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Abstract

This paper presents a comprehensive study of the general et-optimal multiblock prob-

lem, as well as a new linear programming algorithm for computing suboptimal controllers.

By formulating the interpolation conditions in a concise and natural way, the general theory

is developed in simpler terms and with a minimum number of assumptions. In addition,

further insight is gained on the structure of the optimal solution, and different classes

of multiblock problems are distinguished. This leads to conceptually attractive, iterative

method for finding approximate solutions with the following properties: 1) approximates

multiblock problems with one-block problems by delay augmentation, 2) unifies the treat-

ment of zero and rank interpolation conditions through robust computations, 3) provides

upper and lower bounds of the optimal objective function by solving one finite dimensional

linear program at each iteration, 4) for a class of problems, it generates suboptimal con-

trollers that achieve the upper bound without order inflation, 5) both bounds as well as the

solution converge to the optimal, 6) it does not require the existence of polynomial feasible

solutions, and 7) gives information about the support structure of the optimal solution.

*'Tlis work vwas suipported by NSF under grant. 9157306-EC'S. by C.S. Draper Laboratory 1nd(ler grant DL,-
11-44t1636. a-nd by AFOSR un(ler grant. 0368.



Notation

Let X be a real normed vector space, then X* denotes the dual space of X containing all

bounded linear functionals on X.

Space of absolutely summable sequences supported on the non-negative integers. If

x E fl then ]xfl 1 = ZE x(k)l < oo'
k=O

efXq Space of p x q matrices with entries in el. If M = (mnij) E fpxq, then IIM 1 :-
q

max E |lmij ill
1<i<p. 1- - j= 1

Ae Space of all bounded sequences of real numbers supported on the non-negative integers.

If x E te then llxllo, := sup Ix(k)l < oo.
k

ePoX q Space of p x q matrices with entries in ec. If M = (mij) E eP q, then IIMII l -,
p

Z max IlmijiIo. Note that tPoXq - (PXq)*.
_<j<_q

cpx q Subspace of ePxq consisting of all elements whose entries decay to zero, i.e., limk.-c mij(k)
0 for all {ij}. Note that (cpXq)* = e q.

A Complex variable representing the unit delay. Given M E tpXq, define M1(A)

E M(k)A k as the A-transform of M.
k=O

'D The open unit disk.

Pk The truncation operator on sequences. Hence if x = {x(i)}o 0 is any sequence, then

PkX = {X(0), X(l), .. ,x(k), O...}.

SIk Right shift by k positions. If x = {z(i)}=0o is any sequence and k is a nonnegative
k

integer, then SkX = {0, ... , 0, (0),(1),...}.

Given a matrix M, (M)i will denote its ith row and (M)i its jth column.

1 Introduction

Design specifications for practical control problems are often most naturally expressed in terms

of time-domain bounds on the amplitude of signals (exogenous disturbances and regulated

outputs). This observation has led to the introduction of a new optimization problem in the

context of control system design, In [37] Vidyasagar formulated the fl-optimal control problem.
In contrast with the X=, problem, the el-optimal design has as objective the minimization of
the maximum peak-to-peak gain of a closed-loop system that is driven by bounded amplitude
disturbances.

In 1987-88 Dahleh and Pearson introduced some basic results on the theory of C1 opti-
mization. In [9] the solution to the el-optimal control problem was presented for the special
case of square (i.e., one-block) systems. Then, in [11] Dahleh et al. presented the central ideas
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for the solution of non-square (i.e., multiblock) problems, including a method to compute ap-

proximate suboptimal solutions iteratively. Sulch method is based on the solution of a linear

program representing a truncated version of the original problem. Similar results extending

these ideas to the continuous-time domain were introduced by the same authors in [10], as well

as a solution to the fixed input optimization problem [12].

These results brought considerable attention to the problem of g1 optimization. In [29] a

general treatment of the multiblock case was presented, where the optimal solution is shown

to exits under some assumptions. Independently in [6] and [33] a method was introduced to

compute lower bounds on the optimal norm, by solving a complementary linear program. A

direct linear programming formulation (in the primal space) was presented in [30]. Also, [34]

introduced a nice account of some convergence properties and pointed to interesting deficiencies

in the theory. In [17, 18] the full state-feedback problem was addressed.

On the area of robustness, considerable advancement was made too. In [13], the necessity

of the small gain theorem in the 1l context was analyzed. Also, [24] presented necessary and

sufficient conditions for robust performance and robust stability under structured timle-varying

perturbations. It turns out that such conditions are relatively easy to compute making the

theory more attractive from the point of view of applications. Other related work can be found

in [8, 6, 3, 19, 14, 32].

The present investigation is motivated by the lack of a solid understanding of the general

tl multiblock problem. While various aspects of the theory are well understood, the structure

of the optimal solution in the general multiblock case is not. As a result, solution methods

which are based on a straightforward truncation of the full problem, suffer from significant

deficiencies. Most important, they generate a sequence of suboptimal controllers of increasing

order, and miss the structure of the (possibly low order) optimal controller. This issue was

pointed out quite nicely in [33] where exact solutions of low order were computed. From a

practical point of view, such truncation method translates into high order controllers even

for the simplest multiblock problems. At the same time, it requires the existence of feasible

closed-loop maps with finite pulse response, a condition that many control problems lack.

In this paper we present a comprehensive treatment of the general el-optimal multiblock

problem. Contributions are made in the general theory as well as in the approximate methods

of solution. With regard to the problem formulation, a more compact and natural way of

characterizing the interpolation conditions of the general multiblock problem is presented. It

has the advantage of simplifying many of the proofs and avoiding unnecessary assumptions

(compared to previous work [29, 34]). We also present a new solution method for the general

multiblock problem with the following characteristics:

1) Approximates multiblock problems with one-block problems by delay augmentation, thus

allowing to exploit the characteristics of the optimal solutions of such problems.

2) Applies results from matrix theory [21] in the computation of interpolation conditions.

3) With each approximation (requiring the solution of only one linear program), the method

provides upper and lower bounds of the optimal norm.

4) Under mild assumptions, both bounds converge to the optimal value of the norm.

5) With each approximation the method generates a feasible (i.e., stabilizing) controller that

achieves the upper bound.

6) For a special class of multiblock problems the solutions are exact.
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Figure 1: The Standard Problem

7) For a larger class of multiblock problems the sequence of suboptimal controllers does not

suffer from order inflation.

Also, a result is presented relating the support characteristics of the optimal and approx-

imate solution of multiblock problems, followed by a stronger conjecture. These results are

complemented by a broad range of numerical examples, including a case study where the [z

and 7',O solution to the pitch axis control of the X29 aircraft are compared.

The paper is organized as follows: in section 2 the general fl-optimal control problem is

defined. The new interpolation conditions are presented in section 3 as well as computational

procedures. This is followed by an existence result with minimum assumptions in section 4.

Next, we establish the equivalence between tl optimization and infinite dimensional linear

programming in section 5. Section 6 contains the solution to one-block problems. The results

in this section are an extension of those in [29]. Section 7 presents (approximate) methods of

solution to multiblock problems. In particular, the delay augmentation method is introduced

along with its convergence properties. Illustrations and examples are contained in section 8.

In sections 9 and 10, we present a few results and observations (including a conjecture) on

the support characteristics of these approximate solutions. Finally, we treat the X29 synthesis

problem in section 11 followed by the conclusions in section 12.

2 Problem Formulation

The setup corresponds to the standard disturbance rejection problem formulated as a linear

fractional transformation from the disturbance input to the regulated output, with the con-

troller in the lower loop (see Figure 1). In particular, we consider the discrete time case, with

the inputs and outputs being sequences of vectors. The problem is represented via an LTI

finite-dimensional operator, G, that maps the disturbance vector w of dimension n.,, and the

control vector u of dimension n,, to the regulated output vector z of dimension n., and the
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measurement vector y of dimension ny. Thus, with the appropriate partitioning,

(y =) ( G21 G22 (1)

The controller action is represented by the operator K that maps the measurement sequence to

the control sequence, i.e., u = Ky. The closed-loop map from the disturbance to the regulated

output, denoted I, is given by:

= G1l + G12 K(I - G 2 2 K)-'G 2 1 (2)

The tl-optimal control problem can be stated as follows: among all internally stabilizing

controllers, find the one that minimizes the maximum peak-to-peak gain of 4 operating on the

space of bounded disturbances with unit norm. That is,

p°- inf sup (max [('1w)kI{ = inf {'1 (3)
l ,K stab. max FJ, l<k<n, K stab.

1<i<n,

In the above we have used the fact that the induced norm of an operator mapping bounded

sequences in IRn ' to bounded sequences in IR' t is given by the t :X n! norm.

It is well known that a simpler description of the set of all (internally) stable closed-loop

maps is obtained via a parameterization of all stabilizing controllers [38]. Such parameteriza-

tion provides an affine expression, mapping an operator space to the set of all internally stable

closed-loop maps:

l = H - UQV (4)

where H E tn,xn, U E n, Xn, and V E VCny n are functions of the prol)lem data (i.e., the

operator G), and Q is a free parameter in en"x ny (i.e., stable). Furthermore, if G is LTI and

finite dimensional, so are H, U and V. Then, for any Q E f xny, a controller can be computed

that achieves the corresponding closed-loop map, 4.

Consequently, the Il problem can be redefined as a minimum distance problem in ¢"' X"":

ILO := inf IIH - Rfl{ = inf {111 (5)
RES It-HES

where

S := {R E nz Xln JR = UQV for some Q E Ie" Xnl} (6)

The subspace S contains the set of feasible R's. Also, from duality theory [26], problem (5) can

be posed in the dual space of n¢"'xn n, that is, £,' xn" as the following maximization problem:

o= max (H,G) (7)
G E,51

IIGll < 1

where (II, G) is the value of the bounded linear functional G at the point II:

(H, G) =E Eij(k)hi= )
i=l j=l k=O

and S' is the right annihilator of S:

S' = {G C etnx nl I (R,G) = 0 V R E S}

Furthermore, if a solution to (5) exists, say (O, then it is aligned with every solution G° to

(7), that is (4"', G") = i,"ollliGlll.GI. This implies that 1', and Go must satisfy the following

alignment conditions:



i) if Igj(t)l < maxl<j<n,, g then 0?j(t) = 0

ii) Q7j(t)g1j(t) > 0

iii) let I = {i E [1, 2,..., n] (G°)i -= 0, then Il(,°)ili = °LO for all i not in I

iv) for all i E I, (P°)i can be anything such that II(I°)ill' < P°

The next section studies the solvability of the equation R = UQV for Q in £,U Xny.

3 Interpolation Conditions

Here we take some of the ideas in [11] and [29], and present a natural and compact description

of the interpolation conditions for the most general MIMO case.

The notion of interpolation conditions can be viewed in at least two ways: as algebraic

conditions on the matrix R(A) so that it belongs to the range of UQV, or as conditions on

the nullspace of the operator R. Here we are going to exploit the algebraic notion although,

for the purpose of computations, we view the interpolation conditions as a nullspace matching

problem.

In the sequel it will be assumed, without loss of generality, that U(A) has full column rank

(i.e., rank of n, for almost all A) and V(A) has full row rank (i.e., rank of ny for almost all A).

Violation of these assumptions implies that there are redundancies in the controls and/or the

measurements which can be easily removed.

First, a simple but useful result from complex variable theory is presented, where (.)(k)( 0o)

denotes the kth order derivative with respect to A, evaluated at A0 :

Lemma 3.1 Given a function f(.) of the complex variable A analytic in D, then (f)(k)(A 0 ) 0= 

for k = 0,1,...,(a - 1) for Ao E 1D if and only if f(A) = (A - Xo)og(A) where g(.) is analytic

in ).

Next, consider Smith-McMillan decompositions of the rational matrices U and T/. (Note:

to simplify notation, the complex variable argument will be omitted in most expressions.)

U = iLMuv- r (8)

v = LVA@vRv (9)

where Lu, a R, Lv and Av are (polynomial) unimodular matrices. Under the rank assumptions
on U and aV, the rational matrices Mu and M; have the following diagonal structure:

At 4'~1~111 (10)

0 ... 0

~/ .. 0 ... 0 

y =0. ·.. ·.

6I O 
( 



Let A0 be a zero of U(A). Let cu,(AO) denote the multiplicity of A0 as a root of Ei(A),

then {'(rri(Ao)}l 1 defines a non-decreasing sequence of non-negative integers. For a given

i G {1, 2,..., n,}, ouj (A0) is known as the algebraic multiplicity of A0. The total number of

indices i for which oau(Ao) is strictly positive is known as the geometric multiplicity of A0 .

Similarly, define {vj (Ao)} v 1 for TV(A).

Let Atrv denote the set of zeros of U and Vi in '1. In order to proof the interpolation

theorem (i.e., apply the results of Lemma 3.1) we need the following assumption:

Assumption 1: Avv C D.

Consider the unimodular matrices in Equation (8). Since their inverses are polynomial,

one can define the following polynomial row and column vectors:

di(A) = (Lf-)j() i 1, 2,.. .,nz(
(12)

(A) ( )i(A)= Rj =1,2..n

Now we are ready to present the main interpolation theorem. These conditions are different

from those in [29] and do not require coprimle factorizations.

Theorem 3.1 Given R E x there exists Q E C'"X"y such that R = UQV if and only if

for all A0 E Auv C 1D the following conditions are satisfied:

i) (Ritj)(k)()(o)= 0 for j = 1,..., ny
k = O,.. .,r, (Ao) + ovj(A 0 ) - 1

ii) { (6&iR)(A) 0 for i = nf ,...,nz

(R/3j)(A) 0 for = ny + l,...,n,7,

Proof Consider the following factorization of Milu and M/V (where 0 denotes a block of zeros

of appropriate dimensions):

where Lu and Lv retain the zeros in Auv while Frr and Tv capture the stable (i.e., minimum-

phase) zeros of U and V along with their (stable) poles. Thus, both 'ru and 9v are invertible

in el. Then,

R=LU ( t ~ vO ) Rv

where Q := P'lRuQLv 1i7. Clearly, Q E f-X7y if and only if Q E en7 XnY Next, define the

following partitions of Lu and /v:

Lu ( LU, Lu,2 ) ; v (v,2 ) (13)

where LTr,1 has n, columns and Rv,l has n, rows. Then, given R e fnZxn,"

3Q E C7"X," such that R = UQV

3Q E Intxl"' such that R = Lu,1iuQ£vRv,1
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Necessity of condition i) follows immediately. Take any i E {1, . .. , n and

j E {1,...,ny}, then

(a RXt3j)(A) = II (A - Ao)Ui(O) Qj(XA) II (A - Ao)j(o)

o EAuv Ao EAuv

which implies condition i) by Lemma 3.1 and the fact that qij is in l 

Necessity of condition ii) results from the following: take any i E {n, + l,...,nz} and

j E {nO + 1,..., nw}, then (ciRi)(A) 0 and (R./j)(A) _ 0 since (&aiLu,)(A)- 0 and (Rvil3j)(A)

0.

To show that conditions i) and ii) are sufficient we proceed by backwards construction: by

Lemma 3.1,

foi) )mW-sn R ( .) M or eov

for some W E n,,xnY since R E n,,Xn,, Moreover,

ii) . E _jn+ O and R( y+ l *-)-

Therefore, combining these equations into one,

( 0 0)

which implies that W = Q is the solution. U

In words, Theorem 3.1 provides a set of algebraic conditions which are necessary and

sufficient for R to be feasible (i.e., equivalent to UQV for some stable Q). The conditions in i)

make sure that the left and right unstable zero structure of the composition UQV is preserved

while the conditions in ii) impose the correct (normal) rank conditions on R. In fact, it is

possible to view the collection of &ij's and /3j's for i > nu and j > ny, as two polynomial

basis (not necessarily of minimal degree) for the left and right nullspaces of R(A) (see [23]).

By virtue of the Smith-McMillan decomposition these sets of polynomial vectors are linearly

independent (over the field of rational functions) so they generate a minimal set of constraints
on R (Note: the four-block case has some redundancy which can be eliminated apriori, see [18]
for a detailed discussion).

In the sequel, we will refer to the conditions in i) as the zero interpolation conditions, and
to the conditions in ii) as the rank interpolation conditions. Rank interpolation conditions are
also known by the names of relations [113 and convolution conditions [33, 34].

Problems of the form (4) have been traditionally classified in the 7H00 and X2 literature

according to the dimensions of the different signal spaces involved. Here we adopt the same

classification:

* One-Block Problems: When n, = n, and n, = nu. These are also known as good rank
or square problems.

* Two-Block Column Problems: When n, = n, and n, > nu.



* Two-Block Row Problems: When n, > ny and n = n,.

* Four-Block Problems: When n, > ny and nz > nu.

A problem is labeled multiblock when it is not one-block. Multiblock problems are also known

as bad rank problems [11, 29].

Clearly, one-block problems only require zero interpolation conditions and have no rank

interpolation conditions, while two-block row (column) problems require right (left) rank in-

terpolation conditions, and four-block problems require both left and right rank interpolation

conditions.

3.1 Computation of Interpolation Conditions

The problem of finding the Smith-McMillan decomposition of rational matrices is at the heart

of the interpolation problem. This decomposition has been studied thoroughly due to its

strong connections with several important notions in system theory (e.g. nlultivariable zeros

and poles), although mostly from an algebraic point of view [23]. The standard algebraic

algorithm to compute such objects is based on the Euclidean division algorithm, known to be

numerically sensitive. Nevertheless, there has been some effort in this direction, for example,

by using symbolic methods from computer algebra on polynomial matrices [4]. However, it is

generally desirable to have algorithms based on the state-space representation of systems, that

are more easily implemented on digital computers.

Here we present an alternative approach to the problem of finding the zero interpolation

conditions of a square rational matrix. Such approach avoids the explicit computation of the

Smiith-McMillan decomposition. Furthermore, it is computationally attractive since it is based

on finding the nullspaces of certain Toeplitz-like matrices which are formed directly from the

state-space representation of the system.

Although multiblock problems require rank interpolation conditions, we will show that

those problem can be posed in such a way that only zero interpolations need to be considered.

In Theorem 3.1 we have shown how the internal stability of the closed-loop system is

assured if the zero structure of the left unstable zeros of U and the right unstable zeros of

V is preserved in R. Such structure is characterized by the zero frequency, its algebraic and

geometric multiplicity, and its directional properties as given by the corresponding polynomial

vector ai or Oj. Despite its numerical problems, the Smith-McMillan decomposition provides

the most natural way of characterizing the zero and pole structure of a rational matrix. To

circumvent the formal Smith-McMillan decomposition of U(A) and V(A), it is necessary to

find an alternative set of conditions that unequivocally defines the zero structure of a rational

matrix. Such a set is presented in this section.

The theory of zeros of MIMO systems has been studied extensively, both from an algebraic

and state-space perspective [28, 16, 31]. It is well known that a zero of a square system given

in state-space form [A, B, C, D], is characterized by the solution of a generalized eigenvalue

problem of the form [28]:

A - zoI B ) ) 0

where z0 := A-', x0 is known as the state zero direction and uo is known as the zero input

direction. However, the numerical stability of such eigenvalue problem deteriorates quickly

when there are zeros with algebraic multiplicity greater than one. Indeed, such difficulty is
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equivalent to finding the Jordan decomposition of a defective matrix (i.e., a non-diagonalizable

matrix) which is known to he a hard numerical problem [221.

Although it is difficult to obtain the full zero structure directly from the state-space de-

scription of a system, the location or frequency of the zeros can be reliably computed 120].

In the sequel, we will assume that the locations of the unstable zeros of the rational (square)

matrices U(A) and V(A) are available.

Following, we introduce a useful definition along with some notation.

Definition 3.1 Given a rational matrix H(A) analytic at Ao and a positive integer a; define

the following block-lower-triangular Toeplitz matrix:

Ho 0 0 ... o

H1 Ho 0 ·. · 0
To, (.-) = .'. . (14)

H,_1 H,_ 2 H,_ 3 .' 1o

where the Hi's are given by the Taylor expansion of H(A) at A0, that is,

fH(A) = Ho + (A - Ao)H 1 + (A - Ao)2 H2 + (A - \) 3 H3 + ...

and Hi = (H)(i)(o).

A numerically stable method was proposed in [36] to find the structural indices associated

with poles and zeros of a stable rational matrix H, by looking at the rank of Txo , a(H-) as a

increases . Sulch approach, however, does not provide the directional information necessary to

construct the interpolation conditions. Here we present an extension of the ideas in [36] by

looking at the structure of the nullspace of To,,,(H) for increasing values of a. Such approach

has strong connections with the general interpolation theory of rational matrix functions [1, 2].

In particular, it exploits the analyticity of the matrices U and V in the disk.

The following definition establishes some terminology [1].

Definition 3.2 Given an m x n (real) rational matrix H(A) analytic at Ao, a right null chain

of order a at A0 is an ordered set of column vectors in IRn , {x 1 , X2, ... , }, such that xr1 0

and

Tio,.($) x, =O

Similarly, a left null chain of order a at Ao is an ordered set of row vectors in Rm', { yl, y2, ..., y

such that Yji y 0 and

Yi

Theo ,o ( H T ) Y =- O

Ya

The next Theorem shows that, if fI is square, the existence of a right (left) null chain of order a

at Ao is equivalent to the existence of a zero at A0 of algebraic multiplicity oa. It is an extension

of Theorem 1.12 in [21]. Later, we will establish a complete equivalence between the structure

of a zero and the null chains associated with that zero.
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Theorem 3.2 A full rank, n x n, rational matrix HI(A), analytic at A0 , has a zero at A0 of
geometric multiplicity I and a sequence of structural indices equal to, at least, ao_t+l,..., a,

(al = cr, = = O) if and only if the following conditions hold

1. There ezist i polynomial vectors, fi, ... , 1i, such that

(HfLj)(k)k(Ao)=0 for k = 0...a,_l+j- 1 j=1,..., 

2. The set of vectors {fil(Ao), ... , il(Ao)} is linearly independent and

span{iLi(Xo),..., fii(Ao)} = .Af[H(Ao)]

Proof Necessity follows directly from the Smith-McMillan decomposition of H(A):

H(A) = L(XA)Mf(X)R(A)

Say that the jth entry (j > n - l + 1) on the diagonal of 3Al has a factor (A - Ao)°j. Then, pick

fij-,+l to be the jth column of R-'. With this choice

Hfj_,-+l = H(R-r1 ) = (A - Ao)JiLPj_1 +. Vj = n - + 1,..., n

where pj-,+l(A) is a rational vector analytic at Ao. Clearly, this implies that (tftlj_,+l )(k)(o) =

0 for k = 0,...,aj - 1, and further the set {6 1(Ao), ... , il(Ao)} is linearly independent since

1? is unimiodular and spans the null space of H(Ao).

The proof of sufficiency is not as straightforward. Let j := Hij j 1,..., I and define

the following auxiliary rational vectors:

:(gal j)(A) , vj(A) := (Ruj)(A) j = 1,...,1

Then, we have that yj(A) = MI(A)ij(A). Note that a 1(Ao) .- il(Ao) are linearly independent

if and only if Oil(Ao) ...-- (Xo) are linearly independent since R is unimodular. Further, since

multiplication by a unimodular matrix preserves the zero structure, this direction of the proof

can be restated as follows:

3 Oj(A) such that Ol(Xo) *..* -(Ao) are linearly independent

and y}k)(Ao) = 0 ,k = O...z,n-l+j-1

3 (A - Ao0)-'+j in the n - I + j diagonal entry of Ml(A)

Now, it follows from above that

yj(A) = (A - Ao) <-I+pij(A)

Let Qj(A), j = 1,..., n be the diagonal entries of the matrix il. It immediately follows that

(. * ) (i (A) .*. 0(xA)) = (pl(A) ... P(X)) (- 

(15)



First, we show that the matrix (9il(Ao) ... 1(Ao)) has the structure

(v(%0 )) (16)

The top zero block results from the fact that the matrix M(1f(o) has a null space of dimension

I (otherwise there will be more linearly independent vectors than 1), hence il, ... , e_ do not

have zeros at A0. From Equation 15, it follows that for all A

(en-+1 . (A - A) 1..+ )

where the matrices V and P are obtained from the decompositions

and

( (A) ... P

Let

/ en-1+1 (A - A/o)°--,+,

= En4+l (( A), D-= )

En (A -A)

Then, from Equation 16, it is clear that Vr(Ao) has full rank. Let R1 , /R,2 be unimodular

matrices such that

VR1 = L where L is lower triangular

and

R 2 P = U where U is upper triangular

From this, Equation (17) can be factored as follows

EL = -1 UDR

Clearly, the matrix EL has the same zero structure as the matrix UID. By direct computation

of the Smith matrix of fUD, it follows that (A - Ao)t-~'+j is a factor of jth diagonal element.

Since L has full rank at A0, it follows that (A - Ao)e--L+j is a factor of e,_l+j. This completes

the proof. U

Note that a similar result holds for left zeros simply by replacing H with ft T . The following

corollary restates the result of Theorem 3.2 in terms of null chains.

Corollary 3.1'A full rank, square, rational matrix H(%A) analytic at A0 , has a right (left) zero
at A0 of (at least) algebraic multiplicity a if and only if there exits a right (left) null chain of
order a at A0 .

Proof Both directions of the proof follow immediately by equating

iL(A) = 1 + (A - A0 )x 2 + + (A - Ao ) to'X

12



Note that if ft has a right zero of geometric multiplicity greater than one, say 1, then there

are I different right null chains (not necessarily of the same order), such that the span of the

zl's equals the nullspace of H(A 0 ). Let z i (yi) denote the ith right (left) null chain of order

oi, then the following definition applies [1]:

Definition 3.3 A canonical set of right null chains of t-(A) at Ao is an ordered set of right

null chains, i.e., xzi = (zx ... x.) for i 1,..., 1, such that

i) {x1, x~,..., ~ } are linearly independent,

ii) span{xlX2,...,zI} = -J[H(Ao)], and

iii) al > a2 > ' _> al.

A canonical set of left null chains is defined similarly.

Next, we show that the zero interpolation conditions of Theorem 3.1 can be stated( in terms

of the canonical set of right null chains of V and the canonical set of left null chains of U at

each A0 E Auv. For that we need to introduce an extension of the above definition.

Definition 3.4 An eztended set of right null chains of a full rank n x n rational matrix

Ht(A) at A0 , is a canonical set of right null chains augmented with n - I vectors in 1R' , i.e.,
{x+l,. .. , xj}, such that the span of {x 2 x, . .., x is equal to lR

n . The order associated with

these added chains is zero.

From the above definition, if a square rational matrix has no zeros at A0 , then the corre-

sponding canonical set of null chains is empty and the extended set is a basis for IR', e.g., the

columns of an n x n identity matrix.

Next, we apply the above results and definitions to the zero interpolation conditions of

a one-block problem. In the context of Theorem 3.1 we have the following equivalence: for

j = 1,...,ny and k = O,...,arvj - 1,

(V)j()(Ak)()= 0 T ,()z Yi + = 0

where xi is an extended set of right null chains for V at A0. The sequence of zi's has to be

reversed in the above equation due to the fact that oav is a non-decreasing sequence of algebraic

multiplicities while an extended set of null chains is defined with the opposite ordering. Note

that if avi = 0 then both conditions are satisfied trivially (i.e., there are no conditions).

Similarly, for i = 1,.. ., n, and k = O,..., cu - 1,

(&i)(k) (AO) = 0o T,,,,I (TT)yni+l = 0

In other words, the extended set of left and right null chains are locally (i.e., for each Ao)

equivalent to the polynomial vectors &i's and /j's. Having made this observation, we are

ready to present an alternative set of zero interpolation conditions.

Given an element of an extended set of right null chains at A0 , ax, of order aj, define the

following polynomial vector:

,,(A): x=X + J) + Ao)x + (A - Ao)'j-x

if crj > 0, and o (A) :-= x if aj = . Similarly, define yO(A) for an element of an extended

set of left null chains, yJ, of order ai. With this notation we have the following corollary.

13



Corollary 3.2 Given a one-block problem, the zero interpolation conditions of Theorem 3.1

are equivalent to the following: for all Ao E Auv,

i= 1, . . . , nu

(yRiJ)(k)(o) = 0 for j 1,...,n
k 0= O,..., auv (o) + ovj (O)- 1

where yi and x j are elements of the extended sets of left and right null chains of U and V

respectively, and oaui and av, are the corresponding orders (i.e., algebraic multiplicities).

Proof Follows directly from Theorems 3.1 and 3.2, and from the above definitions. 1

3.2 Computation of Null Chains

This subsection discusses a simple algorithm to compute the extended set of null chains at A0

of a full rank square rational matrix analytic at A0. Let H(A) denote an n x n rational matrix

and assume that A0 is given, then the algorithm is based on the computation of a basis for the

nullspace of Tx0,,,(f) for increasing values of a.

Consider the construction of an extended set of right null chains. By Definition 3.2, given

some positive integer a, any vector in the kernel of Tx , ,, (f) such that x1 4 0 is a potential

member of the set. Let B, denote a matrix whose columns form a basis for the right nullspace

of Tx, 0 .(H), then the following algorithm generates an extended set of right null chains:

Step 1: Compute Be for o = 1, 2,... until the top n rows are filled with zeros (no more null

chains can be extracted at this point). Then the maximum order of any chain, o-1, is

given by the current value of the counter (a) minus one. Note that, by C'orollary 3.1, this

iteration process is guaranteed to stop since the rational matrix H is finite dimensional

(i.e., its zeros have finite algebraic multiplicity).

Step 2: Let bi for i = 1, ,..., r denote each colunm of B. 1. Reduce the dimension of the bi's

by removing all sets of n contiguous zeros at the top of each vector. The result is a

collection of r vectors (possibly of different dimensions) such that the top n entries of

each one define a non-zero vector in IRn. (Note that at least one will have dimension

no . )

Step 3: Sort the resulting vectors in decreasing order of dimension. Let I be the rank of the

n x r matrix that results from collecting the first n rows of each vector. Then, select the

first I vectors such that the reduced matrix that results from collecting the first n rows

of each vector has rank 1. Such collection forms a canonical set of right null chains.

Step 4: Extend the set by augmenting the collection with n - I vectors such that the set of in

vectors formed with the first n rows define a basis in Rn.

If the system H-(A) is given in state-space form, say [A, B, C', D], then the Toeplitz matrices

TlA,,,(- ) can be easily computed using the following equation (see Definition 3.1):

H- 1_ AoC(I-AoA)- 1B+D for k=0

k =1 C(I - AoA)-k-lAk-lB for k = 1,2,...

Note that (I - AoA)-l always exists since A0 is in the unit disk and H is stable (i.e., analytic

in the closed unit disk). A word of warning is necessary, however, when A0 is close to the unit
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circle and A has a stable eigenvalue that is also close to the unit circle and next to Ao. Such

cases may give rise to numerical difficulties. Besides this fact, the rest of the algorithm only

involves the computation of nullspaces that can be done efficiently through the well known QR

or singular value decompositions [22].

3.3 A Simple Example

In order to illustrate the workings of the algorithm introduced in the previous section, a simple

example is presented. Let fH(A) be a 3 x 3 polynomial matrix given by:

(A - 0.5)2 A(A + 2)(A - 0.5) 0

fH() = ( - 0.5)3 A(A - 0.5) 0

0 0 A2

We have chosen a polynomial matrix just to make the example tractable without the aid of

a computer. Let us construct an extended set of right null chains for the zero at ,\o = 0.5.

According to step one, we compute the nullspace of Tx 0,,,(H) for cr = 1, 2,.... In particular,

for Co = 3 we have:

0 0 0 0 00 0 O O O 0 0

0 0 0 0 0 0 0 0 0 0 0 0

O 0 .25 0 0 0 0 0 0 0 0 0

0 .5 0 0 0 0 0 0 0 0 0 1

T 0 .5 ,3 (fH)= 0 .5 0 0 0 0 0 0 ; B 3 = 0 0 0
0 0 1 0 0 .25 0 0 0 O 0 O

1 1.5 0 0 .5 0 0 0 0 1 0 0

0 1 0 0 .5 0 o 0 0 0 1 0

0 0 1 0 1 0 .25 0 0

Clearly, the first three rows of B3 are zero so we stop increasing a. Then, the maximiun

algebraic multiplicity of A0o = 0.5 is two, i.e, al = 2. Next (step 2), reduce each column of B 3

by eliminating the leading blocks of zeros to get:

1 0 0

bl = 0 ; b2 = i ; b3 = j

0 0 

Then (step 3), reorder the set of vectors in decreasing dimension, i.e., {b3 , bl, b2 }, and compute

the rank of the matrix formed with the first three rows:

= rank 0 0 1 2
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Then, the canonical set of right null chains is given by {xl, z 2} where

x1 = and X=(2 1

with their corresponding orders (i.e., algebraic multiplicity) being al = 2 and a'2 = 1. This

indicates that the geometric multiplicity of A0 is two. Finally (step 4), to get an extended set

of right null chains we augment the collection with x3
= (0 0 1)T having order 03 = 0 (by

definition).

4 Duality and Existence

With Theorem 3.1 we have established a compact algebraic characterization of the set S.

Next, we need to interpret these results in the context of Equation (7), which calls for the

identification of the subspace of C' "X- which annihilates S.

Following the approach in [11] and [291, we write the zero interpolation conditions as
functionals acting on R. Indeed, for all (i, j, k) in the ranges established in Theorem 3.1, for
1 = 0,1,..., and all Ao E Avv, define RFijk,o and IFijk,o in nz- xnu. such that

[RFijk, o()]qp := E iCq(S - i)/3p(t - S)R[(At)(k)] (18)
t=O0 A=0o

and

[IFijkAo(l)]qp := E aiq(s - l)ppj(t - s)![(At)(k)] (19)
t=O s=0 AX=Ao

where R(A) and !(A) denote the real and imaginary part of A respectively, and aiq denotes

the qth column of ati while ppj denotes the pth row of/,j. By straightforward algebra it can be

shown that (R, RFijkxo ) = 0 and (R, IFijkA,) = 0 if and only if R satisfies the zero interpolation

conditions of Theorem 3.1. Note that only a finite number of sequences are required, thus the

subspace spanned by the sequences associated with the zero interpolations is finite dimensional.

In fact, the number of functionals is given by:

nY n,

c := E E E ao() + 7+j(AO) (20)
AoEAuv i=1 j=1

A note should be made on the way cz is computed. If a given A0 E Airty is complex then
Ao E Auv too, since U and V' are real-rational. However, for the purpose of constructing

functionals, only one of each pair of complex-conjugate zeros should be considered since the

other one would generate redundant functionals. But, for the purpose of counting the number

of independent functionals (i.e., computing cz), both zeros should be included in Airv, since a

complex-conjugate pair of zeros generate twice as many functionals as a real zero.

Next, we look at the rank interpolation conditions (i.e., conditions in ii)). Again, these

algebraic conditions can be viewed as convolution of sequences. For i = n, + 1,..., nz and
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q = 1,..., n,, define the following sequence of nz x n, matrices:

qth column

X,,qt(l) := ... 0 aT(t-t) 0 ... 0 (21)

where t, 1 E Z+. Similarly, for j = ny + 1,..., n, and p = 1,..., nz, define

' 0 ...

jp( ... 3(t l) ... }pth row (22)

.0 ...

0

Then, (R, X,,qt) = 0 and (R, X 3jpt) = 0 for t = 0, 1,... if and only if R satisfies the rank

interpolation conditions of Theorem 3.1. Note that, in contrast with the zero interpolation

sequences, the linear span of the Xaiqt's and XSpjt's is infinite dimensional since for every

(i,q,p), t can take infinite values (i.e., t E Z+).

The next theorem gives a sufficient condition for the existence of an optimal solution to

(5). The proof is omitted since the arguments involved are essentially the same as those in

[11, 29].

Theorem 4.1 If every A0 E Auv is strictly inside the unit disk, then there exists R ° E S such

that

j° = IIH - R°lll = inf IIH - Rill
RES

Note, however, that the above result is more general than that in [29], where it is assumed

that U and fV have square partitions with no zeros on the unit circle. Such extra assumption

was avoided by determining the full set of interpolation conditions directly from the Smith-

McMillan decomposition of U and V.

5 £1 Optimization and Linear Programming

Tlis section will establish the ecqlivalenc between the primal-diial pair of optilmiation prnh-

lems (5)-(7) and a primal-dual pair of infinite dimensional linear programs.

By definition, So C en 'xn-" is the linear span of the sequences (18), (19), (21) and (22),

and G is any element in that subspace with infinity norm not greater than one. That is,

G E span{RFijkA, IFijkAo,X caiqt, X1jpt} (23)

with the appropriate index ranges.

In order to bring (5) and (7) into a standard linear programming form, it is convenient

to redefine the notation, the purpose being to express both the objective and the feasible

subspace in (infinite) matrix form. This is possible since the constraints that specify the feasible
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subspace S are no more and no less than an infinite collection of linear functionals annihilating
the sequence R, which can be expressed as an infinite collection of equality constraints on the

elements of the sequence 4'.

To bring the primal objective function Ill111 into linear form and avoid the non-linearity
built into the one norm, we use a standard change of variables from linear progranmming: let

4 = - + - '-,where A+ and 4- are sequences of nz x nw matrices with non-negative entries.

That is, with a slight abuse of notation, ,A+ > 0 and a4- > 0. Then, the fl norm of 4
takes the form max E 1 (n, eo o(+(t) + Ois(t)) which is linear in (4+, 4-). This expression

holds only if, for any (i, j, t), either O+ (t) or Oi.(t) is zero, which is a guaranteed property of

the optimal solution. Indeed, if a feasible solution is such that ++t(t) and O (t) are strictly

positive, then reducing both variables by min(o+t(t), -(t)) reduces the value of the cost and

does not violate feasibility since the difference remains the same, and further, one of the two

variables becomes zero. Therefore, the optimal solution will always be such that either 0+:+(t)

or 7t.(t) is zero. Note that this transformation doubles the number of variables representing

the closed-loop response.

Consequently, the primal problem (5) can be restated as follows:

,° = inf ,
/,','2 ,,-

subject to
fnu, oo ' (24)
EZ Z( j(t)± + ij(t)) < + for i= 1, . . nz

j=l t=O

4 -HES

Next, we shift attention to the linear constraints representing the feasible set. From the
previous discussion it is clear that a given 4' is feasible (i.e., there exists a stable Q such that

' = H - UQV) if and only if

f A0 E Auv

(4, RFijkAo) = (H, RFijkXo) for i= 1,. . nu 25
(', IFijko,) = (H, IFijkAo) j = 1,...,n

k = o,..., u, (Xo) + avj (Xo) - 1

and
i = n + 1,...,nz

K4`'-~,Xaiqjt) = ny + 1,,n n,
{ (4,Xpt) (HXa t) for q =1,.. n (26)

t = 0, 1,2,...

Each of these equations can be viewed as a linear equality constraint on the sequence 4.

At this point it is convenient to drop the tensor notation used so far and introduce a more

compact, computer-ready matrix notation. Let Mij denote an infinite matrix mapping fl to

IRCz, formed by collecting those coefficients of the zero interpolation functionals that act on

the sequence Oij. Similarly, define fllj to be an infinite matrix mapping fl to fl , formed

by collecting those coefficients of the rank interpolation functionals that act on Oij. With this

notation, the set of feasible closed loop maps is characterized by the following set of equality

constraints:
nz. n up nl, n,

~ Mijqoij = E E Mijhij =: bl E IR. *' (27)
i=1 j=1 i=1 j=1
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E E Kijoij = lE E flijhij =: b2 e (28)
i=i j=l i=1 j=l

Therefore, the primal optimization problem (5) is equivalent to the following infinite di-

mensional linear program:

p := min L

subject to
ntw, o

((i) + E E ++i(t) + 0i,(t) = for i = 1,.., n
j=l t=O

n.: n-w, (29)

LEM ,ij(o -tJ ) = b
i=1 j=1
n, n,

C > ~ii(ot O- ij) = b2
i=1 j=l

where t E IRnz is a positive vector of slack variables. Note that the above linear program is

infinite dimensional in the number of variables (i.e., dimension of any jij) and the number of

constraints (i.e., dimension of b2 ).

In order to complete this discussion, it remains to show that problem (7) is also equivalent

to a linear prograimning problem. In fact, it can be shown that such problem corresponds to

the standard dual formulation of problem (29). To illustrate this fact, we will simply write the

dual form of (29) and compare it to (7). Let 'y E e denote the sequence of dual variables. To

get more insight into the dual problem, let us partition y according to the natural partitioning

of the set of equality constraints. That is, let -Y =: (-yo Y1 72) T , where 0o E IR.' :, Xl E IRcz

and 72 E eoo (it is convenient to have the sign of yo changed). Then, the standard dual linear

program of (29) is given by:

= max (bl,-y) + (b2, 2)

subject to
nz

7o >_ 0 , E 0(i) < 1 (30)
i=1

i=l,..,nz

-yo(i) < (MZjT3 + lT72 )(k) < -(i) for j 1,

k = 0, 1,...

If one compares the above linear program with problem (7), the following relationships become

apparent: 1) y1 and 72 are nothing but the coefficients that combine the linear functionals asso-

ciated with the zero interpolation conditions and the rank interpolation conditions respectively

to obtain G; 2) the objective function results from expanding (H, G) when G is expressed as a

linear combination of the elements in the generator of S' with coefficients (71, 72); and 3) the

set of inequality constraints is equivalent to [IGIKo <_ 1, while the second line of inequalities

bounds G componentwise, the first line bounds the matrix co-norm of G by one.

6 One-block Problems

One-block problems have a very specific interpolation structure, namely no rank interpolation

conditions. From a primal formulation point of view (see Equation (29)), this simplifies the
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problem significantly by bringing the number of equality constraints down to a finite value,

namely cz + nz. There remains, however, an infinite number of variables represented by the

qij's in f, . Nevertheless, it has been shown by looking at the structure of the dual problem,

that the underlying problem is finite dimensional [9]. Indeed, the dual formulation has an

infinite number of inequality constraints but retains a finite number of variables:

p0 = max(bi, -i)
Yo,Y1

subject to
nz

To > 0; o (i) < 1 (31)

i = 1,...,nz

-yo(i) < (MSTy)(k) < yo(i) for j =l,...,nw
k = 0, 1,...

Recall that MTI is the matrix representation of an operator mapping IR¢C to f, . However,

with Assumption 1 holding, the actual range of MT is in co since each of the colitmns of M 5T is

in co and there are only finitely many of them. This is exploited in the following lemma from

[34):

Lemma 6.1 Let M be a full column rank infinite matrix mapping fRn to co. Then there exists

a positive integer N such that

ll(I - PN)Mxlloo < IlPNMxiKo

for all non-zero x E 1RW.

Note, in particular, that N is independent of x and is only a function of lM.
In other words, given a matrix mapping a finite dimensional space to co, it is always possible

to bound the index at which the infinity norm of any sequence in the range is achieved.

The following theorem extends a result from [9] by exploiting this structure.

Theorem 6.1 The exact solution of a one-block £l-optimal control problem is given by the

following finite dimensional (dual) linear program,

pL = maxhbl, l)

subject to
nz

To > , ZO o(i) • 1 (32)
i=1

-70o(i) < (MTy 1 )(k) < o(i) for j 1' 71w

k = O,..., Nij < cX

Proof Form matrices MT as defined before. Assume they have full column rank (if not

reduce the number of columns). Apply Lemma 6.1 to each MTi and let Nij denote the cor-

responding index bound. Then, we claim that for every feasible solution of problem (31) all

inequalities of the form I(MlTi1)(k)l < 7 0 (i) for k > Nij are inactive constraints (i.e., the

inequality is strict) and they can be ignored in the solution. Indeed, by Lemma 6.1, if there

is an active constraint for k > Nij, then there must have been a violation of a constraint for
some k < Nij since the feO norm of the sequence AMTmy1 is attained before V1ij and is always
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bounded by yo(i). U

This fact has an immediate and important implication on the primal linear programming

formulation of one-block problems. Due to the alignment conditions, if a dual optimal solution

is such that all inequality constraints are inactive for k > N, then the primal optimal solution

is such that it vanishes for k > N.

Corollary 6.1 For any one-block problem, the fl-optimal closed-loop response, °V, has finite

support (i.e., finite pulse response). Furthermore, each entry Gij has support no greater than

Nij .

Note that the Nij's provide apriori bounds on the lengths of the optimal Oij's, Moreover,

these bounds are independent of H and only depend on the zero interpolation structure of the

problem.

We conclude this section with an interesting property of most one-block problems, regarding

the fl -norm of each row of the optimal solution.

Corollary 6.2 Given a one-block problem, if for some i E {1,..., n:} and j E {1,..., n, the

matrix ATij has full column rank, then 11(4°)illl = t °

Proof Assume II()o)illl < Lo , then ((i) > 0. By the alignment conditions, this implies that

yo(i) = 0, and in view of Equation (32) and the rank condition on M/iT , y1 must be zero. But

this implies that t°o = 0 which is a contradiction. [

It should be noted that there are some pathological cases where the rank condition on MlTII

is violated. For instance, if the given one-block problem is in fact a combination of two or

mnore totally decoupled sub-problems, then some MT's will have entire columns of zeros. In

most cases, however, the solution is such that the norm of each row of I,° ' is equal to L'° . It is

interesting to point out the analogy between this aspect of the fl-optimal solution of one-block

problems, and the equivalent in Ioo optimization. In the first one, the same "gain" is achieved

at all outputs while in the second one the same "gain" is achieved at all frequencies (i.e., inner

solution). These are direct consequences of the corresponding norm definitions. Furthermore,

the analogy extends to the multiblock case in the sense that this property does not hold in

general.

7 Multiblock Problems

The exact solution of the one-block problem rests on the fact that the primal linear pro-

gramming formulation has only finitely many equality constraints (or, equivalently, the dual

formulation has finitely many variables). The multiblock problem, however, is characterized

by a primal and dual formulation with an infinite number of variables and constraints. So, in

principle, one can attempt to get approximate solutions by an appropriate truncation of the

original problem.

There are basically two approximation methods reported in the literature. The first one,

known as the finitely many variables (FMV) approximation, was originally introduced in [11]

and further developed in [29, 34]. It results from constraining the support of the closed-loop

response A, thus providing a suboptimal finitely supported feasible solution to the problem.

In the second approach, known as the finitely many equations (FME) approximation [6, 33],
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only finitely many equality constraints are retained in the primal formulation of the problem,

the solution of which is superoptimal bhut infeasible. Its value is complementary to the first

approach in the sense that it generates lower bounds of the optimal norl, L
O
°.

The next two subsections give a more detailed description of these nlethods along with

their main characteristics. They do not contain new results.

7.1 The FMV Approximation Method

Let N be the order of approximation or support of AQ, then the FMV primal formulation is

given by the following linear program:

vN := min t

subject to
n, N

((i) + E E kt(k) + dj(k)= ~ for i = 1,..., n
j=l k=O

n, nL

Z Z Mkij(O - ;i-) = bl (33)
i=1 j=1

i~- j=l

Ob+(k) = bj(k) = O for k > N

(,+,+, +i- > o

Note that without the constraints t+j(k) = ,jb(k) = 0 for k > N, Equation (33) is equiva-

lent to the full (un-truncated) optimization problem. Clearly, the added constraints will make

FN > 1L° in general. It is yet unclear, however, if the resulting problem is finite dimensional or

not, since we still carry an infinite number of constraints. A closer look at the matrices Alij

will answer this question.

Recall that these matrices represent the rank interpolation conditions (albeit some specific

reordering) of the form (see Theorem 3.1):

/YU+1 aY,,+1

),~= ) *H

\ n OYnz

and

* ( Hny+l * n, )=H*( /3yfl * n)

where the results from the right-hand-side convolutions are collected in the infinite vector b2 .

The matrix representation of the convolution of the ai's and 3j's on the different entries of AP,

say Oij, is precisely given by Ri'ij. Therefore, such infinite matrices will have a band structure

inherited from the fact that the &i(A)'s and /3j(A)'s are polynomials.

In view of this particular structure, forcing Oij(k) = 0 for k > N will make the product

(Mlijgkij)(k) eventually vanish for k > N+constant, where the constant depends on the order of

the polynomials &(A)'s and /(A)'s. If, however, the infinite vector b2 is not zero at that point,

then the equality constraints will be violated for any 4), implying that the added constraints

have transformed the feasible set into an empty set and that the linear program has no solution.

Furthermore, this will always be the case if b2 has infinite support, no matter how large N
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is chosen to be. This leads to the following theorem and corollary (equivalent results can be

found in [29]).

Theorem 7.1 Given a multiblock problem, there exists a finitely supported feasible solution, A1 ,

if and only if ai*H and H*.3j are finitely supported for i = n,+ ,.. ., n and j = ny+l,..., n,.

Corollary 7.1 Given a positive integer N, the FMV problem (33) has a non-empty feasible set

and therefore a solution, if and only if (cri*H)(k) = 0 and (H*/j)(k) = 0 for k > N+constant,

i = nu + 1,..., n, and j = ny + 1,..., n,, where the constant depends on the order of &i and

.j.

It is clear from the above results that there is a class of multiblock problems for which the

FMV method fails regardless of the order of approximation N. Also, given any inultiblock

problem, there is in general a lower bound for N under which the FMV method also fails.

A way to avoid this difficulty is to approximate H arbitrarily close with a finitely supported

sequence (e.g., PkH). Such approach, however, has the effect of increasing the order of the

suboptimal solution and therefore the order of the controller that achieves it.

Without overlooking these limitations, we are going to assume for the rest of this subsection

that the problems at hand allow polynomial feasible solutions and that N is large enough to

capture at least one of such solutions.

Under these assumptions, it is clear that all but finitely many constraints in (33) are

satisfied trivially, so that the problem is in effect a finite dimensional linear program. The next

theorem shows that it has nice convergence properties [11].

Theorem 7.2 In the FMV method, VlN -* o as N -- co.

Besides the necessary assumptions regarding the existence of polynomial feasible solutions,

the FMV approximation method suffers from two other significant drawbacks: 1) Although it

provides un upper bound for a°
o and a feasible solution that achieves it, it gives no information

about how far away from optimal the solution is, and 2) the compensators obtained with this

method suffer from order inflation (i.e., the order of the controller increases with N). These

aspects of the solutions will be illustrated through an example at the end of this section.

7.2 The FME Approximation Method

The first drawback was solved independently in [6] and [33] by introducing a second optimiza-

tion problem, the FME approximation method. Such method further exploits the structure of

the matrices Mij to get lower bounds on Mo. The name stems from the fact that only finitely

many equality constraints associated with the rank interpolation conditions are inclutled in

the optimization problem. The rest are simply ignored. Therefore, the solution obtained will

in general fail to satisfy those constraints that were left out, rendering it infeasible to the

un-truncated problem. A formal statement of the FME approximation problem (in its primal
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form) is as follows:

VN := min At

subject to

( i) + E E t+(k) + 0O(k) = t for i = 1,...,n
j=l k=O

n, n, (34)

E EAlMij(O( - O) = (34bl
i=1 j=l

EA fj(g+-¢ (k)=b2 (k) for k = O,..., N-1 I
j=l

Ot 0+ii > °

This truncation scheme transforms the original problem into one with a finite number of

constraints but still an infinite number of variables. An argument similar to the one used

for the one-block problem shows that the above infinite dimensional linear program is indeed

equivalent to a finite dimensional one. Let Mij,N denote the truncated lifij (i.e., the first N

rows of it). Since Mij,N has only a finite number of rows, then the combined matrix

maps a finite dimensional space to e<, . Moreover, due to the band structure of Alij, all the

columns of the combined matrix are in co and thus the range is in co. Therefore, by Lemma

6.1 and Theorem 6.1, the FME problem is equivalent to a finite dimensional linear program

whose solution has finite support.

The sequence of linear programs in (34) are such that the number of constraints increases

with N. Therefore, VN forms a non-decreasing sequence bounded from above by Ito. The next

theorem shows that it actually converges to °O [34].

Theorem 7.3 In the FAME method, vN -H ato as N -+ co.

Based on these convergence properties, a multiblock problem can be solved iteratively to

any degree of approximation by solving two finite dimensional linear programs, corresponding

to the FMV and FME truncation schemes, at each iteration. The stopping criteria is based on

the upper and lower bounds provided in each iteration. This holds only if there exits finitely

supported feasible solutions to the problem.

7.3 Delay Augmentation Method

Following, a new method is presented by the name of delay augmentation (DA). This method

provides a conceptually attractive and computationally efficient way of solving general mIulti-

block problems, with the added benefit of not requiring assumptions on the existence of poly-

nonmial feasible solutions and with the capacity of generating suboptimal controllers without

order inflation.

The main idea is very simple:

1. augment U and V with pure delays (i.e., right shifts) such that the augmented problem

is one-block,
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2. apply all the machinery developed for one-block problems to the augmented system,

3. reduce it back to the original system and compute the controller.

In more precise terms, partition the original system as follows:

( 11 ] 12 H11 H12 U1
Q_((V(u1 12)(35)

21 ( 2 2 H 21 H 22 U2

where U1 E in xn' and V1 E g, Xn,. Then, augment U and V with Nth order shifts and

augment the free parameter Q accordingly:

K 1,N (12,N H 11 H12 U1 Q11 Q12 V1 2 (36)

( 21,N 422,N H21 H2 2 U2 SN Q21 Q22 0 SN 

or, equivalently,

ON := H - UNQNVN =: H - RN (37)

where UN, QN and VN have the obvious definitions. Clearly, problem (37) is of the one-block

class since UN E e, xnz and VN E en1 Xn,. By expanding Equation (36) we have

O]N = H - UQ 11 V - SNRN . (38)

and

KN 0 U1 Q1 2

Q 21 V1 Q 21VT2 + U2Q1 2 + SNQ22

where the fact that these are all time invariant operators has been used. With this notation we

are ready to define the delay augmentation problem of order N as the following optimization

problem:

LN := inf IIH - UNQNVNII1 (39)

It follows from the above definition that -1 N is a lower bound for y,° since

t N inf IIH - UNQNvV1NYI 1 = inf IIH - UQ 11VII1 = 1
Qii QuEtXflY Qu Et XY

Q12=Q21 =Q22=O

In other words, the extra degree of freedom in the free parameter QN (as compared to Q)

makes the construction of superoptimal solutions possible. Such solutions, however, are clearly

infeasible to the un-augmented problem. Also, it is interesting to note that the extra parameters

(namely Q12, Q21 and Q22) have no effect on the solution PN(k) for k < N due to the presence

of the shift operator in Equation (38). And even more interesting, the term )ll is not affected

at all by the added parameters (note the block of zeros in RN). This observation will let us

construct a suboptimal feasible solution directly from the solution of (39).

Given some positive integer N, let

11 = IIIi = IIH - [UQ 1V - SNfRN|l 

then, clearly

i °t = inf IH - UQVll < IIH - [TUQ1jVlI =: iLN (40)
QEtu Xn

"

Or, equivalently, the solution obtained by making the extra free parameters zero after solving

(39) is feasible and suboptimal to the un-augmented problem. The following lemma summarizes

these results.
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Lemma 7.1 Given a positive integer N and definitions (39) and (40), then

UN <
LO < FIN

where fiN is achieved with Q 1 .'

Before addressing the convergence properties of this method, a word on existence is in

order. Recall that existence is assured if there are no zero interpolations on the boundary

of the unit disk. Now, it may happen that a multiblock problem that satisfies this condition

augments into a one-block problem that does not. Indeed, notice that the left zeros of UN are

given by the left zeros of U1 plus a multiple zero at the origin (due to the block of delays, ANI,

resulting from the A-transform of SN). Clearly, the left zeros of CU are also left zeros of (Ui .

However, UT may have more zeros, possibly on the boundary of the disk. For example, let

rN- ( (A - 1) 0N

At A = 1 the above matrix looses rank, indicating the'existence of a zero at the boundary

of the unit disk. However, reordering the outputs before augmenting with delays avoids this

difficulty:

N = ( (A 10.5) A )

Note that the original U has no left zeros since the rows are coprime.

The same applies to the right zeros of V. In many instances this situation may be reversed

by a proper reordering of inputs and outputs, such that the resulting U1 and V1 have no zeros

on the boundary respectively. In any case, this limitation has little practical implications since

it is always possible to find approximate rational solutions to (39) that are arbitrarily close to

Gu' In view of this, we will make the following simplifying assumption:

Assumption 2: U1 (A) and 17i(A) have no zeros on the unit circle.

Note that under this assumption the results of Theorem 3.1 are applicable. Furthermore, in

the analysis that follows we will be able to exploit the existence of optimal solutions for any N

and thus avoid the epsilon-delta arguments that would result from rational approximations.

By definition, problem (39) is equivalent to the following primal-dual pair:

N = min IIH - RNI1 = sup (H, GN) (41)
N =RNESN GN E S$

IIG1o < 1

It is easy to see that, as N increases, the subspace SN gets smaller and such that

SN SN+1 D .. ' D S (42)

since the only change in the interpolation structure is due to a higher multiplicity of the zero

at the origin. Therefore, '
1
N forms a non-decreasing sequence, bounded from above by pL° .

The next theorem states an interesting convergence result.

Theorem 7.4 Given the sequence ~vN, there exists a subsequence that converges weak* to

some (',. If the optimal solution is unique then the whole sequence converges weak* to it.
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Proof Clearly PN forms a bounded sequence in tz xn, then there exists a weak*-convergent

subsequence MTE N. by the Banach-Alaoglt theorem. Let t'W denote such limit point. As men-

tioned before, INM is infeasible to the original (un-augmented) problem. However, we will show

that ow' is in fact feasible. From Equation (38), after taking the weak* limit, we have:

· = H - (UQ71 V)w - (SN, R,)w = H - U(QO)W* V

where the superscript w* denotes weak* limit. The last term drops since RvN is uniformly

bounded in N. For if {R/N} were unbounded, then {QOi} would necessarily be unbounded to

keep -UN bounded. But this contradicts the fact that tUN is larger than jIHi1 - U1Q'lI.NVIll1.

Therefore, "w' is feasible. To show that Qw' is actually an optimal solution, we need to view

<'o as a bounded linearoroperator from cnZ xnlw to R (i.e., bounded linear functional on co Lnw )

with strong operator limit w' . In such context we have the following inequality (see [25],

page 269):

11 lW111 < liminfll 4 " < VV

Therefore, since Pw' is feasible, all inequalities above are in fact equalities and Q"' = 4°.

Finally, if the solution is unique then the whole sequence converges to (fiO weak*. I

The last claim in the above lemma simply reflects the fact that if there are several optimal

solutions, o", then a sequence of DA problems can be such that kN' (in the limit) "jumps" from

one optimal solution to the other therefore not converging as a whole. Then, a subsequence

that "keeps track" of a single optimal solution will converge weak* to it. This technicality is

unnecessary when the optimal solution is unique.

An immediate corollary to Theorem 7.4 is the following:

Corollary 7.2 The sequence of lower bounds, liNv converge to uo as N - co.

Next, we focus on the convergence properties of the dual sequence GN. In the context

of Equation (41) we state the following Theorem. (Note that Gon as well as Gc° may not be

unique. )

Theorem 7.5 Given the sequence GN, there exists a subsequence that converges weak* in

egnx',l to an optimal solution G °. Furthermore, if the solution G" is unique, then the whole

sequence converges weak* to it.

Proof Clearly the sequence GN is bounded by one. Then, by the Banach-Alaoglu theorem,

there exists a subsequence that converges weak* in t~ X x. Also, from Equation (42) we have

that

S C S 1 C ... C SIN~ _ $+l c_ Nc-

Or, equivalently, GN is feasible to the original (dual) problem for all N. Further, it can be

shown that the feasible subspace S± is weak*-closed [11, 29], then G'N converges weak* to a

feasible limit point, say Gw ' . Therefore,

AN, = (H, G,) - (H, GW" )

But, by Corollary 7.2, PN X- c,, thus, pc = (H, GW). This implies that GW is in fact an

optimal dual solution, GO, since it achieves the optimal value and is feasible.
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If the solution, G ° , is unique then the whole sequence converges weak* to it. U

Next, we focus our attention on the sequence of suboptimal solutions that attain the upper

bound fN. Let ON := H - UQllV, then UN = llNll1 by definition. It is easy to see that

ON forms a a bounded sequence in (1'xn, (if not a1,N and thus tN would be unbounded).

Therefore, there exists a subsequence that converges weak* in f ,Xn. Also, IN is clearly

feasible to the original problem for any N, and since S is weak*-closed [11], then all weak*
limit points are feasible. The question is whether or not the subsequence AiN, = -l~N,llI

converges to 11° in general.

In order to give a proper answer to this question, it is useful to make the following obser-

vation first made in [33]. In Corollary 6.2 we have shown that most one-block problems have

optimal solutions with all row norms equal to 1°. To illustrate why this is not the case with

multiblock problems, consider the following SISO example:

c1 = hi - ulq

where all operators are in fl and iL(A) has no zeros on the unit circle. Let q$° denote an

fl-optimal solution to such (one-block) problem, that is achieved with qO. Next, add a new

row to the problem,

(52 ) h2 ) U2 q

such that Jlh2 - u2q°Jll < 1L° (this is always possible simply by choosing a scalar weight on
the second row of small enough value). Then, it is clear that an optimal solution to the new

two-block column problem is still given by q° and that 11l'211 < 110011 = J°. In other words,
the new row does not affect the optimal solution which is given by the first row alone. In

contrast with a one-block problem with two outputs, a two-block problem with two outputs

has to minimize both outputs with just one scalar free parameter sequence, q. The "shortage"

of degrees of freedom is what makes this situation more common in multiblock problems.

Having noted this behavior, we can present the main theorem concerning convergence of

the upper bound, ifN.

Theorem 7.6 Given a general multiblock problem, let 4bN° converge weak* to an optimal

solution 4o = H - UQ°V such that II(,°)ill1 = °0 for i E 1, ... , nu). Then, -N,, converges
strongly (i.e., in the norm) to ]O as N -- oo, and further, AN -- 1-°.

Proof It is a well known fact that if a sequence x, E tl converges to xz weak*, and

if lx2,,11. 1Wx-'Jlii, then x, converges to xz strongly. However, such result is valid only
for scalar and row-vector sequences in fl (it is easy to think of a counter-example in the

general matrix case). Therefore, we apply it to each individual row of ntN, to conclude the

following: (~B )i converges strongly (i.e., in the norm) to (40)i for all i e {1,..., n} such

that II(V°)ill1 = L°.
At the same time, from Assumption 2, U1 and V1 have full normal rank, so the map from

Qll to 4
l11,N is continuous with continuous inverse, that is

Then, using the fact that It(o);)iI1 = iL, for i E {1,..., nu), we conclude that i1,N, converges

strongly to Al which in turn implies that Q' 1 converges strongly to Q0 and the result follows. I
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The above theorem suggests that the construction of the feasible solution that attains the

upper bound, ON, can be viewed as an attempt to compute the weak* limit of the sequence

N ° by "throwing away the tail" contained in the term SNiR.

It should be stressed at this point, that non-pathological multiblock problems have optimal

solutions where at least n, of the nz rows achieve the optimal norm (a natural extension of

how optimal solutions of one-block problems behave). Furthermore, those rows that do not

achieve the optimal norm can be left out of the optimization problem without affecting the

overall solution, so eventually, the problem can be reduced. In general, however, a well posed

control problem will tend to have none of its rows "redundant", so fN usually converges to

pI° without further considerations. In this context we have the following corollary valid for

two-block column problems of the form:

(J~ 2 ) ( H2 ) ( U2)

Corollary 7.3 Given a two-block column problem, if 11[f4°2J < po then ON is the exact optimal

solution for any N.

Proof Follows immediately from the fact that the first block-row H 1 - U1 Q 1 V is independent

of the extra free parameter. That is,

1,N H1 - U1Q°V

2 = H2 - U2Q°V - SNQOV

Then, for any N we have

IXii,NIi1 _> Al _> _N = max(llLNl1~, II 2P1NII) > II,1LNItI

Thus, equality is attained throughout and the result follows, i.e., Q7 = QO. U

Theorem 7.6 and Corollary 7.3 dictate that a reordering of outputs needs to be (lone so

that the first n, rows of q~ achieve the optimal norm t ° . The question is, then, how to find

a priori which rows of the problem are not going to achieve the optimal norm. A brute force

answer to this question is simply to solve all possible one-block problems formed by taking n,

rows out of the given n, rows. If any solution is such that all the rows that were left out have

smaller norm than the corresponding °", then those rows are the inactive ones and should be

ordered in U2. (In fact these rows can be removed altogether.) However, this approach may

require a considerable amount of work. We will return to this difficulty later.

Two-block row problems, show a similar behavior. Indeed, such problems may have collumns

that are inactive in the optimization process in the sense that they can be removed without

affecting the solution. Note that in the previous case, the phenomenon of inactive rows was

intimately related with the fact that the gl norm on matrices takes the maximum row norm,

which allowed us to easily construct an example.

If the DA method is applied to a two-block row problem such that the columns associated

with 1t2 are inactive, then again the solution ON is exact for any N. However, -t N will not give

the exact optimal norm (although it will tend to it) since the extra parameter contributes in

reducing the norm of io12,N

Finally, let us point out that both forms of redundancy (row and column) can occur in a

multiblock problem simultaneously. This discussion motivates the following definitions.
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Definition 7.1 Given a general multiblock problem, a one-block partition is defined by taking

ny inputs and n, outputs of the full problem, such that the reduced problem corresponds to a

one-block problem with full normal rank U and V.

Definition 7.2 In a multiblock problem, a one-block partition is totally dominant (TD) if

the optimal free parameter Qo obtained from its solution also solves the original multiblock

optimization problem.

It follows from these definitions that, if there is a TD one-block partition corresponding to

the partitions U1 and V1 , then the DA method provides the exact answer for any N. The next

section illustrates some of these properties.

In summary, in the DA method, --N always converges to It ° , and AN converges to ut° if the

first n, rows are active.

8 A Comparison of Methods

This section provides a general comparison of the approximation methods presented, based on

a few simple multiblock examples. To facilitate further study, the first two selected problems

are the same as those treated in other references [11, 33]. Particular attention will be paid to

two aspects of the solutions: first, the support characteristics of the sequence of solutions, and

second, the order of the sub-optimal controller they generate.

EXAMPLE I: Consider the following two-block column problem: given the SISO plant P,

minimize the e1 norm of the weighted sensitivity and complementary sensitivity,

)0 = W2PI(1- -PK)-

where
jP(A) XA(X - 0.5)

(A - 0.1)(1 - 0.5A)

and
0.02 ) 0.004p

1 - 0.2A ' 1- 0.6A

Note that a variable scalar weight on q2, denoted p, has been included. By adjusting p, we

will be able to generate two interesting cases: case (a) where 41 is TD (for "small" p) and case

(b) where both rows are active in the optimization (for "intermediate" p). The workings of

Theorem 7.6 will be illustrated by reordering the outputs and forcing the TD row to be in the

"wrong" place.

The results are presented in tables showing, for each N, the DA lower bound (A/.A). the

DA upper bound (AN) and the FMV upper bound (FiN). The FME lower bound is omitted

since it is equal to /lN in this particular case. In general, however, ANA converges faster than

vN since the delay augmentation method generates more constraints than the FME method

for any given N. These extra constraints are the ones that ensure feasibility of ll11.N. To

illustrate this point, consider the following case:

( ) ( h2 ) (U2 
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where ixl(A) and it2(A) are coprime. Further, assume that fil(A) has an unstable zero at Ao.
Consequently, the FME method generates the following rank constraints (note there are no

left zeros of U):

(1 * U2 - 2 *ul)(k) = (hi * u2 - h2 *u1)(k) ; k = 0,..., N - 1 (43)

Now consider the DA method of order N:

i(2 AN

Let us construct the left zero interpolations for this UN. Multiplying UN on the left by

(it 2 - ti ) we get (0 - ifL AN). This implies that the left zeros of UN are given by the zeros- of

it1 and a zero at the origin of multiplicity N. Further, the directional properties of such zero
are captured by the vector (fi2 - it1). Therefore, the zero interpolation conditions are given

by Equation (43) plus the following:

1,(A 0) = hl(Ao)

Note that this last constraint becomes redundant as N - oo.
In this particular numerical example, however, both lower bounds are equal due to the fact

that the unstable zeros of iil(A) are also zeros of if2(A).

Also included are the support characteristics of 'ON and of the FMV solution along with
the order of the suboptimal controllers that achieve the corresponding upper bounds.

To describe the support characteristics we define a function, len(.), mapping fexm to Z.xm

in the following way: given 9 E g"xm, then [len(,~)]3j is a non-negative integer equal to the

maximum k for which Oij(k) is not zero, plus one. Also, we denote the order of a controller K

by ord(K).

Case (a): In this case let p = 1 and keep the same ordering of outputs as above (i.e., sensitivity

first). The results are shown in Table 1. Clearly the solution given by the delay augmentation

method is exact since the upper and lower bounds are equal for any N. Then, in the context

of Corollary 7.3, the first row corresponding to the weighted sensitivity is TD. Indeed, a simple

computation shows that qIkIll = 0.72040 < l 822. Note how the support of the second

row of the augmented optimal solution increases with N while the first row remains constant

and equal to the optimal of the un-augmented problem. Since the controller is computed from

the first row only, it is also exact and constant as N increases. In contrast, the FMV solution

has increasing support on both rows, thus generating a suboptimal controller of increasing

order that approximates the second order optimal controller. Note that for some N's, the

FMV problem has no solution (indicated with a dash) since the feasible set is empty.

Next, consider the same problem but with the outputs reordered (i.e., the complementary

sensitivity in the first row). Table 2 shows how violating the conditions of Theorem 7.6 affects

the convergence of the upper bound (note that the lower bound does converge as shown in

Theorem 7.4). Although the upper bound does not converge, it is interesting to note that for

N > 2 the length of /2 N, (i.e the weighted sensitivity) locks at a value of 3, which coincides

with the length of the optimal solution. This seems to be a general characteristic of the DA

method as we shall see later. At the same time, there is a clear order inflation on the sub-

optimal controller due to the constant increase in the length of ai,N. (Note: FMV results are
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DA FMV

N iLtN len( 0)T ord(K) PN len(r )T ord(cK)

1 0.78222 0.78222 (3 2) 2

2 0.78222 0.78222 (3 3) 2 - -

3 0.78222 0.78222 (3 4) 2 1.31912 (4 4) 4

4 0.78222 0.78222 (3 5) 2 0.97459 (5 5) 5

5 0.78222 0.78222 (3 6) 2 0.87547 (6 6) 6

6 0.78222 0.78222 (3 7) 2 0.83292 (7 7) 7

Table 1: Comparison of Methods: Example I, case (a) where the first row is TD.

not included in Table 2 since such method is not affected by reordering.)

Case (b): Let p = 6 and place the sensitivity back in the first row. For this weighting, both
rows are active in the optimization as shown by the gradual convergence of the upper and

lower bound (see Table 3). Note that, even though the controller order growth is comparable

in both methods, the support characteristics are quite different. Most interesting, the length

of k, N remains equal to 4 for N > 2 suggesting the possibility that, by changing the order of

the outputs, a low order sub-optimal controller can be computed. This is in fact the case, as

shown in Table 4. (This procedure does not apply to the FMV method since the sub-optimal

solutions obtained by this method are such that all entries of '(k) are supported at k = N.) It

is interesting how in both cases (a) and (b), a proper ordering of the outputs results in a much

better approximation of the solution (exact if one row is TD) in the sense that, after some N,

the sequence of sub-optimal controllers are of fixed order and asymptotically approaching the

optimal one. This is not an isolated case. Many other multiblock problems for which reliable

numerical approximations were computed behave in this way when solved by the DA method.

In other words, given a general multiblock problem, there seems to be a one-block partition

that preserves a polynomial optimal solution, and further, such support structure is eventually

captured by the delay augmentation method for a large enough N. Then, a proper ordering

of inputs and outputs that places the one-block partition in the first nu rows and ny columns

of 1 (corresponding to U1 and VT1) will generate a sequence of sub-optimal controllers without

order inflation.

These observations suggest that an efficient algorithm for computing low order subh-optimal

controllers can be as follows: given a general multiblock problem,

Step 1: Pick a positive integer N.

Step 2: Solve the corresponding delay augmentation problem.

Step 3: Compute len(4If) and reorder inputs and outputs such that the set of n", x ny input-

output pairs of minimum length correspond to 4 1l.
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N AN I lN len(O )T ord(K)

1 0.22000 1.1602 (3 2) 2

2 0.29195 1.9939 (4 3) 4

3 0.42826 3.1464 (5 3) 5

4 0.55995 3.9859 (6 3) 6

5 0.65664 4.5189 (7 3) 7

6 0.71550 4.8077 (8 3) 8

7 0.74789 4.9504 (9 3) 9

8 0.76483 5.0171 (10 3) 10

15 0.78159 5.1878 (15 3) 15

Table 2: Comparison of Methods: Example I, case (a) where the second row is TD.

Step 4: If reordering was necessary in Step 3, solve the reordered system for the same N.

Then, check the difference between the upper and lower bounds, i.e., Ads - itN. If such

difference is small enough stop, otherwise increase N by one (or more) and go to Step 2.

In order to illustrate the workings of such algorithm we include a four-block example.

EXAMPLE II: Consider the following 2-input-2-output four-block problem where the regulated

signals are the output of the plant and the control sequence (weighted with the scalar p), and

the input disturbances are a disturbance at the plant output with frequency weighting Ti1 (A)

and measurement noise with frequency weighting TV2(A). That is,

(= -(1 - PK)-W 1 PK(1 - PK)-TVW2

pK(1 - PK)-1WI pK(1 - PK)-'W2

where
0.4 1 - 0.75\

1 - 0.6A 1 - 0.25A

p = 0.1 and P(A) is the same as in Example I. Then, the results in Table 5 are obtained by

applying the above algorithm starting with N = 3. For N = 10, the sub-optimal controller

is of order five and achieves a norm that is within half a percent of the optimal. (The jump

in order is most likely due to convergence to another optimal solution.) In contrast, it can be

shown that the FMV method has no polynomial feasible solution for any N (due to the way

tW1 and Ii2 enter the problem). This example shows how the delay augmentation algorithm

can generate low order sub-optimal controllers even when the FMV method has no solution.
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DA FMV

N fiN IL~N len(4° )T ord(K) vN len(° v)T ord(K)

1 0.78222 1.2243 (3 2) 2

2 0.79333 1.2547 (4 3) 3 -

3 0.90230 1.5255 (5 4) 5 1.3191 (4 4) 3

4 0.99522 1.0389 (5 4) 5 1.0564 (5 5) 4

5 1.0015 1.0105 (6 4) 6 1.0121 (6 6) 6

6 1.0024 1.0043 (7 4) 7 1.0044 (7 7) 7

7 1.0026 1.0030 (8 4) 8 1.0030 (8 8) 8

8 1.0026 1.0027 (9 4) 9 1.0027 (9 9) 9

Table 3: Comparison of Methods: Example I, case (b) where no row is TD.

9 Support Structure of Optimal Solutions

Here we explore the support characteristics of the optimal solution in more general terms.
The numerical examples in the previous section suggest that it may be possible to infer the
support of the optimal solution by observing how the superoptimal solutions, /l·ON, evolve as
N increases. Here we make an important step in this direction by showing that such support
structure is "hinted to" by the support of the sequence of superoptimal solutions.

We have already shown that, given a multiblock problem, there exists a subsequence of
super-optimal dual solutions, G ° , whose weak* limit point, GO, is feasible and optimal (The-
orem 7.5). By exploiting this result in combination with the alignment conditions, we will
show that the finitely supported partition of the optimal solution is eventually "captured" by
the sequence of super-optimal solutions. For that purpose we need the following well known
lemma.

Lemma 9.1 If a sequence GN E enoXm converges weak* to G, then for any positive integer
L < oc, IIPL(GN - G)1o. - 0 as N - oo.

Note that the above lemma implies that each individual entry of GN also enjoys this
convergence property, i.e., IIPL(gijN - gij)1| -f 0 as N -- oc, for all i = 1,..., and

j=l,...,m.

Next, let us review the alignment properties of the optimal solutions. Optimality implies

that each optimal solution to the primal problem must be aligned with every optimal solution

to the dual problem. In particular, if an optimal dual solution, G° , is such that

Igij(t)l < max IlgaI of for all t > T

then all optimal primal solutions are such that Si°i(t) = 0 for t > T . Note that, according to
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N PNN fN len( ]ON )T ord(K)

1 0.95745 1.1602 (3 2) 2

2 0.95745 1.1602 (3 3) 2

3 0.98658 1.0586 (4 4) 3

4 0.99889 1.0157 (4 5) 3

5 1.0019 1.0053 (4 6) 3

6 1.0022 1.0031 (4 7) 3

7 1.0026 1.0027 (4 8) 3

8 1.0026 1.0026 (4 9) 3

Table 4: Comparison of Methods: Example I, case (b) with the outputs reordered.

the notation developed in section 5, maxl<j<__D Ilgl,,o is nothing but y7(i). The next theorem

puts all these pieces together.

Theorem 9.1 Given a multiblock problem, if all optimal dual dual solutions are such thoat Igj(T)l -

-yO(i) for some T E Z+ and Ig?(t)l < 7-(i) for all t > T then, for every L > T there exists a

positive integer N* such that 4°j,N(t) = 0 for T < t < L and for any N > N*.

Proof (Note: to simplify notation we drop sub-indices i, j and superindex 'o'.) Given some

L > T, pick e > 0 such that

min (Yo - Ig(t)l)= e (44)
T<t<L

By Lemma 9.1, for every L > T there exists N* such that

IIPL(gN - g)I1o < 2 (45)

for all N > N*. First we prove (by contradiction) that IgN(t)l < ?o,N for T < t < L and for

any N > N*. The result then follows from the alignment conditions.

Given N > N*, assume that IgN(tl)l = ?o,N for T < tl < L. Then, by Equiaftion (411) and

(45),

7O,N - 70 < 1gN(tl)l - Ig(tl)l -- < - --

Therefore,

70 - ?o,N > - (46)

Next, consider the point t = T. From Equation (45) and the fact that IgN(t)l <• ?o,N in general,

we have

70 - 70,N < Ig(T)l - IgN(T)I <
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DA FMV

N N N len(,N) ord(K) Comments UN ord(K)

3 60.453 102.34 ( 5 3 ) 4 Reorder inputs -

3 60.400 81.161 ( 5) 2 Keep order -

4 64.702 81.161 ( 3 ;) 

5 68.284 81.161 ( ) 2 7 )

6 70.721 72.850 (; 5 

7 70.754 71.874 ( 8 5

8 70.888 71.500 (I 1 5 " - -

9 71.040 71.615 ,5 ,

10 71.089 71.408 (2 19) 5 " -

11 71.110 71.146 ( "2 : ) 12 an

12 71.113 71.122 ( 1:1 14 ,,

Table 5: Example II: Delay Augmentation Algorithm

which contradicts Equation (46). This implies that qN(t) = 0 for T < t < L and N > N*
which is the desired result. I

In other words, given the conditions of the theorem above, and for N large enough, there is

a "gap" of zeros (between T and L) in ?yN(t) which gets wider as N increases, i.e., as L
increases. However, T does not change for N large enough, giving a clue on the length of the

finitely supported entries of Vo. The difficulty is that we do not have an a priori estimate of

how large N has to be to capture T.

It is worth pointing out that Theorem 9.1 can be applied to the FMV sequence of suboptimal

solutions too, since the corresponding duals also have a weak* convergent subsequence [34].

However, there is an important difference in the way the DA and FMV sequence of solutions

behave, which was pointed out in the previous section. Indeed, while the FMV solutions are

consistently supported for t > L, the DA solutions are not. This observation was crucial in

constructing low order suboptimal controller. We expand these ideas in the following section.
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10 Observations

This section includes a few observations based on a fair amount of computational experience

using the delay augmentation method and on some intuitive ideas on the problem of ft

optimization in general. It is by no means a formal or precise presentation. It is simply

intended to give some lead into new ideas that might open the way to finding the exact

solution of multiblock problems in general. In particular, a conjecture is stated, establishing a

stronger connection between the support structure of the optimal solution and the DA method.

Observe the way the DA method works. It transforms a general multiblock problem into a

square one, therefore generating polynomial super-optimal solutions, ,'N. Without changing

the order of inputs and outputs, the sequence kO will increase its length as N increases.

However, it was noted in previous examples that not every entry of ON increases its length in

the same way. In fact, a closer look at the sequence §N suggests that the support of some of-its

entries stops changing after some N. This is exactly what happened in Example I, case (a) and

(h), where the support of one of the entries of ON remained the same after some N regardless

of the ordering. In Example II, the pattern also occurs but for N > 12 (not shown in Table

5). Next, note that =1°,N = 11,N since that block of the problem is not affected by the extra

free parameters. Therefore, for each N, §11,N is polynomial. Then, if those entries of Ad that

have constant support after some N are collected (by reordering) in °1,N, 411,N will have

constant support. Interestingly, those entries of constant support seem to be always enough

to define a one-block partition and therefore fill the necessary entries of 11,N. Furthermore,

many multiblock problems seem to have this property.

A multiblock problem in this class can be viewed as dominated by a one-block partition. In

other words, there is an embedded one-block problem that is further constrained by the rank

interpolation conditions. Such constraints, however, are not enough to change the polynomial

nature of the optimal solution corresponding to that partition, although, in general, they have

the effect of increasing its order. With this we extend the notion of TD one-block partitions

where the added constraints due to the rank interpolation conditions were totally inactive.

Definition 10.1 Given a multiblock problem, a one-block partition is partially dominant (PD)

if all fe optimal solutions are polynomial in the entries corresponding to such partition.

Clearly, a TD one-block partition is also PD but not vice versa. Based on this definition

we state the following conjecture.

Conjecture 10.1 Given a multiblock problem with a PD one-block partition, there exists a

positive integer N* such that the DA solution, 9m, for N > N* captures the exact support

of the sequences corresponding to the PD one-block partition. Furthermore, since the actual

linear program splits kN" into the difference of two positive sequences (9P+ and N-9, the sign

of the non-zero entries of the exact solution corresponding to the PD partition is also captured.

That is, for any pair of indices (i, j) in the PD partition, and N > N*,

?ij(k) = o0 ij,N(k) = 0

0?.(k) > 0 0,ijN(k)> 0

<0 0,N(k) < 0

This conjecture is supported by a fair amount of numerical experiments covering the most

obvious combinations (i.e., two-block row and column problems and four-block problems with

different input-output dimensions). At the same time, it is consistent with Theorem 9.1 but
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stronger. Indeed, the conjecture claims that the superoptimal solution will not be supported

for t > L. This conjecture, if proven correct, has interesting consequences. To illustrate some

of the ideas involved, consider the following simple two-block colunm problem:

( 2) ( h2 U2

and assume, without loss of generality, that ui1 and 6i2 are polynomials (this can always be

obtained by polynomial factorization of U). Further, assume that (hi h2 )T is a polynomial

feasible solution and that the outputs are ordered such that 01 is PD. Then we have the

following equality due to the rank interpolation conditions:

u2bl -a ul 2 = u2 - i- lh 2 (47)

Assume that all zeros common to i 1 and u.2 have been canceled out from the above equation.

Clearly, the right hand side of Equation (47) is polynomial, and furthermore, the first term on

the left hand side is polynomial since we assumled that ¢1 is PD. Therefore, the second term

on the left hand side must be polynomial. This implies that two situations are possible: either

q5 is polynomial or it has stable poles that are canceled by stable zeros of i 1.
This observation has interesting implications. On one hand, there is a class of multiblock

problems with polynomial optimal solutions that is characterized by the absence of stable zeros

in ill. Such solutions can then be computed exactly by either the FMV or the DA method. On
the other hand, if i 1 has stable zeros and qO is infinitely supported, the rate at which O' decays

is given by a subset of the stable zeros of u1l. This information could be used to transform

the original problem into a finite dimensional one for which exact solutions are computable.

This approach is currently under investigation. It should be noted that the above ideas can

be easily extended to the general multiblock problem.

Finally, note that if the above conjecture is correct, the DA algorithm would automatically

reorder any TD partition in I11 and provide the exact answer, without the need to solve all

possible combinations of one-block problems (see discussion after Corollary 7.3).

11 A Synthesis Example

In this section we apply the DA method to a specific control problem, namely, the pitch axis

control of the X29 aircraft. The motivation for doing so is two-fold: first, to illustrate the use

of the delay augmentation method in a more realistic problem, and second, to have a first look

at the frequency domain features of an i 1-optimal design (albeit for one particular example).

In order to give some perspective to this presentation, we will compare the characteristics of

the 4I design with those of an Fix, optimal design.

It should be stressed, however, that this particular control problem was not chosen for the

purpose of demonstrating extreme behaviors of the t1 and 7, optimal solutions. Rather, it

was candidly selected as an interesting control problem in general.

The X29 aircraft poses an interesting control problem due to its revolutionary forward-

swept wing design. With such configuration, the center of gravity lies behind the aerodynamic

center of pressure, rendering the aircraft statically unstable. Thus, a control system has to

actively stabilize the aircraft during flight.

We are interested in designing a digital controller for a simple model of the pitch dynamics

of the aircraft. The airplane has three types of control surfaces: canard wings, flaperons on the
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main wings and strakes on the tail. In order to simplify the model, the action of these control
surfaces are lumped into one equivalent actuator with first order dynamics. Similarly, the
gyroscopes and accelerometers are modeled by an equivalent sensor with neglectable dynamics.

Thus, the system can be approximately represented by the following continuous time SISO

plant [35]:
(S) = (s+ 3) 20 (- 26) (48)

(s + 10)(s - 6)) (s + 20) (s + 26)

airframe equiv. actuator overhead

where s is the Laplace variable. The airframe factor corresponds to a simplified model of the

pitch dynamics of the airplane flying at a low altitude and with an air speed of approximately

0.9 Mach. The overhead factor lumps the equivalent low frequency phase lag introduced by
the dynamics that were neglected in deriving the reduced model (48). In particular, this all-
pass factor is an approximate representation of the collected phase lag of the gyroscopic sensor

dynamics, the actuator servo dynamics, the airframe flexible modes, and the digital imple-
mentation (i.e., pre-filter, zero order hold and computing delay) corresponding to a sampling

period At = 1/30 seconds.

Consider the following formal synthesis problem:

inf W 1KS
K stab. IV 2S

where S is the sensitivity function. Such problem requires the discrete time version of Equation

(48) and two weighting transfer functions. The A-donmain model of the plant, P(A), is obtained
by discretizing Equation (48) assuming a zero order hold at the plant input and a synchronized

sampling of the (pre-filtered) plant output. The weights are chosen as follows: let Wl1 be a
scalar equal to 0.01 and let W2(A) be the discrete time version of the continuous time transfer

function (s + 1)/(s + 0.001) for a sampling period At = 1/30. This choice of weights reflects a
trade-off between low frequency performance and the control effort.

Note that a controller designed for the discrete-time model of a continuous-time plant

completely ignores the inter-sampling behavior of the system. An optimal controller designed

in this way is actually sub-optimal for the original hybrid system. This notwithstanding, we
will carry out the design and comparison entirely in the discrete domain (both for 1l and 7-'H

designs), taking the discrete time plant model and weights as the starting point.

11.1 Computing an e1 sub-optimal controller

With this problem set-up we are ready to apply the delay augmentation algorithm as described
in Section 9. Table 6 shows the sequence of results obtained in this case, starting with N = 4.

Note how the length of the response corresponding to the weighted sensitivity stops increasing

after N = 7, suggesting that such row is PD. For N = 80 the achieved f1 norm is within one

percent of the optimal so we stop the iteration process. It is interesting to note how slowly

the upper bound converges to the optimal. This behavior is consistent with the observations

made in Section 10 regarding the rate of decay of a when one row is PD. Indeed, if the first

row corresponding to the weighted sensitivity is PD, then the rate of decay of the second row

is dictated by the stable zeros of it1(A). It is easy to check that such transfer function contains

two stable zeros that are close to the unit circle. Then, if the optimal second row decays slowly,

the extra free parameter (q2) corresponding to the DA solution will be significant even for large

values of N.
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N itN IN N en( + )T ord(K) Comtinents

4 3.254 1256.4 (10 5) 11 Reorder outputs

5 4.024 7.619 (5 5) 6 Keep order

6 4.045 5.059 (5 6) 6

7 4.048 5.052 (6 7) 6

8 4.051 4.652 (6 8) 6

9 4.051 4.319 (6 9) 6 ,,

10 4.052 4.224 (6 10) 6

20 4.053 4.196 (6 20) 6

40 4.053 4.158 (6 36) 6

80 4.054 4.091 (6 69) 6 ,,

Table 6: X29 Synthesis Problem: Delay Augmentation Algorithm

Next, we will compare the time and frequency domain characteristics of the fl sub-optimal

design corresponding to N = 80 with an 7'/.. design. The comparison will be based on three

different aspects of the solutions: 1) operator norms, 2) frequency response characteristics, and

3) time response characteristics.

Table 7 shows how the tl and 7-0, norms of the two solutions compare. As expected, the

7'0, design achieves better /c, norms while the tl design achieves better le norms. A cross

examination shows that both solutions are fairly good in terms of both measures. In fact, this

does not come as a surprise in view of the following norm inequality [5] valid for any stable

11.; loo1 I 111i ord(K)
2.4 5.2

X7/0 design W6KS 2.0 3.3 5

W 2 S 2.4 5.2

___ __ 3.8 4.1

el design W 1KS 2.8 4.1 6

W 2 5- 3.6 4.1

Table 7: Operator norm comparison (At = 1/30)
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Figure 2: Frequency response of S for il design (full line) and '7HO design (dashed line)

finite dimensional system H £E fXq:

IgHJ11.. < _p llHtli < p(2n + 1)v/IllIHJi.

where n is its McMillan degree. Thus, minimizing any of the two norms will also "push down"

the other one, particularly in a low order problem as the one under consideration.

Next, let us examine the frequency domain features. Both designs have fairly similar

frequency domain characteristics as shown in Figures 2 and 3. While the il design has better

disturbance rejection at low and medium frequencies, it overshoots at high frequencies where

the 7-t norm is achieved. In fact, Figure 3 shows that both controllers have very similar

response, the only significant difference being at frequencies close to 7r/At. An interesting

difference, though, is that the tl design results in an unstable controller while the 7-O design

does not. Finally, we compare the weighted and unweighted sensitivity step response of both

designs (Figures 4 and 5). Note how the output of the'plant, y, converges to zero faster in the

fl design than in the 7-,o design (Figure 5). This is a direct result of the smaller weighted

steady state error in the tl design (see Figure 4) and the pole of 1W2 at 0.9999 (almost a pure

integrator).

12 Conclusions

A complete and comprehensive study of the general el-optimal multiblock problem has been

presented. It advances the understanding of these problems both from a theoretical and a
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Figure 3: Frequency response of K for il design (full line) and '14, design (dashed line)

practical point of view.

The paper makes the following contributions:

1) The interpolation conditions are stated in a concise and natural way. As a result the general

theory is developed in simpler terms and with a minimum number of assumptions.

2) Methods for computing the interpolation conditions were tied up directly to matrix theory.

3) Further insight was gained on the structure of the optimal solution which allowed us to

distinguish between different classes of multiblock problems (i.e., problems with TD or

PD one-block partitions).

3) A new method for computing suboptimal (or optimal in some special cases) solutions

was proposed that exploits such structure. With this method, a sequence of suboptimal

controllers can be computed iteratively avoiding (for a class of problems) the problem

of order inflation. Each iteration requires the solution of one finite dimensional linear

program, and generates upper and lower bounds of the optimal norm with the proper con-

vergence properties. In contrast, previously known approximation schemes required the

solution of two linear programs at each iteration, and generated suboptimal controllers

with increasing order. In addition, the DA method unifies the treatment of zero and

rank interpolations and avoids the coprime factorization of U and V (this was required

in previous work [29]). Further, this approach generates a minimal set of constraints

describing the feasible subspace [18].
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Figure 4: Weigthed sensitivity step response for t1 design (full line) and Too design (dashed

line)

4) A result was presented relating the support characteristics of the optimal and super-optimal

solutions, followed by a stronger conjecture.

Several examples were worked out to illustrate the properties of the DA method. In par-

ticular, a multiblock problem corresponding to the X29 pitch axis control was solved. The

operator norms and frequency domain properties of the solutions were compared with those of

a standard 7-Ho design. Although the designs turned out to be quite similar, some differences

were found at high frequencies.

As a final note, let us point out that there are still important open questions to be answer

in connection with fl optimization. From a theoretical point of view, stronger results regard-

ing the support structure of the optimal solution are needed. In particular, a proof for the

conjecture presented. As pointed out before, proving such conjecture could provide the insight

to uncover the underlying finite dimensional structure that the general multiblock problem

may have. Also, the existence in general of optimal rational solutions is an interesting open

question connected to the above.

Finally, a model reduction theory in the context of i1 optimization would be of significant

practical value. Recall that multiblock as well as one-block problems may have high order

optimal controllers (depending on the interpolation data). A straightforward approach to

computing lower order suboptimal controllers results from restricting the appropriate entries

of ' to have fixed finite support. But such approach may be far from optimal. Therefore,
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optimal model reduction techniques would be useful in practical design.
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