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Minimization of temperature effects of
high-birefringent elliptical fibers for polarimetric
optical-fiber sensors

Feng Zhang and John W. Y. Lit

The temperature dependence of polarization-maintaining fibers is a problem in polarimetric optical-fiber
sensors. We report a novel method for making a temperature-insensitive, polarization-maintaining
fiber, which may be used for the sensing part in a polarimetric strain sensor. The fiber has a double-clad
elliptical core with built-in stresses in the core and cladding regions. To minimize the temperature
sensitivity, the built-in stresses are balanced with the refractive-index differences and the core ellipticity
properly chosen. The temperature and strain sensitivities of the fiber are calculated. A practical design
and some potential applications of such a temperature-insensitive fiber with a high strain sensitivity are
presented.

1. Introduction

Polarimetric fiber-optic sensors (PFOS's) have wider
dynamic ranges; their system constructions are
simpler than their interferometric counterparts." 2

Polarization-maintaining (PM) fibers play a key role
in the PFOS as a sensing part and a leading head.
Unfortunately the measurement of a slowly varying
physical parameter by PFOS suffers from environmen-
tal fluctuations such as temperature, which limit the
PFOS in practical uses.

A number of ways have been proposed to overcome
the low-frequency environmentally induced instabil-
ity of the DC quantity measurements of PFOS.
Dakin and Wade3 introduced a common mode rejec-
tion method by connecting two equal lengths of PM
fibers with their polarization planes perpendicular to
each other. Imai and Ohtsuka4 used two identical
PM fibers with a 900 optical axis difference parallel to
each other to separate the temperature and bending
effects. Kikuchi et al.5 experimentally minimized
the temperature sensitivity of built-in stress PM fiber
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by coating the fiber with additional layers. A theo-
retical analysis of such a fiber has been done by
Mcdearmon 6 and Wang. 7

In our previous paper8 we analyzed and calculated
the temperature and strain sensitivities of a high-
birefringent, double-clad elliptical fiber without
built-in stresses. We proposed a method to mini-
mize those sensitivities by suitably selecting the fiber
parameters: core ellipticity, refractive-index differ-
ence, and thickness of the inner cladding. In this
paper we present a method for minimizing the tem-
perature sensitivity of high-birefringent elliptical fi-
bers with built-in stresses without increasing the
fiber size; this is achieved by balancing the built-in
stresses in the core and claddings of the fibers. In
Section 2 we describe the structure, the birefrin-
gence, and the mode dispersion of the fiber. In
Section 3 we derive the general formulas for the
phase retardation between two eigenpolarizations
caused by an arbitrary external perturbation to the
fibers. We also discuss the effects of two special
cases, temperature and axial strain, and derive the
fiber sensitivities caused by these perturbations.
In Section 4 we present a method for minimizing the
temperature sensitivity of a PM fiber and give a
design as an example of the temperature-insensitive
fibers. We also present the strain sensitivity of
fibers and show that it may be increased while the
temperature sensitivity at a certain wavelength is
reduced to zero. These fibers are suitable for fiber
polarimetric strain sensors.
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2. Birefringence and Mode Dispersion
of Elliptical Fibers

A. Structures and Parameters of Double-Clad
Elliptical Fibers

A double-clad elliptical fiber that has an elliptical
inner cladding and a circular outer cladding, as shown
in Fig. 1(a), has the following parameters: a and a2
are the major axes of the core and the inner cladding;
b, and b2 are the minor axes of the core and the inner
cladding; no, n1, and n2 are the refractive indices of
the core, inner cladding, and outer cladding, respec-
tively. In terms of elliptical coordinates e and aq, the
two boundaries of the inner cladding may be ex-
pressed by e = t, and e = 2-

The refractive-index distribution in the fiber may
be written as [see Fig. 1(b)]

n2(e) = no2[1 - 22N)b

where

with

I 0

f(e) = uth(e - 1)

I h(e - 2)

0 x < 0h t)=1 Z 0,

no 2-n12
1l 2no 2 

< i

A1 < < 2,

g 2 E2

o A,=L =

stresses. The geometry birefringence is contributed
by the elliptical core. The normalized geometry
birefringence is given by9

kf9 2n 0 A 2 [ 1
B k-~ V4[ W (6)

Here W = w,/a, and Wy = wy/b, are the normalized
spot sizes and k is the wave number.

The geometric mode dispersion is9

ATg = 1 d(8Pg)
c dk

2n0 A2
2 d 1

c dVyVy3
[ 1 1 1 }

ii~ F a,/b )4W 4 J J
(7)

(1) The normalized birefringence Bs resulting from
built-in stress in a double-clad elliptical fiber is caused
by geometry asymmetry and by the different thermal
expansions of the core, inner cladding, and outer

(2) cladding (a0, a,, and aC2 ). It is made up of two parts:
Bos caused by stress differences in the core and B13
caused by stress differences in the inner cladding0 11:

no 2 - n12
Bs = Bos + Bls

(3)
(8)

with

no 2- n22
A2 = 2

2n0
2

EC a b'
Bos =b(Vy) A,AT, a (9)

(4)

The ratios R = a2/a, and Ry = b2/b, may be
introduced, and the normalized frequencies are de-
fined as

V = kalno(2A 2 ) /2 , VY = kblno(2A 2 ) /2 . (5)

B. Birefringence and Mode Dispersion

Generally the birefringence of an elliptical fiber is
partly due to geometry and partly due to built-in

(a)

(b)

b2 11 = 4'14

/.a, a X

a0 N~ 

i- nBe) - - - - -no

) ~ ~~~~~~~~~ _ ii .

I_ II -n
0 t1 2

Fig. 1. (a) Schematic diagram of a double-clad elliptical fiber with
an elliptical inner cladding and a circular outer cladding. (b)
Refractive-index distribution in the radial direction.

and

EC 2-b
Bls = 1-v Aat2AT2C= P -V a2 + b2

C = E P1 - P12)0 + ),

A,5 = a0-t1

AT, = Tr-Tso,

Aa2 = Ol - %,

AT2 = Tr - TA

(10)

(11)

(12)

(13)

where E is the Young's modulus, v is the Poisson ratio
of fused silica, Pi, and P12 are the strain-optic coeffi-
cients, b(Vy) is the normalized propagation constant,
Tr is the room temperature, and T8o and Ts, are the
softening temperatures of the core and inner clad-
ding.

3. Phase Retardation

A. General Formulas

The phase retardation between two eigenmodes HE,,x
and HE, Y in a fiber length L is

(14)
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where

= ig + Ad-,, Ad-' = &13os + B1,s, (15)

and the stress birefringences are Spos = kBos, pls =
kBjs, and Bps = kBs.

If the fiber is perturbed by a physical quantity 4p,
Eq. (14) gives

d(&f) _d(8I3) CIL
- dF4L + z 8P. (16)

1. Phase Retardation Resulting from Geometry
Birefringence
First, we consider only the geometry contribution to
the birefringence of an elliptical fiber. 8 is a
function of normalized frequency Vy and ellipticity e
of the elliptical fiber core:

d(b-g) _(8Pg) dVy e de (17)
dEip aVy dp ae dip

The general formula for the phase shift caused by any
physical perturbation is given by8

d(&k9) k Vy (8P9) L + a(8p) deL + 

d4p Vy dap ak ae dip no-n2

a(n - n2 ) [
at

A 0(no- n2 )1
no -n2 ax 

X1 VY+ l dL 
y a p L dpSL

(18)

Here we can see that the phase retardation depends
not only on the change of the fiber parameters caused
by perturbation but also on the waveguide dispersion
given in Eq. (7) and the material dispersions that may
be obtained from the Sellmeier equation:

dni X

dX n. 1 ( 2 -As2)2
(19)

where the parameters A, and xs are given by an rms fit
to experimental data.'3

2. Phase Retardation Caused by Built-in Stress
Birefringence
The birefringence caused by built-in stress is a func-
tion of normalized frequency Vy and stress differences
between fast and slow optical axes 8a, i.e.,

d(Bfs) a(80s) dVy a(P8s) d(8cr)
d4, - .d, (&u) d,'dt, dy d(v ip

d( 8Ps) a(bf) dVy (8s) d(o) dLP

d4p - aVy dp a(8T) dip dpa

(20)

(21)

We now discuss two important effects, the tempera-
ture and axial strain effects.

B. Temperature Effects

1. Response of Geometry Birefringence
First, here we neglect the built-in stresses of the fiber.
Temperature variations may change the dimensions
and refractive indices of a fiber. Assuming the fiber
to have homogeneous thermal materials and setting
4p = T, we can obtain the temperature sensitivity8

d(&f9) [a(ag) X d(no - n 2 )

LdT = [ ak + no-n 2 ax
(22)

where an and ate are, respectively, the average tempera-
ture coefficient of the refractive index and the average
coefficient of thermal expansion. Thus the phase
retardation between two eigenmodes caused by tem-
perature depends on the waveguide dispersion
a(8Pg9)/ak and the material dispersion a(no - n2 )/aX.
Because the second term in Eq. (22) is much smaller
than the first,8 it is ignored. Hence Eq. (22)is simpli-
fied to

LdT = k(an + ae) k
LdT a

2. Response of Built-in Stress Birefringence
Substituting 4p = T into Eq. (20), we have

d(8ps) a(8s)dVy+ a(s)d(Su)
dT aVy dT d(Ba) dT

Then substitution of B3s = kBs gives

1 d(Bps) BS aBs\ dV aBs d(bc)
k dT = \V,+ Vy dT + a(8u) dT

(23)

(24)

(25)

Using Eqs. (8)-(10) and (1/Vy)(dVy/dT) = , + aoe8 we
obtain the temperature sensitivity of the built-in
stress birefringence:

1 d(8=3s) [B b(V1) 1
k dT y n ~~~~b(V)0

8

+AiT+ AT2

The phase retardation is

1 d(54s) B8+b()YO
L dT = k(2an + aj s + b(V) VyBoS]

+ k( BO-' B 8

AiT, T2 )

(26)

(27)

For fused silica, because Oae = 0.5 x 10-6 and an =

10-5 and 1/AT,, 1/AT2 -103/ 0C, the first term in
Eq. (27) is 2 orders smaller than the second term.
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The equation can be simplified to

(28)
ABos Av, B38s

AL AATL 

The phase retardation caused by built-in stresses is
proportional to the sum of the birefringences Be8 and
Bjs divided by their respective AT's.

C. Axial Strain Effects

1. Response of Geometry Birefringence
We assume that the fiber has a homogeneous elastic-
ity if there were no built-in stresses in the fiber and
that the expansion dL is much smaller than L.
Setting d = dL, we can obtain the axial strain
sensitivity as8

dL rI d Qt) n2 +
dL dkkv+ s L (no -n2)a(no - n2)B9

(29)

ABs _

AL
Av2 - B 8$,

AC12AT 2L '
(38)

with Av, = v - vI and Av2 = V - v2, where v0, vi, and
v2 are the Poisson ratios of the core, inner cladding,
and outer cladding, respectively. By substituting
Eqs. (34)-(38) into Eq. (32), we have

d(51S3) = k(v + Ci') + b'(Vy) VyBo ]

k Av, 
- A(A\T, Bo

and the sensitivity of strain is

d(L) =|-
= kjjl - v - CtB

A+a2 AT 2
(39)

where

C.t = no2[p12 - v(p, + P12)].

2. Response of Built-in Stress Birefringence
With d4p = dL, Eq. (20) becomes

d(8s8) a(8ps) dVy a(8513) d(8uc)

dL aVy dL a(bor) dL

Then, when bps = kBs is used,

dBs d(8o)
+ -d

d (5u:) dL

With the help of Eqs. (8)-(10), (30), and (33),7

1 dV v n12

y d1 L L [P12 - V(P1 - P12)1;

the first term on the right of Eq. (32) is given by

(Bs 8 Bs dVy

VY aVy dL

(V + C) s

L [ + b(Vy) VB

The second term needs more discussion. Stretching
a fiber in the z direction with a uniform strain eZ will
result in free strains in the transverse x and y
directions, ex = Fy = -v~, which are analogous to the
free thermal strains x = F = Au-AT occurring as the
fiber cools. Because B 0 8 cc AaAT, and Bs cx AOL2AT2 ,
the change of birefringence after stretching may be
approximately given by'4

AB0 s =-- AAT B 0s, (35)

AB,' = - AOL2 T B s (36)

[ Av,

LAaAT,(30) (V + t) b'(Vx) Vy Bos

- BA2 B, 8

Aat2AT 2
(40)

(31) 4. Design of Temperature-Insensitive Fibers

A. Temperature Insensitivity

Equations (23) and (28) give the temperature sensitivi-
ties of the phase retardation between two eigenpolar-

(32) izations of an elliptical fiber caused, respectively, by
the effects of fiber geometry and built-in stresses.
The total phase retardation caused by temperature
can be obtained by adding the two effects:

(33) d(5-)

LdT
(41)

d(- d) d( L)
LdT LdT

If the birefringence of an elliptical fiber is caused
solely by the fiber geometry, the temperature sensitiv-
ity can be minimized by suitably selecting the fiber
parameters: core ellipticity, refractive-index differ-
ence, and/or thickness of the inner cladding.8

In the more general case the birefringence of an
elliptical fiber is composed of a geometrical compo-
nent B9, a core-stress component Be8, and a cladding-
stress component Bls. All these birefringences con-
tribute to the temperature sensitivity of the fiber.
From Eqs. (23) and (28) we see that the temperature
sensitivity depends on the waveguide dispersion
a(851g)/ak and the stress birefringences Be8 and Bls.
Here (8,P9)/ak and Bos are frequency dependent.
If we can move the zero points of (8pg)/ak and
Bos/AT, + Bs/AT 2 to the same Vy, we can make the
fiber insensitive to temperature at a certain wave-
length. The zero points of a(8,03)/ak can be con-
trolled by selecting the fiber parameters: core ellip-
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ticity, refractive-index difference, and thickness of
the inner cladding. If we introduce an inner ellipti-
cal cladding with a thermal expansion coefficient that
is different from those of the core and outer cladding,
the built-in stresses in the core and cladding will
produce birefringences B0

8 and Bls. The signs of Bs
and B~s can be the same or different depending on the
thermal expansion coefficients of the core and inner
and outer claddings of the fiber. Fiber cores are
generally made by doping GeO2 in fused silica SiO2,
which is the outer cladding material, resulting in
ao > a. For the inner cladding one can increase the
thermal expansion coefficient by dopants such as
P205 and B203.15 These are common materials used
to produce the stress-induced components in PM
fibers. If we control the doping and make (x0 > a, >
a2, both the core and cladding will have compressive
stresses, and B0

8 and Bjs will add together [see Eqs. (9)
and (10)]. Another group of dopants, such as TiO2
and F2, can decrease the thermal expansion coeffi-
cient. 11 15 If aX0 > (x1 < a 2, there is compressive
stress in the core but an expansive stress in the
cladding, resulting in B and Bjs having opposite
signs. Hence B0 8/AT + Bs/AT 2 can be made zero
at a certain Vy by controlling the doping and ellipticity
of the inner cladding.

In the following we give an example of the design of
a temperature-insensitive fiber. We dope the fiber
core with GeO2, which increases the refractive index
and the thermal expansion coefficient. For the inner
cladding we use TiO2 doping to decrease the thermal
expansion coefficient. The doping quantities, refrac-
tive indices, and thermal expansion coefficients are
given in Table 1.'5 From the table and Eq. (4) the
relative refractive-index differences are Al = 0.01 and
A2 = 0.02. By choosingal/b, = 2.0 andR > 1.4 (the
geometry birefringence resulting from the cladding
can be ignored9), we shall have the zero dispersion
point at Vy = 1.767. Hence we have to make the
temperature sensitivity caused by built-in stress at
Vy = 1.767 zero, so that the total phase retardation
caused by temperature will be zero. From Table 1
the difference between the thermal expansion coeffi-
cients of the core and inner cladding and that between
the inner cladding and outer cladding are, respec-
tively,

Aa1 = oLGeO2 - oLTiO2 = 1.7 10-6,

Aa2 = OLTiO2 - a-SiO2 = -0.3 x 10-6.

If AT,, AT2 10000C, Av1, Av2 0.02, and a2 /b 2 =
4.38, we have Bs = -Bls = 0.72 x 10-4 at Vy = 1.767.

Table 1. Doping Quantities, Refractive Indices, and Thermal Expansion
Coefficients for the Temperature-insensitive Fiber Designed

Dopant Mol. % n a (x 10-6)

GeO2 22 1.490 1.9
TiO2 3.5 1.475 0.2
SiO2 - 1.459 0.5

t 0.5 -B, ..- --;,r 0.002 i_Bd -~~~~~~~~~0.003

| 0 A~~~~~~...... -Bs -0.5 - -oi

-0.003

qn -0.00quency Vy o=14,Al=00,/-=0.2 lb .00 2/b 

4.38, and b, = 0.845 pum, ) = 0.633 0m.

Therefore, when Vy = 1.767 (within the single-mode
range), the temperature sensitivity of the fiber is zero.
Figure 2 shows the temperature sensitivities result-
ing from Bg [given by Eq. (22)], B0

8 [given by the first
term in Eq. (28)], Bls [the second term in Eq. (28)],
and the total stress birefringence Bs [given by Eq.
(28)] as functions of the normalized frequency V
The temperature sensitivity of Bg is 2 orders of
magnitude smaller than those of stress-induced bire-
fringences, but it may be the main effect when the
resultant temperature sensitivity resulting from all
stresses is zero. Our design above reduces both
types of temperature sensitivity to zero, resulting in a
fiber that is independent of temperature fluctuations.

B. Axial Strain Sensitivity

The axial strain sensitivities of an elliptical fiber
caused by geometry and by built-in stress are given by
Eqs. (29) and (40), respectively. The total phase
retardation resulting from strain can be obtained by
adding Eqs. (29) and (40). Figure 3 shows the axial
strain sensitivities caused by Bg [given by Eq. (29)],
Bqs [given by the Ban term in Eq. (40)], Bre [given by
the Bjs term in Eq. (40)], and Bs [given by Eq. (40)] as
functions of Vy for the fiber described in Subsection 4.

80, 0.3

70-
0.2

'50 01d

0 -0.3

10 ~ ~~---

1 1.2 1.4 1.6 1.8 2 2.2 2.4
NORMALIZED FREQUENCY (V,)

Fig. 3. Strain sensitivities resulting from B9, BC08, BC1s, and B8 as
functions of normalized frequency Vy. Fiber parameters arc the
same as those in Fig. 2.
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0.1-

~~~~ 0.rai Ad

-0.1 1... . 4 1. 1.8 2 . 2 0
40~

-0.2-*.3

-0.3-...... Temperature
Strain 2

-0.4 2
1 1.2 1.4 1.6 1.8 2 .2 2.4

NORMALIZED FREQUENCY ('4)

Fig. 4. Temperature and strain sensitivities as functions of
normalized frequency Va. The fiber parameters are the same as
those in Fig. 2.

Built-in stresses enhance the axial-strain sensitivity
by 2 orders of magnitude. In our design the strain
sensitivities caused by built-in stresses reinforce one
another.

If the fiber is used in a polarimetric strain sensor, it
must be designed with the highest strain sensitivity
and the smallest temperature sensitivity. This may
be realized by optimizing the fiber parameters.
Figure 4 shows the total sensitivities of temperature
and strain of the fiber as functions of the normalized
frequency Vy. The strain sensitivity is 50 rad/mm
with a zero temperature sensitivity at Vy = 1.767,
which is within the single-mode region.

5. Potential Applications of Temperature-insensitive
PM Fibers in Sensors

Strain measurement is of special importance because
many primary measurands (e.g., bending, pressure,
vibration, flow rate, electric and magnetic fields,
acceleration) may be converted to displacements and
hence to fiber strain. However, the measurement of
quasi-static strain seriously suffers from environmen-
tal fluctuations, especially temperature. The tem-
perature-insensitive PM fibers with a large strain
sensitivity can be applied to the measurement of
slowly varying (<0.05-Hz) strain with the help of
polarimetry.

A. Smart Structures and Skins

Embedded fiber-optic sensors can monitor the me-
chanical characteristics of composite structures to
produce smart structures. 6"17 Composite materials
are now being used increasingly in a wide range of
situations such as ships and submersibles, buildings
and bridges, and aerospace vehicles and structures.
Temperature-insensitive PM fibers with a large strain
sensitivity are good candidates to be embedded in
composite structures for the measurement of strain
or vibration in the structures. When the fiber is
embedded in the materials, an additional strain will
act on the fiber. The fiber design has to consider the
fiber and the structure properties.

B. Fiber-Optic Sensor Coatings

Coating materials applied as jackets to a single-mode
optical fiber in an interferometric sensor usually play
an important role in determining the fiber sensitivity
and dynamic response to a particular field or param-
eter.18 Similarly, the widespread application of po-
larimetric fiber-optic sensor technology depends sig-
nificantly on the phase shift caused by a particular
environmental parameter being effectively controlled
and optimized by the use of suitable coatings for PM
fibers.

The temperature-insensitive PM fibers coated with
piezoelectric materials (PVF2, copolymers), magneto-
strictive materials (nickel alloys, metallic glass), elas-
tomers (polystyrene, nylon), and so on have the
potential to measure electric fields, magnetic fields,
acoustic fields, etc. The coating materials can trans-
duce and magnify the particular measurand fields to
displacement and then to strain in the fiber. Using
temperature-insensitive PM fibers and polarimetry,
one can measure the fields that may have very low
frequency changes.

C. Fiber-Optic Sensors Using Transducers

A number of physical quantities, such as electric and
magnetic fields, current, pressure, vibration, flow
rate, acceleration, can be changed to fiber strain by
means of electric, magnetic, and mechanical transduc-
ers.' 8 For example, a magnetostrictive tube, man-
drel, or strip may convert magnetic fields to the strain
of fibers bonded onto them. Suitably designed me-
chanical devices may transduce pressure, vibration,
flow, and acceleration to fiber strains. These applica-
tions depend on the design of the particular transduc-
ers.

6. Conclusion

A double-clad elliptical fiber with built-in stresses can
be designed as a temperature-insensitive PM fiber.
This is achieved by suitably selecting doping materi-
als for the core, inner cladding, and outer cladding to
produce different thermal expansion coefficients.
We have discussed in detail the design of the tempera-
ture-insensitive fibers with high strain sensitivities,
suitable for polarimetric strain sensors. An example
of the fiber design is given; a strain sensitivity of 50
rad/mm is obtained with a zero-temperature sensitiv-
ity. Finally, the potential applications of the tem-
perature-insensitive fibers in polarimetric strain sen-
sors, smart structures, and skins are discussed.

John W. Y. Lit is also affiliated with the Depart-
ment of Physics, (GWP)2, Author queried and the
Department of Electric Engineering, University of
Waterloo. This research is supported by the Ontario
Laser and Lightwave Research Centre and by the
Natural Sciences and Engineering Research Council
of Canada.
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