

other read the core-time clock. Calls to these subroutines were placed

before and after each I/O instruction so that the processor-time clock

Table 14. Forecasting Errors

105

Run Standard
Deviation of

Error Distribution

Average
Throughput

Percent Increase
in Throughput
Over FCFS

0
5%
10%
15%
20%
35%
50%

,78
,73
,66
57
,57
53

10.04
9.24
8.10
6.64

64
99

6.48 5.18

106

could measure processing period lengths and the core-time clock could

measure I/O period lengths.

To test this method of monitoring, a test program was written

which did the same computation during each processing period and out­

put the same thing during the I/O period. This test provided informa­

tion which was used to refine the procedure.

The test indicated that the monitored information should be

maintained internally in core until the program's normal end, and then

should be written out. This reduced the effect of monitoring to adding

a very small amount of processing time to each processing period. It

was also determined that it would be necessary to run in real time mode,

with unused peripherals made inactive, and with no one else using the

machine. (This test also located a hardware error in one of the

internal clocks, which was corrected by the field engineer.)

The complex procedure just described severely restricted the

number of programs which could be monitored. This was not considered

to be a serious problem, as the intent was to obtain some indication of

actual forecasting errors, and not to study job characteristics or

forecasting as an end in itself.

After the monitored data was obtained, it was modified to take

any buffering into account, as described in section 2.5.2. Then three

forecasting schemes were applied and distributions of the percentage

error in forecasts were measured for the three forecasting schemes

under various parameter values on all monitored programs with two buffer

sizes.

The first forecasting routine was the standard double moving

107

average on a linear model. It is assumed that the sample at time t,

x , is a linear function of time:

X
t
 = a

l
 +
 V

 + e
t *

 (21)

The forcasting routine based on this model is

xe = bL + b29 , (22)

where

e - t - B£L (23)

In (22), x" is the estimate of the sample and b1 , b are estimates of
9 1 t-

the intercept and slope for the time origin change of (23). Values for

b, and b are computed recursively as a moving average over the last N

samples:

_ x . - x . „
-p T' . 3- 3--N , „ . .

V
 b

i
 +

 " " 1 5
 ; (24)

u u M 12 , N - 1 , N+l . c . , , ,_ .
b
2

= b
2

 +
 2

 (
~T"

 X
i
 +

 ~T~
 X

i -N " ™>\> '
 (2 5)

1 L N(N-l) Z L Z L N L

A complete derivation is available in (15).

The second forcasting routine was a dynamic double exponential

smoothing formula, as developed in (79). The forecast, x , is defined

by:

Xt = ^t-l + (1-*)xt-l

108

xt = x t - ^ - l •

x-= $x"t+ (1- R)x-_1 ;

x = x' + x"' . (26)
t t t v '

It should be noted that x" consists of two components: x' and x'".
t t t

Here, x7 is an exponential estimator of the average of the samples and

x"' is an exponential estimator of the trend in the samples.

Normally, the exponential smoothing parameters, a and R are

maintained as constants with a value between zero and one. The method­

ology described in (79), and adopted in this study, allows these param­

eters to vary according to previous errors in prediction as described

below.
The percentage error in the previous forecast is defined as

x , - x , _ t-1 t-1 .
e . - - . (27)
C L Xt-1

If e - if larger than some acceptable threshold, T, then the signs of

e 1 and e _ are compared. If the signs are the same, then it is

assumed that the forecasting routine is not responsive enough and so

oi and R are increased so that recent history is taken more into account

as described below. If the signs are different, then it is assumed

that the forecasts are oscillating and so & and R are decreased so that

the forecaster relies more on historical samples.

The modification is made by first determining if # is at an

extreme (either 0 or 1, whichever is appropriate). If it is not, then

109

ex is modified by some small amount d . If it is, and if fl is not
a

already at its extreme, then |3 is modified by d . Otherwise, no modi-
P

fication is made.

The third forecasting routine was developed through discussions

with Donovan Young specifically for the processing cycle time series.

It seems reasonable to expect that many programs execute in a loop for

some number of interactions, where there is one or more I/O statements

in that loop, and the number of instructions executed during each pass

through the loop is approximately the same. Then control would likely

transfer to a different loop with a different number of instructions.

Such a pattern of execution is illustrated in Figure 22. A forecasting

scheme for this pattern should use an average within a program loop but

also react rapidly to changes from one program loop to another.

To accomplish this, the standard exponential smoothing formula

was slightly modified:

^ t - l
 + (1 - c y)

^t-l
 if

 '"^ — L T (28)
Lt-1

Xt
x » otherwise.

The forecast, "x , is based on exponential smoothing if the error in the

previous forecast was less than some threshold T. Otherwise, the fore-

case is equal to the previous sample value. Thus, when a change from

one loop to another is encountered, the exponential average is updated

to the new level.

It is obvious that both the double exponential and linear fore­

casters require more computation than the modified exponential smoothing,

110

PROCESSING
CYCLE
LENGTH

PROCESSING CYCLE NUMBER

Figure 22. Processing Cycle Time Series

Ill

Also, the data base necessary to support modified exponential

smoothing is much less than the other two. The linear method requires

N+2 words of storage for every program in the mix: the N previous

samples and previous values of b1 and b_. Double exponential smoothing

requires four words for each program in the mix: cti (3; x' 1 ; x7" 1 .

Modified exponential smoothing requires only one: x" ...

Table 15 gives a summary of the results of this investigation.

The measure of accuracy in the second column is the percent of the

forecasts, averaged over nine time series, which fall between -15 and

+15 percent error.

The double moving average routine gave the worst results. Values

of N between five and eleven were tested. The best results occurred

for values around seven.

Double dynamic exponential smoothing was only slightly better.

The parameter T was varied between .05 and .3, but little effect was

noticed.

The best forecasting scheme was the one designed specifically for

the type of time series involved. Every combination of values of <y and

T from .1 to .9, .1 apart, were tested. Best results were obtained for

<y = .1 and T = »6. This was reasonable because the low & makes past

history important within a loop and T = .6 detects a change from one

loop to another when the error exceeds 50%.

The special case of the modified exponential smoothing when T = 0

is the simplest forecasting scheme:

V'M •
 (29)

112

Table 15. Forecast Routine Comparison

Forecasting Average Percent of Forecasts
Routine within ± 15% Error

Double Moving Average 43.0

Double Exponential Smoothing 44.5

Modified Exponential Smoothing 74.4

Modified Exponential Smoothing 62.5
with T=0

113

The fourth row of Table 15 indicates that this simple technique perform­

ed very well. This supports the idea that processing cycle lengths are

somewhat repetitive in nature.

The general shape of the distribution of error was similar to

that of the normal distribution, as should be expected. For the normal

distribution, 68%. of the sample fall within +<j, where <j is the standard

deviation. Based on the programs monitored, it would be reasonable to

estimate that 68% of the forecasts fall within ± 157o error. Thus, the

error distribution should be normal with a mean of zero and a standard

deviation, o", of 15%.

This estimate corresponds to run four of Table 14. Therefore it

would be reasonable to conclude that the use of CRS could increase

throughput by 6.6% for the situation defined by the parameters used in

this analysis.

This result, coupled with the speed of the algorithm from hard­

ware support and the simplicity of the forecasting scheme applied at

the end of every processing cycle, indicates that CRS could provide a

significant increase in the amount of work done for a large system with

little increase in cost over conventional techniques.

4.4.3 Load Conditions

The investigation to this point has been for one set of values

for Madnick's parameters: L/E = .05, 21 processors. As indicated in

section 3.3.6, this corresponds to a load condition of high supervisor

utilization. It is assumed that the effectiveness of CRS under these

parameter values is equivalent to its effectiveness under other param­

eter values which correspond to high supervisor utilization; i.e.,

114

L/E = .10, 11 processors; L/E = .02, 51 processors; etc.

However, it may be that CRS would perform even better under less

loaded conditions. This might be expected since CRS would be able to

spread requests out more; that is, the block size used could be larger

than the average supervisor interval, providing more leeway for errors

introduced by blocking and forecasting.

To determine the validity of this argument, first a comparison

was made between CRS and FCFS under different load conditions, with

the results in Table 16. The number of processors was varied from 19

to 17 to 15 while L/E remained at .05. FCFS was compared to CRS with

a forecasting error distribution with a standard deviation of 157Q

through the null hypothesis that the average throughputs were equal.

For each run, the null hypothesis was rejected at the 9570 level. Column

five of Table 16 gives the percentage increase in throughput provided by

CRS.

A comparison of the effectiveness of CRS under various load con­

ditions is illustrated in Table 17. The number of processors and per­

centage improvement of CRS over FCFS were taken from Tables 14 and 16.

The fourth column gives the percent increase in the number of processors

available to process when all of the supervisor queueing, as determined

from the queueing theory model, is eliminated. The last column indicates

the percentage of possible improvement attained by CRS for the various

load conditions. Thus CRS could perform as much as 50% better under less

loaded conditions.

4.4.4 Note on Experiments

The experiments described in this chapter certainly do not ex-

115

Table 16. Load Conditions

Run Number
of

Processors

CRS
Average
Throughput

FCFS
Average

Throughput

Percent Improvement
Of CRS over

FCFS

19
17
15

6.16
5.59
4.98

5.73
5.26
4.75

7.46
6.27
4.63

116

Table 17. Relative Effectiveness

Run Number Percent Percent Improvement Percent of
of Improvement Predicted by Possible

Processors of CRS over Queueing Theory Improvement
FCFS Model Attained

1 21 6.64 16.0 41.5
2 19 7.46 12.2 62.2
3 17 6.27 9.36 65.3
4 15 4.63 7.11 65.1

117

haust all possible considerations and alternatives which could be

investigated, and they were not meant to do that. Rather, these

experiments were chosen because they seemed to provide the basic

information necessary for this investigation while not requiring an

excessive amount of computer time. The experiments described here

required over 80 hours of CPU time on the Burroughs B5700, and the

program monitoring required over 12 hours of exclusive use of the

Univac 1108.

118

CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

5.1.1 General Remarks

This research has developed a feasible methodology for improving

throughput in large multiprocessor systems by reducing the amount of

queueing of requests to the supervisor. The methodology was based on

developments in the areas of multiprocessor configuration design,

operating system design, scheduling, workload characterization, and

forecasting of workload requirements. The use of the combination of

these areas to solve this problem in system design was guided by the

concept of performance design.

5.1.2 Summary of Results

The problem was identified. The supervisor of a multiprocessing

system could be considered to be a resource which can be requested by

processors. If more than one processor request this resource at a

time, a queue of requests would develop, causing idle processors and a

corresponding reduction in throughput.

Then performance design was defined as the incorporation of

performance evaluation techniques into the system design such that the

system could dynamically respond to the immediate requirements of the

workload in order to improve system performance. This was adopted as

the basis for a methodology to solve the problem.

A model of a computer system was developed to be realistic

119

enough to enable relevant considerations to be studied. It was based

on a multiprocessor, multichannel, multi-memory module structure with

maximum communication among components. The GASP II simulation lan­

guage was used to implement the model as a 2800 statement FORTRAN

program.

From this model and the standard scheduling algorithms, it was

determined that a 21 processor system with a reasonable supervisor load

would have an average of 2.6 processors idle on the supervisor queue

and would provide an average throughput of 6.16.

To improve throughput, a dynamic scheduling algorithm was devel­

oped to schedule jobs to processors such that they would request the

use of the supervisor when no other job was predicted to be using the

supervisor. This capability was based on the assumed knowledge of the

sequence of intra-interrupt intervals for each job in the mix.

During the development of the algorithm, the effects of many

factors deemed relevant were fully investigated. Inherent problems in

the methodology were solved through experiments which prompted the

development of a "look-ahead" technique.

Using this scheduling algorithm with the assumption that job

characteristics were exactly known, throughput was increased by 10% to

6.78 over the standard scheduling algorithms. Since it is not likely

that this information would be exactly known, the effect of introducing

various amounts of error were investigated (see Table 14). Then a

realistic estimate of expected error was obtained by applying several

forecasting techniques to data obtained through software monitoring of

actual programs. A forecast of the next intra-interrupt period was

120

based on the lengths of the previous intra-interrupt periods. A

modified exponential smoothing formula performed best, providing an

error distribution that was normally distributed with a zero mean and

a standard deviation of about 15%. This amount of error reduced

throughput to 6.57, 6.6% above standard scheduling techniques.

Analysis of different configurations indicated that the dynamic

scheduling algorithm would perform even better than the example used

here if the supervisor was not as heavily utilized.

5.2 Extension of CRS

5.2.1 Abstraction of Essential Features of CRS

While the development of CRS in this thesis has been with respect

to a particular application in multiprocessor system design, the basic

idea behind CRS is general in nature and could conceivably be applied

to other problem areas in computer system design. As a first step in

the extension of CRS to other areas of application, a description of

the algorithm will be given in terms independent of any particular

application.

Assume a system is composed of at least three basic types of

resources: the "clustered" resource, the "scheduled" resource, and

the "held" resource. Consider the essential activity of the system as

being described by the statement that a "requesting unit" utilizes some

portion of the scheduled resource and then utilizes all of the clustered

resource while, at the same time, also utilizing part of the held

resource. It is also assumed that more requesting units sometimes

leave the scheduled resource and request the clustered resource than

the clustered resource can "service." That is, a queue of requesting

121

units may form at the clustered resource. An important point is that

while on the clustered resource queue, a requesting unit does not

actually need the use of the held resource, but is unable to release

it. Thus, a requesting unit on the clustered resource queue is pre­

venting other requesting units from having access to the held resource.

Since there is a cost associated with the operation of the held re­

source, there is a cost associated with the portion of the held re­

source which is inactive because of requesting units being on the

clustered resource queue. This directly imples that there is a cost

associated with the waiting of a requesting unit on the clustered re­

source queue.

The object of CRS is to reduce the cost associated with this

queue. The method is to schedule requesting units to the scheduled

resource such that they request the clustered resource when no other

unit is requesting that resource. CRS is based on the premise that the

length of time a requesting unit uses the scheduled resource and clus­

tered resource is known, at least to some degree of accuracy.

5.2.2 Areas of Application

For the multiprocessor design problem considered in this thesis

the clustered resource is the supervisor, and both the scheduled re­

source and the held resource correspond to the processors.

As an example of a different interpretation, consider the problem

of paging. CRS could possibly be applied by scheduling jobs to proces­

sors such that they request the use of the paging drum at a time when

no other job is requesting it. In this case, the drum is the clustered

resource, the processors correspond to the scheduled resource, and

122

memory is the held resource. While there may be some problems in the

application CRS to paging, this example at least demonstrates that the

idea behind CRS is a general one, and could possibly be extended to

other resource allocation problems.

The further development of other application areas is considered

a worthwhile area for future work.

m

REFERENCES

1 Amiot, L., Natarajan, J.K., and Aschenbrenner, R.A. "Evaluating
a Remote Batch Processing System," Computer, v5, #5, (1972), p24.

2 Arbuckle, R.A. "Computer Analysis and Thruput Evaluation,"
Computers and Automation, vl5, #1, (1966), pl2.

3 Arndt, R.F. and Oliver, G.M. "Hardware Monitoring of Real-Time
Computer System Performance," Computer, v5, #4, (1972), p25.

4 Aschenbrenner, R., Amiot, L., and Natarajan, N.K. "The Neurotron
Monitor System," AFIPS FJCC, v39, (1971), p31.

5 Baer, J.L. "A survey of Some Theoretical Aspects of Multiproces­
sing," ACM Computing Surveys, v5, #1, (1973), p31.

6 Bell, C.G. and Newell, A. Computer Structures: Readings and
Examples. McGraw-Hill: New York, (1971).

7 Bell, C.G., Chen, R., and Rege, S. "Effect of Technology on Near
Term Computer Structures," Computer, v5, #2, (1972), p29.

8 Bhandarkar, D.P. Analytic Models for Memory Interference in
Multiprocessor Computer Systems Ph.D Dissertation Carnegie-
Mellon (1973).

9 Boehm, B.W. "Computer Systems Analysis Methodology," RAND Corp.
Document #R-520-NASA, (1970).

10 Bookman, P.G., Brotman, B.A., and Schmitt, K.L. "Use Measurement
Engineering for Better System Performance," Computer Decisions,
v4, #4, (1972), p28.

11 Bordsen, D.T. "Univac 1108 Hardware Instrumentation System,"
Proc. ACM First SIGOPS Workshop on System Performance Evaluation,
(1971), pi.

12 Box, G.E.P. and Jenkins, G.M. Time Series Analysis Forecasting
and Control, Holden-Day: San Francisco, (1970).

13 Bremer, R.W. and Ellison, A.L. "Software Instrumentation Systems
for Optimal Performance," Proc. IFIP Congress, vl, (1968), p520.

14 Bright, H.S. "A Philco Multiprocessing System," AFIPS SJCC,
vl8, (1964), p97.

15 Brown, R.G. Smoothing, Forecasting, and Prediction of Discrete
Time Series. Prentice Hall: London, (1962).

124

16 Burnett, G.J. and Coffman E.G. "A Combinatorial Problem Related
to Interleaved Memory Systems," JACM, v20, #1, (1973), p39.

17 Buzen, J. "Analysis of System Bottlenecks Using a Queueing
Network Model," Proc. ACM First SIGOPS Workshop on System
Performance Evaluation, (1971), p82.

18 Calingaert, P. "System Performance Evaluation: Survey and
Appraisal," CACM, vlO, #1, (1967), pl2.

19 Campbell, D. J. and Heffner, W.J. "Measurement and Analysis of
Large Operating Systems During System Development," AFIPS FJCC,
v33, (1968), P903.

20 Cantrell, H.N. and Ellison, A.L. "Multiprogramming System
Performance Measurement and Analysis," AFIPS SJCC, v32, (1968),
P213.

21 Chang, W. "A Queueing Model for a Single Case of Time Sharing,"
IBM Systems Journal,, v5, #2, (1966), pll5.

22 Chang, W., Paternot, Y.T., and Ray, J.A. "Throughput Analysis
of Computer Systems--Multiprogramming versus Mutliprocessing,"
Proc. ACM First SIGOPS Workshop on System Performance Evaluation,
(1971), P59.

23 Cheng, P.S. "Trace-Driven System Modeling," IBM Systems Journal,
v8, #4, (1969), P280.

24 Clancy, J.J. and Fineberg, M.S. "Digital Simulation Languages:
A Critique and a Guide," AFIPS FJCC, v27, (1965), p23.

25 Clayton, B.E., Dorff, E.K., and Fagen, R.E. "An Operating System
and Programming System for the CDC 6600," AFIPS SJCC, (1964), p41.

26 Coffman, E.G. and Wood, R.C. "Interarrival Statistics for Time-
Sharing Systems." CACM, v9, #7, (1966), p500.

27 Coffman, E.G. "Studying Multiprogramming Systems," DATAMATION,
vl3,#6, (1967), P47.

28 Control Data 6600 Computer System Reference Manual #450 (1963)
Control Data Corporation.

29 Conway, R.W., Maxwell, W.L., and Miller, L.W. Theory of Scheduling.
Addison-Wesley: Reading, Mass., (1967).

30 Cooper, R.B. Introduction to Queueing Theory, The Macmillan Co:
New York, (1972).

31 Cooperman, J.A., Lynch, H.W., and Tetzlaff, W.H. "SPG: An
Effective Use of Performance and Usage Data," Computer, v5, #5,
(1972), P20.

125

32 Critchlow, A.J. "Generalized Multiprocessing and Multiprogramming
Systems," AFIPS FJCC, v24, (1963), pl09.

33 Devereauz. J.A. "An Application-Oriented Multiprocessor System--
Control Program Feature," IBM Systems Journal, v6, #2, (1967),
P95.

34 Drummond, M.E. "A Perspective on System Performance Evaluation,"
IBM Systems Journal, v8, #4, (1969), p252.

35 Emshoff, J.R. and Sisson, R.L. Design and Use of Computer Simu­
lation Models, Macmillan Co: New York, (1970).

36 Fife, D.W. "An Optimization Model for Time-Sharing," AFIPS SJCC,
v28, (1966).

37 First Annual Symposium on Measurement and Evaluation, Sponsored
by ACM Special Interest Group on Measurement and Evaluation,
(1973).

38 Flores, I. "Multiplicity in Computer Systems," Computers and
Automation, vl5, #7, (1966), pl9.

39 Flynn, M.J. and Podvin, A. "Shared Resource Multiprocessing,"
Computer, v5, #2, (1972), p20.

40 Flynn, M.J. "Some Computer Organizations and Their Effectiveness,"
IEEE Transactions on Computers, vC21, #9, (1972), p948.

41 Flynn, M.J. "Shared Internal Resources in a Multiprocessor,"
Proc IFIP Congress 71, vl, (1972), p565.

42 Foster, C.C. "A View of Computer Architecture," CACM, vl5, #7,
(1972), P557.

43 Fox, D. and Kessler, J.L. "Experiments in Software Modeling,"
AFIPS FJCC, v31, (1967), p429.

44 Fuchs, E. and Jackson, P. "Estimates of Distributions of Random
Variables for Certain Computer Communication Traffic," CACM,
vl3, #12, (1970), P752.

45 Glinka, L.R., Brush, R.M., and Ungar, A.J. "Design, Thru Simulation,
of a Multiple-Access Information System," AFIPS FJCC, v31, (1967),
P437.

46 Goutanis, R.J. and Viss, N.L. "A Method of Processor Selection
for Interrupt Handling in a Multiprocessor System," Proc. of the
IEEE, v54, #12, (1966), P1812.

47 Gwynn, J.M. and Raynor, R.J. "Scheduling in a Multiprocessor
Environment," Proc. 1973 Sagamore Computer Conference on Parallel
Processing, IEEE Cat #73 CH0812-8C, (1973).

126

48 Herman, D.J. and Ihrer, F.C. "The Use of a Computer to Evaluate
Computers," AFIPS SJCC, v25, (1964), p383.

49 Hillier, F.S. and Lieberman, G.J. Introduction to Operations
Research.Holden-Day; San Francisco (1967).

50 Holtwich, G.M. "Designing a Commercial Performance Measurement
System," Proc. ACM First SIGOPS Workshop on System Performance
Evaluation, (1971), p29.

51 Huesmann, L.R. and Goldberg, R.P. "Evaluating Computer Systems
Through Simulation," Computer Journal, vlO, #2, (1967), pl50.

52 Hutchinson, G.K. and Maguire, J.N. "Computer Systems Design
and Analysis Through Simulation," AFIPS FJCC, v27, (1965), pl61.

53 Hutchinson, G.K. "Some Problems in the Simulation of Multiprocessor
Computer Systems," Simulation Programming Languages, North-Holland:
Amsterdam, (1968), p305.

54 IBM Reference Manual: 0S/VS2 Planning Guide for Release 2 Form
GC28-0667. IBM Corporation (1973).

55 Ihrer, F.C. "Computer Performance Projected Through Simulation,"
Computers and Automation, vl6, #4, (1967), p22.

56 Johnson, R.R. "Needed: A Measure for Measure," DATAMATION,
vl6, #17, (1970), p22.

57 Katz, J.H. "An Experimental Model of System/360," CACM, vlO,
#11, (1967), P694.

58 Katz, J.H. "Simulation of a Multiprocessor Computer System,"
AFIPS SJCC, v28, (1966), pl27.

59 Keefe, D.D. "Hierarchial Control Programs for Systems Evaluation,"
IBM Systems Journal, v7, #2, (1968), pl23.

60 Kiribleton, S.R. and Moore, C.G. "A Probabilistic Framework for
System Performance," Proc. ACM First SIGOPS Worksop on System
Performance Evaluation, (1971), p337.

61 King, W.F. "Analysis of Demand Paging Algorithms" Proc. IFIP
Congress 71, vl, (1972), p485.

62 Kleinrock, L. "Sequential Processing Machines (SPM) Analyzed
With a Queueing Theory Model," JACM, vl3, #2, (1966), pl79.

63 Lewis, P.A.W, Goodman, A.S., and Miller, J.M. "A Pseudo-Random
Number Generator for the System/360." IBM Systems Journal, v8,
#2, (1969).

127

64 Lucas, H.C. "Performance Evaluation and Monitoring," ACM Computing
Surveys, v3, #3, (1971).

65 McKinney, J.M. "A Survey of Analytical Time-Sharing Models,"
ACM Computing Surveys, vl, #2, (1969).

66 Madnick, S.E. "Multi-Processor Software Lockout," Proc. ACM
National Conference, (1968), pl9.

67 Merikallio, R.A. and Holland, F.C. "Simulation Design of a
Multiprocessing System," AFIPS FJCC, v33, (1968), pl399.

68 Miller, E.F. "Bibliography on Techniques of Computer Performance
Analysis," Computer, v5, #5, (1972), p39.

69 Morganstein, S.J., Winograd, J., and Herman, R. "SIM/61: A
Simulation Measurement Tool for a Time-Shared, Demand Paging
Operating System," Proc. ACM First SIGOPS Workshop on System
Performance Evaluation, (1971), pl42.

70 Nakamura, G. "A Feedback Queueing Model for an Interactive
Computer System," AFIPS FJCC, v39, (1971), p57.

71 Nelson, G.W. "OPTS-600--On-Line Peripheral Test System,"
AFIPS FJCC, v33, (1968), p45.

72 Nielson, N.R. "The Simulation of Time Sharing Systems," CACM,
vlO, #7, (1967), P397.

73 Nielson, N.R. "An Approach to the Simulation of a Time-Sharing
System," AFIPS FJCC, v31, (1967), p419.

74 Nielson, N.R. "ECSS: An Extendable Computer System simulator,"
RAND Corp. Document # RM-6132-NASA, (1970).

75 Noe, J.D. "A Petri Net Model of the CDC 6400," Proc. ACM First
SIGOPS Workshop on System Performance Evaluation, (1971), p362.

76 Northouse, R.A. and Fu, K.S. "Dynamic Scheduling of Large Digital
Computer Systems Using Adaptive Control and Clustering Techniques"
IEEE Transactions on Systems, Man, and Cybernetics, v SMC-3, #3,
(1973\p225.

77 Oden, P. H. and Shedler, G.S. "A Model of Memory Contention in a
Paging Machine," CACM, vl5, #8, (1972), p761.

78 Pariser, J.J. "Multiprocessing with Floating Executive Control,"
IEEE International Convention Record, (1965), p266.

79 Pass, E.M. An Adaptive Microscheduler for a Multiprogrammed
Computer System, Ph. D. Dissertation, Georgia Institute of
Technology, Atlanta, Georgia, (1973).

128

80 Pritaker, A. and Kiviat, P. Simulation With GASP II, Prentice
Hall: New Jersey, (1969).

81 Regis, R. "Modeling Generalized Parallel Computer Systems,"
Computer Research Report #14, The Johns Hopkins University,
Baltimore, Maryland, (May 1971).

82 Rehmann, S.L. and Gangwere, S.G. "A Simulation Study of Resource
Management in a Time-Sharing System," AFIPS FJCC, v33, (1968),
P1411.

83 Sapiro, S. "A Technique to Control Waiting Time in a Queue,"
IBM Systems Journal, v4, #1, (1965), p53.

84 Sayers, A.P., ed. Operating Systems Survey, Auerback: N.Y. (1971).

85 Seaman, P.H. and Soucy, R. C. "Simulating Operating Systems,"
IBM Systems Journal, v8, #4, (1969), p264.

86 Sedgewick, R., Stone, R., and McDonald, J.W. "SPY--A Program to
Monitor OS/360," AFIPS FJCC, v37, (1970), pll9.

87 Shemer, J.E. and Robertson, J.B. "Instrumentation of Time-Shared
Systems," Computer, v5, #4, (1972), p39.

88 Sherlock, J.F. "The Simulation of a Multicomputer System," IEEE
Transactions on Computers, vCl9, #1, (1970), plll4.

89 Sherman, S., Baskett, F., and Browne, J.C. "Trace Driven Modeling
and Analysis of CPU Scheduling in a Multiprogramming System,"
Proc. First ACM SIGOPS Workshop on System Performance Evaluation,
(1971), P173.

90 Smith, J.L. "An Analysis of Time-Sharing Computer Systems Using
Markov Models," AFIPS SJCC, v28, (1966), p87.

91 Stanley, W. I, and Hertel, H.F. "Statistics Gathering and Simulation
for the Apollo Real-Time Operating System," IBM Systems Journal,
v7, #2, (1968), P85.

92 Stanley, W.I. "Measurement of System Operational Statistics,"
IBM Systems Journal, v8, #4, (1969), p299.

93 Univac 1100 Series: Operating System Programmer Reference, UP4144,
Sperry Rand Corp.

94 Univac Reference Manual: STAT-PACK, UP4041, Sperry Rand Corp.

95 Univac 1100 Series: General Purpose Systems Simulator, UP7883,
Sperry Rand Corp.

96 Watson, R.W. Timesharing System Design Concepts, McGraw Hill:
New York, (1970).

97 Williams, T. "Computer Systems Measurement and Evaluation,"
The Computer Bulletin, (Feb. 1972), plOO.

98 Witt, B.I. "M65MP: An Experiment in OS/360 Multiprocessing,"
Proc. 1968 ACM National Conference, (1968), p691.

99 Wuff, etal. Hydra: The Kernel of a Multiprocessor Operating
System, Carnegie-Mellon Technical Report (1973).

130

VITA

Randy Jay Raynor was born in Raleigh, North Carolina on March 14,

1949. He graduated from Cary High School in Cary, North Carolina and

received a Bachelor of Science degree in Computer Science from North

Carolina State University at Raleigh in 1971. While at N. C. State,

he worked with IBM at Research Triangle Park, North Carolina.

The School of Information and Computer Science at Georgia

Institute of Technology granted Mr. Raynor a Master of Science degree

in 1973 and a Doctor of Philosophy degree in 1974. He was appointed

to positions of graduate research and teaching assistant during his

graduate study.

Mr. Raynor has co-authored papers in various aspects of

simulation and is a member of the Association for Computing Machinery,

ACM SIGMETRICS, Phi Kappa Phi, Phi Eta Sigma, Upsilon Pi Epsilon, and

Pi Mu Epsilon.

