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SUMMARY 

An investigation is made into a basic design problem of multi­

processor computer systems resulting from queueing of requests for the 

supervisor. For this study, a computer system simulator is constructed 

which represented a portion of the structure of a generalized multi­

processor system. A methodology is developed to enable the scheduling 

of tasks to processors such that subsequent queueing of requests for the 

supervisor would be reduced, thereby increasing throughput. 

The capability to accomplish this is based on an assumed knowl­

edge of the exact processing and I/O requirements of the tasks in the 

system's workload. A general analysis studies the effects of inac­

curacies in this knowledge on the methodology. Then an estimate of the 

expected degree of accuracy of this information is determined by apply­

ing several forecasting techniques to task-characteristic data obtained 

through software monitoring of actual programs. 

A set of experiments is performed and statistically analyzed 

which compares the methodology developed here with conventional tech­

niques using system throughput as the basic measure of improvement ob­

tained. Results indicate that significant improvement could be obtained, 

e.g., throughput is increased by seven per cent for a 21 processor sys­

tem under specified conditions. 



CHAPTER I 

INTRODUCTION 

1.1 Goals of This Research 

1.1.1 Description of the Problem 

In a multiprocessor system, the handling of interrupts generated 

by jobs in the processors is assigned to a supervisory program and as­

sociated data base. The two basic philosophies for deciding which 

processor executes the supervisor are master-slave and floating execu­

tive control (78). In either case, queueing of requests to the super­

visor may occur. With the master-slave structure, the master processor 

can handle only one request at a time. With floating executive control, 

while any processor can execute the supervisor, only one processor can 

be allowed to access the supervisor's data base; at a time. 

A processor which is waiting to use the supervisor is not doing 

useful work. Therefore, queueing of"requests to the supervisor causes 

a degradation in the performance of the system. Previous studies have 

indicated that this degradation is significant for large multiprocessor 

systems (66). 

1.1.2 Summary of the Methodology 

Jobs in the system's workload are characterized by their process­

ing and I/O requirements. Supervisor queueing will be reduced by using 

this information to schedule jobs to processors such that they request 

the use of the supervisor when the supervisor is predicted to be avail­

able. This methodology will be developed and evaluated via a computer 
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system simulator which is of a sufficient level of detail to model the 

flow of tasks through the system's major resources. 

The capability to accomplish this is based on an assumed knowl­

edge of the exact processing and I/O requirements of the tasks in the 

system's workload. A general analysis will study the effects of inac­

curacies in this knowledge on the methodology. Then a realistic esti­

mate of the expected degree of accuracy of this information will be 

determined by applying several forecasting techniques to task-character­

istic data obtained through software monitoring of actual programs. 

A set of experiments will be performed comparing the methodology 

developed here with conventional techniques, using system throughput as 

the basic measure of the improvement obtained. Since the experiments 

are essentially Monte Carlo in nature, sufficient care will be taken in 

their design to assure reasonable statistical confidence. 

1.2 Summary of Following Chapters 

Chapter II provides an extensive survey of multiprocessor computer 

systems, problems inherent in these systems, and techniques which are 

used to solve these problems. Included is the concept of system design 

which allows the system to react dynamically to the workload in order 

to improve performance. 

Chapter III develops the methodology for the reduction of super­

visor queueing. The simulation models used to develop the scheduler 

are described, and expected results are intuitively described. 

The results of the simulation studies are given in Chapter IV, 

and Chapter V provides possible extensions of the methodology to other 

areas of application and summaries with conclusions about the feasibil-
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ity of the methodology. 

1.3 Note on Terminology 

This thesis assumes a basic understanding of computer science 

concepts and uses standard computer science terminology without includ­

ing definitions except where deemed necessary. The reader is referred 

to standard computer science texts (6,96) for those terms with which 

he is not familiar. 
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CHAPTER II 

MULTIPROCESSOR SYSTEM DESIGN 

A multiprocessor computer system is one which has more than one 

central processing unit. Multiprocessing should not be confused with 

multiprogramming which refers to the interleaved execution of many 

programs which are, themselves, executed sequentially (96). Multi­

programming makes no reference to the number of processors involved in 

this execution. 

2.1 Design Alternatives 

2.2.2 Structural Alternatives 

There are many different types of multiprocessing systems; Flynn 

has developed a scheme for catagorizing them (40). This scheme is based 

on the notion of streams. The four classifications arise from the 

multiplicity of two types of streams: streams of instructions, and 

streams of data. Flynn's SISD classification includes those systems 

which are based on a single instruction stream (SI) and a single data 

stream (SD). Most of the current single processor systems fall into 

this category. Computers which have a single instruction stream and a 

multiple data stream (SIMD) include array processors like the Illiac IV, 

pipelined processors like the Solomon, and associative processors (40). 

The multiple instruction stream, single data stream organization (MISD) 

is not practical today. The last category, multiple instruction stream, 

multiple data stream (MIMD) has two variants. The first is called a 
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Shared Resource Multiprocessor. This includes systems which have 

"skeleton" or incomplete processors which share system resources as 

in the CDC 6600 (6). The second is called a True Multiprocessor System. 

Here several physically complete and independent SI processors execute 

separate tasks or subtasks. 

Another separate classification of multiprocessor systems uses 

more of the current terminology in its specification of six categories 

(7). The first category, parallel processing, involves multiple pro­

cessors which are assigned to independent subtasks of a task which can 

be processed simultaneously. The major problem with this type of pro­

cessing is in deciding how to break a task into subtasks. The second 

category, pipeline processing, has several different arithmetic pro­

cessing units which perform one part of a single operation and then pass 

the result on to the next "processor" until the entire operation is 

completed. With this structure, the same operation can be at various 

degrees of completion on different data. Recall that Flynn classified 

this as SIMD. The third category, network processing, involves com­

puters which have special function subsystems which may themselves be 

multiprocessor systems. This is similar to Flynn's MIMD Shared Resource 

Structure. The fourth category includes multiprocessor systems which 

have specialized hardware processors to perform functions like inter­

preting. The fifth category uses conventional multiprogramming on sys­

tems with more than one processor. This is like Flynn's MIMD True 

Multiprocessors. The last category, called Independent Computing, has 

subsystems hardware partitioned into distinct entities. 
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2.1.2 Justification for Multiple Processors 

This research will involve one specific category: True Multi­

processor Systems. Before going into some of the details of the design 

of this type of system, some justifications will be given for multi­

processor systems in general, and True Multiprocessor Systems in par­

ticular (98). Hereafter, True Multiprocessor Systems will be referred 

to simply as multiprocessor systems. 

The first obvious advantage of having multiple processing units 

is the increase in throughput, even though it may not be true that a 

two processor system can do twice as much work as one processor. A 

system which has multiple processing units will usually have multiple 

channels, multiple card readers, multiple disk subsystems etc. This 

multiplicity provides both increased efficiency and increased reliabil­

ity. Multiple resources are more efficient when they service requests 

from the same queue rather than from different queues because this 

structure prevents one resource from being idle while a queue exists 

at a similar resource. Increased reliability results from redundant 

components if the system is designed such that: failing components can 

be dynamically configured out of the system. This capability is usually 

referred to as graceful degradation. Also, large multiprocessing sys­

tems can accommodate large programs which would require more resources 

than are usually available on single processor systems. Another advan­

tage which one large system has over many small ones is that memory 

would be more effectively utilized because only one copy of large data 

files, compilers, operating system, etc., would be needed. 

The previous discussion has indicated the advantages of multi-
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processor systems, but there is one important factor which makes these 

systems feasible: The cost of processing units has been reduced much 

faster than the cost of some other system resources (7). 

Based on justifications such as these, it has been suggested 

that a trend toward multiprocessor systems is expected in the near 

future (7). In 1968 Witt explained that it was at that time undeter­

mined how well multiprocessor systems could meet expectations (98). 

There are currently many design problems which must be considered be­

fore their effectiveness is determined. Some of the design considera­

tions for multiprocessor systems will be discussed in the next section. 

2.1.3 Special Considerations for True Multiprocessor Systems 

When a multiprocessor system is under design, there are many 

design problems which must be considered and then resolved. One such 

problem is the technique for maintaining control over the processors. 

Since the supervisor is the control mechanism, the question which must 

be resolved is: Which processor(s) will be allowed to execute the 

supervisor? 

There are two basic structual alternatives. First, there is the 

master-slave control (6). In this situation, one specific processor, 

the master, is the one and only one allowed to execute the supervisor. 

The other processors, the slaves, execute only problem programs. In 

some cases, the master is also allowed to execute problem programs. 

This structure implies that if the job in a slave processor causes an 

interrupt, that slave must wait for the master to handle that interrupt. 

If the master was already handling a previous interrupt, then a queue 

of requests for the supervisor will develop. This structure eliminates 
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one of the advantages of multiprocessor system—graceful degradation. 

If the master processor fails, then the entire system must stop. 

The second design alternative, floating supervisor control, does 

provide for graceful degradation. In this situation, the supervisor is 

considered a resource which any processor can request. Thus, when a 

job in a processor generates an interrupt, that processor can request 

the use of the supervisor to handle that interrupt. If there were only 

one non-reentrant copy of the supervisor, then only one processor could 

use the supervisor at a time. If there were more than one copy, or if 

it were reentrant, then more than one processor could possibly be using 

the supervisor at the same time. 

However, there would have to be limits placed on the simultaneous 

use of the supervisor. A "critical race" would occur if one processor 

were trying to change the supervisor's data base while another processor 

was trying to access that data base (14). For example, if two proces­

sors were using the job scheduling algorithm at the same time, they 

could both select the same job to execute. 

The usual technique for dealing with this problem is the use of 

a LOCK-UNLOCK flag (14,33). When one processor wanted to use the super­

visor, it would LOCK other processors from having access to it. Upon 

completion, it would UNLOCK the supervisor. Note that this could be 

applied to the supervisor as a whole, or separate locks could be used 

for separate parts of the supervisor which access distinct parts of the 

supervisor's data base. The use of locks could become expensive in 

terms of both time and complexity of the supervisor. Some examples of 

these control structures will be given in a later section. 
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There are other structual questions besides control which must 

be resolved in the design of a multiprocessor system. The current de­

sign of core memory would prevent the access of memory by more than one 

processor at a time. The first step in alleviating this situation is 

to organize central memory into blocks of memory, such that different 

blocks can be accessed simultaneously by different processors. But 

having more than one memory block introduces the problem of how the 

processors will be connected to the memory blocks. 

Critchlow has described three current techniques for implementing 

this connection (32). One would be a time-shared bus in which proces­

sors and memory blocks are connected only long enough for the transfer, 

and then the connector is switched to satisfy another processor-memory 

transaction. A slightly more expensive and somewhat faster technique 

would be to hardware connect each processor to several particular mem­

ory blocks; thereby allowing them to access only those blocks. The 

fastest, most general, and most expensive technique is called a crossbar 

switch. Here every processor is connected to every memory block. 

Based on a simulation model of a multiprocessor system with a 

crossbar switch, Lehman studied the problem of specifying the number of 

memory blocks necessary to support a given number of processors (6). 

His results indicate that a memory/processor ratio of 4/1 may be neces­

sary. An extensive study of this problem through analytic models has 

been made by Bhandarkar (8). 

Another design problem which must be considered involves the 

decision as to which processor will be allocated to handle external 

interrupts such as an I/O complete interrupt. Some of the alternatives 
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include: 1) the processor which initiated the I/O activity, 2) a des­

ignated processor which handles all such interrupts 3) a processor 

selected by some algorithm. Goutanis has developed a sophisticated 

scheme which fits into this last category (46). 

In summary, three problem areas in multiprocessor system design 

have been discussed: one which deals with communication among proces­

sors; one which deals with communication between processors and memory; 

and one which deals with communication between processors and channels. 

Before proceeding with a detailed investigation of one of these areas, 

some examples of existing multiprocessor designs will be given. 

2.2 Survey of Existing Systems 

There are a large number of multiprocessor computers currently 

in operation or under design. Most computer manufacturers have mainline 

products based on a multiprocessor structure, and there are many instal­

lations which have built multiprocessor systems out of single processor 

systems. Several examples of these systems will now be discussed (84). 

First, they will be described by specifying the maximum number of major 

components to indicate the degree of multiplicity. Second, the basic 

characteristics of the operating system, such as the scheduling algo­

rithm, will be mentioned as an indication of the degree of sophistica­

tion of design. Also, any special features important to this research 

will be mentioned. 

2.2.1 Mainline Products 

The Burroughs 700 series of computers includes several which have 

multiprocessing capabilities: the B5700, the B6700, and the B7700. The 
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B5700 allows up to two processors and four channels. One of these pro­

cessors is designated to execute the supervisor and problem programs, 

and the other, only problem programs. The B6700 allows up to three 

processors and 12 channels while the B7700 can accommodate eight pro­

cessors, 32 channels, and eight independent memory modules. Both of 

these systems are based on the floating supervisory control scheme. 

The operating system, MCP, supports batch, real-time, and time­

sharing operations. The Burroughs virtual memory scheme is based on 

program segmentation. Job scheduling uses a dynamic priority assign­

ment, but with provisions which allow adjustments in the mix to balance 

the load on the machine by keeping as much of the system as possible 

busy at the same time. 

The Univac 1110 (1108) will support up to six (four) processors 

and 96 (64) channels. All processors are allowed to execute both super­

visory and problem programs. 

The EXEC operating system schedules jobs from its virtually un­

limited mix according to a priority scheme. The scheduler also has the 

capability to take into consideration job deadlines. 

The Honeywell 615/625/635 and the newer 6000 are multiprocessor 

machines. The maximum number of processors on the 615 is three, and 

the 6000 can support up to four. 

The GECOS III operating system is advanced in design and scope. 

Incorporated in GECOS III are extensive techniques for event tracing 

and utilization monitoring (20). Jobs are scheduled from a maximum mix 

of 63 according to a timesliced round robin priority scheme. The 600 

series utilizes a master-slave control philosophy. 
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The design of the CDC 6400/6500/6600/7600 multiprocessor systems 

is quite different from those systems previously described. Basically 

these machines have either one or two central processors and seven to 

twenty peripheral processors. Each peripheral has 4K of memory and 

there are usually 32 independent 4K banks of central memory which pro­

vide a connection between the central processor and the peripheral pro­

cessors. The peripheral processors control input/output functions and 

provide work for the central processor, which is an extremely fast arith­

metic unit. The 7600 can have up to 24 I/O channels. 

One of the peripheral processors is designated to execute the 

operating system, and thereby act as the master processor for the system. 

The operating system, SCOPE 3, maintains timesharing and local and re­

mote batch facilities. Job scheduling is accomplished through an exten­

sive priority system. 

The CDC machines are considered to be the biggest and fastest of 

the commercially available computers. They are often used in scientific 

environments, where such power is effectively utilized (6,28,84). 

2.2.2 Special Products 

Since 1968 the IBM facility at Gaithersburg, Maryland, has had a 

system designated M65MP which is composed of two model 65 computers con­

nected both directly and through common main storage (98). The model 

65 operating system was only slightly modified to accommodate this 

structure. Basically, the resource allocation was modified so that 

peripherals of eigher CPU could be used by either CPU. The various com­

ponents of the supervisor were classified into two groups. One group 

contained those routines which would be affected if both processors 
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tried to execute them simultaneously. A simple lock was provided to 

prevent such simultaneous access. The other group contained those rou­

tines which would not be affected by simultaneous execution. 

Prior to the M65MP, another dual processor system was developed 

from combining an IBM 709 with a 704 (58). In this system the 704 acted 

as the master processor and was not allowed to execute problem programs. 

Another IBM multiprocessor system, 9020, was designed to handle 

real-time air route traffic control (33,67). This system could incor­

porate up to four mid-range 360 CPU's, nine channels, and twelve inde­

pendent main storage elements. A floating supervisor control scheme was 

used which locked out parts of the supervisor which accessed a common 

data base to prevent the race condition. The scheduling algorithm was 

extended beyond the usual capabilities to allow the dynamic rescheduling 

of an interrupted job while another processor handled the interrupt 

generated by the job. This permitted the shortest possible elapsed 

times for critical real-time jobs. 

Burroughs developed a multiprocessing system with real-time capa­

bilities similar to that in the IBM 9020 called the D825 (6). The maxi­

mum system configuration consisted of four processors, 16 4K memory 

modules, and 20 channels. The AOSP operating system was designed to 

allow floating supervisor control. The scheduling algorithm was a dy­

namic priority scheme which insured maintenance of specified procedure 

relations among jobs. 

NASA in Houston has developed a multiprocessor system consisting 

of two UNIVAC 1106's, four UNIVAC 1108's, and a large complement of 

peripherals (76). Northouse has developed a load-balancing scheduling 
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algorithm for this system which will be discussed in some detail later 

(76). 

The Hughes Aircraft Company has designed the H-3118 multiproces­

sor system consisting of three processors and eight 16K memory banks 

(78). A single LOCK was used to refer to the entire supervisor so that 

only one processor could access it at a time. 

Carnegie Mellon University is in the process of designing and 

constructing a multiprocessor system based on up to 16 miniprocessors, 

in particular, 16 PDP ll's. Supporting research has investigated in 

detail some of the problems in multiprocessor systems as previously 

described. Analytic models of the memory interference problem have 

been developed (8), and studies of the structure of the operating sys­

tem have begun (99). The operating system will be designed around a 

kernel which contains the basic mechanisms for building an operating 

system but no specific policies such as scheduling philosophies. 

2.3 Process of Multiprocessor Design 

Thus far, various justifications for multiprocessor systems, var­

ious design philosophies, and various examples have been given. Also, 

one effect of the current technology on the feasibility of the systems, 

i.e., the reduction in processor cost, has been introduced. Now a very 

important area of technology which has improved the feasibility of these 

systems will be described—the tools of computer system design and anal­

ysis. More specifically, the techniques of performance evaluation and 

modeling will be discussed in their relation to design of multiprocessor 

systems and research described by this thesis. 
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2.3.1 Techniques of System Design 

The current single processor systems have only recently reached 

a complexity requiring sophisticated techniques of analysis, as witness­

ed by the growth of the area of performance evaluation in the last ten 

years. On the other hand, the design problems previously mentioned for 

multiprocessor systems make these systems so complex to begin with that 

careful analysis of these problems is mandatory. Therefore, most of the 

multiprocessor systems described were developed through the use of per­

formance evaluation tools during the design stage. The empirical per­

formance analysis techniques such as the instruction mix, the kernel, 

and the benchmark (2,56) are not of concern here; however modeling, both 

analytic and simulation, and monitoring will be discussed in detail. 

While graph theory, mathematical progra.mming, and decision theory 

have been used in performance evaluation, queueing theory has been the 

principal analytic tool (5,70,90). The state of a computer system is 

described by the specification of which jobs are in which of the oper­

ating system's queues. Correspondingly, the state of a network of queues 

is described by the specification of the number of customers in each 

queue. While the identification of individual tasks is lost in the 

queueing theory representation, the basic structure of this model is 

close to that of the real system. At first, it may appear that this 

relationship would provide the ultimate tool for performance evaluation. 

However, in practice, it has often been found that as more detail is 

added to these models, the assumptions necessary to provide a solvable 

model tend to reduce their validity. 

The application of queueing theory to computer systems modeling 
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began in the early sixties. Surveys of this early work are available 

in (27,65). Basic to these models are assumptions about interarrival 

and service distributions. Several studies have been made to validate 

these assumptions (26,36,44). More recent work has begun to use spe­

cially developed queueing theory models in attempts to model the partic-

ular idiosyncracies of various batch and time-sharing configurations 

(21,62,87). While entire configurations can be modeled, this level of 

detail sometimes does not allow accurate investigation of particular 

components; so models are often made of a single component. This ap­

proach is taken, for example, in the study of paging (61,77) and memory 

interleaving (8,16). Several studies have been made to optimize par­

ticular aspects of computer performance. Buzen has developed a queueing 

network model of a multiprogramming system to analyze optimal assign­

ment of requests to interchangeable resources of different 'speeds' 

(17). Sapiro has studied the possibility of controlling waiting time 

by optimizing the service rate (83). Several models of complex multi­

processor systems have been developed. A basic model uses a finite 

source queueing model to characterize the interaction between the prob­

lem programs and the operating system (66). Other work has built onto 

this basic model to provide a more realistic representation (29,81). 

The importance of the application of queueing theory can be seen in the 

fact that the first symposium by the Association for Computing Machinery 

Special Interest Group on Measurement and Evaluation consisted almost 

entirely of analytic models (37). 

Simulation of complex computer systems by computer programs has 

evolved to be the most widely used technique of performance evaluation 
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(51). The flexibility of simulation allows researchers to investigate 

any matters of concern in any degree of detail. However, this power 

has its costs: The manpower required to develop simulation models is 

sometimes prohibitive to the degree that its cost approaches that of 

actual system development (9). 

With no engineering experience in this area, designers of current 

multiprocessor systems have typically had to resort to simulation to 

examine the alternatives in structure (58,67). However, as multiproces­

sor systems increase in size, simulation will become difficult, and may­

be even impractical (53). 

One of the difficult problems in devising a simulation model is 

deciding which features of the actual system are relevant to the prob­

lem and should be included in the model. If a large amount of detail is 

included, the model will be more accurate, but it will also take longer 

to program, debug, and execute. On the other hand, if only major fac­

tors are considered then the program may execute relatively quickly; but 

its validity would be in doubt. The two major levels of detail are the 

microscopic—where the major unit or transaction is the instruction, and 

the macroscopic—where the major transaction is the task (97). Within 

each level, a minimal set of variables which characterize the system 

relative to the purpose must be developed. As input, some of these vari­

ables describe the workload and system configuration desired for a given 

analysis. As output, other variables describe the results of applying 

the workload to that configuration. 

Numerous descriptions of attempts to simulate specific systems 

have pervaded the literature. Probably the most well known was the pre-
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installation simulation of an IBM 360/67 at Stanford by Nielson (73,74). 

His simulator was used to determine how to alter the original system 

specifications to correct for a memory bottleneck. Since then, a vari­

ety of simulators have been written for specific batch and time-sharing 

systems (43,52,69,82), information retrieval systems (45), real-time 

systems (67,91), and specific operating system algorithms (88). One 

slightly more general simulator was designed to model any of a series 

of computers—the 360 series (57,58). Most of these efforts were re­

ported as successful, but validation of their models was weak or non­

existent. 

The structure of these models was usually event oriented. That 

is, a calendar of future events is maintained; and after one event has 

been simulated, time is advanced to the time of the next event. Here an 

event usually corresponds to an I/O interrupt (64). One well known 

simulator which does not fit this pattern is SCERT (48,55). Instead of 

simulating the events, a table of empirically derived data is examined 

to determine the probable results of the event. As with event oriented 

simulators, the accuracy of this method has been questioned (51). 

Many of the simulators such as those mentioned above were written 

in general purpose simulation languages such as GPSS (95) in order to 

remove much of the burden of bookkeeping from the designer so he could 

put his efforts toward more constructive ends. However, it was found 

that these languages imposed restrictions which were cumbersome to cir­

cumvent (24). A simulation language based on FORTRAN, GASP, eliminated 

these restrictions by allowing the user to program in FORTRAN when nec­

essary (80) . 
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Several languages have been developed specifically for simulating 

computer systems (51). IBM has developed a language called Computer 

Systems Simulator, CSS, to evaluate System/360 hardware and software 

configurations (85). As with Lockheed's LOMUSS (52) and RAND's ECSS 

(74), CSS has special statements to simplify hardware and software spec­

ification. These languages, however, execute very slowly. 

Simulation programs, whether written in FORTRAN or one of the 

special languages, have one invariable feature—garbage in, garbage out. 

While accurate representation of the system's configuration is not a 

perfected science, most "garbage" results stem from inadequate character­

ization of the workload. It is not enough to know that a certain sci­

entific application is "compute bound"; specific information on how 

tasks behave is needed. 

To this end, techniques of monitoring the activities of computers 

have been developed to trace the flow of tasks through the system and 

then provide this information to a simulation model. Trace-driven sim­

ulation modeling has proven to be the current most effective means to 

model complex computer systems for performance evaluation (23,75,92). 

Besides providing input to simulators, monitoring techniques are 

effective in themselves for providing information for performance eval­

uation. Monitoring techniques are generally classified as either hard­

ware or software. A hardware monitor is a device, external to the com­

puter, which records the activity of the system by means of a number of 

probes attached to selected signal lines within the computer hardware. 

Types of things which can be determined in this manner include: pro­

cessor idle time, overhead time, channel and device active time, and 
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processor-I/O overlap time. Excellent results have been obtained from 

research efforts using this type of monitor (1,3,4,11). A software 

monitor is a program which gathers data from operating system tables 

and registers. Unlike the previous method, software monitors degrade 

the performance of the system (64). However, they can provide detailed 

information which cannot be hardware monitored (10,50,59). Both meth­

ods require data reduction and reporting techniques (31). 

For the most part, the decision to monitor has been made after 

the system was completely designed and running. Much effort was there­

fore put into designing monitoring techniques which did not require 

much alteration in the system. The techniques developed through these 

efforts made it feasible to incorporate monitors into the basic design 

of new systems (13,19,20,71). With these new systems, it is possible 

to trace various events to various levels of detail. With real-time 

output, operators have been able to spot trouble areas and initiate cor­

rective measures (86). 

2.3.2 Performance Design 

Some of the techniques of performance evaluation have been dis­

cussed. Initially, it was stated that these tools were necessary for 

analysis of alternative structures during the design of multiprocessor 

systems. However, there is an even more important place for these tech­

niques in the design of computer systems—an area which we refer to as 

performance design. Performance design is concerned with the use of 

performance evaluation techniques as an integral part of the structure 

of the operating system in such a way that the operating system uses 

the techniques to monitor the computer system's performance and dynam-
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ically alter the system to make it more responsive to the immediate 

requirements of the workload. 

The real-time output of monitored information has provided an 

important first step in this area, but the analysis of this information 

must be performed by the computer, not the operator. There appear to 

be two approaches to providing the operating system with the capability 

to perform this analysis. The first approach consists of providing the 

operating system with a set of heuristic rules based on empirical knowl­

edge gained through the investigation of computer system principles by 

simulation. As queueing theory develops, a second approach will become 

available: providing the operating system with the capability to predict 

theoretically the proper action of certain portions of the system. Thus, 

the further development of the techniques of monitoring, simulation and 

analytic modeling are crucial to the future development of a dynamic 

operating system. 

Performance design is the approach taken in this research to 

solve a specific problem in multiprocessor design which is described in 

the next section. 

2.4 Studies on the Problem of Supervisor Queueing 

Recall that the two design alternatives for the control of multi­

processor systems are master-slave and floating executive control. In 

both of these cases, a job generates an interrupt which causes a request 

for the supervisor. If the supervisor or its data base is in use at the 

time such a request is made, then that request is queued until the super­

visor becomes available. An important point is that while such a request 
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is waiting on the queue, the processor which was executing the inter­

rupted job remains idle. The more a processor waits on the supervisor 

queue, the more this idleness decreases the system's throughput. The 

effect this queueing has on the throughput for a two-processor system 

is probably small; but as the number of processors increase, the effect 

could conceivably become substantial. Studies which analyzed the mag­

nitude of this effect are described below. 

2.4.1 Simulation Modeling 

A simulation study of a multiprocessor system has been made by 

Lehman (6). His main concern was with memory interference, but he did 

analyze supervisory queueing to some extent. However, the results of 

his simulation are not directly applicable to true multiprocessor sys­

tems because his model was of a large matrix multiplication problem 

executed in parallel—one row's operation on each processor. His results 

indicate that processors were idle 0.8% of the time because of supervisor 

queueing in a system which had 16 processors and 64 memory modules during 

the matrix multiplication. 

2.4.2 Queueing Theory Modeling 

Madnick (66) interpreted the standard finite source queueing model 

with quasirandom input to express the performance degradation in terms 

of three parameters: E, the average time a task processes between inter­

rupts; L, the average time the supervisor is held by a processor to 

handle an interrupt; and N, the number of processors. 

The flow of jobs through his model could be represented as in 

Figure 1. Jobs are selected from an infinite population, _a, which have 

exponentially distributed processing times and are put into the proces-
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Figure 1. Job Flow for Madnick's Model 
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sors, b_. At the end of the processing time, the job requests the use of 

the supervisor, £, to handle an interrupt. At the end of the super­

visor's exponentially distributed service time, the job triggers the 

random selection (from a.) of another job for the processor, d_, and then 

leaves the system, e_. 

While this model ignores many features of real systems, it does 

seem to represent the essential characteristics of the supervisor queue-

ing problem. 

The model is based on a set of steady-state probabilities P^, 

i=0,...,N. Each probability P^ corresponds to a state of the system S^, 

which represents the case when i processors are attempting to use the 

supervisor (one processor using it and i-1 on the queue). A queue 

exists when the queueing system is in any of the states S-, i=2,...,N. 

If the system is in state So, then the queue length is one; if the sys­

tem is in state S3, then the queue length is 2; etc. Thus, the average 

queue length is 

N 

Q = £ (i-l)P. , (1) 

i = 2 

where 

*i-afer®\ 

and 
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Equations (1), (2), and (3) provide an expression for Q in terms of N, 

L, and E: 

N 

E — ^ 
(E/L)1 (N-i)! 

Q = i w 

E * 
. (E/L) 1 (N-i)! 
1=0 

The derivation of (4) is available in any queueing theory text 

(30), with E and L usually expressed as l/y and 1/p, respectively. Based 

on monitored data, Madnick concluded that a reasonable estimate of L/E 

would be between .001 and .010. 

This model indicates that the performance degradation due to 

supervisor queueing is significant. For example, based on L/E = .05 

and 21 processors, an average of 2.8 processors would be idle. Complete 

elimination of this degradation, if possible, would increase throughput 

by 16%. Other authors besides Madnick have also discussed the severity 

of this problem (40,67). 

This research will seek to reduce this degradation by scheduling, 

as described in this next chapter, using the concept of performance de­

sign. 

2.5 Survey of Current Scheduling Techniques 

2.5.1 Workload Independent Techniques 

The previous survey of current multiprocessor systems demonstrated 

that schedulers for multiprocessor systems are currently much like those 

for single processor systems. They are based on a first-come-first-
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serve (FCFS) or roundrobin search of the mix with some form of priority 

and usually a time-slice (96). The requirements for a job to enter the 

mix are usually simply core and device requirements as specified in the 

job control language. Except for these requirements, the selection of 

jobs to process is, in general, independent of the characteristics of 

the jobs. 

2.5.2 Workload Dependent Techniques 

Recently, some schedulers have begun to base their selection on 

other job characteristics. One of these has been tested for use on one 

of the multiprocessor systems previously described (76). The job char­

acteristics considered here are: 1) CPU time, 2) number of tape drives, 

3) number of input cards, 4) programming language 5) number of disk 

files, and 6) number of output pages. The scheduler uses this informa­

tion to assign jobs to classes which indicate their ability to utilize 

the system. When the scheduler is activated to select a job, it will 

first select a class which has characteristics which will make the total 

workload meet some performance criteria, like load balancing. Then a 

job is selected from this class. While the characteristics of each class 

are initially determined from information on job control cards, they are 

updated based on the class's actual running characteristics. Thus this 

scheduler is a straightforward, but sophisticated, extension of selec­

tion for mix entry based on device and core requirement. 

IBM's VS2 Release 2 uses a scheduling algorithm aimed at workload 

balancing (54). Jobs are placed into performance groups according to 

the demands which they are expected to place on the system. The sched­

uler then selects jobs according to two basic requirements. Jobs are 
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selected from performance groups which are expected to balance the work­

load and such that the various performance groups meet predefined levels 

of activity. This scheme, however, is not as sophisticated as the one 

previously described because jobs are manually placed into performance 

groups through a special control card parameter and the group's attri­

butes cannot be modified when the jobs' actual demands on the system do 

not meet the demands expected for that performance group. 

Another scheduler tested for the Burroughs B5700 dual processor 

system was based on quite a different characterization of the workload 

(79). For each job, when the job was swapped out, processor utilization 

by that job was computed for the period during which the job was swap­

ped in. This was done each time a job was swapped in and out, providing 

a series of samples of processor utilization. This series was used to 

forecast, using a dynamic double exponential smoothing formula, the 

expected processor utilization which would occur the next time the job 

was scheduled to run. The description here has been for processor 

utilization, but similar statistics were also gathered on core and I/O 

utilization. Based on these three job characteristics the scheduler 

would select a job which would provide the optional system utilization. 

Another way to characterize jobs in the workload would be thru 

a flow chart representation, as in Figure 2. This representation is 

based on the fact that a job's activity can be broken down into two 

categories: processing and I/O. A job will process until an I/O in­

struction causes an I/O initiate interrupt to be generated. It will 

then perform I/O until completion, at which time an I/O complete inter­

rupt will be generated. This procedure will be repeated with alternat-



28 

PROCESSOR: 

CHANNEL: 

r 

TIME 

t , t , . . . : I/O INITIATE INTERRUPT 

t_, t. , . . . : I/O COMPLETE INTERRUPT 2 4 

Figure 2. Flow Chart for One Job 
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ing processing and I/O cycles. 

Several factors have been ignored in this description. First 

the activity of the supervisor, and of other jobs, has not been repre­

sented. This was left out because Figure 2 represents only one job, 

not the entire workload. Another point which needs to be clarified is 

that not all I/O instructions initiate I/O device activity. Actually 

an I/O instruction will initiate I/O activity only if previous I/O 

instructions have filled the I/O buffer. Therefore, the I/O cycle would 

perhaps be better interpreted as the time during which a job is blocked 

from processing due to I/O activity. Likewise, the processing cycle 

could be interpreted as the length of time a job processes before being 

blocked from processing due to an I/O activity. 

This representation is extremely useful because it captures the 

points of allocation and de-allocation of two major system resources: 

processors and channels. 

Representations similar to this have been used in several studies 

(43,63,82,89). One of these represents a job only by its processor 

cycles (89). Through an intercept software monitor in the interrupt 

handler, the length of each processing cycle of all jobs is monitored. 

Based on a job's history of processing cycles, an estimate of the length 

of the next processing cycle would be determined through a forecasting 

technique for every job in the mix. The scheduling algorithm would 

select a job which had the shortest predicted processing cycle. 

The processor-I/O cycle representation will be used to support a 

scheduling algorithm, described in the next chapter, which aims at mini­

mizing the problem of queueing of requests to the supervisor. 
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CHAPTER III 

REDUCTION OF SUPERVISOR QUEUEING 
THROUGH PERFORMANCE DESIGN 

3.1 Clustered Resource Scheduling 

A specific problem in multiprocessor design, queueing of request 

to the supervisor, has been identified and explained. The concept of 

improving system performance through the incorporation of some tools of 

performance evaluation into the operating system has been introduced. 

The technique of using the scheduling algorithm to implement perfor­

mance design into the system has been supported by citing examples. 

The rest of this thesis will deal with the design and analysis 

of a scheduling algorithm based on performance design which will at­

tempt to reduce performance degradation caused by queueing of requests 

to the supervisor in a large multiprocessing system. 

3.1.1 The Basic Scheduling Algorithm 

A natural solution to the problem of processor lockout would be 

to schedule tasks to processors such that a processor would request the 

supervisor at a time when no other processor needs it (67). Since a 

processor requests the supervisor when its task generates an interrupt, 

implicit in this solution is the assumption that, for every task in the 

mix, the length of time until each task generates its next interrupt is 

known. While this is not generally known, recall that this information 

could be forecast from previous processing cycles of the job, as in 

(89). 
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Another assumption implicit in the above solution is that the 

length of time a processor holds the supervisor in order to handle an 

interrupt is known. This, too, is not known, but a reasonable estimate 

could probably be made for each type of interrupt. Such an estimate 

could be based on either recent history of that type of interrupt, or 

on supervisor instruction timings and knowledge of the lengths of the 

various queues which the supervisor must search for any particular type 

of interrupt. This research will assume that this information is avail­

able . 

The algorithm to implement this solution could be expressed as 

a two-table search (47). Table 1 would have an entry for each ready 

job in the mix specifying the time until the next interrupt and the 

supervisor time required to handle that type of interrupt. Table 2 

would have a schedule of supervisor idle periods which would indicate 

when, in the near future, the supervisor has been predicted to be avail­

able. When the supervisor finished handling an interrupt, then a task 

would be scheduled for the processor released by the interrupted task. 

To find a task, Table 1 would be searched in an order specified by task 

priority, or some other external criteria. For each task, a decision 

would be made as to whether the supervisor had an idle period correspond­

ing to the period from the current time plus processor cycle time to the 

current time plus processor cycle time plus supervisor time. A match 

would cause the task to be scheduled for the processor and the period 

when the task would cause the processor to use the supervisor to be 

eliminated from the table of supervisor idle periods. This algorithm 

will be hereafter referred to as Clustered Resource Scheduling (CRS). 
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3.1.2 Example Situation 

For example, consider the period of time represented in Figures 

3 through 7. Figure 3 shows the supervisor schedule. The S's indicate 

periods of supervisor time that have already been allocated. The cur­

rent scheduling point is at the end of one of these periods. Figure 4 

represents the selection of a job which will process from the current 

schedule point for some length of time, Pi, and then use the supervisor 

for some length of time S,. The next schedule point will, of course, 

correspond to the end of the next supervisor period. At this point, a 

job will be scheduled which will process for P2 time units and hold the 

supervisor for S2 time units, as in Figure 5. Figure 6 shows that a 

job of processing length Po could not be scheduled at the current sched­

ule point because its request for the supervisor would overlap with a 

previously scheduled request. An alternative selection, P~, is illus­

trated in Figure 7. 

3.1.3 The Modified Scheduling Algorithm 

If this algorithm could always find a job to meet the processing 

cycle length and supervisor service length requirement, and if the pre­

dicted information was accurate, then unnecessary queueing of requests 

to the supervisor could be eliminated. Recall that according to 

Madnick's queueing model, this could mean a 16% increase in throughput 

in a large multiprocessor system, corresponding to a very large addition­

al amount of work. 

However, if the scheduler must always find a job in the mix which 

meets both requirements, then the mix may have to be very large. If the 

mix is very large, then a search of the mix could be very time-consuming. 



33 

t t t 
CURRENT NEXT 
TIME INITIATE 

Figure 3. Supervisor Schedule 

TIME 

t t t 
CURRENT 
TIME 

NEXT 
INITIATE 

Figure 4. Scheduling Job P 



34 

t t t 
CURRENT 
TIME 

NEXT 
INITIATE 

Figure 5. Scheduling Job P 



35 

t t t 
CURRENT 
TIME 

Figure 6. Attempt to Schedule Job P, 



36 

t t t 
CURRENT 
TIME 

*2 

Figure 7. Proper Scheduling of Job P 



37 

Thus it becomes questionable whether the algorithm as described above 

would be cost-effective. If this algorithm would take twice as long to 

execute as, perhaps, FCFS, then the load on the supervisor would be 

doubled; and this would probably overshadow any benefits gained through 

the algorithm. 

With this problem in mind, a modified algorithm has been design­

ed that is based on a parameter which provides a tradeoff between the 

percentage of maximum improvement achievable and the efficiency of 

operation. 

The modified algorithm is similar to the original except that 

supervisor time is allocated in integer multiples of a fixed block of 

time. The block size is the parameter which provides the tradeoff. A 

lower limit on the block size is one time unit. This case would func­

tion exactly like the original algorithm. As the block size increases 

the algorithm would become faster, but the effectiveness in reducing 

queueing would be reduced. The cause of the reduction in effectiveness 

is illustrated in the following example. 

Consider the case where the block size is equal to the average 

supervisor service time. Consider, also, the additional restriction 

that one and only one block of supervisor time will be allocated to each 

supervisor request. With these constraints, the same data used in the 

previous example is used in Figures 8 to 11 to illustrate the modified 

algorithm. 

3.1.4 Example Situation 

Figure 8 represents the supervisor's schedule marked off by 

blocks. In Figure 9, the selection of a job which will process for P^ 
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time units is accompanied by an indication, 1, that the block of super­

visor time during which the processing period ends is no longer avail­

able. A processing period of length P2 is represented in Figure 10, 

just as was done in Figure 5, Figure 11 shows that a processing period 

length of P3 could be selected next. Recall that in Figure 6, the 

original algorithm would not allow this because the supervisor utiliza­

tion would overlap. The resulting supervisor queueing degrades the 

effectiveness of the algorithm. 

This example has introduced two basic algorithm parameters: 

block size and maximum number of blocks allowed to be allocated for any 

one supervisor request. These and other parameters necessary for the 

complete specification of the algorithm will not be detailed here, but 

rather will be discussed in Chapter 4 through a series of experiments 

which guided the development of the complete algorithm. 

It should be pointed out that the supervisor schedule could be 

implemented simply as a one-dimensional array, with each element in the 

array corresponding to one block of time. The array would have to be 

large enough so that the largest processing cycle could be scheduled. 

It would not have to be infinite since the block corresponding to the 

last element of the array could be followed by the block corresponding 

to the first element of the array, as in a circular list. 

3.2 Simulation Model Description 

3.2.1 Simulation Approach 

Two simulation models were developed for the study of this algo­

rithm. A preliminary study used a model programmed in GPSS which was 
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based on Madnick's model of a computer system. This model allowed two 

scheduling algorithms: First-Come-First-Serve, and CRS. The purpose 

of this model was to determine if there were any special problems or 

considerations which should be taken into account in the design of the 

second, more detailed model. 

The second model, which was programmed in GASP, was implemented 

for this study on the Burroughs B5700 operated by the School of 

Information and Computer Science at Georgia Tech. This simulator 

was based on a more realistic computer system model. 

3.2.2 Computer System Model Flow Diagram 

Just as Madnick's model was described by the Job Flow Diagram 

in Figure 1, the GASP model is described in Figure 12. 

The parameters of a job's processing cycle distribution are se­

lected from a specified population, and various other job characteristics 

are selected from their distributions, _a. A specified number of these 

jobs are placed in a finite mix, b_. A job is selected from the mix in 

a specified order by a specified scheduling algorithm, £, and is placed 

in an available processor, d_. Meanwhile, the mix position it left re­

mains vacant until the job returns to the mix from point rn. At the end 

of the job's processing cycle, it requests the use of the supervisor, e_. 

After the supervisor's service time, the scheduler is triggered to enter 

a job from the mix into the available processor, _f. Also, the job which 

was using the supervisor does one of two possible things. If it has 

completed all of its cycles, it exits the system, £j then another job 

is triggered to enter the mix position made available, h_. If it has 

not completed all of its cycles, it proceeds to the channel queue, ̂ i, to 
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Figure 12. Job Flow for GASP Model 



44 

wait until a channel, j_, becomes available so that the I/O cycle may be 

processed. After completion of a job's I/O cycle, the job goes to 

point k. where several alternatives are available which deal with the 

method of handling the I/O complete interrupt. These will be detailed 

later. In either case, when the job leaves the supervisor, Ĵ , it re­

enters its mix position, m. 

While this model is more realistic than Madnick's model, it is 

not meant to model all features of computer systems. However, the 

model should be accurate enough to give a reasonable indication of the 

effectiveness which CRS would have in a real system. The major dif­

ference between Madnick's model and the detailed model is with respect 

to the input process to the supervisor. The input process for the 

detailed model is more restricted than that for Madnick's model. This 

restriction is, of course, caused by the finite mix and the I/O cycle 

delay. The effect of this restriction should be a decrease in the vari­

ety of jobs available for selection. Accurate representation of this 

factor is essential for any study of a methodology which is dependent 

on such variety. 

3.2.3 Model Structural Alternatives 

The system control design alternative assumed in this model is 

floating executive control. Furthermore, it is assumed that all the 

parts of the supervisor represented in this model utilize the same LOCK-

UNLOCK flag. The prior assumption is desirable and the latter, reason­

able. For example, consider the following straightforward attempt to 

break the supervisor components modeled in this study into distinct 

sections: 1) routines which handle I/O initiate bookkeeping, 2) rou-
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tines which handle I/O complete, and 3) routine which schedules jobs. 

This breakdown would be infeasible since all three categories usually 

access the mix. 

Other attempts to divide the data base into distinct parts would 

meet similar problems. There is necessarily a large amount of inter­

action among the various functions of the supervisor in order to provide 

each with knowledge of what the other is doing. Thus a single LOCK-

UNLOCK flag associated with the data base not only eliminates many oper­

ating system design problems but also simplifies the basic structure of 

the supervisor and correspondingly reduces the problem of system debug­

ging. 

The memory design is assumed to be an interleaved multi-module 

core-resident design with crossbar connection with processors, such 

that physical memory interaction does not affect performance. This 

assumption could be replaced with the assumptions that the supervisor 

resides alone in one particular module, and that memory interference 

has a uniform effect on problem program performance. With either as­

sumption, the problem of memory interference can be ignored. 

A third design alternative involves the technique for assigning 

processors to handle I/O complete interrupts. Prior to considering 

several alternatives, it should be pointed out that no mention has been 

made of allocating part of the supervisor's time to handle I/O completes. 

Clustered Resource Scheduling was not applied for this case for two 

reasons. First, it may be considerably more difficult to forecast the 

I/O cycle length than the processor cycle length. A large component of 

the I/O cycle is usually rotational delay. The variance in this com-



46 

ponent is probably at least an order of magnitude larger than the total 

time required to handle an I/O complete. A second reason for not sched­

uling I/O complete usage is that an I/O complete service time is much 

smaller than an I/O initiate service interval, and therefore may not 

drastically degrade performance. For example, consider the situation 

where the block size equals the average supervisor time and the maximum 

number of blocks allocated for any I/O initiate is one. If you assume 

that every block is eventually allocated, then an I/O operation will be 

initiated at every block. From this it is reasonable, but not complete­

ly accurate, to assume that, on the average, one I/O complete will occur 

during each block. If this was the case, then the proper block size 

would be the sum of the I/O initiate service time and the I/O complete 

service time. Thus, the I/O complete actually does not need to be 

accounted for directly in the supervisor scheduling. 

The problem of selecting a processor to handle an I/O complete 

interrupt would be eliminated if channels were designed so that they 

could handle these interrupts. It would not be unreasonable to require 

channels to reassign themselves to the next request at the completion 

of the current I/O operation. After all, processors do their correspond­

ing reassignment. 

Assuming the above capability is not available, this model handles 

I/O completes in two basic ways. The first one uses an algorithm which 

determines a processor to interrupt to handle the I/O complete: select 

at random, select the processor with the longest time remaining until 

its I/O initiate interrupt, or select the processor with the shortest 

time remaining until its I/O initiate interrupt. The second technique 
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is to delay the handling of the I/O complete until the next I/O initi­

ate occurs. This last alternative is desirable because it reduces the 

amount of processor switching between supervisor state and problem 

program state and correspondingly reduces the number of times the sched­

uling algorithm must be called. However, this assumes a nominal average 

delay; any excessive delays would have to be controlled by some method. 

3.2.4 Simulation Parameters 

Besides the I/O complete algorithm, other model input parameters 

include: mix size, number of processors, number of channels, and sched­

uling algorithm. The three scheduling algorithms available are CRS, 

FCFS, and Round Robin. As the concept of a time slice may not be valid 

for large multiprocessor systems, this is not explicity included in any 

scheduling algorithm. Also, the distributions for processing cycles, 

I/O cycles, numbers of cycles, priority, I/O initiate service time, and 

I/O complete service time must be specified. Each of these distribu­

tions is specified for the mix as a whole except for the processor cycle 

distribution. For that one, each job in the mix can follow its own, 

different distribution. 

This last capability is important, as it is related to the major 

difference between the GASP model and Madnick?s model that was mentioned 

in section 3.2.2. To represent fully the restrictions introduced by a 

finite mix, it is important to consider the effect of characteristics 

of individual jobs in the mix. If a particular job has the character­

istic that it always has short processing cycles, then the mix position 

associated with that job will provide the scheduler with only short 

cycles for possibly a very long time, thereby affecting the variety of 
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the jobs in the mix. 

A large number of statistics are gathered during simulation, 

many of which were motivated by the preliminary study. Each time a job 

finishes processing, the following information about that job is printed: 

1) job number; 

2) number of processing cycles, assuming every job starts and 

ends with a processing cycle; 

3) priority; 

4) total processing time—sum of processing cycle lengths; 

5) total I/O time—sum of I/O cycle lengths; 

6) arrival time—time at which job first entered the mix; 

7) exit time—time at which job left mix, i.e., current time; 

8) total ready time—total time during which job was avail­

able to process, but was not processing. 

Also, for the purpose of determining when statistical equilibrium is 

reached, the average supervisor queue length is printed at every job 

exit. 

At the end of the simulation the following information is print­

ed: 

1) average (minimum, maximum, and standard deviation of) 

length of supervisor queue and a histogram of the number 

in the queue versus the percent of time which that number 

were in the queue; 

2) average (minimum, maximum, and standard deviation of) 

length of channel queue; 

3) average number of processors busy; 
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4) average number of channels busy; 

5) percent of time that the supervisor was busy; 

6) average (etc.) processor cycle length generated by random 

number generator; 

7) average (etc.) I/O cycle generated; 

8) average I/O initiate service time generated; 

9) average (etc.) waiting time of a job on the supervisor 

queue; 

10) average (etc.) waiting time on the channel queue; 

11) average processor cycle length of jobs selected by sched­

uling algorithm; 

12) histogram of processor cycle selected (in terms of the 

number of blocks) versus the number of these selected; 

13) histogram of processor cycle selected (in terms of the 

number of blocks) versus the average time that they waited 

in the ready state before being selected; 

14) histogram of processor cycle lengths of ready jobs in the 

mix (in terms of number of blocks) versus the number of 

these (This could also be printed at specified intervals 

during the simulation.); 

15) average number of different processor cycle lengths (in 

terms of the number of blocks) of ready jobs in the mix; 

16) total problem program processing done; 

17) total I/O done; 

18) throughput: (16) + (17). 
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3.2.5 Special Simulation Considerations 

In an experimental study, it is important to evaluate results 

only after proper use of statistical tests of confidence. Just as 

important is the proper design of a simulation model. A concerted ef­

fort was made to insure a statistically valid design. 

First, a random number generator was chosen which had been thor­

oughly tested (63). In the previous section, it was mentioned that 

every time a job exits the mix, the average supervisor queue length was 

printed. This can be used to insure that statistical equilibrium is 

reached. There is a set of values for input parameters which reduces 

the full model to Madnick's model. This provides a means for validating 

the simulation model. 

Two variance reduction techniques were also incorporated. The 

model was designed to insure that the same sequence of job parameter 

values would be generated when different design alternatives were com­

pared—a separate random number generator was used for each different 

job parameter. For example consider the alternatives of using a normal 

versus a uniform distribution for the I/O cycle. The technique for 

generating a normal sample requires six random numbers while a uniform 

sample requires only one. If one random number generator was used for 

all parameters, then changing the I/O cycle distribution would, for 

example, also affect the number of cycles of jobs. The second variance 

reduction technique is the option of using the antithetic random number 

sequence. 



51 

3.3 Preliminary Considerations 

3.3.1 Results of Queueing Model 

The graphs in Figure 13 represent the expected supervisor queue 

length as a function of the number of processors in the configuration 

for several values of L/E, based on Madnick's model (66). One important 

point is made clear by these graphs: For each value of L/E, there is 

some number of processors such that adding one more processor causes an 

increase in the average supervisor queue of one. That is, after this 

point, adding an additional processor will provide no increase in through­

put. 

The cause of this effect is that the supervisor becomes 100% busy 

at this point. System designers must be careful to take this factor 

into account. It would be very poor design if a 16 processor system 

was controlled by a supervisor which could not support but 12 proces­

sors before becoming a system bottleneck. No type of scheduling could 

eliminate the idleness caused by such design. 

3.3.2 Supervisor Utilization 

Chapter II expressed the average queue length, Q, in terms of E, 

L, and N. An alternative form of this is (49): 

Q = N - ̂  (1 - PQ) (5) 

Since P is the probability that the supervisor is idle and has no queue, 

(1 - Pn) is the probability that the supervisor is busy, i.e., the super­

visor utilization. 

<i - V • l i r
2 1

 <«> 
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A previous example stated that if L/E = .05 and N=21, then Q=2.8. For 

this case, 

(1-P0) = <
21'['8> = if^- = .87 - 877. (7) 

3.3.3 Supervision Queueing and Randomness 

Thus, in the above case, there exists a queue but the supervisor 

is not totally utilized. To understand this situation, consider Figures 

14 and 15. The arrows indicate the arrival of a request for the super­

visor, and the blocks represent the amount of time used by the super­

visor to handle the requests. 

In Figure 14, the first request occurs at time S and that request 

is serviced from time S to just prior to time U. At time U a second 

request occurs which is serviced from U to just prior to W. Again at 

time W a third request occurs which is serviced from W to just prior to 

Y. Assume that the sequence of events just described repeats itself, 

Starting at time Y. If the time between any two adjacent letters (i.e. 

S-U, U-W, etc) is considered a time unit, then this example could be 

described by the parameters: N=3, L=2 time units and E=4 time units. 

Notice that the requests occur in such a way that the queue will always 

be empty. 

In Figure 15, the first request does not occur until time T, and 

the second and third requests occur almost immediately thereafter. Thus, 

from time S to time T, the queue is empty. From time T to time V, the 

queue length is two and the supervisor is servicing the first request. 

From time V to time X, the queue length is one and the supervisor is 

servicing the second request. From time X to time Y the queue is empty. 
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Therefore, the average queue length in this case is: 

(1x0 + 2x2 + 1x2 + 1x0)/6 = 1. (8) 

Notice that this second example would have the same average parameter 

values as the first example: N=3, L=2, E=4 ((2+4+6)/3). 

These examples are intended to show that the reason a queue will 

build up is due to the fact that sometimes requests for service occur 

in clusters. Requests occur in clusters because of the randomness of 

the interrequest time distribution. In Figure 14, the interrequest 

times for the three processors were all two time units. In Figure 15, 

the interrequest times were different: 2 time units, 4 time units, and 

6 time units. While the examples are obviously extreme cases, the 

clustering of requests will occur in general. 

3.3.4 CRS and Randomness 

It has been demonstrated that the randomness in a workload is a 

factor which contributes to the degradation of a computer's performance. 

It has been stated that CRS requires a large variety of jobs in the 

workload. Thus, CRS needs and actually benefits from the variety which 

is normally detrimental. That is, CRS makes use of an "undesirable" 

characteristic of the workload. This point is very important, as it 

demonstrates the power of performance design. 

These comments indicate that perhaps First-Come-First-Serve would 

be a superior scheduling philosophy if the workload had little variety, 

but CRS would be better if it had much more variety. The question of 

how much more variety is necessary for CRS is a difficult one, but one 

which can be answered for an important special case. 
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Consider the situation where the block size is the average super­

visor service time and the maximum number of blocks which can be allo­

cated for each request is one. At the end of any current service time, 

there would be less than N processors executing problem programs and 

thus less than N blocks of supervisor time scheduled for the service of 

those future requests. If there were at this time N different processor 

cycle lengths (measured in blocks) in the mix, then there must be at 

least one job which could be scheduled into the supervisor's schedule. 

Thus, based on the distribution of processor cycles of jobs in the mix, 

the mix size could be determined by requiring that at least N different 

jobs be available at all times. A method to accomplish this is developed 

below. 

Assume that the block size is I, the number of jobs in the mix 

is M, and the processing cycles of the jobs in the mix follow the dis­

tribution function F(x). Also, if X is the largest possible processing 

cycle size, define K as X/I. 

Table 1 exemplifies the number of jobs in the mix which have a 

processing cycle of length 1,2,...,K. 

Define p. as the probability that a sample, Z, from F(x) will 

fall in block i. Then: 

P. = Prob((i-l)I < Z <, il) i = 1,...,K (9) 

Pi = F(il) - F((i-l)I) i = 1,...,K (10) 

Define P* as the probability that, of M jobs, ri fall in block 1, r2 

fall in block 2,...,rK fall in block K. Using the multinomial dis-
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Table 1. Mix D i s t r i b u t i o n 

Number Number of 
of Jobs of 

Blocks This Size 

1 4 
2 3 
3 5 
4 0 
5 1 
6 2 
7 7 
8 3 
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tribution, 

* M! r r r 
P = —:—7= r 1 2 ... rK (11) 

rl ! r2 ! •••rK! Pl P2 PK 

Define P. as the probability that j of the K blocks are non-empty, when 

the total number of jobs is M. Then 

P. = ^ p , (12) 
j <V2...rK> 

where <r,r2« ••!"£> is all sets such that 

K 
a) £ r. = M , 

i=l L 

and b) at least j of the r. are non-zero (13) 

Thus, for the previous case, the proper mix size, M , could be deter­

mined by 

M = smallest M such that P„ > 6 (14) 

where 6 is the desired acceptance level, i.e., the probability that the 

scheduling algorithm can find a job to schedule and N is the number of 

processors. , . 

M = M + N + (maximum number of busy channels) 

+ (maximum supervisor queue) + (maximum channel queue) 

+ (supervisor utilization) (15) 

That is, M is equal to the number of jobs which must be available in 
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the mix, M , plus the number of jobs busy at the various resources in 

the system. It should be noted that this derivation is contingent on 

the assumption that the mix distribution, F(x), is stable. 

If the number of blocks allocated for each request is not limited 

to one, then the analysis becomes much more difficult. However, it is 

certain that a larger mix would be necessary for this case than the 

previous case. Before a job is scheduled in this case, it must meet 

two requirements: a processor cycle length that ends at an empty block 

and a supervisor service time that ends before the next busy supervisor 

block. In the previous case, only the first requirement was necessary. 

Thus, more variety of jobs in the mix is necessary for the case when 

the number of blocks allocated is unlimited. While the formulation of 

M is not explicitly used in what follows, it does demonstrate the type 

of analysis which can be made for that case. 

3.3.5 Amount of Improvement Through CRS 

Recall that the example of section 3.1.4 demonstrated that the 

use of blocks introduces some queueing into the behavior of the system. 

Figure 16 provides a similar example. Job P2 interrupts at the end of 

the block numbered two and job P^, at the beginning of block three. 

Thus, job Po is likely to still be using the supervisor when job P^ 

makes its request. 

To provide an estimate of the amount of queueing introduced, 

consider the model in Figure 17. The arrows indicate a request for the 

supervisor. Assume that every block contains one and only one arrow 

and that the service time for every request is constant and equal to the 

block size. Also assume that each request arrives uniformly between the 
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Figure 17. Corresponding Model of CRS 
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beginning of the block and the end of the block. Under these assump­

tions, the supervisor queue must always be of either length zero or 

length one. This is indicated in the example. 

After the initial transients of blocks one and two, the system 

would reach equilibrium. The request which occurs in block four is 

actually handled in block five (i.e. from the beginning of block five 

to the end of block five). This means that the request which occurs in 

block five must wait on the queue until the beginning of block six. 

This is true for every block after the initial transient. On the aver­

age, a request will occur in the middle of a block. Therefore, on the 

average, the queue will be empty from the beginning of the block to the 

middle of the block and will be of length one from the middle of the 

block to the end of the block. This indicates that the average queue 

length will be 1/2. 

While this simple model does provide an estimate of the queueing 

introduced by blocks, it is inaccurate for two reasons. First, queueing 

would tend to be less since a request will probably not occur in every 

block. Second, queueing would tend to be more since supervisor service 

times are not likely to be exactly constant. The effect of the inter­

action of these two factors is, perhaps, best studied through simula­

tion. 

3.3.6 Supervisor Load 

"Load" is a queueing theory concept which can be useful in ana­

lyzing and extending the results of Madnick's model. The "offered load" 

is defined as the mean number of requests per service time and is denoted 

by the symbol "a" (30). This is essentially a measure of the demand 
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placed on the server. For queueing systems with one server and the 

restriction that requests for service wait on a queue until being 

served, the offered load is equal to the server utilization (30). 

Based on Madnick's model and equation 6, the offered load can be spec­

ified as in equation 16: 

a = j k (N-Q) (16) 

Notice that the Q on the right side of equation 16 is not an 

independent variable, but rather is dependent on L, E, and N. This 

reflects the fact that the offered load can not be computed directly 

but depends on the system to which the load is offered (30). 

The "intended offered load," a , is defined as the load that 

would be offered if the system had as many servers as needed so that 

queueing could not occur. For our situation, this would correspond to 

having N processors and N supervisors. It can be shown that (30): 

a* " N [ui] (17) 

The intended offered load is in general useful in this model 

because it provides an upper bound for the offered load. For our sit­

uation, it can be used to provide an estimate of the number of proces­

sors that would fully utilize the supervisor, for a given L/E ratio. 

For example, consider the case where L = 2, E = 4, and N = 3. 

On the average, each of the three processors would use the supervisor 

for 2 time units and then would process for 4 time units. If these 

processors each use the supervisor for a third of the time (2/2+4), 
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then it would be reasonable to expect the processors together would use 

the supervisor all of the time. This was illustrated in Figure 14 

assuming L and E were constant. If they were random, full utilization 

could be attained by scheduling such that all the periods of supervisor 

utilization exactly filled the supervisor schedule. 

Based on Madnick's model, the upper bound on utilization desired 

would be 

a* = 100% . (18) 

From equat ions 17 and 18, 

i-N[tk] ; a') 

or 

N = 1 + | . (20) 

Equation 20 provides the bound on the number of processors for full 

supervisor utilization under perfect scheduling. This relation could 

be used by system designers to determine the maximum feasible number of 

processors which the supervisor could support for a given L/E ratio. 

This relation can be used in this study to help interpret the 

graphs in Figure 13 as they relate to the effectiveness of CRS. If the 

values of N as specified in equation 20 was plotted on Figure 13, it 

would be evident that this is the point on the curve at which the rela­

tion between the queue size and the number of processors becomes almost 

linear. This should be expected, as equation 20 was derived by con-
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sidering the supervisor as being 100% utilized. Thus, if N < 1 + E/L, 

the entire queue, as specified in equation 4, could theoretically be 

eliminated through CRS. The additional queueing introduced by N > 1 + 

E/L could not be eliminated by any scheduling algorithm, since the 

supervisor would already be 100% busy. 

3.3.7 Implementation Considerations 

Several points should be made about the actual implementation of 

this algorithm. First, it is expected that some of the information 

required by this algorithm is likely to be needed by other parts of the 

supervisor (54,79). For example, processing cycle lengths may be part 

of the system accounting data. Another factor which would tend to de­

crease the overhead incurred by this algorithm is that there is likely 

to be hardware support for the supervisor of a larger multiprocessor 

system (32). 

The introduction of allocation by blocks makes hardware support 

of this algorithm particularly simple. For example, consider the spe­

cial case in which the block size is the average supervisor time and 

only one block is allocated for each request. The supervisor schedule 

could be maintained as a hardware register, as illustrated in Figure 18. 

A "1" could indicate an available block and "0" could indicate a pre­

viously scheduled block. The current time would correspond to the left 

end of the register, and time could be elapsed by a simple one bit shift 

to the left. This register would need to be long enough to permit the 

scheduling of the longest jobs in the mix. 

The variety of jobs in the mix could be represented in another 

register, as in Figure 18. A "1" in the itn bit from the left would 
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Figure 18. Hardware Support for CRS 
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indicate that there is at least one job in the mix which has a process­

ing cycle i blocks long. The search for jobs which could be scheduled 

at the current time could then be accomplished by simply AND-ing the 

supervisor schedule register and the mix register into a third register, 

as in Figure 18. A "1" in this register would point to a job in the mix 

which meets the scheduling requirements. One of these could then be 

selected on a basis of some external criterion such as priority or on 

an internal basis such as scheduler optimization. A content-addressable 

memory could be effectively used to support this part of the search. 

Thus, CRS could be made as fast as much simpler, static scheduling algo­

rithms through the intelligent use of hardware technology. 
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CHAPTER IV 

SIMULATION RESULTS 

4.1 Initial Investigation 

4.1.1. Model Description and Validation 

The initial investigation was intended to determine if there 

were any special problems or considerations which should be taken into 

account in the second, more detailed, model. As previously stated, my 

model for this investigation was based on Madnick's model of a computer 

system. Scheduling was via CRS with blocks. 

The simulation program consisted of about 140 GPSS statements. 

Due to the restrictive nature of GPSS, 95% of these statements were nec­

essary to represent CRS, with the remaining 5% representing the computer 

system model. 

To help validate the simulation model, an initial experiment was 

performed with FCFS scheduling. The validation experiment demonstrated 

that the GPSS simulation model gave results essentially the same as that 

given by equation 4. 

4.1.2 CRS Effectiveness 

In general, the initial investigation indicated that CRS could 

be an effective means for eliminating supervisor queueing (47). For 

example, if N = 21 and L/E = .05, then FCFS scheduling would give an 

average supervisor queue length of 2.8. CRS gave an average queue 

length of 0.7 to 1.7, depending on various parameter values. These 

results were assuming no forecasting errors. 



68 

Intuitive expectations were generally supported by the experi­

mental results. A decrease in the block size resulted in an increase 

in cost, in terms of simulation run time, and an increase in effective­

ness, in terms of supervisor queueing. With the block size equal to 

the average supervisor time, supervisor queueing could not be reduced 

below an average of one half. 

The development of the GPSS model provided some useful ideas 

concerning the implementation of CRS in the simulation model. While 

some of the problems resolved here would not be encountered in an actual 

implementation, several problems were basic to the development of the 

algorithm. Some of these problems could be intuitively explained, but 

were not so obvious that they were initially anticipated. • 

For example, consider the technique for maintaining a pointer 

which indicates the current time on the supervisor schedule. It was 

initially thought that this pointer could be adjusted at the end of a 

service interval by pointing to the end of the block which corresponded 

to the supervisor request just handled. This, of course, implies that 

a block is not simple marked as "taken," but rather is marked as "taken 

by job X." 

Since some queueing does occur, the time at which a service in­

terval was scheduled to complete does not always correspond to the actual 

time at which it completes. Therefore, at each schedule point, the 

pointer must be computed from the actual time by taking a clock reading 

modulo the block size, and taking that result modulo the number of 

blocks in the supervisor schedule. This, of course, assumes that the 

supervisor schedule is implemented as a circular list. For example, if 
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there were 100 blocks in the supervisor schedule and the block size 

was 50 time units, then a clock reading of 21475 time units would point 

to block: (21475 mod 50) mod 100 = 429 mod 100 = 29. 

The preliminary investigation also indicated the importance of 

having additional tuning factors in the algorithm besides simply the 

block size. When more than one block can be allocated for a request, 

then the question arises as to whether to allocate an additional block 

when, for example, only an additional half of a block is actually needed. 

The portion of a block needed before an additional block is allocated 

was found to be a useful tuning factor. 

For example, consider two alternative values of such a tuning 

factor: a) 90% and b) 25%. That is, in case (a), an additional block 

will be allocated only if 90% of an additional block is needed. If the 

block size were 100 time units and the supervisor time for a particular 

request were 370 time units, case (a) would allocate three blocks while 

case (b) would allocate four blocks. In general, the higher the per­

centage, the less idleness would be scheduled into the supervisor's 

schedule and the more queueing would be introduced. While it may at 

first seem that 50% would be the best value of this timing factor, it 

must be determined whether this would schedule too much idleness into 

the supervisor schedule. 

4.1.3 Job Selection Bias 

The initial investigation pointed out an inherent problem with 

CRS: Jobs with short processing cycle tend not to be selected for sched­

uling. It is not unusual for non-trival scheduling algorithms to be 

biased against jobs with some particular characteristic. The usual tech-
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nique for dealing with this problem is dynamic priority assignment, 

i.e., the longer a job stays in the mix unscheduled, the higher the 

priority of that job is raised. Eventually these jobs reach a suffi­

ciently high priority to insure that they get scheduled. While dynamic 

priority assignment does prevent jobs from remaining idle too long, 

excessive use of it could be detrimental to the primary goal of a sched­

uling algorithm since high priority jobs must be scheduled regardless of 

any performance criteria. 

An investigation was made to determine the cause of the bias. 

The results of this investigation are explained through an example which 

follows. 

Assume that I, M, F(x), K, and P. are as defined in section 3.3.4. 

Also assume that L=I, M is large, the smallest processing cycle is one 

block, and the supervisor schedule could be as illustrated at the top 

of Figure 19. Ignoring any blocks which may have been scheduled prior 

to the current time, tQ, consider the next job selection. At time t„, 

the selected job could request any of the blocks 1,2,...,K. Thus, by 

time tQ, each of the blocks 1,2,...,K have had one opportunity to be 

filled. This, also, is illustrated in Figure 19. Assuming the next job 

is scheduled at time ti, then blocks 2,3,...,K would have had two op­

portunities to be filled, tQ and t-̂ , and block K+l would have had only 

one opportunity, t,. Continuing this process, after time t„ ,, block K 

would have had K opportunities, block K+l, K-l opportunities, ..., and 

block K+(K-1), 1 opportunity. Thus, after the initial transient of 

blocks 1,2,...,K-l; equilibrium is reached in which the blocks closer 

to the current time have had many more opportunities to be scheduled 
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than blocks farther away. The probability that each of these blocks 

have actually been filled is, of course, dependent on F(x). If, for 

example, F(x) is the uniform or exponential distribution, then the prob­

ability that the blocks close to the current time have been filled is 

much more than the probability that the blocks farther away have been 

filled. Thus, it is likely that jobs with short processing times will 

not be able to be selected. The effect of this bias will be explained 

in section 4.3.2. 

In summary, the preliminary investigation has indicated that CRS 

can effectively increase system throughput by reducing supervisor queue-

ing but has inherent shortcomings which must be dealt with in a way 

which will not interfere with the main purpose of CRS. 

The next several sections describe the results of experimenta­

tion with the more detailed GASP simulation model. 

4.2 Model Definition Experiments 

Four experiments were performed which serve to analyze the GASP 

computer system model with respect to Madnick's computer system model 

and the CRS scheduler. 

4.2.1 Submodel Validation 

The first model definition experiment helps validate the correct­

ness of the GASP simulation program by specifying GASP parameters such 

that the detailed computer system model is reduced to a form equivalent 

to that assumed in Madnick's analytic model and then comparing the 

results of the simulation with the analytic results. 

One of the parameters used to accomplish this was the number of 

processing cycles of the jobs; this was specified as one. This, of 
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course, implies that there would be no I/O cycles. The scheduling algo­

rithm was FCFS, which is the same as in Madnickfs model under these con­

ditions. The processing cycle and supervisor service distributions 

were both exponential. Various L/E ratios and number of processors 

were used, with the results given in Table 2. The fourth column of 

Table 2 is the queue length provided by the queueing theory model, and 

column five is the average queue length from four replications with the 

GASP simulator. The last column indicates the results of the statisti­

cal verification of this experiment. The null hypothesis that the 

simulation queue length has an average value equal to the queueing 

theory result is tested against the alternate hypothesis that they are 

not equal. This and later statistical tests are standard; so, the de­

tailed computation will not be given here. The result for this experi­

ment was that the null hypothesis was not rejected at the 95% level. 

It should be noted that while the number of replications for 

this and other experiments is nominal, the intent of the experiments is 

not to prove anything, but rather to help guide the development and anal­

ysis. Due to the large number of model parameters, and possible param­

eter values, any attempt to prove anything for all cases would be hope­

less. 

4.2.2 Full Model Validation 

The next experiment was similar to the first, except that simula­

tion parameters were chosen to exemplify the full capabilities of the 

GASP model. 

The mix size was restricted to 80 jobs. The processor cycle 

lengths were specified to be uniformly distributed, and the parameters 
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Table 2. Submodel Validation 

Run L/E Number Expected Average Reject 
of Queue Simulated Hypothesis 

Processors Length :u Queue HQ: X=nQ at 

95% level 

Length :u 
Length:X 

HQ: X=nQ at 

95% level 

1 .050 21 2.76 2.53 No 
2 .050 30 9.18 9.10 No 
3 .050 15 .930 .92 No 
4 .034 21 .998 1.08 No 
5 .034 30 3.46 3.45 No 
6 .034 15 .374 .397 No 
7 .071 21 4.79 4.54 No 
8 .071 30 13.01 12.26 No 
9 .071 15 1.61 1.76 No 
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for each jobs processing distribution were generated from a uniform 

distribution. The mean processor cycle length was 10,000 time units. 

The I/O cycles followed a uniform distribution around 10,000. The I/O 

initiate service time was exponentially distributed with various means 

and the I/O complete service time was uniformly distributed with a mean 

of 30 time units. 1/0 complete interrupts were handled when they oc­

curred by interrupting the processor which has the longest processing 

time remaining. The number of processing cycles of the jobs followed a 

uniform distribution with a mean of eleven. Various numbers of proces­

sors were used, with the number of channels equal to the number of pro­

cessors. 

The results of this experiment are given in Table 3. The simu­

lated queue lengths were again close to the values predicted by the 

queueing theory model, but not as close as in the first experiment. The 

average absolute difference between X and \i. in Table 2 was .199 and in 

Table 3 was .276, an increase of 38%. In spite of this increase in dif­

ference, only Run 6 was shown to be significantly different. 

4.2.3 I/O Complete Technique Comparison 

The third model definition experiment compared the two basic 

techniques for handling I/O complete interrupts that were described in 

section 3.2.3. As that description explained, it should be expected 

that throughput would be better for the case of delayed handling of I/O 

complete interrupts since this case does not require processors to be 

reassigned as often as the case where I/O complete interrupts are han­

dled immediately. Other model parameters follow Run 1 of the previous 

experiment, except that CRS is used instead of FCFS. The block size 
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Table 3: Full Model Validation 

Run L/E Numb er Expected Average Reject Null 
of Queue Simulated Hypothesis 

Processor Length :\iQ Queue Length :\iQ 

Length:X 

1 .050 21 2.76 2.74 No 
2 .050 30 9.18 8.30 No 
3 .050 15 .930 1.07 No 
4 .034 21 .998 1.00 No 
5 .034 30 3.46 3.58 No 
6 .034 15 .374 .439 Yes 
7 .071 21 4.79 4.43 No 
8 .071 36 13.01 12.2 No 
9 .071 15 1.61 1.70 No 
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was equal to the average supervisor time, and there was no limit placed 

on the number of blocks allocated for each request. It was also assumed 

that the length of all processing cycles was exactly known. 

The basic measure for comparison in this and later experiments 

was throughput—the total processing and I/O done in a specified inter­

val, i.e., during the specified elapsed time of the simulation run. The 

average throughput for delayed I/O complete was X2=6.625 x 10
6 time 

units during a period of 200000 time units for four replications. (The 

Mxl0 " will hereafter be understood.) For non-delayed 1/0 complete, the 

average throughput was XT=6.143. To determine if the improvement gained 

through delaying the handling of the 1/0 complete was significant, the 

null hypothesis that the two means were equal was tested against the 

alternate hypothesis that they were not equal. At the 95% level, the 

null hypothesis was rejected, indicating that the difference was signif­

icant. Therefore, the remaining analysis will follow the delay 1/0 

complete alternative. 

4.2.4 Channel Queueing Effect 

The last model definition experiment considers the effect of the 

number of channels in the computer configuration on CRS. The mix 

size is related to the average number of jobs waiting for a channel. 

For example, if the average length of the channel queue is five, then 

the number of jobs available for selection by the scheduling algorithm 

is five less than if the average channel queue length was zero. Thus 

the variety of jobs available to CRS is affected by the number of chan­

nels in the configuration. 

It seems reasonable to suspect that the reduction in variety 
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caused by channel queueing could be partially offset by increasing the 

maximum number of jobs allowed in the mix by the corresponding amount. 

An experiment to test this theory was carried out by first making a 

simulation run with enough channels so that there would be no channel 

queueing and obtaining an average throughput, X-̂ . In the second run, 

the number of channels was restricted so that there would be some queue­

ing. Finally, a third run was made with a restricted number of channels 

but with the maximum number of jobs allowed in the mix increased by the 

size of the channel queue in run two, and it gave a throughput of X2* 

With four replications, X = 6.76 and X2 = 6.63. The null hypoth­

esis; HQ*. X^=X2« At the 95% level, the null hypothesis was not rejected. 

Another important factor was that the channel queue did not increase 

significantly from run two to run three. These results indicate that 

the effect of the number of channels in the configuration is just like 

the effect of the mix size—both affect the variety of jobs in the mix. 

For this reason, the interaction between the number of channels in the 

configuration and CRS was not directly studied, but rather was incor­

porated into the study of the relation between the mix size and CRS, 

which will be discussed later. 

4.3 Algorithm Development Experiments 

Eight experiments were performed which completely develop CRS 

based on the computer system defined in the last section. These experi­

ments are primarily concerned with the elimination of the bias in job 

selection which was introduced in section 4.1.3. 

4.3.1 Mix Search Technique 

The first two experiments analyze the possibility of eliminating 



79 

the bias by searching through the mix in a particular order when search­

ing for a job to meet the requirements of CRS. The example of 4.1.3 

indicated that the bias against jobs with short processing cycles was 

caused by the fact that the periods of time close to the current time 

in the supervisor schedule had more opportunities to be filled than 

periods farther away. It seems reasonable to suspect that, through 

searching the mix in a particular order, it may be possible to schedule 

jobs such that available periods of supervisor time would exist for 

short jobs as well as long jobs. 

Seven search algorithms were compared. Algorithm A ordered the 

mix according to the amount of time each job had been ready to process. 

The mix was then searched so that jobs which had been waiting for a 

processor the longest would be considered for scheduling first. This 

is obviously a desirable search technique since it attempts to keep 

jobs from remaining idle too long. Algorithms B through G ordered the 

mix according to the size of the next processing cycle of each job in 

the mix. Algorithm B searched the mix on a basis of shortest processing 

time first. This approach to eliminating the bias against short jobs 

could be interpreted as giving "first choice" of available space to 

short jobs. As will be indicated in the results which follow, these 

first two algorithms did not eliminate the problem; so, the following 

modifications were examined. Algorithm C searched the mix on a basis of 

longest processing time first. Algorithm D alternated between longest 

first and shortest first; that is, one time the longest job in the mix 

would be selected; and the next time the shortest job in the mix would 

be scheduled. Algorithm E alternated between longest first and shortest 
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first after every third scheduling of a job instead of after every 

scheduling. Finally, Algorithm F and G alternated after every 15th and 

25th scheduling, respectively. It was initially believed that these 

algorithms which alternate would provide some randomness in the filling 

of the supervisor schedule not provided by the previous algorithms. 

Most of the model parameters for this experiment were adopted 

from the experiments of section 4.2. However, this experiment, as well 

as the rest of the experiments in this section, were performed under 

two basic cases. Case A specifies the block size to equal the average 

supervisor service time and restricts the number of blocks allocated 

for each request to one. Case B allows the block size to vary in 

general, but for this experiment sets it to equal the average super­

visor service time. This case also allows the number of blocks allo­

cated for each request to vary as needed. Implicit in case A is the 

assumption one block of time is often enough to complete service and 

that an extraordinary number of blocks is seldom needed. This is 

reasonable because the functions associated with the handling of an 

I/O initiate interrupt include various bookkeeping duties plus the 

search for a job to schedule. Approximately the same bookkeeping duties 

would be performed at each I/O initiate interrupt, so this could pos­

sibly be represented by a constant distribution. The distribution of 

the time required to search the mix would depend on the scheduling algo­

rithm. For CRS, the search time would vary, perhaps uniformly, between 

the time required to consider the first job in the mix to the time re­

quired to consider the last job in the mix. 

The results for case B are given in Table 4. The second column 



Table 4: Algorithm Development Experiment IB 

Algorithm Average 
Throughput 

A 9.39 
B 9.53 
C 9.22 
D 9.64 
E 9.34 
G 9.30 

No Job 
/o 

16. 
21. 
73. 
27. 
30. 
37. 



82 

gives the average throughput for four replications, and the third 

column indicates the percent of time that CRS could not find a job 

which met the processing and supervisor service time requirements. 

When this occurred, CRS would arbitrarily select the job with the 

shortest processing cycle for scheduling and therefore introduce ad­

ditional queueing of requests to the supervisor. 

The various throughputs were compared by a one-way analysis of 

variance. In this (and later) experiments, the null hypothesis that the 

mean throughput for all treatments (algorithms) were equal was tested 

against the alternate hypothesis that the means were not all equal. At 

the 95% level, the null hypothesis was not rejected. 

The "NO JOBS" percents indicate that none of the algorithms suc­

cessfully eliminated the job bias: Bias against selection of a partic­

ular type of job results in more jobs of that type in the mix and less 

jobs of other types which results in not enough variety to meet the 

needs of CRS. However, some of the algorithms were obviously better 

than others at minimizing the degree of the bias. 

The results for case A are in Table 5. Algorithm G was not con­

sidered in this case. The NO JOB statistics followed the same pattern 

as in Table 4, but were numerically smaller. The cause of this reduc­

tion was that the jobs selected in case B must meet two requirements 

(processor cycle length and supervisor service time) while those select­

ed in case A need meet only one (processor cycle length). 

However, the bias against short jobs was present for every algo­

rithm in case A. For example, the distribution of the processing cycle 

lengths (in terms of number of blocks) for algorithm A after 200,000 time 
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Table 5. Algorithm Development Experiment 1A 

Algorithm Average No Job 
Throughput % 

A 6.76 0 
B 6.75 0 
C 6.41 36. 
D 6.64 13. 
E 6.67 12. 
F 6.54 17. 
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units of simulation is given in Table 6. Another indication of the 

presence of the bias was the histogram of the average length of time 

that a job of a specified processing cycle length waited in the mix 

ready to process. For algorithm A again, jobs which had a processing 

cycle length of one block waited an average of 81000 time units in a 

ready state, those of length two waited 50000 time units, those of 

length three waited 43000 time units, those of length four waited 38000 

time units, those of length five waited 34000 time units, etc. The av­

erage waiting time was 39000; so, short jobs had to wait longer than the 

average. 

4.3.2 Prescheduling 

These results indicated that a different approach to eliminating 

the bias would be necessary. It has been previously stated that a 

dynamic priority allocation scheme could be used, but would probably 

degrade the performance of the system. This expectation was verified 

through simulation, but the details of that experiment will not be 

given here. Prior to describing the methodology developed to solve the 

bias problem, an example of the problem will be given to motivate the 

approach. 

Consider the example distribution of jobs in the mix given in 

Table 7. Assume that jobs entering the mix have processing cycles uni­

formly distributed between 1 and 20 blocks long but that the current mix 

distribution has more small jobs due to the bias. In the example, the 

number of available jobs is forty. Thus, if there were no bias, there 

should be twenty different jobs, with two of each size. But due to the 

bias, there are only ten different jobs—those of length 1,2,3,4,5,6,7, 
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Table 6. Mix Distribution for Algorithm A 

Number Number of Number Number of 
of Jobs of of Jobs of 

Blocks This Size Blocks This Size 

1 8 21 1 
2 6 22 0 
3 3 23 1 
4 2 24 1 
5 0 25 1 
6 2 76 1 
7 1 27 2 
8 2 28 0 
9 3 29 1 
10 2 30 1 
11 1 31 3 
12 0 32 4 
13 0 33 1 
14 1 34 1 
15 4 35 1 
16 2 36 1 
17 3 33 0 
18 1 38 0 
19 2 39 3 
20 1 40 0 
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Table 7. Example Mix Distribution 

Number Number of 
of Jobs of 

Blocks This Size 

1 12 
2 7 
3 7 
4 4 
5 1 
6 3 
7 1 
8 3 
9 0 
10 1 
11 0 
12 0 
13 0 
14 1 
15 0 
16 0 
17 0 
18 0 
19 0 
20 0 
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8,10, and 14. Therefore the bias problem not only provides poor per­

formance, in terms of turnaround time, for small jobs, but also is 

detrimental to the performance of CRS since it reduces the variety of 

the jobs in the mix. 

If one of the jobs one block long could be scheduled, then two 

desirable effects would result. First, one of the small jobs which had 

waiting in the mix for a long time would get processed. Second, the 

variety of the jobs in the mix would be increased if the next processing 

cycle of that job was of length 9,11,12,13,15, etc. 

To accomplish this, define T as a limit on the number of the same 

size jobs allowed in the mix at the same time. For example, a value of 

three may be used for T for the case in Table 7. Thus, the expected 

number of like jobs would be two, and the maximum number of like jobs 

would be three. 

There would be two situations when a job would need to be added 

to the distribution of available jobs: when a job first entered the 

mix and after an I/O complete interrupt. When either of these two 

situations occurred, then the number of jobs already in the mix of the 

same size as the job to be added would be compared to T . If this number 

was less than T , then the job would simply be added to the mix. If this 

number was equal to T , then the job would be added to the mix and a "pre-

scheduling" algorithm would be invoked. 

This algorithm would remove that one of the T+1 jobs of the same 

size as the new job which had been in the mix the longest. This job 

would then be prescheduled; that is, it would be scheduled to be sched­

uled some time in the future and the associated supervisor blocks would 
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be allocated. 

For example, consider the situation illustrated in Figure 20. 

The current time is at the end of the block prior to block one, and the 

S's indicate the blocks previously allocated to jobs i, n, j, and m. 

Suppose that at the current time a job of size three was added to the 

mix and there were already T jobs of that size in the mix. The one of 

those that had been in the mix the longest, job k, would be selected 

for prescheduling. Assume that job k requires two blocks of supervisor 

time. If job k was to be normally scheduled, then it would be placed 

into a processor and blocks four and five would be allocated. However, 

there is no processor available and blocks four and five are not avail­

able. So instead, blocks farther down the supervisor schedule are 

allocated. Figure 21 illustrates that blocks ten and eleven could be 

selected. The distance of the allocated blocks to the current time 

should be random, but must be longer than the processing cycle length. 

If the I/O initiate for job k is to occur in block ten, and the job 

processes for three blocks, then job k must start processing at the end 

of the interrupt handled in block six. Thus, at the end of the handling 

of an interrupt and prior to the normal scheduling procedure, CRS would 

need to decide if a prescheduled job needs to be scheduled. An easy way 

to accomplish this would be to maintain a preschedule array as illus­

trated in Figure 21. When job k was allocated blocks ten and eleven, a 

"k" would be placed in block six of the preschedule array. At the end 

of the handling of the interrupt for job j, CRS would determine that it 

must schedule job k. 

Thus the prescheduling procedure can force biased jobs to be 
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Figure 20. Normal Supervisor Schedule 
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Figure 21. Prescheduling of Job k 
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executed without degrading the performance of CRS. In fact, it could 

possibly improve the performance since a maximum variety of jobs in the 

mix is maintained. 

A question which must be considered with regard to this procedure 

is the extent to which the procedure should be applied. Prescheduling 

can be thought of as a means of reserving space in the supervisor sched­

ule for jobs which otherwise would have difficulty finding space. If 

prescheduling is used too extensively, most of the supervisor's sched­

ule could be reserved, leaving no room for normal scheduling. 

The second pair of algorithm development experiments analyze 

this problem by comparing various threshold values. The results for 

case A are given in Table 8. 

The maximum variety of jobs, as specified by the processing cycle 

distribution, was 40, and the mix size was 100. So, on the average if 

20 jobs were elsewhere in the system, there should have been two avail­

able jobs of each size in the mix. The tested values for the maximum 

number of jobs of each size allowed in the mix were 2, 4, 5, 6, and 8. 

The average throughput for four replications were compared by a one-way 

analysis of variance as before, and the null hypothesis that all means 

were equal was not rejected at the 95% level. Thus, if prescheduling 

eliminated job bias, it did so without degrading the performance of the 

algorithm. 

The fourth column of Table 8 indicates the average percent of the 

jobs scheduled which had been prescheduled. The 68% for run 1 was found 

to be too high for the reason suspected: The supervisor schedule was so 

full of reserved spaces that not enough room was available for normal 
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Table 8. Prescheduling: Case A 

Run Threshold Average Percent of 
Throughput Schedules 

Prescheduled 

1 2 6.66 67.7 
2 4 6.76 10.9 
3 5 6.78 4.7 
4 6 6.75 1.2 
5 8 6.76 0. 
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scheduling. This was evidenced by a NO JOB percent of 3.1 and by 

examination of the supervisor schedule during simulation. The NO JOB 

percents for all other alternatives were zero. The threshold for run 5 

was too high, since prescheduling was never performed. The intermediate 

threshold in run 3 resulted in a reasonable prescheduling percent of 4.7 

and a slightly higher average throughput than the other alternatives. 

For this case, the histogram of the average waiting time versus the pro­

cessing cycle size verified the elimination of the bias. Jobs one block 

long waited an average of 40000 time units, those two blocks long, 42000 

time units, those three blocks long, 42000 time units, those four blocks 

long, 47000 time units, those f ive blocks long, 41000 time units, those 

six blocks long, 34000 time units, etc. The average waiting time for 

all sizes was 40000 time units. The remaining case A experiments re­

ported in this chapter maintain a prescheduling percent of about 5. 

The results for case B are given in Table 9. Just as in case A, 

the null hypothesis that the mean throughput for all alternatives were 

the same was not rejected at the 95% level. The prescheduling percent­

age followed the same pattern as in case A. A threshold of six provided 

a reasonable percentage of 4.0. 

For case B, the percentage of time that no job could be found to 

meet the CRS requirements was higher at every threshold value than for 

algorithm A with no prescheduling. This indicated that, for case B, 

prescheduling did more harm than good. After further investigation, 

this was found actually to be true. 

To help explain the cause of this phenomenon, consider the exam­

ple which was given in Figure 21. Recall that job k was prescheduled 
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Run Threshold Average 
Throughput 

Percent of 
Schedules 

Prescheduled 

NO JOB 
% 

1 2 9.13 45.6 28.6 
2 3 9.34 31.2 23.4 
3 4 9.22 14.9 20.2 
4 6 9.35 4.0 16.0 
5 8 • 9.32 .79 17.2 
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for blocks 10 and 11 and had a processing cycle length of three blocks. 

Suppose, instead, that the processing time for job k was four blocks. 

The k for the preschedule array would have then been placed in block 

five. But no supervisor service interval ends in block five, so job k 

could not have been scheduled at the proper time. 

An attempt was made to alleviate this problem by removing any 

job which was unsuccessfully prescheduled and re-prescheduling that job 

for a later time. However, since most of the preschedule jobs were 

small, it was discovered that often the blocks freed by removing the 

prescheduled job from the supervisor schedule would never be refilled. 

Thus, for case B, the prescheduling of jobs reserved space which 

was never used. This not only reduced the amount of available space in 

the supervisor schedule, but also artifically scheduled idleness for 

the supervisor. 

So prescheduling, as defined here, was found to be a very ef­

fective means of dealing with the job bias problem for case A, but 

counter-productive for case B. 

4.3.3 Mix Size Comparison 

Up to this point, a mix size of 100 has been used. The following 

pair of experiments analyzes the effects of the mix size on CRS. 

Some of the current single and dual processor systems allow very 

large mixes, sometimes more than a hundred jobs. It is doubtful that a 

system with 21 processors could maintain a hundred jobs for each proces­

sor. The mix sizes compared here are in the more reasonable range of 

from four to twelve jobs for each processor. 

Any scheduling algorithm does not depend on the mix size itself, 
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but rather on the number of jobs in the mix available for scheduling. 

CRS depends on the number of different jobs in the mix available for 

scheduling. As previously mentioned, the number of jobs available is 

affected by the I/O boundness of the jobs and the number of channels 

available. This study assumes there are enough channels to handle most 

requests. If this were not the case for any particular system, then 

the proper mix size for that system would have to be adjusted according 

to the average channel queue length to obtain a number of available jobs 

equivalent to that associated with the mix size found to be appropriate 

by this study. 

The results for case A are given in Table 10. The null hypoth­

esis that the throughputs were the same was not rejected at the 99% 

level, indicating that all of the mix sizes tested were of sufficient 

size to support CRS. 

Column 4 gives the average number of different jobs available. 

The average, for every case, is above the 21 needed to insure a job is 

available to meet the requirements of CRS, as described in section 3.3.4. 
» 

The measured s.tandard deviation for run 1 was 1.8. Assuming a normal 

distribution, this would indicate that a mix size of 84 would provide 

at least 25 different jobs in the mix 98% of the time. 

The increment in mix size from run 1 to run 2 provided for a 

much larger increase in the number of different jobs than the increment 

from run 2 to run 3. To further insure that a job could be found for 

scheduling, advantage was taken of this nonlinear relationship by con­

cluding that a mix size of 100 seemed appropriate for this case. This 

size mix resulted in a 98% probability that at least 28 different jobs 
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Table 10. Mix Size: Case A 

Run Mix Size Average Average Number 
Throughput of Different Jobs 

1 84 
2 126 
3 168 
4 210 

6.73 28.3 
6.83 55.4 
7.01 38.3 
7.03 39.3 
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would be available in the mix. 

Table 11 summarizes the results for case B. Just as in case A, 

the null hypothesis that all throughputs were equal was not rejected. 

The throughput figures here were adjusted because the larger mix sizes 

required longer simulation before reaching equilibrium. 

The standard deviations of the number of different jobs varied 

from 3.4 for run 1 to 4.4 for run 5. Also the average number of dif­

ferent jobs for a given mix size was lower for case B than case A. 

These two results, combined with the fact that case B requires more 

variety than case A as explained in 3.3.4, indicate that a larger mix 

is necessary for case B. 

Table 11 indicates that the difference in the average number of 

different jobs for each increase in the mix size becomes small after a 

mix size of 168 jobs is reached. Assuming a normal distribution as 

before, associated with this mix size is a 98% probability that there 

will be at least 24 different jobs in the mix. No mix size larger than 

this substantially increased the variety of jobs in the mix or substan­

tially decreased the NO JOB percentage. So, for lack of a better alter­

native, it was concluded that a mix size of 168 was the minimal neces­

sary for this case. 

4.3.4 Tuning 

As indicated in section 4.1.2, a decision must be made as to how 

much of an additional block is needed before one additional block is 

allocated. Of course, this only applies to the case where more than 

one block can be allocated. The effectiveness of this as a tuning 

parameter will now be analyzed through an experiment which considers 
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Table 11. Mix Size: Case B 

Run Mix Size Average Average Number 
Throughput of Different Jobs 

1 84 31.28 24.0 
2 126 31.21 29.7 
3 168 31.16 31.9 
4 210 30.99 33.4 
5 252 31.41 33.6 
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several alternatives. 

The second column of Table 12 indicates the percent of a block 

needed before an additional block is allocated. For example, if the 

block size is 100, and a service interval is 260, then runs 1, 2, and 

3 would allocate three blocks while runs 4 and 5 would allocate only 

two blocks. The restriction is made that at least one block is always 

allocated. 

The null hypothesis that all throughputs were equal was rejected 

at the 9570 level, indicating that this was a useful tool for tuning the 

system. Run 4 provided for a 4.4% increase in throughput over run 1. 

Column four indicates the corresponding difference in supervisor queue 

length caused by the difference in the amount of idleness scheduled 

into the supervisor schedule. 

4.3.5 Block Size 

Another parameter which can be modified for case B is the size 

of the block. Recall that the use of this parameter as a basis for a 

cost-effective tradeoff was the primary motivation for the introduction 

of blocks. It was initially believed that as the size of the block got 

smaller, CRS would become more accurate and therefore more effective. 

Of course, the accuracy obtained in this way would be limited by the 

accuracy of the forecasting of processor cycle lengths to some extent. 

Table 13 gives the results of a comparison between the use of 

the block size equal to the average supervisor time, run 1, and a much 

smaller size, run 2. The size of the block in run 2 was chosen as 

small enough to represent the effects of small blocks but large enough 

to allow the simulator to fit into the Burroughs' memory. The average 
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Table 12. Tuning 

Run Percent of Average 
Block Needed Average Supervisor 

Before Allocated Throughput Queue 

1 20 13.99 2.58 
2 40 14.15 2.57 
3 60 14.22 2.07 
4 80 14.61 1.73 
5 100 14.49 1.85 



Table 13. Block Size 
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Run Block Size Average Average 
Throughput Supervisor 

Utilization 

1 500 15.01 82.4% 

2 60 15.79 83.6% 
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throughputs for four replications of each run were compared by testing 

the null hypothesis that they were equal against the alternate hypoth­

esis that they were not equal. The null hypothesis was rejected at the 

957o level, indicating that the use of the smaller block size improved 

throughput by about 5%. However, the average supervisor utilization 

did not show a corresponding increase. The null hypothesis that they 

were equal was not rejected at the 95% level. These two contradictory 

results prompted further investigation into the scheduling process for 

small block sizes. It was noticed that there was still a bias in the 

selection of jobs with respect to the size of the processing cycle. 

But this was not the cause of the contradictory results. It was dis­

covered that there was another type of bias. There was a tendency to 

select jobs which had short supervisor service times. This caused pro­

cessors to spend less time in the supervisor state and more time in the 

problem program state; this resulted in less use of the supervisor and 

more problem program throughput. Thus, the 5% increase in throughput 

for the smaller block size was the result of this bias. 

4.3.6 Summary of Algorithm Development Experiments 

One consistent theme has pervaded the results of the algorithm 

development experiments as well as the preliminary considerations of 

section 3.3. The case where the number of blocks allocated for each 

request was limited to one provided superior results in every instance 

as compared to the case when no limit was made. In section 3.3, esti­

mates were made of the mix size and the quantity of queueing introduced 

by blocking for case A, but no estimates could easily be made for case 

B. Hardware support for case B would be more complex than that for 
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case A as described in section 3.3.7. The comparison of the mix search 

alternatives indicated that the bias was more pronounced in case B, and 

it was also shown that it could not be efficiently eliminated through 

prescheduling. Case B required at least a 50% larger mix than case A, 

and the reduction of the block size for case B could not be done with­

out introducing another bias. 

All of these facts pointed toward the same conclusion: CRS with 

case B was not a feasible approach. The problems associated with case 

B could possibly be reduced through considerable extension of the 

methodology, but the complexity introduced would probably be prohibi­

tive. 

Therefore, it was concluded that CRS would be feasible only with 

prescheduling and with only one block allocated for each request. 

This, then, completely specifies CRS. The next section will 

determine the effectiveness of CRS by comparing it to a standard sched­

uling algorithm. 

4.4 Evaluation of CRS 

4.4.1 Effect of Forecasting Error 

During the developmental experiments, it was assumed that the 

algorithm had exact knowledge of all processing cycle lengths. However, 

before the true advantage of CRS over standard algorithms can be deter­

mined, the error in the forcasts of processing cycle lengths must be 

included in the model. 

Forecasting errors were assumed to be normally distributed with 

a mean of zero. The mean throughputs for various standard deviations of 
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error were compared, with the results in Table 14. The null hypothesis 

that the average throughputs from four replications were all equal was 

rejected at the 95% level, indicating that forecasting error does cause 

a significant degradation in the performance of CRS. 

The average simulated throughput from four replications for FCFS 

scheduling was 6.16. Based on this information, column four of Table 

14 indicates the percent increase in throughput over FCFS for CRS at 

each level of forecasting error. From this it is evident that the 

advantage of CRS is so large that even fairly substantial forecasting 

errors do not degrade the effectiveness of CRS below a worthwhile 

quantity. 

4.4.2 Estimation of Actual Forecasting Error 

The obvious question at this point would be which run of Table 

14 corresponds to a realistic error distribution. An indication of the 

answer to this question was obtained, as well as an indication of the 

complexity of the forecasting technique necessary. 

The Univac 1108 on campus was used to obtain a sequence of pro­

cessing and I/O cycles for a small set of programs. Several programs 

were selected which were available for modification. Included were a 

FORTRAN production program, a COBOL production program, and several 

other randomly selected FORTRAN programs. 

All of these programs but one had to be initially modified to run 

on the Univac. Then two subroutines were added which read the Univac's 

interval clock. One subroutine read the processor-time clock, and the 

other read the core-time clock. Calls to these subroutines were placed 

before and after each I/O instruction so that the processor-time clock 
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Run Standard 
Deviation of 

Error Distribution 

Average 
Throughput 

Percent Increase 
in Throughput 
Over FCFS 

0 
5% 
10% 
15% 
20% 
35% 
50% 

,78 
,73 
,66 
57 
,57 
53 

10.04 
9.24 
8.10 
6.64 

64 
99 

6.48 5.18 
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could measure processing period lengths and the core-time clock could 

measure I/O period lengths. 

To test this method of monitoring, a test program was written 

which did the same computation during each processing period and out­

put the same thing during the I/O period. This test provided informa­

tion which was used to refine the procedure. 

The test indicated that the monitored information should be 

maintained internally in core until the program's normal end, and then 

should be written out. This reduced the effect of monitoring to adding 

a very small amount of processing time to each processing period. It 

was also determined that it would be necessary to run in real time mode, 

with unused peripherals made inactive, and with no one else using the 

machine. (This test also located a hardware error in one of the 

internal clocks, which was corrected by the field engineer.) 

The complex procedure just described severely restricted the 

number of programs which could be monitored. This was not considered 

to be a serious problem, as the intent was to obtain some indication of 

actual forecasting errors, and not to study job characteristics or 

forecasting as an end in itself. 

After the monitored data was obtained, it was modified to take 

any buffering into account, as described in section 2.5.2. Then three 

forecasting schemes were applied and distributions of the percentage 

error in forecasts were measured for the three forecasting schemes 

under various parameter values on all monitored programs with two buffer 

sizes. 

The first forecasting routine was the standard double moving 
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average on a linear model. It is assumed that the sample at time t, 

x , is a linear function of time: 

X
t
 = a

l
 +
 V

 + e
t *

 (21) 

The forcasting routine based on this model is 

xe = bL + b29 , (22) 

where 

e - t - B£L (23) 

In (22), x" is the estimate of the sample and b1 , b are estimates of 
9 1 t-

the intercept and slope for the time origin change of (23). Values for 

b, and b are computed recursively as a moving average over the last N 

samples: 

_ x . - x . „ 
-p T' . 3- 3--N , „ . . 
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A complete derivation is available in (15). 

The second forcasting routine was a dynamic double exponential 

smoothing formula, as developed in (79). The forecast, x , is defined 

by: 

Xt = ^t-l + (1-*)xt-l 
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xt = x t - ^ - l • 

x-= $x"t+ (1- R)x-_1 ; 

x = x' + x"' . (26) 
t t t v ' 

It should be noted that x" consists of two components: x' and x'". 
t t t 

Here, x7 is an exponential estimator of the average of the samples and 

x"' is an exponential estimator of the trend in the samples. 

Normally, the exponential smoothing parameters, a and R are 

maintained as constants with a value between zero and one. The method­

ology described in (79), and adopted in this study, allows these param­

eters to vary according to previous errors in prediction as described 

below. 
The percentage error in the previous forecast is defined as 

x , - x , _ t-1 t-1 . 
e . - - . (27) 
C L Xt-1 

If e - if larger than some acceptable threshold, T, then the signs of 

e 1 and e _ are compared. If the signs are the same, then it is 

assumed that the forecasting routine is not responsive enough and so 

oi and R are increased so that recent history is taken more into account 

as described below. If the signs are different, then it is assumed 

that the forecasts are oscillating and so & and R are decreased so that 

the forecaster relies more on historical samples. 

The modification is made by first determining if # is at an 

extreme (either 0 or 1, whichever is appropriate). If it is not, then 
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ex is modified by some small amount d . If it is, and if fl is not 
a 

already at its extreme, then |3 is modified by d . Otherwise, no modi-
P 

fication is made. 

The third forecasting routine was developed through discussions 

with Donovan Young specifically for the processing cycle time series. 

It seems reasonable to expect that many programs execute in a loop for 

some number of interactions, where there is one or more I/O statements 

in that loop, and the number of instructions executed during each pass 

through the loop is approximately the same. Then control would likely 

transfer to a different loop with a different number of instructions. 

Such a pattern of execution is illustrated in Figure 22. A forecasting 

scheme for this pattern should use an average within a program loop but 

also react rapidly to changes from one program loop to another. 

To accomplish this, the standard exponential smoothing formula 

was slightly modified: 

^ t - l
 + ( 1 - c y )

^t-l
 if

 '"^ — L T (28) 
Lt-1 

Xt 
x » otherwise. 

The forecast, "x , is based on exponential smoothing if the error in the 

previous forecast was less than some threshold T. Otherwise, the fore-

case is equal to the previous sample value. Thus, when a change from 

one loop to another is encountered, the exponential average is updated 

to the new level. 

It is obvious that both the double exponential and linear fore­

casters require more computation than the modified exponential smoothing, 
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Figure 22. Processing Cycle Time Series 
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Also, the data base necessary to support modified exponential 

smoothing is much less than the other two. The linear method requires 

N+2 words of storage for every program in the mix: the N previous 

samples and previous values of b1 and b_. Double exponential smoothing 

requires four words for each program in the mix: cti (3; x' 1 ; x7" 1 . 

Modified exponential smoothing requires only one: x" ... 

Table 15 gives a summary of the results of this investigation. 

The measure of accuracy in the second column is the percent of the 

forecasts, averaged over nine time series, which fall between -15 and 

+15 percent error. 

The double moving average routine gave the worst results. Values 

of N between five and eleven were tested. The best results occurred 

for values around seven. 

Double dynamic exponential smoothing was only slightly better. 

The parameter T was varied between .05 and .3, but little effect was 

noticed. 

The best forecasting scheme was the one designed specifically for 

the type of time series involved. Every combination of values of <y and 

T from .1 to .9, .1 apart, were tested. Best results were obtained for 

<y = .1 and T = »6. This was reasonable because the low & makes past 

history important within a loop and T = .6 detects a change from one 

loop to another when the error exceeds 50%. 

The special case of the modified exponential smoothing when T = 0 

is the simplest forecasting scheme: 

V'M •
 (29) 



112 

Table 15. Forecast Routine Comparison 

Forecasting Average Percent of Forecasts 
Routine within ± 15% Error 

Double Moving Average 43.0 

Double Exponential Smoothing 44.5 

Modified Exponential Smoothing 74.4 

Modified Exponential Smoothing 62.5 
with T=0 
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The fourth row of Table 15 indicates that this simple technique perform­

ed very well. This supports the idea that processing cycle lengths are 

somewhat repetitive in nature. 

The general shape of the distribution of error was similar to 

that of the normal distribution, as should be expected. For the normal 

distribution, 68%. of the sample fall within +<j, where <j is the standard 

deviation. Based on the programs monitored, it would be reasonable to 

estimate that 68% of the forecasts fall within ± 157o error. Thus, the 

error distribution should be normal with a mean of zero and a standard 

deviation, o", of 15%. 

This estimate corresponds to run four of Table 14. Therefore it 

would be reasonable to conclude that the use of CRS could increase 

throughput by 6.6% for the situation defined by the parameters used in 

this analysis. 

This result, coupled with the speed of the algorithm from hard­

ware support and the simplicity of the forecasting scheme applied at 

the end of every processing cycle, indicates that CRS could provide a 

significant increase in the amount of work done for a large system with 

little increase in cost over conventional techniques. 

4.4.3 Load Conditions 

The investigation to this point has been for one set of values 

for Madnick's parameters: L/E = .05, 21 processors. As indicated in 

section 3.3.6, this corresponds to a load condition of high supervisor 

utilization. It is assumed that the effectiveness of CRS under these 

parameter values is equivalent to its effectiveness under other param­

eter values which correspond to high supervisor utilization; i.e., 
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L/E = .10, 11 processors; L/E = .02, 51 processors; etc. 

However, it may be that CRS would perform even better under less 

loaded conditions. This might be expected since CRS would be able to 

spread requests out more; that is, the block size used could be larger 

than the average supervisor interval, providing more leeway for errors 

introduced by blocking and forecasting. 

To determine the validity of this argument, first a comparison 

was made between CRS and FCFS under different load conditions, with 

the results in Table 16. The number of processors was varied from 19 

to 17 to 15 while L/E remained at .05. FCFS was compared to CRS with 

a forecasting error distribution with a standard deviation of 157Q 

through the null hypothesis that the average throughputs were equal. 

For each run, the null hypothesis was rejected at the 9570 level. Column 

five of Table 16 gives the percentage increase in throughput provided by 

CRS. 

A comparison of the effectiveness of CRS under various load con­

ditions is illustrated in Table 17. The number of processors and per­

centage improvement of CRS over FCFS were taken from Tables 14 and 16. 

The fourth column gives the percent increase in the number of processors 

available to process when all of the supervisor queueing, as determined 

from the queueing theory model, is eliminated. The last column indicates 

the percentage of possible improvement attained by CRS for the various 

load conditions. Thus CRS could perform as much as 50% better under less 

loaded conditions. 

4.4.4 Note on Experiments 

The experiments described in this chapter certainly do not ex-
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Table 16. Load Conditions 

Run Number 
of 

Processors 

CRS 
Average 
Throughput 

FCFS 
Average 

Throughput 

Percent Improvement 
Of CRS over 

FCFS 

19 
17 
15 

6.16 
5.59 
4.98 

5.73 
5.26 
4.75 

7.46 
6.27 
4.63 
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Table 17. Relative Effectiveness 

Run Number Percent Percent Improvement Percent of 
of Improvement Predicted by Possible 

Processors of CRS over Queueing Theory Improvement 
FCFS Model Attained 

1 21 6.64 16.0 41.5 
2 19 7.46 12.2 62.2 
3 17 6.27 9.36 65.3 
4 15 4.63 7.11 65.1 
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haust all possible considerations and alternatives which could be 

investigated, and they were not meant to do that. Rather, these 

experiments were chosen because they seemed to provide the basic 

information necessary for this investigation while not requiring an 

excessive amount of computer time. The experiments described here 

required over 80 hours of CPU time on the Burroughs B5700, and the 

program monitoring required over 12 hours of exclusive use of the 

Univac 1108. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

5.1.1 General Remarks 

This research has developed a feasible methodology for improving 

throughput in large multiprocessor systems by reducing the amount of 

queueing of requests to the supervisor. The methodology was based on 

developments in the areas of multiprocessor configuration design, 

operating system design, scheduling, workload characterization, and 

forecasting of workload requirements. The use of the combination of 

these areas to solve this problem in system design was guided by the 

concept of performance design. 

5.1.2 Summary of Results 

The problem was identified. The supervisor of a multiprocessing 

system could be considered to be a resource which can be requested by 

processors. If more than one processor request this resource at a 

time, a queue of requests would develop, causing idle processors and a 

corresponding reduction in throughput. 

Then performance design was defined as the incorporation of 

performance evaluation techniques into the system design such that the 

system could dynamically respond to the immediate requirements of the 

workload in order to improve system performance. This was adopted as 

the basis for a methodology to solve the problem. 

A model of a computer system was developed to be realistic 
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enough to enable relevant considerations to be studied. It was based 

on a multiprocessor, multichannel, multi-memory module structure with 

maximum communication among components. The GASP II simulation lan­

guage was used to implement the model as a 2800 statement FORTRAN 

program. 

From this model and the standard scheduling algorithms, it was 

determined that a 21 processor system with a reasonable supervisor load 

would have an average of 2.6 processors idle on the supervisor queue 

and would provide an average throughput of 6.16. 

To improve throughput, a dynamic scheduling algorithm was devel­

oped to schedule jobs to processors such that they would request the 

use of the supervisor when no other job was predicted to be using the 

supervisor. This capability was based on the assumed knowledge of the 

sequence of intra-interrupt intervals for each job in the mix. 

During the development of the algorithm, the effects of many 

factors deemed relevant were fully investigated. Inherent problems in 

the methodology were solved through experiments which prompted the 

development of a "look-ahead" technique. 

Using this scheduling algorithm with the assumption that job 

characteristics were exactly known, throughput was increased by 10% to 

6.78 over the standard scheduling algorithms. Since it is not likely 

that this information would be exactly known, the effect of introducing 

various amounts of error were investigated (see Table 14). Then a 

realistic estimate of expected error was obtained by applying several 

forecasting techniques to data obtained through software monitoring of 

actual programs. A forecast of the next intra-interrupt period was 
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based on the lengths of the previous intra-interrupt periods. A 

modified exponential smoothing formula performed best, providing an 

error distribution that was normally distributed with a zero mean and 

a standard deviation of about 15%. This amount of error reduced 

throughput to 6.57, 6.6% above standard scheduling techniques. 

Analysis of different configurations indicated that the dynamic 

scheduling algorithm would perform even better than the example used 

here if the supervisor was not as heavily utilized. 

5.2 Extension of CRS 

5.2.1 Abstraction of Essential Features of CRS 

While the development of CRS in this thesis has been with respect 

to a particular application in multiprocessor system design, the basic 

idea behind CRS is general in nature and could conceivably be applied 

to other problem areas in computer system design. As a first step in 

the extension of CRS to other areas of application, a description of 

the algorithm will be given in terms independent of any particular 

application. 

Assume a system is composed of at least three basic types of 

resources: the "clustered" resource, the "scheduled" resource, and 

the "held" resource. Consider the essential activity of the system as 

being described by the statement that a "requesting unit" utilizes some 

portion of the scheduled resource and then utilizes all of the clustered 

resource while, at the same time, also utilizing part of the held 

resource. It is also assumed that more requesting units sometimes 

leave the scheduled resource and request the clustered resource than 

the clustered resource can "service." That is, a queue of requesting 
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units may form at the clustered resource. An important point is that 

while on the clustered resource queue, a requesting unit does not 

actually need the use of the held resource, but is unable to release 

it. Thus, a requesting unit on the clustered resource queue is pre­

venting other requesting units from having access to the held resource. 

Since there is a cost associated with the operation of the held re­

source, there is a cost associated with the portion of the held re­

source which is inactive because of requesting units being on the 

clustered resource queue. This directly imples that there is a cost 

associated with the waiting of a requesting unit on the clustered re­

source queue. 

The object of CRS is to reduce the cost associated with this 

queue. The method is to schedule requesting units to the scheduled 

resource such that they request the clustered resource when no other 

unit is requesting that resource. CRS is based on the premise that the 

length of time a requesting unit uses the scheduled resource and clus­

tered resource is known, at least to some degree of accuracy. 

5.2.2 Areas of Application 

For the multiprocessor design problem considered in this thesis 

the clustered resource is the supervisor, and both the scheduled re­

source and the held resource correspond to the processors. 

As an example of a different interpretation, consider the problem 

of paging. CRS could possibly be applied by scheduling jobs to proces­

sors such that they request the use of the paging drum at a time when 

no other job is requesting it. In this case, the drum is the clustered 

resource, the processors correspond to the scheduled resource, and 
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memory is the held resource. While there may be some problems in the 

application CRS to paging, this example at least demonstrates that the 

idea behind CRS is a general one, and could possibly be extended to 

other resource allocation problems. 

The further development of other application areas is considered 

a worthwhile area for future work. 
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