
Minimization of Visibly Pushdown Automata
Using Partial Max-SAT

Matthias Heizmann, Christian Schilling(B), and Daniel Tischner

University of Freiburg, Freiburg, Germany
schillic@informatik.uni-freiburg.de

Abstract. We consider the problem of state-space reduction for nonde-
terministic weakly-hierarchical visibly pushdown automata (Vpa). Vpa
recognize a robust and algorithmically tractable fragment of context-free
languages that is natural for modeling programs.

We define an equivalence relation that is sufficient for language-
preserving quotienting of Vpa. Our definition allows to merge states
that have different behavior, as long as they show the same behavior
for reachable equivalent stacks. We encode the existence of such a rela-
tion as a Boolean partial maximum satisfiability (PMax-Sat) problem
and present an algorithm that quickly finds satisfying assignments. These
assignments are sub-optimal solutions to the PMax-Sat problem but can
still lead to a significant reduction of states.

We integrated our method in the automata-based software verifier
Ultimate Automizer and show performance improvements on bench-
marks from the software verification competition SV-COMP.

1 Introduction

The class of visibly pushdown languages (Vpl) [6] lies properly between the
regular and the context-free languages. Vpl enjoy most desirable properties of
regular languages (closure under Boolean operations and decision procedures
for, e.g., the equivalence problem). They are well-suited for representing data
that have both a linear and a hierarchical ordering, e.g., procedural programs
[4,22,24,37] and XML documents [31,33,34,38].

The corresponding automaton model is called visibly pushdown automaton
(Vpa). It extends the finite automaton model with a stack of restricted access by
requiring that the input symbol specifies the stack action – a call (resp. return)
symbol implies a push (resp. pop) operation, and an internal symbol ignores the
stack. In this paper, we consider a notion of Vpa where a call always pushes the
current state on the stack. These Vpa are called weakly-hierarchical Vpa [7].

Size reduction of automata is an active research topic [2,3,8,9,14,15,32] that
is theoretically appealing and has practical relevance: smaller automata require
less memory and speed up automata-based tools [21,23,27,29]. In this paper,
we present a size reduction technique for a general class of (nondeterministic)
Vpa that is different from classes that were considered in previous approaches
[5,13,30]. An extended version of this paper is available [26].
c© Springer-Verlag GmbH Germany 2017
A. Legay and T. Margaria (Eds.): TACAS 2017, Part I, LNCS 10205, pp. 461–478, 2017.
DOI: 10.1007/978-3-662-54577-5 27



462 M. Heizmann et al.

It is well-known that for deterministic finite automata the unique minimal
automaton can be obtained by quotienting (i.e., merging equivalent states), and
there exists an efficient algorithm for this purpose [28]. Vpa do not have a
canonical minimum [5]. For other automaton classes that lack this property,
the usual approach is to find equivalence relations that are sufficient for quoti-
enting [1,3,18]. The main difficulty of a quotienting approach for Vpa is that
two states may behave similarly given one stack but differently given another
stack, and as the number of stacks is usually infinite, one cannot simply compare
the behaviors for each of them.

1.1 Motivating Examples

We now present three observations. The first observation is our key insight and
shows that Vpa have interesting properties that we can exploit. The other obser-
vations show that Vpa have intricate properties that make quotienting nontrivial.
For convenience, we use a for internal, c for call, and r for return symbols, and
we omit transitions to the sink state.

Exploiting Unreachable Stacks Allows Merging States. Consider the
Vpa in Fig. 1(a). The states q1 and q2 have the same behavior for the internal
symbol a but different behaviors for the return symbol r with stack symbol q0:
Namely, state q1 leads to the accepting state while q2 has no respective return
transition. However, in q2 it is generally impossible to take a return transition
with stack symbol q0 since q2 can only be reached with an empty stack. Thus
the behavior for the stack symbol q0 is “undefined” and we can merge q1 and q2
without changing the language. The resulting Vpa is depicted in Fig. 1(b).

q0 q2

q1

q3

qf

c1

a

c2

r/q
0

a

a
a

r/q0

a

(a) A Vpa.

q0 q2

q1

q3

qf

c1
a

c2

r/{q0}
a
a

r/{q0}

a

(b) One possible quotienting.

q0 q2

q1

q3

qf

c1

a

c2

r/{q0}
a

a

r/{q0}

a

(c) Another possible quotienting.

Fig. 1. A Vpa and two possible quotientings due to unreachable stacks.



Minimization of Visibly Pushdown Automata Using Partial Max-SAT 463

Merging States Requires a Transitive Relation. Using the same argument
as above, we can also merge the states q2 and q3; the result is depicted in Fig. 1(c).
For finite automata, mergeability of states is transitive. However, here we cannot
merge all three states q1, q2, and q3 without changing the language because q1
and q3 have different behaviors for stack symbol q0. For Vpa, we have to check
compatibility for each pair of states.

Merging States Means Merging Stack Symbols. Consider the Vpa in
Fig. 2(a). Since for (weakly-hierarchical) Vpa, stack symbols are states, merging
the states q1 and q2 implicitly merges the stack symbols q1 and q2 as well. After
merging we receive the Vpa in Fig. 2(b) which recognizes a different language
(e.g., it accepts the word a1c r2).

q0

q1

q2

q3 qf

a1

a2

c

c

r1/q1

r2/q2

a

(a) A Vpa.

q0

q1

q2

q3 qf
a1

a2

c r1/{q1, q2}
r2/{q1, q2}

a

(b) A language-changing quotienting.

Fig. 2. A Vpa where quotienting of states leads to quotienting of stack symbols.

1.2 Our Approach

We define an equivalence relation over Vpa states for quotienting that is
language-preserving. This equivalence relation exploits our key observation,
namely that we can merge states if they have the same behavior on equiva-
lent reachable stacks, even if they have different behavior in general (Sect. 3).
We show an encoding of such a relation as a Boolean partial maximum satisfia-
bility (PMax-Sat) instance (Sect. 4). In order to solve these instances efficiently,
we propose a greedy algorithm that finds suboptimal solutions (Sect. 5.1). As a
proof of concept, we implemented the algorithm and evaluated it in the context of
the automata-based software verifier Ultimate Automizer [23,25] (Sect. 5.2).

2 Visibly Pushdown Automata

In this section, we recall the basic definitions for visibly pushdown automata [6]
and quotienting. After that, we characterize when an automaton is live.

2.1 Preliminaries

Alphabet. A (visibly pushdown) alphabet Σ = Σi � Σc � Σr is a partition
consisting of three finite sets of internal (Σi), call (Σc), and return (Σr) symbols.



464 M. Heizmann et al.

A word is a sequence of symbols. We denote the set of finite words over alphabet
Σ by Σ∗ and the empty word by ε. As a convention we use a for internal, c for
call, and r for return symbols, x for any type of symbol, and v, w for words.

The set of well-matched words over Σ, WM (Σ), is the smallest set satisfying:
(1) ε ∈ WM (Σ); (2) if w ∈ WM (Σ), so is wa for a ∈ Σi; and if v, w ∈ WM (Σ),
so is vcwr for c r ∈ Σc ·Σr, and we call symbols c and r matching. Given a word
over Σ, for any return symbol we can uniquely determine whether the symbol is
matching. The set of matched-return words, MR(Σ), consists of all words where
each return symbol is matching. Clearly, WM (Σ) is a subset of MR(Σ).

Visibly Pushdown Automaton. A visibly pushdown automaton (Vpa) is
a tuple A = (Q,Σ,⊥,Δ,Q0, F ) with a finite set of states Q, a visibly push-
down alphabet Σ, a bottom-of-stack symbol ⊥ /∈ Q, a transition relation
Δ = (Δi,Δc,Δr) consisting of internal transitions Δi ⊆ Q × Σi × Q, call transi-
tions Δc ⊆ Q×Σc×Q, and return transitions Δr ⊆ Q×Σr×Q×Q, a nonempty
set of initial states Q0 ⊆ Q, and a set of accepting states F ⊆ Q.

A stack σ is a word over St def={⊥} · Q∗. We write σ[i] for the i-th symbol of
σ. A configuration is a pair (q, σ) ∈ Q × St . A run ρA(w) of Vpa A on word
w = x1x2 · · · ∈ Σ∗ is a sequence of configurations (q0, σ0)(q1, σ1) · · · according
to the following rules (for i ≥ 0):

1. If xi+1 ∈ Σi then (qi, xi+1, qi+1) ∈ Δi and σi+1 = σi.
2. If xi+1 ∈ Σc then (qi, xi+1, qi+1) ∈ Δc and σi+1 = σi · qi.
3. If xi+1 ∈ Σr then (qi, xi+1, q̂, qi+1) ∈ Δr and σi = σi+1 · q̂.

A run is initial if (q0, σ0) ∈ Q0 × {⊥}. A configuration (q, σ) is reachable if
there exists some initial run ρ = (q0, σ0)(q1, σ1) · · · such that (qi, σi) = (q, σ)
for some i ≥ 0, and unreachable otherwise. Similarly, we say that a stack σ is
reachable (resp. unreachable) for state q if (q, σ) is reachable (resp. unreachable).
A run of length n is accepting if qn ∈ F . A word w ∈ Σ∗ is accepted if some
initial run ρA(w) is accepting. The language recognized by a Vpa A is defined
as L(A) def={w | w is accepted by A}. A Vpa is deterministic if it has one initial
state and the transition relation is functional.

A finite automaton (Fa) is a Vpa where Σc = Σr = ∅.

Remark 1. We use a variant of Vpa that deviates from the Vpa model by Alur
and Madhusudan [6] in two ways: (1) We forbid return transitions when the stack
is empty, i.e., the automata accept only matched-return words; this assumption
is also used in other works [30,35]. (2) We consider weakly-hierarchical Vpa
where a call transition implicitly pushes the current state on the stack; this
assumption is also a common assumption [13,30]; every Vpa can be converted
to weakly-hierarchical form with 2|Q||Σ| states [7].

Both assumptions are natural in the context of computer programs: The
call stack can never be empty, and return transitions always lead back to the
respective program location after the corresponding call.



Minimization of Visibly Pushdown Automata Using Partial Max-SAT 465

Quotienting. For an equivalence relation over some set S, we denote the equiv-
alence class of element e by [e]; analogously, lifted to sets, let [T ] def={[e] | e ∈ T}.

Given a Vpa A = (Q,Σ,⊥, (Δi,Δc,Δr), Q0, F ) and an equivalence relation
≡⊆ Q×Q on states, the quotient Vpa is the Vpa A/≡

def=([Q], Σ,⊥,Δ′, [Q0], [F ])
with Δ′ = (Δ′

i,Δ
′
c,Δ

′
r) and

• Δ′
i = {([p], a, [p′]) | ∃(q, a, q′) ∈ Δi. q ∈ [p], q′ ∈ [p′]},

• Δ′
c = {([p], c, [p′]) | ∃(q, c, q′) ∈ Δc. q ∈ [p], q′ ∈ [p′]}, and

• Δ′
r = {([p], r, [p̂], [p′]) | ∃(q, r, q̂, q′) ∈ Δr. q ∈ [p], q′ ∈ [p′], q̂ ∈ [p̂]}.

Quotienting is the process of merging states from the same equivalence class
to obtain the quotient Vpa; this implicitly means merging stack symbols, too.

2.2 Live Visibly Pushdown Automata

Let Q⊥
def= Q ∪ {⊥} be the stack alphabet. The function top : St → Q⊥ returns

the topmost symbol of a stack:

top(σ) def=

{
⊥ σ = ⊥
q σ = σ′ · q for some σ′ ∈ St

Given a state q, the function tops : Q → 2Q⊥ returns the topmost symbols
of all reachable stacks σ for q (i.e., reachable configurations (q, σ)):

tops(q) def={top(σ) | ∃σ ∈ St . (q, σ) is reachable}
For seeing that tops is computable, consider a Vpa A = (Q,Σ,⊥,Δ,Q0, F ).

The function tops is the smallest function f : Q → 2Q⊥ satisfying:

1. q ∈ Q0 =⇒ ⊥ ∈ f(q)
2. q̂ ∈ f(q), (q, a, q′) ∈ Δi =⇒ q̂ ∈ f(q′)
3. (q, σ) reachable for some σ, (q, c, q′) ∈ Δc =⇒ q ∈ f(q′)
4. q̂ ∈ f(q), (q, r, q̂, q′) ∈ Δr =⇒ f(q̂) ⊆ f(q′)

We call a Vpa live if the following holds. For each state q and for each internal
and call symbol x there is at least one outgoing transition (q, x, q′) to some state
q′; additionally, for each return symbol r and state q̂ there is at least one outgoing
return transition (q, q̂, r, q′) to some state q′ if and only if q̂ ∈ tops(q).

Note that a live Vpa has a total transition relation in a weaker sense: There
are outgoing return transitions from state q if and only if the respective transition
can be taken in at least one run. That is, we forbid return transitions when no
corresponding configuration is reachable. Every Vpa can be converted to live
form by adding one sink state.

Remark 2. For live Vpa A, a run ρA(w) on word w can only “get stuck” in an
empty-stack configuration, i.e., if w = v1r v2 with r ∈ Σr such that ρA(v1) =
(q0, σ0) · · · (qk,⊥) for some qk ∈ Q. If w ∈ MR(Σ), no run gets stuck.

For the remainder of the paper, we fix a live Vpa A = (Q,Σ,⊥,Δ,Q0, F ). We
sometimes refer to this Vpa as the input automaton.



466 M. Heizmann et al.

3 A Quotienting Relation for VPA

In this section, we define an equivalence relation on the states of a Vpa that is
useful for quotienting, i.e., whose respective quotient Vpa is language-preserving.

We first need the notion of closure under successors for each kind of symbol.
Let R ⊆ Q×Q be a binary relation over states and let p, q, p̂, q̂ ∈ Q be states.

We say that R is

• closed under internal successors for (p, q) if for each internal symbol a ∈ Σi

• for all (p, a, p′) ∈ Δi there exists (q, a, q′) ∈ Δi s.t. (p′, q′) ∈ R and
• for all (q, a, q′) ∈ Δi there exists (p, a, p′) ∈ Δi s.t. (p′, q′) ∈ R,

• closed under call successors for (p, q) if for each call symbol c ∈ Σc

• for all (p, c, p′) ∈ Δc there exists (q, c, q′) ∈ Δc s.t. (p′, q′) ∈ R and
• for all (q, c, q′) ∈ Δc there exists (p, c, p′) ∈ Δc s.t. (p′, q′) ∈ R,

• closed under return successors for (p, q, p̂, q̂) if for each return symbol r ∈ Σr

• for all (p, r, p̂, p′) ∈ Δr there exists (q, r, q̂, q′) ∈ Δr s.t. (p′, q′) ∈ R and
• for all (q, r, q̂, q′) ∈ Δr there exists (p, r, p̂, p′) ∈ Δr s.t. (p′, q′) ∈ R.

We are ready to present an equivalence relation that is useful for quotienting
using a fixpoint characterization.

Definition 1 (Reachability-aware quotienting relation). Let A be a V pa
and R ⊆ Q × Q be an equivalence relation over states. We say that R is a Raq
relation if for each pair of states (p, q) ∈ R the following constraints hold.

(i) State p is accepting if and only if state q is accepting (p ∈ F ⇐⇒ q ∈ F ).
(ii) R is closed under internal successors for (p, q).
(iii) R is closed under call successors for (p, q).
(iv) For each pair of states (resp. topmost stack symbols) (p̂, q̂) ∈ R,

• R is closed under return successors for (p, q, p̂, q̂), or
• no configuration (q, σq) with q̂ = top(σq) is reachable, or
• no configuration (p, σp) with p̂ = top(σp) is reachable.

Remark 3. “No configuration (q, σq) with q̂ = top(σq) is reachable” is equivalent
to “q̂ /∈ tops(q)”. The equality relation {(q, q) | q ∈ Q} is a Raq relation for any
Vpa; the respective quotient Vpa is isomorphic to the input automaton.

Example 1. Consider again the Vpa from Fig. 1(a). We claim that the relation
R

def={(q, q) | q ∈ Q} ∪ {(q1, q2), (q2, q1)} is a Raq relation. Note that it cor-
responds to the quotient Vpa from Fig. 1(b). First we observe that R is an
equivalence relation. We check the remaining constraints only for the two pairs
(q1, q2) and (q2, q1). Both states are not accepting. Relation R is closed under
internal (here: a) and call (here: none, i.e., implicitly leading to a sink) succes-
sors. The return transition constraint is satisfied because in state q2 no stack
with topmost symbol q0 is reachable (q0 /∈ tops(q2)).



Minimization of Visibly Pushdown Automata Using Partial Max-SAT 467

We want to use a Raq relation for language-preserving quotienting. For this
purpose we need to make sure that unreachable configurations in Definition 1
do not enable accepting runs that are not possible in the original Vpa. In the
remainder of this section, we show that this is indeed the case.

Given an equivalence relation R ⊆ Q × Q on states, we call a stack σ the
R-quotienting of some stack σ′ of the same height if either σ = σ′ = ⊥ or for all
i = 2, . . . , |σ| each symbol σ[i] is the equivalence class of σ′[i], i.e., σ′[i] ∈ [σ[i]].
We write σ′ ∈ [σ] in this case. (We compare stacks only for i ≥ 2 because the
first stack symbol is always ⊥.)

Lemma 1 (Corresponding run). Let A be a V pa and ≡ be some Raq rela-
tion for A. Then for any matched-return word w and respective run

ρA/≡(w) = ([p0],⊥) · · · ([pn], [σn])

with p0 ∈ Q0 in A/≡ there is some corresponding run

ρA(w) = (q′
0,⊥) · · · (q′

n, σ′
n)

in A such that q′
i ∈ [pi] and σ′

i ∈ [σi] for all i ≥ 0, and furthermore q′
0 ∈ Q0.

Proof. The proof is by induction on the length of w. The case for w = ε is
trivial. Now assume w′ = w · x for x ∈ Σ and fix some run ρA/≡(w′) =
([p0],⊥) · · · ([pn], [σn]) · ([pn+1], [σn+1]). The hypothesis ensures that there exists
a corresponding run for the prefix ρA(w) = (q′

0,⊥) · · · (q′
n, σ′

n) s.t. q′
n ∈ [pn] and

σ′
n ∈ [σn]. We will extend this run in each of the three cases for symbol x.

(1) If x ∈ Σi, then, since there is a transition ([pn], x, [pn+1]) ∈ Δi/≡, there exist
some states q′′

n ∈ [pn] and q′′
n+1 ∈ [pn+1] s.t. (q′′

n, x, q′′
n+1) ∈ Δi (from the

definition of quotienting). Using that ≡ is closed under internal successors,
there also exists a target state q′

n+1 ∈ [pn+1] s.t. (q′
n, x, q′

n+1) ∈ Δi. Addi-
tionally, because x ∈ Σi, we have that σ′

n+1 = σ′
n ∈ [σn] = [σn+1] by the

hypothesis.
(2) If x ∈ Σc, a similar argument holds, only this time the stack changes. We

have that σ′
n+1 = σ′

n · q′
n ∈ [σn · pn] = [σn+1] by the hypothesis.

(3) If x ∈ Σr, then the configuration (q′
n, σ′

n) is reachable (witnessed by the run
ρA(w)). Since ≡ is closed under return successors for all states in [pn] (mod-
ulo unreachable configurations), for each top-of-stack symbol q̂ ∈ [top(σ′

n)]
s.t. (q′

n, σ′′ · q̂) is reachable for some stack σ′′ there exists a corresponding
return transition (q′

n, x, q̂, q′
n+1) ∈ Δr with q′

n+1 ∈ [pn+1]; in particular, this
holds for q̂ = top(σ′

n). Recall that A is assumed to be live, which ensures that
every return transition that exists in the quotient Vpa has such a witness.
The stack property σ′

n+1 ∈ [σn+1] follows from the hypothesis. ��
From the above lemma we can conclude that quotienting with a Raq relation

preserves the language.

Theorem 1 (Language preservation of quotienting). Let A be a V pa and
let ≡ be a Raq relation on the states of A. Then L(A) = L(A/≡).



468 M. Heizmann et al.

Proof. Clearly, L(A) ⊆ L(A/≡) for any equivalence relation ≡. We show the
other inclusion by means of a contradiction.

Assume there exists a word w s.t. w ∈ L(A/≡) \ L(A). By assumption, in
A/≡ there is an initial accepting run ρA/≡(w). Then, by Lemma 1, there is a
corresponding run ρA(w), and furthermore this run is initial.

The run ρA(w) is also accepting by the property that [p] ∈ [F ] if and only if
q ∈ F for all q ∈ [p] (cf. Property (i) of a Raq relation). ��

4 Computing Quotienting Relations

In Sect. 3, we introduced the notion of a Raq relation and showed how we can
use it to minimize Vpa while preserving the language. In this section, we show
how we can compute a Raq relation. For this purpose, we provide an encoding
as a partial maximum satisfiability problem (PMax-Sat). From a (in fact, any)
solution, i.e., satisfying assignment, we can synthesize a Raq relation. While
this does not result in the coarsest Raq relation possible, the relation obtained
is locally optimal, i.e., there is no coarser Raq relation that is a strict superset.

4.1 Computing RAQ Relations

Note that in general there are many possible instantiations of a Raq relation,
e.g., the trivial equality relation which is not helpful for minimization. Since we
are interested in reducing the number of states, we prefer coarser relations over
finer relations.

To obtain a coarse relation, we describe an encoding of the Raq relation
constraints as an instance of the PMax-Sat problem [12,19]. Such a problem
consists of a propositional logic formula in conjunctive normal form with each
clause being marked as either hard or soft. The task is to find a truth assignment
such that all hard clauses are satisfied and the number of the satisfied soft clauses
is maximal.

SAT Encoding. For the moment, we ignore soft clauses and provide a stan-
dard Sat encoding of the constraints. The encoding has the property that any
satisfying assignment induces a valid Raq relation ≡.

Let true and false be the Boolean constants. We need O(n2) variables of the
form X{p,q} where p and q are states of the input automaton. The idea is that
p ≡ q holds if we assign the value true to X{p,q}. (We ignore the order of p and
q as ≡ must be symmetric.) We express the constraints from Definition 1 as
follows.

Consider the constraint (i). For each pair of states (p, q) not satisfying the
constraint we introduce the clause

¬X{p,q}. (1)



Minimization of Visibly Pushdown Automata Using Partial Max-SAT 469

Consider the constraints (ii), (iii), (iv). For each transition (p, a, p′) ∈ Δi,
(p, c, p′) ∈ Δc, and (p, r, p̂, p′) ∈ Δr and all states q and q̂ we respectively con-
struct one of the following clauses.

¬X{p,q} ∨ (X{p′,qa1 } ∨ · · · ∨ X{p′,qaka
}) (2)

¬X{p,q} ∨ (X{p′,qc1} ∨ · · · ∨ X{p′,qckc
}) (3)

¬X{p,q} ∨ ¬X{p̂,q̂} ∨ (X{p′,qr1} ∨ · · · ∨ X{p′,qrkr
}) (4)

Here the qai /qci are the respective a/c-successors of q and the qri are the r-
successors of q with stack symbol q̂. To account for the unreachable configuration
relaxation, we may omit return transition clauses (4) where p̂ /∈ tops(p) or
q̂ /∈ tops(q).

We also need to express that ≡ is an equivalence relation, i.e., we need addi-
tional reflexivity clauses

X{q1,q1} (5)

and transitivity clauses

¬X{q1,q2} ∨ ¬X{q2,q3} ∨ X{q1,q3} (6)

for any distinct states q1, q2, q3 (assuming there are least three states). Recall
that our variables already ensure symmetry.

Let Φ be the conjunction of all clauses of the form (1), (2), (3), (4), (5), and
(6). All assignments satisfying Φ represent valid Raq relations.

However, we know that the assignment

X{p,q} �→
{
true p = q

false otherwise

corresponding to the equality relation is always trivially satisfying. Such an
assignment is not suited for our needs. We consider an assignment optimal if
it represents a Raq relation with a coarsest partition.

PMax-SAT Encoding. We now describe an extension of the Sat encoding
to a PMax-Sat encoding. In this setting, we can enforce that the number of
variables that are assigned the value true is maximal.

As an addition to Φ, we add for every two states p, q with p �= q the clause

X{p,q} (7)

and finally we consider all old clauses, i.e., clauses of the form (1)–(6), as
hard clauses and all clauses of the form (7) as soft clauses.



470 M. Heizmann et al.

4.2 Locally Maximal RAQ Relation

Note that an assignment obtained from the PMax-Sat encoding does not neces-
sarily give us a coarsest Raq relation. Consider a Vpa with seven states q0, . . . , q6
and the partition

{{q0, q1, q2, q3}, {q4}, {q5}, {q6}
}
. Here we set six variables to

true (all pairs of states from the first set). However, the partition
{{q0, q1, q2},

{q3, q4}, {q5, q6}
}

is coarser, and yet we only set five variables to true.
Despite not finding the globally maximal solution, we can establish local

maximality.

Theorem 2 (Local maximum). A satisfying assignment of the PMax-Sat
instance corresponds to a Raq relation such that no strict superset of the relation
is also a Raq relation.

Proof. It is clear from the construction that in the obtained assignment, no fur-
ther variable X{p,q} can be assigned the value true. Each such variable determines
membership of the symmetric pairs (p, q) and (q, p) in the Raq relation. ��

5 Experimental Evaluation

In this section, we report on our implementation and its potential in practice.

5.1 Implementation

Initially, we apply the following preprocessing steps for reducing the complex-
ity. First, we remove unreachable and dead states and make the Vpa live for
return transitions (we do not require that the Vpa is total for internal or call
transitions). Second, we immediately replace variables X{p} by true (reflexivity).
Third, we construct an initial partition of the states and replace variables X{p,q}
by false if p and q are not in the same block. This partition is the coarsest fix-
point of a simple partition refinement such that states in the same block have
the same acceptance status, the same outgoing internal and call symbols, and, if
all states in a block have a unique successor under an internal/call symbol, those
successors are in the same block (cf. Definition 1 and Hopcroft’s algorithm [28]).

Optimally solving a PMax-Sat instance is an Np-complete problem. Expect-
edly, a straightforward implementation of the algorithm presented in Sect. 4 using
an off-the-shelf PMax-Sat solver does not scale to interesting problems (see also
the extended version [26]). Therefore, we implemented a domain-specific greedy
PMax-Sat solver that only maximizes the satisfied soft clauses locally.

Our solver is interactive, i.e., clauses are added one after another, and prop-
agation is applied immediately. After adding the last clause, the solver chooses
some unset variable and first sets it to true optimistically. Theorem 2 still holds
with this strategy. Apart from that, the solver follows the standard DPLL algo-
rithm and uses no further enhancements found in modern Sat solvers.



Minimization of Visibly Pushdown Automata Using Partial Max-SAT 471

Remark 4. If the Vpa is deterministic, we obtain a Horn clause system. Then
the above algorithm never needs to backtrack for more than one level, as the
remaining clauses can always be satisfied by assigning false to the variables.

The main limitation of the approach is the memory consumption. Clearly, the
majority of clauses are those expressing transitivity. Therefore, we implemented
and integrated a solver for the theory of equality: When a variable X{p,q} is set to
true, this solver returns all variables that must also be set to true for consistency.
That allowed us to omit the transitivity clauses (see [26] for details).

5.2 Experiments

Our evaluation consists of three parts. First, we evaluate the impact of our
minimization on an verifier Ultimate Automizer. Second, we evaluate the
performance of our minimization on automata that were produced by Ultimate
Automizer. Third, we evaluate the performance of our minimization on a set
of random automata. All experiments are performed on a PC with an Intel i7
3.60 GHz CPU running Linux.

Impact on the software verifier Ultimate Automizer. The software verifier
Ultimate Automizer [23] follows an automata-based approach [25] in which
sets of program traces are represented by automata. The approach can be seen
as a CEGAR-style algorithm in which an abstraction is iteratively refined. This
abstraction is represented as a weakly-hierarchical Vpa where the automaton
stack only keeps track of the states from where function calls were triggered.

For our evaluation, we run Ultimate Automizer on a set of C programs
in two different modes. In the mode “No minimization” no automata minimiza-
tion is applied. In the mode “Minimization” we apply our minimization in each
iteration of the CEGAR loop to the abstraction if it has less than 10,000 states.
(In cases where the abstraction has more than 10,000 states the minimization
can be too slow to pay off on average.)

As benchmarks we took C programs from the repository of the SV-COMP
2016 [10] and let Ultimate Automizer analyze if the error location is reachable.
In this repository the folders systemc and eca-rers2012 contain programs that
use function calls (hence the Vpa contain calls and returns) and in whose analysis
the automata sizes are a bottleneck for Ultimate Automizer. We randomly
picked 100 files from the eca-rers2012 folder and took all 65 files from the
systemc folder. The timeout of Ultimate Automizer was set to 300 s and the
available memory was restricted to 4 GiB.

The results are given in Table 1. Our minimization increases the number
of programs that are successfully analyzed from 66 to 78. On programs that
are successfully analyzed in both modes, the mode using minimization is slightly
faster. Hence, the additional cost due to minimization is more than compensated
by savings in other operations on the (now smaller) Vpa on average.

Evaluation on automata from Ultimate Automizer. To evaluate the per-
formance of our minimization algorithm in more details, we applied it to a bench-
mark set that consists of 1026 Vpa produced by Ultimate Automizer. All



472 M. Heizmann et al.

Table 1. Performance of Ultimate Automizer with and without minimization. Col-
umn # shows the number of successful reachability analyses (out of 165), average run
time is given in milliseconds, average removal shows the states removed for all itera-
tions, and the last column shows the relative number of iterations where minimization
was employed. The first two rows contain the data for those programs where both
modes succeeded, and the third row contains the data for those programs where only
the minimization mode succeeded.

∅ Time ∅ Time % Iterations
Mode Set # ∅ Removal

total minimization with minimization

No minimization 16085 – – –
Both 66

Minimization 15564 2649 3077 75

Minimization Exclusive 12 101985 61384 8472 76

Table 2. Performance of our algorithm on automata produced by Ultimate
Automizer (see also Fig. 3). We aggregate the data for all automata whose number of
states is in a certain interval. Column # shows the number of automata, #nd shows
the number of nondeterministic automata, and the other data is reported as average.
The next seven columns show information about the input automata. The run time is
given in milliseconds. The last two columns show the number of variables and clauses
passed to the PMax-Sat solver.

|Q| (interval) # #nd |Q| |Σi| |Σc| |Σr| |Δi| |Δc| |Δr| Time |Var| |Cls|
[22; 250] 102 46 149 29 4 4 131 13 75 130 1440 35375

[250; 1000] 158 64 554 83 11 11 533 43 105 607 8363 53016

[1000; 4000] 161 27 2053 413 34 34 2188 170 345 2536 36865 170256

[4000; 16000] 127 6 8530 1535 152 150 9293 625 889 31481 161214 244007

[16000; 34114] 48 5 21755 2133 203 202 25348 603 1137 32129 361866 813549

automata from this set contain call and return transitions and do not contain
any dead ends (states from which no accepting state is reachable). Details on
the construction of these automata can be found in the extended version [26]

We ran our implementation on these automata using a timeout of 300 s and
a memory limit of 4 GiB. Within the resource bounds we were able to minimize
596 of the automata. Details about these automata and the minimization run
are presented in Table 2. In the table we grouped automata according to their
size. For instance, the first row aggregates the data of all automata that have
up to 250 states. The table shows that we were able to minimize automata up to
a five-digit number of states and that automata that have a few thousand states
can be minimized within seconds. Figure 3 shows the sizes of the minimization
results. The first four graphs compare the sizes of input and output in terms of
states and transitions. The fourth graph shows that the (partly) significant size
reduction is not only due to “intraprocedural” merges, but that also the number
of return transitions is reduced. The last two graphs show that the relative size



Minimization of Visibly Pushdown Automata Using Partial Max-SAT 473

0 1 2 3

·104

0

1

2

3

·104

# states (input)

o
u
tp

u
t

0 1 2 3

·104

0

1

2

3

·104

# internal transitions (input)

o
u
tp

u
t

100%

50%

data D

data N

0 1 2 3 4 5

·103

0

1

2

3

4

5
·103

# call transitions (input)

o
u
tp

u
t

0 1 2 3 4 5 6

·103

0

1

2

3

4

5

6
·103

# return transitions (input)

o
u
tp

u
t

0 1 2 3

·104

0

20

40

60

80

100

# states (input)

re
la

ti
v
e

re
d
u
ct

io
n mean D

mean N

data D

data N

0 1 2 3

·104

0

20

40

60

80

100

# transitions (input)

re
la

ti
v
e

re
d
u
ct

io
n

Fig. 3. Minimization results on automata produced by Ultimate Automizer (see also
Table 2). D(N) stands for (non-)deterministic automata.

reduction is higher on larger automata. The reason is that small automata in
Ultimate Automizer tend to have similarities to the control flow graph of a
program, which is usually already minimal.

Evaluation on Random Automata. The automata produced by Ultimate
Automizer have relatively large alphabets (according to Table 2 there are on
average less than 10 states per symbol) and are extremely sparse (on aver-
age less than 1.5 transitions per state). To investigate the applicability of
our approach to Vpa without such structure, we also evaluate it on random



474 M. Heizmann et al.

0 33 67 100 133 167 200
0

20

40

60

80

100

transition density (input)

st
a
te

s
(o

u
tp

u
t)

dead end
removal
minimization

Fig. 4. Minimization results on random Vpa with 100 states, of which 50% are accept-
ing, and with one internal, call, and return symbol each. Return transitions are each
inserted with 50 random stack symbols. The transition density is increased in steps of
2%. Each data point stems from 500 random automata.

nondeterministic Vpa. We use a generalization of the random Büchi automata
model by Tabakov and Vardi [36] to Vpa (see the extended version [26] for
details). Figure 4 shows that our algorithm can remove some states on top of
removing dead ends for lower transition densities, but overall it seems more
appropriate to automata that have some structure.

6 Related Work

Alur et al. [5] show that a canonical minimal Vpa does not exist in general. They
propose the single entry-Vpa (Sevpa) model, a special Vpa of equivalent expres-
siveness with the following constraints: Each state and call symbol is assigned to
one of k modules, and each module has a unique entry state which is the target
of all respective call transitions. This is enough structure to obtain the unique
minimal k-Sevpa from any given k-Sevpa by quotienting.

Kumar et al. [30] extend the idea to modular Vpa. Here the requirement
of having a unique entry per module is overcome, but more structure must be
fixed to preserve a unique minimum – most notably the restriction to weakly-
hierarchical Vpa and the return alphabet being a singleton.

Chervet and Walukiewicz [13] generalize the above classes to call driven
automata. They show that general Vpa can be exponentially more succinct than
the three classes presented. Additionally, they propose another class called block
V pa for which a unique minimum exists that is at most quadratic in the size
of some minimal (general) Vpa. However, to find it, the “right” partition into
modules must be chosen, for which no efficient algorithm is known.

All above Vpa classes have in common that the languages recognized are
subsets of WM (Σ), the states are partitioned into modules, and the minimal
automaton (respecting the partition) can be found by quotienting. While the
latter is an enjoyable property from the algorithmic view, the constraints limit
practical applicability: Even under the assumption that the input Vpa recog-
nizes a well-matched language, if it does not meet the constraints, it must first be



Minimization of Visibly Pushdown Automata Using Partial Max-SAT 475

converted to the respective form. This conversion generally introduces an expo-
nential blow-up in the number of states. In contrast, our procedure assumes only
weakly-hierarchical Vpa accepting matched-return words. In general, a weakly-
hierarchical Vpa can be obtained with only a linear blow-up. (In Ultimate
Automizer the automata already have this form.)

q0

q1

...

qk

qf

c1

ck

r/q0

r/q
0

Fig. 5. A parametric k-Sevpa.

Consider the k-Sevpa in Fig. 5. It has k
modules {q1}, . . . , {qk} (and the default module
{q0, qf}). This is the minimal k-Sevpa recogniz-
ing the language with the given modules. Our
algorithm will (always) merge all singleton mod-
ules into one state, resulting in a (minimal)
three-state Vpa.

Caralp et al. [11] present a polynomial trim-
ming procedure for Vpa. The task is to ensure
that every configuration exhibited in the Vpa is both reachable and co-reachable.
Such a procedure may add new states. We follow the opposite direction and
exploit untrimmed configurations to reduce the number of states.

Ehlers [17] provides a Sat encoding of the question “does there exist an
equivalent Büchi automaton (Ba) of size n − 1”. Baarir and Duret-Lutz [8,9]
extend the idea to so-called transition-based generalized Ba. Since the search is
global, on the one hand, such a query can be used iteratively to obtain a reduced
Ba after each step and some globally minimal Ba upon termination; on the other
hand, global search leaves little structure to the solver.

Geldenhuys et al. [20] also use a Sat encoding to reduce the state-space of
nondeterministic Fa. The first step is to construct the minimal deterministic
Fa B. Then the solver symbolically guesses a candidate Fa of a fixed size and
checks that the automaton resulting from the subset construction applied to the
candidate is isomorphic to B. If the formula is unsatisfiable, the candidate size
must be increased. Determinization may incur an exponential blow-up, and the
resulting automaton is not always (but often) minimal.

In contrast to the above works, our PMax-Sat encoding consists of con-
straints about a quotienting relation (which always exists) that is polynomial in
the size of the Vpa. We do not find a minimal Vpa, but our technique can be
applied to Vpa of practical relevance (the authors report results for automata
with less than 20 states), in particular using our greedy algorithm.

Restricted to Fa, the definition of a Raq relation coincides with direct bisim-
ulation [16,18]. This has two consequences. First, for Fa, we can omit the tran-
sitivity clauses because a direct bisimulation is always transitive. Second, our
algorithm always produces the (unique) maximal direct bisimulation. This can
be seen as follows. If two states p and q bisimulate each other, then X{p,q} can be
assigned true: since we are looking for a maximal assignment, we will assign this
value. If p and q do not bisimulate each other, then in any satisfying assignment
X{p,q} must be false. Alternatively, one can also say that our algorithm searches
for some maximal fixpoint, which is unique for direct bisimulation.



476 M. Heizmann et al.

For Fa, it is well-known that minimization based on direct simulation yields
smaller automata compared to direct bisimulation (i.e., the induced equivalence
relation is coarser) [18]. Two states can be merged if they simulate each other.
Our PMax-Sat encoding can be generalized to direct simulation by making the
variables non-symmetric, i.e., using both Xp,q and Xq,p and adapting the clauses
in a straightforward way. This increases the complexity by a polynomial.

References

1. Abdulla, P.A., Chen, Y., Hoĺık, L., Vojnar, T.: Mediating for reduction (on mini-
mizing alternating Büchi automata). In: FSTTCS, LIPIcs, vol. 4, pp. 1–12. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)

2. Abel, A., Reineke, J.: MeMin: SAT-based exact minimization of incompletely spec-
ified mealy machines. In: ICCAD, pp. 94–101. IEEE (2015)

3. Almeida, R., Hoĺık, L., Mayr, R.: Reduction of nondeterministic tree automata.
In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 717–735.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 46

4. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural programs. In:
Handbook of Model Checking. Springer, Heidelberg (2017, to appear)

5. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg
(2005). doi:10.1007/11523468 89

6. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC, pp. 202–211.
ACM (2004)

7. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3)
(2009). Article No. 16

8. Baarir, S., Duret-Lutz, A.: Mechanizing the minimization of deterministic gen-
eralized Büchi automata. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 266–283. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43613-4 17

9. Baarir, S., Duret-Lutz, A.: SAT-based minimization of deterministic ω-automata.
In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol.
9450, pp. 79–87. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 6

10. Beyer, D.: Reliable and reproducible competition results with BenchExec and wit-
nesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

11. Caralp, M., Reynier, P.-A., Talbot, J.-M.: Trimming visibly pushdown automata.
In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 84–96. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39274-0 9

12. Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for par-
tial MAXSAT. In: AAAI/IAAI, pp. 263–268. AAAI Press/The MIT Press (1997)

13. Chervet, P., Walukiewicz, I.: Minimizing variants of visibly pushdown automata.
In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 135–146.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74456-6 14

14. Clemente, L.: Büchi automata can have smaller quotients. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 258–270. Springer, Heidel-
berg (2011). doi:10.1007/978-3-642-22012-8 20

http://dx.doi.org/10.1007/978-3-662-49674-9_46
http://dx.doi.org/10.1007/11523468_89
http://dx.doi.org/10.1007/978-3-662-43613-4_17
http://dx.doi.org/10.1007/978-3-662-43613-4_17
http://dx.doi.org/10.1007/978-3-662-48899-7_6
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-642-39274-0_9
http://dx.doi.org/10.1007/978-3-540-74456-6_14
http://dx.doi.org/10.1007/978-3-642-22012-8_20


Minimization of Visibly Pushdown Automata Using Partial Max-SAT 477

15. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: POPL, pp. 541–
554. ACM (2014)

16. Dill, D.L., Hu, A.J., Wong-Toi, H.: Checking for language inclusion using simula-
tion preorders. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp.
255–265. Springer, Heidelberg (1992). doi:10.1007/3-540-55179-4 25

17. Ehlers, R.: Minimising deterministic Büchi automata precisely using SAT solving.
In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 326–332.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7 28

18. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,
and state space reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–
1175 (2005)

19. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006).
doi:10.1007/11814948 25

20. Geldenhuys, J., Merwe, B., Zijl, L.: Reducing nondeterministic finite automata
with SAT solvers. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.)
FSMNLP 2009. LNCS (LNAI), vol. 6062, pp. 81–92. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14684-8 9

21. Habermehl, P., Hoĺık, L., Rogalewicz, A., Simácek, J., Vojnar, T.: Forest automata
for verification of heap manipulation. Formal Methods Syst. Des. 41(1), 83–106
(2012)

22. Harris, W.R., Jha, S., Reps, T.: Secure programming via visibly pushdown safety
games. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
581–598. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 41

23. Heizmann, M., Dietsch, D., Greitschus, M., Leike, J., Musa, B., Schätzle, C., Podel-
ski, A.: Ultimate automizer with two-track proofs. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 950–953. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49674-9 68

24. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: POPL, pp. 471–
482. ACM (2010)

25. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 2

26. Heizmann, M., Schilling, C., Tischner, D.: Minimization of visibly pushdown
automata using partial Max-SAT, vol. abs/1701.05160 (2017)

27. Holzmann, G.J., Puri, A.: A minimized automaton representation of reachable
states. STTT 2(3), 270–278 (1999)

28. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton.
In: Theory of Machines and Computations, pp. 189–196. Academic Press (1971)

29. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int.
J. Found. Comput. Sci. 13(4), 571–586 (2002)

30. Kumar, V., Madhusudan, P., Viswanathan, M.: Minimization, learning, and confor-
mance testing of boolean programs. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 203–217. Springer, Heidelberg (2006). doi:10.1007/
11817949 14

31. Kumar, V., Madhusudan, P., Viswanathan, M.: Visibly pushdown automata for
streaming XML. In: WWW, pp. 1053–1062. ACM (2007)

32. Mayr, R., Clemente, L.: Advanced automata minimization. In: POPL, pp. 63–74.
ACM (2013)

33. Mozafari, B., Zeng, K., Zaniolo, C.: High-performance complex event processing
over XML streams. In: SIGMOD Conference, pp. 253–264. ACM (2012)

http://dx.doi.org/10.1007/3-540-55179-4_25
http://dx.doi.org/10.1007/978-3-642-14186-7_28
http://dx.doi.org/10.1007/11814948_25
http://dx.doi.org/10.1007/978-3-642-14684-8_9
http://dx.doi.org/10.1007/978-3-642-31424-7_41
http://dx.doi.org/10.1007/978-3-662-49674-9_68
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1007/11817949_14
http://dx.doi.org/10.1007/11817949_14


478 M. Heizmann et al.

34. Pitcher, C.: Visibly pushdown expression effects for XML stream processing. Pro-
gramming Language Technologies for XML 1060, 1–14 (2005)

35. Srba, J.: Beyond language equivalence on visibly pushdown automata. Logical
Methods Comput. Sci. 5(1) (2009)

36. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005). doi:10.1007/11591191 28

37. Thakur, A., Lim, J., Lal, A., Burton, A., Driscoll, E., Elder, M., Andersen, T.,
Reps, T.: Directed proof generation for machine code. In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 288–305. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14295-6 27

38. Thomo, A., Venkatesh, S., Ye, Y.Y.: Visibly pushdown transducers for approximate
validation of streaming XML. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS
2008. LNCS, vol. 4932, pp. 219–238. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-77684-0 16

http://dx.doi.org/10.1007/11591191_28
http://dx.doi.org/10.1007/978-3-642-14295-6_27
http://dx.doi.org/10.1007/978-3-540-77684-0_16
http://dx.doi.org/10.1007/978-3-540-77684-0_16

	Minimization of Visibly Pushdown Automata Using Partial Max-SAT
	1 Introduction
	1.1 Motivating Examples
	1.2 Our Approach

	2 Visibly Pushdown Automata
	2.1 Preliminaries
	2.2 Live Visibly Pushdown Automata

	3 A Quotienting Relation for VPA
	4 Computing Quotienting Relations
	4.1 Computing RAQ Relations
	4.2 Locally Maximal RAQ Relation

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Experiments

	6 Related Work
	References


