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Abstract: This paper presents the application of the cuckoo search (CS) algorithm in attempts to the
minimization of the commutation torque ripple in the brushless DC motor (BLDC). The optimization
algorithm was created based on the cuckoo’s reproductive behavior. The lumped-parameters mathe-
matical model of the BLDC motor was developed. The values of self-inductances, mutual inductances,
and back-electromotive force waveforms applied in the mathematical model were calculated by the
use of the finite element method. The optimization algorithm was developed in Python 3.8. The CS
algorithm was coupled with the static penalty function. During the optimization process, the shape
of the voltage supplying the stator windings was determined to minimize the commutation torque
ripple. Selected results of computer simulation are presented and discussed.

Keywords: heuristic optimization algorithm; cuckoo search algorithm; brushless DC motor; torque
ripple; constrained optimization; static penalty function

1. Introduction

Currently, computational simulations are commonly used when designing the pro-
cesses of technical devices. These computational simulations enable the modeling of the
various phenomena and processes which occur in a device being designed, with a variety
of complexity levels. During the designing process of electromagnetic devices, complex
field models of phenomena in the device can be applied [1–3]. These field models include
equations of: (a) the electromagnetic field; (b) the external supply circuit; (c) the mechan-
ical equilibrium; and (d) the thermal processes in the designed devices. Such models of
these phenomena are created using the finite element method (FEM). The time it takes
to determine a single electromagnetic field distribution in the analyzed devices is very
long [4,5]. Therefore, the optimization process using heuristic algorithms requires a high
computational cost. On the other hand, lumped-parameter models, or analytical models,
are computationally less complex [6–8]. Such types of models are commonly used to
evaluate the correctness and efficiency of new algorithms [9]. They can also be used in the
initial stage of the development of electrical machines.

Decisions made by a designer are carried out automatically. The automation of the
designing processes consists of applying an optimization software (script), where the main
task is to ‘show’ or ‘point out’ the optimal solution. The software usually consists of two
independent parts (the optimization algorithm and the mathematical model of a designed
device) [1]. An optimal solution is a solution fulfilling all the criteria defined by a designer.

In the case of designing electromagnetic devices, the nondeterministic (heuristic,
metaheuristic) algorithms are used most often [9]. The advantage of these methods is that
they allow efficient searching through the space under investigation to find the global
extreme point. Heuristic algorithms are able to search for optimal solutions within a
short time. Some algorithms can be categorized as simple or complex algorithms, which
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are based on interactions within a group of individuals (i.e., a population). Individuals
grouped into a population can compete (e.g., genetic algorithms) or cooperate, sharing
information about the localization of a leader (e.g., particle swarm method or gray wolf
method) [2,10–13].

Nondeterministic algorithms are effective, and are often used to solve difficult prob-
lems arising in the synthesis of the electromagnetic transducers, where a solution is looked
for within multidimensional sets of design variables [14]. Among these nondeterministic
methods, the nature-inspired algorithms are popular and based on observations of phe-
nomena in the natural environment. The most popular and most used algorithms are the
genetic algorithms (GA) and the particle swarm algorithm (PSO). However, the gray wolf
method (GWO), the cuckoo search (CS) algorithm, the ant colony algorithm (ACO), or the
method based on the echolocational behavior of bats (BA) are rarely used methods [15].
Researchers are still looking for new, more effective optimization algorithms, which can
solve the optimization task faster. As a result of this research work, new algorithms are
developed and known algorithms are also modified.

The cuckoo search (CS) algorithm is very often used for optimization without con-
straints [16,17]. A much smaller number of manuscripts have addressed the application of
the CS algorithm when solving constrained optimization problems [18,19]. The external
penalty function can be applied for most of the heuristic algorithms [1,9,11,14,15]. In the
case of using the CS algorithm to solve constraint optimization problems, as in the case of
other heuristic algorithms, scientists should select the method they use to take into account
constraints very carefully. The correct selection of the approach and the individual penalty
coefficient may significantly affect the quality and efficiency of the obtained results [9].
In order to use a static penalty, it is enormously important to choose a constant number.
This constant number must be carefully selected and is dependent on the type of problem
that is being solved. The value of the constant number determines the value of the penalty,
and this is chosen in the preliminary trials of the algorithm [20].

The major research purpose of this paper is to elaborate upon the computer script
for the minimization of the pulsation factor in a BLDC motor. The computer script was
developed in Python 3.8. The novelty of this work can be summarized as follows:

• The CS algorithm was tied with the static penalty function approach;
• The results of our FEM calculations were used to determine the parameters of the

simplified model, which would allow us to obtain more accurate results from the
optimization process;

• The modified objective function is composed of: (a) the main objective function
(electromagnetic torque); and (b) the penalty term representing the required value of
the permissible pulsation factor.

The rest of the paper is organized as follows: Section 2 describes the reproductive be-
havior of the cuckoo and the mathematical model of the cuckoo search algorithm; Section 3
outlines the mathematical model of a brushless DC (BLDC) motor; the optimization task
is formulated in Section 4; Section 5 presents the results of the optimization calculations;
finally, discussions and conclusions are given in Section 6.

2. The Cuckoo Search Optimization Algorithm

2.1. The Reproductive Behavior of the Cuckoo in the Natural Environment

The common cuckoo inhabits territories in Europe and Asia. Adult birds do not pair.
It has been observed that in their natural environment there are more males than females.
Cuckoos do not build their own nests and they do not brood their own eggs. Rather, they
are reproductive predators. In order to propagate their species, female cuckoos slip their
eggs into the nests of different species of birds [21].

A male cuckoo observes other birds in their nests while they incubate their eggs, and,
when the host leaves the nest, the female cuckoo visits, throwing away one of the eggs that
is already there and laying her own egg. These female cuckoos usually choose a species
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of birds whose eggs are similar to those of the cuckoo, including most commonly the
red-ramped parrot, wagtails, the great reed warbler, and the tooth-billed bowerbird.

Sometimes, when the hosts spot a foreign egg, they throw it away. There are also
known cases when, after recognition of a foreign egg in the nest, the hosts decide to leave
the nest for good and built a new nest in another location.

Young cuckoos hatch after around 11 days, which is typically faster than the nestling
period of the hosts. As soon as they are able to move, young cuckoos use their backs to
push the other eggs out of the nest. The cuckoo’s nestlings are typically bigger than the
ones of the host, and so they need more space in the nest, as well as more food. If they
did not push out the other eggs, none of the nestlings would survive because the hosts
would not be able to provide enough food for them all [22]. Female cuckoos typically lay
more eggs than the female birds of the species that they choose for hosts. In the natural
environment, around 35% of cuckoos do not reach adulthood.

2.2. Cuckoo Search Algorithm

The mathematical model of the cuckoo algorithm (CS) was developed by Xin-She
Yang and S. Deb [23]. The cuckoo method belongs to a group of algorithms called ‘nature-
inspired algorithms’. The method was developed based on the of observation of the
cuckoo’s reproductive process. In the mathematical model, the following assumptions are
included [24]:

(1) Each cuckoo lays one egg in a randomly chosen nest;
(2) Nests with the best eggs (i.e., solutions to the problem) are carried on to the next

iteration of the algorithm;
(3) The number of hosts’ nests is constant. A host can discover a foreign egg with a given

probability pa∈(0, 1) [25]. In such a case, a host can remove the egg (the solution is
eliminated) or abandon the nest and build a new one in a new localization.

In this algorithm, the last rule is carried out by replacing some part of the existing solu-
tions with new, randomly generated solutions. Similar to all nondeterministic algorithms,
a starting population is set at the starting point with an equal number of cuckoos. In the
CS algorithm, the nest is a single solution to the problem being analyzed. In each iteration
of the algorithm, 25% of nests change their location, i.e., the pa probability is 0.25 [26,27].
The cuckoo starts from the i-th nest and lays an egg in the new nest, while N denotes the
total number of cuckoos, and n is the nests numbers in the optimization algorithm.

Taking into account the three theoretical assumptions outlined above, the potential
new position of each nest in the current iteration is determined according to Equation (1) [28]:

xi
t
= xi

t−1
+ ακ(λ)

(

xb − xi
t−1

)

(1)

where t is the number of the iteration, α > 0 is the step size scaling factor of the number,
κ(λ) is the Lévy flight coefficient, and xb is the position of the best nest.

The random walk coefficient κ(λ) is drawn from a Lévy distribution [26,29] and
calculated by Equation (2) [30]:

κ(λ) =

√

Ψ

2π
1

t1.5 , (1 < λ ≤ 3) (2)

where Ψ is the constant number.
After determining the new nest locations for a total number of cuckoos, the new

positions of nests with a given probability pa are drawn. The worst nest positions are
removed in each iteration.

The block diagram (in the case of maximization) of the proposed algorithm is pre-
sented in Figure 1. The maximum number of assigned iterations (tmax) was adopted as the
stop criterion.
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Figure 1. Block diagram of the optimization procedure.

2.3. Test of the Optimization Procedure Using a Test Function

The optimization procedure was developed in Python 3.8. The correctness test was
performed using the multimodal Himmelblau’s analytical function. The test function is
defined by Equation (3):

f (x, y) =
(

x2 + y − 11
)2

+
(

x + y2 − 7
)2

(3)

wherein −5 ≤ x ≤ 5 and −5 ≤ y ≤ 5.
The Himmelblau’s function has one global maximum at the point (−0.270845, −0.923039),

where f (x,y) = 181.617, and four local minima at the following points: (3,2), (−2.805118, 3.131312),
(−3.779310, −3.283186), and (3.58428, −1.848126). All local minima are identical and equal
to zero (f (x,y) = 0). The 3D visualization of Himmelblau’s function is presented in Figure 2.

The optimization calculations were performed for the following parameters: there is a
number of cuckoos equal to N = 100, a number of nests equal to n = 125, and a probability
pa = 0.25, while the maximum number of iterations is tmax = 40. The optimization procedure
was run 10 times, and the best results are presented in Table 1. In each successive column
is listed: the number of the iteration (t), the x and y coordinates, the absolute error between
the optimal and actual value of the objective function (∆f ), and the number of calls to the
objective function (Nof).
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Figure 2. The visualization of Himmelblau’s functions in a 3D coordinate system.

Table 1. Results from selected iterations of the cuckoo search algorithm.

t x y ∆f (x,y) Nof

1 2.8881171 2.4550472 3.710164 100
2 3.7677678 −1.9077475 1.825653 225
4 3.7453086 −1.8046252 1.495028 475
6 2.9771054 2.04594154 0.034826 725
8 3.5913946 −1.8473621 0.003278 975
10 3.5913946 −1.8473621 0.002378 1225
20 3.5913946 −1.8473621 0.003278 2325
40 3.5909618 −1.8480482 0.002914 4525

On the basis of the results obtained from the CS algorithm, we can conclude that in
the first iterations, the algorithm-determined solution approximates to the global extreme.
The value of the objective function improves in successive iterations. After about eight
iterations, a result is obtained which is close to the optimal one.

Figure 3 shows the distribution of the cuckoos in selected iterations of the algorithm.
Based on the obtained results, it can be observed that after 25 iterations, the cuckoos are
near three of the minimum points and about the same value as the objective function.
After 40 iterations, all individuals are clustered near two minima points.

Figure 4 shows the distribution of the swarm particles in selected iterations.
Based on the distributions of the cuckoos (Figure 3) and swarm particles (Figure 4) in

selected iterations, it can be observed that the process of searching for the global extreme is
different. The PSO algorithm focuses on and goes towards the selected minimum, while the
CS algorithm looks for a better extreme point throughout the whole optimization process.

If the optimization processes for the PSO and the CS algorithms are compared, it can
be noted that for the PSO algorithm, all individuals in the swarm are moving towards a
leader. On the other hand, for the CS algorithm, the process of focusing around the leader
is much slower in relation to the PSO algorithm. Therefore, for the PSO algorithm, the
external penalty function should be applied. The external penalty must systematically
increase in subsequent iterations [14]. In the case of the CS algorithm, a gentler way of
considering constraints can be employed.
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Figure 4. The distribution of swarm particles in selected iterations: (a) t = 5; (b) t = 25.
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Here, the results obtained using the CS algorithm are compared with those obtained
using the PSO algorithm [31–33]. The calculations were repeated over ten runs for the
same numbers of particles and a maximum number of iterations, as was the case for the CS
algorithm. The following parameters of the PSO algorithm were applied: w = 0.2, c1 = 0.35,
and c2 = 0.45 [14]. Additionally, the best, worst, and mean values of the objective functions
and standard deviations for both algorithms were compared. The results are presented in
Table 2.

Table 2. Comparison of results for Himmelblau’s function.

Algorithm Best Worst Mean
Standard
Deviation

CS 0.002914 0.041602 0.058439 0.010225
PSO 0.004196 0.097256 0.081736 0.092668

Table 2 shows that the best result for the CS algorithm is 0.002914, and for the PSO
algorithm is 0.004196, which indicates that the best is lower for the CS compared to the PSO.
Moreover, better standard deviation and mean values were obtained for the CS method.
The CS method allows us to obtain a solution near to the optimal value for all runs, which
demonstrates that the efficiency of the CS algorithm is good. Thus, the probability of
finding the global extreme is greater for the CS algorithm.

3. Mathematical Model of the BLDC Motor

In the mathematical model of the BLDC model, it was assumed that there are three
concentrated phase windings in the stator of the motor. The magnetic flux in the rotor
is excited by the permanent magnets mounted on its surface. The structure of the motor
and the system of the electronic commutator is presented in Figure 5. The system of
the electronic commutator is built from: (a) a microcontroller; (b) three Hall sensors;
(c) six transistors (T1–T6); and (d) six diodes (D1–D6). The microprocessor supplies the
transistor system with voltage Us. The transistors distribute the voltage Us on each BLDC
phase winding.

































































d
d

00
00
00

Figure 5. System of an electronic commutator with a BLDC motor.

The set of voltage equations for a three-phase motor are given in Equation (4):





uA
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where uA, uB, and uC are the feeding phase voltage of the phases, iA, iB, and iC are the
phase currents, RA, RB, and RC are the phase resistances, ΨA, ΨB and ΨC are the flux
linkages coupled with the phase winding LAA, LBB, and LCC are the self-inductances of
the phase windings, LAB, LAC, LBA, LBC, LCA, and LCB are the mutual inductances between
phases, and ΨpA, ΨpB, ΨpC are the fluxes generated by the permanent magnets linked to
the phase windings.

The distribution of the magnetic field excited by the permanent magnets depends on
the position of a rotor [33]. The flux linked with particularly concentrated windings made
by the permanent magnets is recorded with the use of a dimensionless period function
λ(α) defined in [32], and depends on the number and volume of magnets used in a rotor,
following Equation (6):

[

ΨpA ΨpB ΨpC

]T
= [Ψmλ(α) Ψmλ(α− 120) Ψmλ(α+ 120)] (6)

where Ψm is the amplitude of the ‘linkage’ flux generated by the permanent magnets, and
λ(α) is the dimensionless periodic function.

If the core of the BLDC motor stator is symmetrical, then Equation (7) is obtained
according to reference [34]:





ΨA

ΨB

ΨC



 =





LAA M M
M LBB M
M M LCC









iA

iB

iC



+





ΨpA

ΨpB

ΨpC



 (7)

where M is the mutual inductance between the phases.
In the case where a winding is connected without the zero wire, the voltage equations

are even simpler. The flux equation of phase A is given by Equation (8):

ΨA = (LAA − M)iA + ΨpA (8)

and it is given in this matrix form by Equation (9):

[Ψ] =
[

Lp

]

[i] +
[

Ψp

]

(9)

where [Lp] = [LAA − M LBB − M LCC − M] is the vector phase inductance, [Ψ] = [ΨA ΨB ΨC]
T

is the vector flux linkage, [i] = [iA iB iC]
T is the vector of phase currents, and [Ψp] = [ΨpA ΨpB ΨpC]

T

is the vector of fluxes generated by the permanent magnets that are linked to specific windings.
The full set of voltage equations of the BLDC motor is, therefore, obtained by Equation (10):

[u] = [R][i] +
[

Lp

] d
dt

[i] + Ψmω
d

dα

[

Ψp

]

(10)

where ω is the angular velocity of the rotor, and [u] = [uA uB uC]
T is the vector of the

phase supply voltage.
Assuming, that the electrical power generated in every winding is changed into

mechanical power [35,36], the electromagnetic torque of the motor can be determined by
Equation (11):

T =
1
ω
(eAiA + eBiB + eCiC) (11)

where eA, eB, and eC are the values of back electromotive forces (EMF) inducted in particular
phases [31].

During the analysis of the dynamic states (starting or a load torque change), the
rotational velocity was changed significantly. In this case, it is crucial to include the
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mechanical equilibrium equation in the mathematical model of the motor according to
Equation (12):

J
dω
dt

+ Bω = T − To (12)

where J is the rotor’s moment of inertia, B is the friction constant, To is the load torque of
the motor, and T is the electromagnetic torque generated on the motor shaft.

One of the most important parameters of the permanent magnet motor in the steady-
state analysis is the torque pulsation factor [37–39]. In the proposed mathematical model,
the pulsation factor is calculated by Equation (13) according to [40]:

ε =
Tmax − Tmin

Tav
100% (13)

where Tmax and Tmin are the maximum and minimum torque values, and Tav is the
average torque.

4. Software to BLDC Analysis

The computer software for the analysis of the operating state of the BLDC motor was
developed on the basis of the mathematical model described in Section 3. The script has
been developed in Python 3.8 and Windows 10.

Before starting calculations, the user has to provide the rated data of the simulated
BLDC motor. All the simulation calculations were performed for the BLDC motor with
catalogue number 57BLR50. The rated data of the motor are listed in Table 3.

Table 3. The rated parameters of the BLDC motor.

Parameter Unit Value

Number of poles - 4
Rated voltage V 24
Rated current A 5 ± 10%
Rated power W 84
Rated speed rpm 3500 ± 10%
Rated torque mNm 230

In order to avoid imperfections in the production process of real devices [41], the
values of the phase stator winding resistance, the self-phase inductance, and the mu-
tual inductance between phases were determined by the use of the magnetostatic FEA
model [42]. The FEM mesh with 34960 triangular elements has been applied. The de-
magnetization curve of permanent magnets has been approximated by a linear function.
The backelectromotive forces (EMF) for the stator winding were also determined to esti-
mate the maximum value and obtain more accurate results in the simplified model of a
BLDC motor. The waveforms of back EMF are presented in Figure 6.

As a result of the FEM calculations, the following values were obtained: RA = RB =
RC = 0.624 Ω, LAA = LBB = LCC = 1.123 mH and LAB = LAC = LBA = LBC = LCA = LCB = 4.26 µH.

Only some input data of the optimization procedure were determined by the use of
the FEM model. The time of calculation of FEM parameters is less than 1% of the total
calculation time of a single optimization procedure. Therefore, the numerical algorithm for
determining the electromagnetic field that has been elaborated by the authors was applied.
The algorithm was based on the Newton–Raphson process [43]. There are more effective
methods for calculating the electromagnetic field distribution [44,45]. Due to the relatively
short calculation time, we did not use these methods.
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Figure 6. The backelectromotive forces induced in stator winding.

By using this software, the phase current waveforms and electromagnetic torque
waveforms for the rated supply parameters and load torque equal to TN were determined.
The values of the rotor’s moment of inertia is J = 128 g·cm2, the friction constant is
B = 0.085 mN·m·s/rad [46], and the time step length is ∆t = 0.02 ms. These values were
adopted. A waveform of the electromagnetic torque is shown in Figure 7a. The waveforms
of the phase currents for the rated torque are presented in Figure 7b.

Ω

Δ

ɛ 

  

(a) (b) 

ɛ 

Figure 7. Mechanical and electrical quantities waveforms: (a) the electromagnetic torque waveform for TN; (b) the phase
current waveforms for TN.

The value of the pulsation factor was determined for the simulation time to be ranging
between 0 s and 0.032 s. The value of this factor is ε = 44.32%.

Then calculations were made with the value of the load torque at 0.6 TN, with
ε = 53.19%. The resulting phase currents and electromagnetic torque are presented in
Figure 8.

The simulation calculations for different values of load torque and rotational velocity
were performed. The obtained results of simulation calculations are presented in Table 4.
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Figure 8. Mechanical and electrical quantities waveforms for load torque equal to 0.6 TN: (a) the electromagnetic torque
waveform; (b) the phase current waveforms.

Table 4. Pulsation factors for various load torque.

Tl (mNm) ε (%) n (rpm)

0.0 60.59 4000
50 56.48 3895

100 55.28 3790
120 54.26 3748
150 51.76 3685
170 48.58 3660
200 46.26 3580
230 44.23 3500

Based on the simulation results presented here, it can be observed that a higher
value of pulsation factors was obtained for the lower value of the load torque. A higher
mechanical load increases the mechanical power on the shaft. At constant voltage, the test
machine draws a higher value of current from the stator windings for a bigger load torque.
The value of winding currents depends on the mechanical loading. In order to obtain a
constant value of the pulsation coefficient in the BLDC motor, it is necessary to modify the
value of the waveform’s supply voltages.

5. Formulation of an Optimization Problem

Torque ripples in the BLDC motors are caused by two different phenomena. The first
source of torque ripple pulsation is related to interactions between the stator with slots and
the permanent magnet rotor, referred to as the cogging torque [47]. The second source of
torque ripple pulsation is the commutation process during the exchange of current between
the two phases [48,49]. The commutation torque ripple can even reach about 50% of the
average torque generated by the BLDC motor [49].

The optimization task consists of the selection of the two parameters describing the
shape of a supply voltage waveform in order to obtain the maximum value of the average
torque at the required value of the pulsation factor. Two design variables were taken into
account: s1 = ξ and s2 = τ (see Figure 9a,b). Design parameter ξ determines the value of the
phase supply voltage in relation to the rated phase voltage, while variable τ defines the
time in which the winding is supplied by increased voltage.
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(a) 

(b) 

0

21
21

,,

Figure 9. The waveforms of voltages in the system of an electronic commutator: (a) the supply voltage Us waveform;
(b) the waveforms of phases voltages.

The supply voltage Us waveform is generated by the microcontroller (see Figure 5).
Us voltage is given to the electronic commutator. The controller controls the operation
of an electronic commutator, i.e., a system of six transistors. The power supply to two
phases of the stator winding is performed by switching transistors T1–T6 (see Figure 5).
The two phases of the stator winding are supplied by Us voltage at any time. Then, the
voltage on a single phase is equal to half the voltage Us. The waveforms of the voltages (UA,
UB, and UC) on individual phases are shown in Figure 9b. The phase voltages are input
data in the mathematical model of the BLDC motor. They are used in Equation (4). The
phase voltage values are calculated on the basis of the Us waveform (see Figure 9a). The
shape of the Us waveform is defined by two design variables, s1 and s2. The optimization
procedure through the variables s1 and s2 influences the functional parameters of the motor,
i.e., Tav and the pulsation factor ε.
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The objective function for the i-th cuckoo (the i-th variant of the supply voltage
waveform shape) is given by Equation (14):

fi(s1, s2) =
Ti(s1, s2)

Tav0
(14)

where Ti(s1, s2) is the value of the average electromagnetic torque for the i-th cuckoo, Tav0 is
the value of the average electromagnetic torque after the generation of the initial positions
of the cuckoos/nests.

The optimization problem consists of the maximization of the objective function (14)
taking into account the permissible value of the pulsation factor ε ≤ εp. In the case of
the constrained optimization problem, the primary objective function f (s1, s2) is modified
by penalizing for overstepping the required constraints [50–52]. Thus, the penalty term
p(s1, s2) is added to the primary objective function.

The constant static penalty approach has been taken into account in the developed
algorithm [53], and p(s1, s2) is obtained by Equation (15):

pi(s1, s2) = γ

(

εi(s1, s2)− εp

εp

)

(15)

where εi(s1, s2) is the value of the pulsation factor for i-th the cuckoo, εp is the required
value of the pulsation factor, and γ is the constant number dependent on solving the
task [54].

Finally, the modified objective function [55,56] hi(s1, s2) consists of two components [8]
and is calculated for the i-th cuckoo by the Equation (16):

hi(s1, s2) =

{

fi(s1, s2) for εi(s1, s2) ≤ εp

fi(s1, s2)− pi(s1, s2) for εi(s1, s2) ≥ εp
(16)

6. Results of Constrained Optimization

The constrained optimization calculations were performed using computer software
developed in Python. The CS algorithm was selected to solve this optimization task.
This is because in the last two years an increased interest in this optimization algorithm
has been observed [57–59]. The software was designed by the authors and consists of
two independent and cooperating parts. The first part contains a mathematical model of
the BLDC. The master module forms a optimization algorithm that manages the work of
the mathematical model of the motor. A block diagram of the software is presented in
Figure 10.

Before starting on the optimization calculation, the user must declare the input data,
which consists of: (a) the rated parameters of the studied BLDC motor; (b) self- and mutual
inductance between phases; (c) the rotor’s moment of inertia; (d) the friction constant;
and (e) the permissible value of the pulsation factors. Next, the optimization procedure is
run. The procedure creates an initial population of cuckoos and executes the calculations
for the declared maximum number of iterations. From each individual, the optimization
procedure imitates the calculations of the mathematical model for the given design variables
(s1 and s2). The module with a mathematical model calculated the values of the average
electromagnetic torque and the pulsation factor. After the mathematical model finishes the
calculation for i-th individual, the values of the primary objective function (fi), the penalty
term (pi) and the secondary objective function (hi) are determined. The modified values of
the above parameters (f, p, and h) are sent to the optimization procedure to evaluate of the
i-th cuckoo.
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Figure 10. The block chart of the software.

In order to evaluate the performance of the computer software, a large number
of simulations were conducted. The optimization calculations were performed for the
following CS algorithm settings: the number of cuckoos is N = 54 [60–62], the number
of nests is n = 72, the maximum number of iterations is tmax = 30, and the probability is
pa = 0.25. The value of the constant coefficient that determines the size of the penalty is
γ = 0.55. For each of the analyzed permissible pulsation factors, five independent runs of
the optimization software were carried out. The ranges of the design variables assumed
during the optimization process are presented in Table 5.

Table 5. The assumed range of design variables.

Design Variable Nature Assumed Range

s1 continuous 1.0–2.0
s2 continuous 0.0–0.7

At the beginning, calculations were made for the required value of the pulsation factor
εp = 5%. The optimization process was repeated five times for the different positions of
nests. The best obtained result is presented in Table 6. The course of the optimization
process for the subsequent iterations of the CS algorithm is presented in Table 6.

Table 6. The course of optimization process for selected iterations.

t s1 s2 ε (%) Tav (Nm) p (s1, s2) H (s1, s2)

1 1.8284 0.0541 13.962 0.2271 0.98582 0.010250
2 1.6508 0.1046 6.217 0.2263 0.13387 0.833364
3 1.6607 0.1012 5.977 0.2254 0.10747 0.855934
4 1.6618 0.0805 5.518 0.2239 0.05698 0.904297
5 1.6775 0.0785 5.108 0.2232 0.01188 0.946414
6 1.6843 0.0771 4.996 0.2222 0 0.946418
7 1.6843 0.0771 4.996 0.2222 0 0.946418

10 1.6843 0.0771 4.996 0.2222 0 0.946418
30 1.6843 0.0771 4.996 0.2222 0 0.946418
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Based on the results obtained in Table 6, it can be noted that the optimal solution was
achieved after six iterations of the cuckoo search optimization algorithm. The subsequent
iterations of the algorithm did not lead to any better-quality solution. It is necessary to point
out that the best improvements concerning the pulsation factor were obtained between the
first and second iteration of the optimization algorithm.

The waveform of the electromagnetic torque for the required εp is shown in Figure 11a.
The waveforms of the phase currents for the required εp are presented in Figure 11b.

  

(a) (b) 

Figure 11. Mechanical and electrical quantities waveforms for the required εp = 5%: (a) the electromagnetic torque waveform;
(b) the phase current waveforms.

Next, optimization calculations were made for the less restrictive value of the pulsation
factor, which is equal to εp = 22%. The optimization process was performed for the
rated load torque at first. The optimization parameters for the selected iterations of the
optimization algorithm are presented in Table 7.

Table 7. The course of optimization process for selected iterations.

t s1 s2 ε (%) Tav (Nm) p (s1, s2) H (s1, s2)

1 1.2613 0.08971 27.018 0.2284 0.1255 0.8850
2 1.3325 0.12561 22.981 0.2274 0.0245 0.9729
3 1.3412 0.13029 22.164 0.2274 0.0041 0.9933
4 1.3421 0.13061 22.007 0.2270 0.0002 0.9955
5 1.3421 0.13061 22.007 0.2270 0.0002 0.9955

10 1.3421 0.13061 22.007 0.2270 0.0002 0.9955
30 1.3421 0.13061 22.007 0.2270 0.0002 0.9955

The waveforms for the optimal solution are presented in Figure 12a,b.
Then, optimization calculations were made for the lower value of the load torque

of 0.6 TN. The waveforms of electromagnetic torque and phase currents for permissible
pulsation factor εp = 22% are shown in Figure 13a,b, respectively.

Phase currents for the rated voltage (see Figure 8b) and phase currents for the modified
shape depend on the value of the load torque (see Figure 13b). The average currents for
loading torque equal to 0.6 TN are similar and do not depend on the pulsation factor. If we
load machines by the same load torque, we will obtain a similar value of phase current.
A similar phenomenon is observed for a brush DC motor, in which the current value is
proportional to the load torque value.
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Figure 12. Mechanical and electrical quantities waveforms for the required  = 22%: (a) the electromagnetic torque 
Figure 12. Mechanical and electrical quantities waveforms for the required εp = 22%: (a) the electromagnetic torque
waveform; (b) the phase current waveforms.

  

(a) (b) 

Figure 13. Mechanical and electrical quantities waveforms for the required εp = 22% and 0.6 TN: (a) the electromagnetic
torque waveform; (b) the phase current waveforms.

When comparing the courses of the optimization processes for the two different
constraints, it can be concluded that, in the case of the less restrictive constraint (εp = 22%),
the optimal solution was determined faster, i.e., after four iterations of the CS algorithm.

Figure 14 presents a comparison of the convergence curves for the two values of
permissible pulsation factors equal to εp = 5% and εp = 22%. The figure shows the relative
convergence of the modified objective function related to the optimal value. In the case of
a gentler permissible pulsation factor, the result close to the optimal one will be obtained
faster (see Figure 14).

Finally, the optimal results of the constrained optimization for the different values
of load torque were calculated. The permissible value of the pulsation factor was equal
to εp = 22%. Five independent optimization processes for each load torque were made.
The initial populations were selected randomly. The comparison of the obtained results is
shown in Table 8.
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Figure 14. The convergence curves for different value of permissible values of pulsation factors.

Table 8. The value of pulsation factors for various load torque.

Tl (mNm) s1 s2 ε (%)

20 1.4799 0.1032 21.995
70 1.4512 0.1101 21.999

100 1.4099 0.1193 21.997
150 1.3798 0.1256 21.998
170 1.3354 0.1143 21.993
200 1.3398 0.1287 22.001
230 1.3421 0.1306 22.007

To achieve the permissible value of the pulsation factor of ε = 22% for different values
of load torque, the various parameters (ξ and τ) describing the supply waveform should
be applied. The analysis of obtained results shows that a high value of the pulsation factors
requires the application of a higher modified supply voltage waveform.

7. Conclusions

The paper presents the application of the CS algorithm for the minimization of the
commutation torque ripple in a brushless DC motor. The code was elaborated upon in
Python for Windows. The structure of the computer software with all components has
been presented in detail. The optimization task was the maximization of the average
electromagnetic torque coupled with the constraint on the pulsation factor.

The obtained results of the computer simulation for the elaborated CS procedure are
encouraging. Based on the presented results, in order to test the analytical function of
a BLDC, the proposed CS procedure is much better in terms of effectiveness and qual-
ity when compared to the classical PSO approach. Moreover, according to the authors,
the CS algorithm should guarantee a higher probability of finding the global extreme.
After analyzing the optimization process for the CS algorithm, the static penalty function
was applied to take into account the constraints.

The course of the optimization process was investigated for two different constraints:
in the first case, a more restrictive permissible value of pulsation factor εp = 5% was
imposed. The average value of the electromagnetic torque was 0.222, which is 5% lower in
relation to the rated torque. The optimal solution was obtained after six iterations. In the
second case, the optimization process was performed for the softer value of permissible
pulsation factor εp = 22%. The optimal solution was obtained after four iterations of
optimization algorithms, and the value of the average electromagnetic torque was 0.228.
The obtained results confirm that for the less restrictive constraints the optimal solution
can be found faster.
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Based on the obtained results of the computer simulation, it can be concluded that the
proposed approach allows obtaining the results of calculations with satisfactory accuracy
with an acceptable calculation time. During the commutation phenomena, especially
in supply systems with shaped values, there can be highly saturated subareas in the
magnetic circuit of the motor. The difficulty is correctly estimating phase self-inductance
and mutual inductance between two phases. Therefore, the values of the ξ coefficient must
be carefully selected.

In future research, the authors want to focus on the design and execution of a labora-
tory stand to perform an experimental verification of research. Next, the performance of
the CS algorithm will be compared with other heuristic optimization algorithms such as the
genetic algorithm, particle swarm algorithm, or gray wolf algorithm. Moreover, additional
constraint functions could be taken into consideration in future research to achieve a much
more complicated constrained optimization task. Finally, the mathematical model of the
BLDC motor will be expanded upon with thermal equations.
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43. Idziak, P.; Kowalski, K.; Nowak, L.; Knypiński, Ł. FE transient analysis of magneostrictive actuator. Int. J. Appl. Electomagnet. Mech.

2016, 51, S81–S87. [CrossRef]
44. Cherif, R.; Tang, Z.; Guyomarch, F.; Chevallier, L.; Le Menach, Y. An Improved Newton Method Based on Choosing Initial Guess

Applied to Scalar Formulation in Nonlinear Magnetostatics. IEEE Trans. Magn. 2019, 55, 7202204. [CrossRef]
45. Demenko, A.; Sykulski, J. On the equivalence of finite difference and edge element formulations in magnetic field analysis using

vector potential. COMPEL 2014, 33, 47–55. [CrossRef]

http://doi.org/10.1117/12.2503078
http://doi.org/10.1007/s00170-016-8627-z
http://doi.org/10.1016/j.jcde.2018.07.001
http://doi.org/10.1080/17445760.2016.1242728
http://doi.org/10.1108/COMPEL-01-2018-0025
http://doi.org/10.1038/s41598-017-04794-3
http://doi.org/10.1109/NABIC.2009.5393690
http://doi.org/10.3390/math8020149
http://doi.org/10.1007/s00521-019-04178-w
http://doi.org/10.1016/j.aci.2017.09.001
http://doi.org/10.15199/48.2020.11.16
http://doi.org/10.1007/s40092-017-0248-0
http://doi.org/10.1016/j.cor.2011.09.026
http://doi.org/10.3390/rs11060734
http://doi.org/10.1109/JPROC.2006.892482
http://doi.org/10.3390/electronics9020279
http://doi.org/10.1016/j.jksues.2018.04.007
http://doi.org/10.3390/s20082406
http://doi.org/10.1108/03321640410510839
http://doi.org/10.1007/s11071-019-05077-4
http://doi.org/10.1108/03321641111110898
http://doi.org/10.3233/JAE-2011
http://doi.org/10.1109/TMAG.2019.2898416
http://doi.org/10.1108/COMPEL-10-2012-0231


Electronics 2021, 10, 2299 20 of 20

46. Hoyos Velasco, F.; Candelo-Becerra, J.; Rincón Santamaría, A. Dynamic Analysis of a Permanent Magnet DC Motor Using a Buck
Converter Controlled by ZAD-FPIC. Energies 2018, 11, 3388. [CrossRef]

47. Friedrch, L.; Curti, M.; Gysen, B.; Lomonova, L. High-order methods applied to nonlinear magnetostatic problems. Math. Comput.

Appl. 2019, 24, 19. [CrossRef]
48. Dini, P.; Saponara, S. Cogging torque reduction in Brushless Motors by a nonlinear control technique. Energies 2019, 12, 87.

[CrossRef]
49. Baszynski, M. Torque ripple reduction in BLDC motor based on a PWM technique for open-end winding. Arch. Electr. Eng. 2021,

70, 5–23.
50. Li, X.; Jiang, G.; Chen, W.; Shi, T.; Zhang, G.; Geng, Q. Commutation Torque Ripple Suppression Strategy of Brushless DC Motor

Considering Back Electromotive Force Variation. Energies 2019, 12, 1932. [CrossRef]
51. Liu, Y.; Zhu, Z.Q.; Howe, D. Commutation-torque-ripple minimization in direct-torque-controlled PM Brushless DC drives. IEEE

Trans. Ind. Appl. 2007, 43, 1012–1021. [CrossRef]
52. Yeniay, O. Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. 2005, 10, 45–56.

[CrossRef]
53. Mutluer, M.; Sahman, A.; Cunkas, M. Heuristic optimization based on penalty approach for surface permanent magnet

synchronous machines. Arab. J. Sci. Eng. 2020, 45, 6751–6767. [CrossRef]
54. Puzzi, S.; Carpinteri, A. A double-multiplicative dynamic penalty approach for constrained evolutionary optimization. Struct.

Multidiscip. Optim. 2008, 35, 431–445. [CrossRef]
55. Jayswala, A.; Antczak, T.; Jha, S. Second order modified objective function method for twice differentiable vector optimization

problems over cone constraints. Numer. Algebra Control Optim. 2019, 9, 133–145. [CrossRef]
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