Minimization Principles for the Linear Response Eigenvalue Problem II: Computation

Zhaojun Bai* ${ }^{*}$ Ren-Cang Li ${ }^{\dagger}$

June 28, 2011

Abstract

In Part I of this paper we presented a minimization principle and related theoretical results for the linear response eigenvalue problem. Here we develop best approximations of the smallest few positive eigenvalues via a structure-preserving subspace projection. Then we present a four-dimensional subspace search conjugate gradient-like algorithm for simultaneously computing these eigenvalues and their associated eigenvectors. Finally, we present a numerical example to illustrate convergence behaviors of the proposed methods with and without preconditioning.

2000 Mathematics Subject Classification. Primary 65L15. Secondary 15A18, 81Q15
Key words and phrases. eigenvalue, eigenvector, minimization principle, conjugate gradient, random phase approximation, quantum linear response.

1 Introduction

This is the second paper of ours in a sequel of two. Building upon the theoretical results in [2], here we will focus on the numerical aspect of the LR eigenvalue problem:

$$
H z \equiv\left(\begin{array}{cc}
0 & K \tag{1.1}\\
M & 0
\end{array}\right)\binom{y}{x}=\lambda\binom{y}{x} \equiv \lambda z,
$$

where K and M are $n \times n$ symmetric positive semi-definite matrices and one of them is definite. It is an equivalent problem obtained from the original LR (a.k.a. Random Phase Approximation (RPA)) eigenvalue problem:

$$
\left(\begin{array}{rr}
A & B \tag{1.2}\\
-B & -A
\end{array}\right)\binom{u}{v}=\lambda\binom{u}{v}
$$

by an orthogonal similarity transformation to give $K=A-B$ and $M=A+B$, where A and B are $n \times n$ real symmetric matrices such that the symmetric matrix $\left(\begin{array}{ll}A & B \\ B & A\end{array}\right)$ is positive definite $[30,35]$. Note that K and M are both definite in the original LR eigenvalue problem, but here we relax this condition to one of them being definite.

[^0]It can be seen, as noted in [2], that the eigenvalue problem (1.1) is equivalent to any one of the following product eigenvalue problems

$$
\begin{align*}
& K M y=\lambda^{2} y \tag{1.3a}\\
& M K x=\lambda^{2} x \tag{1.3b}
\end{align*}
$$

Their equivalences have led to solve (1.1) through solving one of the eigenvalue problems in (1.3). They also imply that the eigenvalues of H come in $\pm \lambda$ pairs. As in [2], we will denote the positive eigenvalues ${ }^{1}$ of H by $\lambda_{i}(1 \leq i \leq n)$ and

$$
-\lambda_{n} \leq \cdots \leq-\lambda_{2} \leq-\lambda_{1} \leq 0 \leq \lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

The eigenvalue problem (1.2) has the same eigenvalues $\pm \lambda_{i}$.
An important minimization principle of Thouless [36] is

$$
\begin{equation*}
\lambda_{1}=\min _{u, v} \varrho(u, v) \tag{1.4}
\end{equation*}
$$

where $\varrho(u, v)$ is defined by

$$
\varrho(u, v)=\frac{\binom{u}{v}^{\mathrm{T}}\left(\begin{array}{cc}
A & B \tag{1.5}\\
B & A
\end{array}\right)\binom{u}{v}}{\left|u^{\mathrm{T}} u-v^{\mathrm{T}} v\right|}
$$

and the minimization is taken among all vectors u, v such that $u^{\mathrm{T}} u-v^{\mathrm{T}} v \neq 0$. For H, this minimization principle translates into

$$
\begin{equation*}
\lambda_{1}=\min _{x, y \in \mathbb{D}} \rho(x, y) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\varrho(u, v) \equiv \rho(x, y) \stackrel{\text { def }}{=} \frac{x^{\mathrm{T}} K x+y^{\mathrm{T}} M y}{2\left|x^{\mathrm{T}} y\right|} \tag{1.7}
\end{equation*}
$$

the domain \mathbb{D} consists of all x and y such that either $x^{\mathrm{T}} y \neq 0$ or $x^{\mathrm{T}} y=0$ but $x^{\mathrm{T}} K x+$ $y^{\mathrm{T}} M y>0$. This removes those x and y that annihilate both the numerator and the denominator from the domain. In particular $x=y=0$ is not in the domain \mathbb{D}.

Thouless' minimization principle (1.4) and consequently the induced (1.6) for H were proved under the condition that both $A \pm B$ (thus K and M, too) are symmetric positive definite. In [2], they were extended to include the case when one of K and M are definite.

Since the linear response (a.k.a. random phase approximation) theory was proposed by Bohm and Pines for studying the collective motion of many particles in the early 1950's [6], the development of numerical methods for solving the LR eigenvalue problem (1.2) and equivalently (1.1) has been an active research subject in computational (quantum) physics and chemistry for decades. In [8], it was suggested to solve the equivalent product eigenvalue problem (1.3a) instead by converting it to the symmetric eigenvalue problem of $R^{\mathrm{T}} K R$ through the Cholesky decomposition of $M=R^{\mathrm{T}} R$. In [25, 33], Davidson's algorithm for the symmetric eigenvalue problem was extended to the LR eigenvalue problem (1.2). Lanczos-like algorithms were studied in $[39,40,38,13,14]$. Given the minimization principle (1.4) or equivalently (1.6), conjugate gradient (CG) methods become nature choices for finding the smallest positive eigenvalue and indeed they have, see for example [21, 23].

[^1]Meanwhile, the eigenvalue problems in the forms of (1.1), (1.3) and (1.2) have also attracted a great deal of attention in numerical analysis community. As early as in 1960's, Wilkinson discussed the product eigenvalue problems (1.3) arising from theoretical physics, and proposed the method of transforming them to the standard symmetric eigenvalue problems by using the Cholesky decomposition [43, p.35, p.337]. Wilkinson's method is implemented as LAPACK's routine xSYGVD [1]. In [1], the product eigenvalue problems in (1.3) are classified as the types 2 and 3 of the generalized symmetric definite eigenvalue problems, respectively. Alternatively the structure-preserving GR algorithm, a generalization of the well-known QR algorithm, can also be used for small to medium size problems [42, Chapter 8]. For large sparse cases, the Lanczos algorithm, Krylov-Schur algorithm and Jacobi-Davidson algorithm all have been generalized to the product eigenvalue problems (see $[15,18,41]$). On the other hand, since the RPA eigenvalue problem (1.2) is a special case of the Hamiltonian matrix eigenvalue problem, an extension of the QR algorithm made for Hamiltonian matrix eigenvalue problems can be used to solve the problems of small to medium sizes [5, 7, 11, 42]. In particular, the work [11] treated a more general linear response eigenvalue problem via a QZ-like algorithm. Algorithms for large scale Hamiltonian eigenvalue problems can be found in $[3,4]$ and references therein. An RPA test case is given in [3] to illustrate the computational efficiency of a Hamiltonian Krylov-Schur-type algorithm.

A recent survey study [37] compared four numerical methods (namely Lanczos, Arnoldi, Davidson, and CG) and discussed the limitations of each of these methods for developing an efficient linear-scaling eigensolver for the RPA eigenvalue problem (1.2). In the study, severe limitations were experienced for the Lanczos-type methods due to the orthogonality constraints (also see [38]), for the CG type methods to compute several eigenpairs simultaneously and for incorporating preconditioning techniques (see also [21]).

In [2], we obtained a trace (or subspace) version of (1.6):

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i}=\frac{1}{2} \inf _{\substack{U, V \in \mathbb{R}^{n} \times n \\ U^{\mathrm{T}} V=I_{k}}} \operatorname{trace}\left(U^{\mathrm{T}} K U+V^{\mathrm{T}} M V\right), \tag{1.8}
\end{equation*}
$$

as well as Cauchy-like interlacing inequalities. Based on this newly developed theory, we have the opportunity to develop efficient numerical methods for the LR eigenvalue problem (1.1) in the much same way as the conjugate gradient and Lanczos methods for solving the large scale symmetric eigenvalue problem. In particular, in this paper we will show an important computational implication of the minimization principle (1.8) that is that it lends itself to seek approximations to a cluster of smallest positive eigenvalues $\lambda_{i}(1 \leq$ $i \leq k)$ simultaneously through minimizing the objective function $\operatorname{trace}\left(U^{\mathrm{T}} K U+V^{\mathrm{T}} M V\right)$ subject to $U^{\mathrm{T}} V=I_{k}$ and that $\operatorname{span}(U)$ and $\operatorname{span}(V)$ are restricted inside two suitably built subspaces \mathcal{U} and \mathcal{V}, respectively:

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} \approx \frac{1}{2} \inf _{\substack{\operatorname{span}(U) \subseteq U, \text { span(} V) \subseteq V \\ U \mathrm{~T} \\ U \\ I_{k}}} \operatorname{trace}\left(U^{\mathrm{T}} K U+V^{\mathrm{T}} M V\right) \tag{1.9}
\end{equation*}
$$

where $\operatorname{span}(U)$ denotes the subspace spanned by the column vectors of U.
The minimization problem in the right-hand side of (1.9) does not look easy to solve at first sight. But we obtain a structure-preserving projection matrix H_{SR} and show that the sum of its first k smallest positive eigenvalues is the infimum. In this sense, $H_{\text {SR }}$ is the best projection matrix from the given subspaces \mathcal{U} and \mathcal{V}, and solving its eigenvalue problem yields the best approximations to $\lambda_{i}(1 \leq i \leq k)$ and their associated eigenvectors. Moreover, H_{SR} has the same block structure as H. With these new developments, we will
be able to construct efficient numerical algorithms that can compute several smallest positive eigenvalues of H simultaneously. We will present our versions of locally optimal conjugate gradient type algorithms, including blocked versions for computing smallest positive eigenvalues simultaneously and preconditioned versions for speedy convergence. An extended presentation about the steepest descent-like methods and their applications in $a b$ initio calculation of optical absorption spectra will appear in [31]. We point out that these new algorithms are not straightforward applications of the standard steepest decent and nonlinear conjugate gradient algorithms, but improved ones to take advantage of best projection matrices H_{SR} we have uncovered. All these are made possible by the new theory parallel to some of the well-known and important results for the symmetric eigenvalue problem [19, 27, 32].

The rest of this paper is organized as follows. Section 2 presents an algorithm to construct approximate eigenpairs for H from a pair of approximate deflating subspaces $\{\mathcal{U}, \mathcal{V}\}$. It is derived from the result in [2] for the case when the subspaces do consist of a pair of deflating subspaces. Section 3 and appendix A discuss how to construct the best approximations to some of the eigenpairs of H from a pair of approximate deflating subspaces $\{\mathcal{U}, \mathcal{V}\}$. The results in section 3 justifies the algorithm in section 2 from a different perspective. In section 4 , we apply newly established minimization principles in [2] to derive a four-dimensional subspace search CG-type algorithms for computing a set of the smallest positive eigenvalues. In section 5 , we present numerical results to illustrate the convergence behaviors of the CG methods. Concluding remarks are in section 6 . We will follow the notation as specified at the end of section 1 in [2].

2 Approximate deflating subspaces

Recall that $\mathcal{U}, \mathcal{V} \subseteq \mathbb{R}^{n}$ is a pair of deflating subspaces of $\{K, M\}$ if $K \mathcal{U} \subseteq \mathcal{V}$ and $M \mathcal{V} \subseteq \mathcal{U}$. Each such a pair will yield a subset of H 's eigenvalues and their corresponding eigenvectors $[2, \S 2.1$ and $\S 2.2]$. However, in practical computations, rarely pairs of exact deflating subspaces are known, only approximate ones. The question then arises: how to compute approximate eigenpairs of H from a given pair of approximate deflating subspaces.

Let $\{\mathcal{U}, \mathcal{V}\}$ be a pair of approximate deflating subspaces with $\operatorname{dim} \mathcal{U}=\operatorname{dim} \mathcal{V}=\ell$ such that $W \stackrel{\text { def }}{=} U^{\mathrm{T}} V$ is nonsingular. In $[2, \S 2]$, we defined a structure-preserving projection

$$
H_{\mathrm{SR}}=\left(\begin{array}{cc}
0 & W_{1}^{-\mathrm{T}} U^{\mathrm{T}} K U W_{1}^{-1} \tag{2.1}\\
W_{2}^{-\mathrm{T}} V^{\mathrm{T}} M V W_{2}^{-1} & 0
\end{array}\right)
$$

of H onto the pair of the subspaces $\{\mathcal{U}, \mathcal{V}\}$, where $W_{i} \in \mathbb{R}^{\ell \times \ell}$ are from factorizing $W=$ $W_{1}^{\mathrm{T}} W_{2}$ and nonsingular. It will become clear later that H_{SR} in many ways play the same role for H as the Rayleigh quotient matrix for the symmetric eigenvalue problem.

Theorem 2.6 in [2] shows how to construct the eigenpairs of H from those of H_{SR} when $\{\mathcal{U}, \mathcal{V}\}$ is an exact pair of deflating subspaces of $\{K, M\}$. The way of construction there naturally leads us to propose the following algorithm.

Algorithm 2.1. Given the basis matrices $\{U, V\}$ of an approximate deflating subspaces $\{\mathcal{U}, \mathcal{V}\}$ of $\{K, M\}$, this algorithm returns approximate eigenvalues and eigenvectors for H as follows.

1. Construct H_{SR} as in (2.1) if $U^{\mathrm{T}} V$ is nonsingular;
2. Compute the eigenpairs $\left\{\hat{\lambda},\binom{\hat{y}}{\hat{x}}\right\}$ of H_{SR};
3. The computed eigenvalues $\hat{\lambda}$ approximate some eigenvalues of H, and the associated approximate eigenvectors can be recovered as $\binom{V W_{2}^{-1} \hat{y}}{U W_{1}^{-1} \hat{x}}$.

In view of [2, Theorem 2.7], as far as the eigenvalue problem of H is concerned, in theory any one of H_{SR} associated with a given pair of approximate deflating subspaces is just as good as another. Numerically, however, we should pick basis matrices that are sufficiently well-conditioned, like with orthonormal columns.

3 Best approximations by a pair of subspaces

Two most important aspects in solving large scale eigenvalue problems are

1. building subspaces which the desired eigenvectors (or invariant subspaces) are close to, and
2. seeking "best possible" approximations from the suitably built subspaces.

In this section, we shall address the second aspect for our current problem, i.e., seeking "best possible" approximations to a few smallest positive eigenvalues of H and their associated eigenvectors from a given pair of subspaces. we will prove that $H_{\text {SR }}$ provides best approximations. We leave the first aspect to the next section when we consider numerical algorithms.

The concept of "best possible" comes with a quantitative measure as to what constitutes "best possible". There may not be such a measure in general. But for the eigenvalue problem here, each of the minimization principles we have in [2] provides a quantitative measure.

Under the assumption that $K, M \in \mathbb{R}^{n \times n}$ are symmetric positive semi-definite and one of them is definite, let $\{\mathcal{U}, \mathcal{V}\}$ be a pair of approximate deflating subspaces of $\{K, M\}$ and $\operatorname{dim}(\mathcal{U})=\operatorname{dim}(\mathcal{V})=\ell$. Motivated by the minimization principles in [2] we would seek

1. the best approximation to λ_{1} in the sense of

$$
\begin{equation*}
\inf _{x \in \mathcal{U}, y \in \mathcal{V}} \rho(x, y) \tag{3.1}
\end{equation*}
$$

and its associated approximate eigenvector;
2. the best approximations to $\lambda_{j}(1 \leq j \leq k)$ in the sense of

$$
\begin{equation*}
\frac{1}{2} \inf _{\substack{\operatorname{span}\left(\hat{U} \subseteq \mathcal{U} \text { span }(\hat{V}) \subseteq \mathcal{V} \\ \hat{U} \mathrm{~T} \hat{V}=I_{k}\right.}} \operatorname{trace}\left(\hat{U}^{\mathrm{T}} K \hat{U}+\hat{V}^{\mathrm{T}} M \hat{V}\right) \tag{3.2}
\end{equation*}
$$

and their associated approximate eigenvectors. Necessarily $k \leq \ell$.
To this end, we divide our investigation into two cases. Let $U, V \in \mathbb{R}^{n \times \ell}$ be the basis matrices of \mathcal{U} and \mathcal{V}, respectively, and set $W=U^{\mathrm{T}} V$. The two cases are

1. $W=U^{\mathrm{T}} V$ is nonsingular;
2. $W=U^{\mathrm{T}} V$ is singular.

For the first case, i.e., $W=U^{\mathrm{T}} V$ is nonsingular. Factorize $W=W_{1}^{\mathrm{T}} W_{2}$, where $W_{i} \in \mathbb{R}^{\ell \times \ell}$ are nonsingular. How this factorization is done is not essential mathematically. But it is included to accommodate cases when such a factorization may offer certain conveniences. In general, simply taking $W_{1}=W^{\mathrm{T}}$ and $W_{2}=I_{\ell}$ or $W_{1}=I_{\ell}$ and $W_{2}=W$ may just be good enough.

For the best approximation to λ_{1} by (3.1), we note that any $x \in \mathcal{U}$ and $y \in \mathcal{V}$ be written as $x=U \hat{u}$ and $y=V \hat{v}$ for some $\hat{u}, \hat{v} \in \mathbb{R}^{\ell}$ and vice versa. Therefore, we have

$$
\begin{align*}
\rho(x, y) & =\frac{\hat{u}^{\mathrm{T}} U^{\mathrm{T}} K U \hat{u}+\hat{v}^{\mathrm{T}} V^{\mathrm{T}} M V \hat{v}}{2\left|\hat{u}^{\mathrm{T}} W \hat{v}\right|} \tag{3.3}\\
& =\frac{\hat{x}^{\mathrm{T}} W_{1}^{-\mathrm{T}} U^{\mathrm{T}} K U W_{1}^{-1} \hat{x}+\hat{y}^{\mathrm{T}} W_{2}^{-\mathrm{T}} V^{\mathrm{T}} M V W_{2}^{-1} \hat{y}}{2\left|\hat{x}^{\mathrm{T}} \hat{y}\right|}
\end{align*}
$$

where $\hat{x}=W_{1} \hat{u}$ and $\hat{y}=W_{2} \hat{v}$. By [2, Theorem 3.1], the quantity in (3.1) is the smallest positive eigenvalue of H_{SR}

Now turn to the best approximations to $\lambda_{j}(1 \leq j \leq k)$ by (3.2). Note that any \hat{U} and \hat{V} such that $\operatorname{span}(\hat{U}) \subseteq \mathcal{U}, \operatorname{span}(\hat{V}) \subseteq \mathcal{V}$, and $\hat{U}^{\mathrm{T}} \hat{V}=\bar{I}_{k}$ can be written as

$$
\hat{U}=U W_{1}^{-1} \hat{X}, \quad \hat{V}=V W_{2}^{-1} \hat{Y}
$$

where $\hat{X}, \hat{Y} \in \mathbb{R}^{\ell \times k}$ and $\hat{X}^{\mathrm{T}} \hat{Y}=I_{k}$, and vice versa. Hence we have

$$
\hat{U}^{\mathrm{T}} K \hat{U}+\hat{V}^{\mathrm{T}} M \hat{V}=\hat{X}^{\mathrm{T}} W_{1}^{-\mathrm{T}} U^{\mathrm{T}} K U W_{1}^{-1} \hat{X}+\hat{Y}^{\mathrm{T}} W_{2}^{-\mathrm{T}} V^{\mathrm{T}} M V W_{2}^{-1} \hat{Y}
$$

and thus

$$
\begin{align*}
& \inf _{\substack{\operatorname{span}\left(\hat{U} \subseteq \mathcal{U}, \text { span }(\hat{V}) \subseteq \mathcal{V} \\
\hat{U}^{\mathrm{T}}=I_{k}\right.}} \operatorname{trace}\left(\hat{U}^{\mathrm{T}} K \hat{U}+\hat{V}^{\mathrm{T}} M \hat{V}\right) \\
&=\inf _{\hat{X}^{\mathrm{T}} \hat{Y}=I_{k}} \operatorname{trace}\left(\hat{X}^{\mathrm{T}} W_{1}^{-\mathrm{T}} U^{\mathrm{T}} K U W_{1}^{-1} \hat{X}+\hat{Y}^{\mathrm{T}} W_{2}^{-\mathrm{T}} V^{\mathrm{T}} M V W_{2}^{-1} \hat{Y}\right) \tag{3.4}
\end{align*}
$$

By [2, Theorem 3.2], we know that the right-hand side of (3.4) is the sum of the k smallest positive eigenvalues of H_{SR} defined in (2.1):

$$
H_{\mathrm{SR}}=\left(\begin{array}{cc}
0 & W_{1}^{-\mathrm{T}} U^{\mathrm{T}} K U W_{1}^{-1} \tag{2.1}\\
W_{2}^{-\mathrm{T}} V^{\mathrm{T}} M V W_{2}^{-1} & 0
\end{array}\right) \in \mathbb{R}^{2 \ell \times 2 \ell}
$$

In summary, the best approximations to the first k positive eigenvalues of H within the pair of approximate deflating subspaces are the eigenvalues of H_{SR}. Algorithmically, denote by $\omega_{j}(j=1, \ldots, \ell)$ the positive eigenvalues of H_{SR} in ascending order and by \hat{z}_{j} the associated eigenvectors, i.e., $0 \leq \omega_{1} \leq \cdots \leq \omega_{\ell}$, and

$$
\begin{equation*}
H_{\mathrm{SR}} \hat{z}_{j}=\omega_{j} \hat{z}_{j}, \quad \hat{z}_{j}=\binom{\hat{y}_{j}}{\hat{x}_{j}} \tag{3.5}
\end{equation*}
$$

It can be verified that

$$
\rho\left(U W_{1}^{-1} \hat{x}_{j}, V W_{2}^{-1} \hat{y}_{j}\right)=\omega_{j} \quad \text { for } j=1, \ldots, \ell
$$

Naturally, according to Algorithm 2.1, we take $\lambda_{j} \approx \omega_{j}$ and the corresponding approximate eigenvectors of H as

$$
\begin{equation*}
\widetilde{z}_{j} \equiv\binom{\widetilde{y}_{j}}{\widetilde{x}_{j}}=\binom{V W_{2}^{-1} \hat{y}_{j}}{U W_{1}^{-1} \hat{x}_{j}} \quad \text { for } j=1, \ldots, \ell . \tag{3.6}
\end{equation*}
$$

In practice, not all of the approximate eigenpairs $\left(\omega_{j}, \widetilde{z}_{j}\right)$ are equally accurate to the same level. Usually the first few pairs are more accurate than the rest.

For the easy of reference, we summarize the findings for the first case of nonsingular $W=U^{\mathrm{T}} V$ into the following theorem.

Theorem 3.1. Suppose that one of K and M is definite. Let $\{\mathcal{U}, \mathcal{V}\}$ be a pair of approximate deflating subspaces of $\{K, M\}$ with $\operatorname{dim}(\mathcal{U})=\operatorname{dim}(\mathcal{V})=\ell$, and let $U, V \in \mathbb{R}^{n \times \ell}$ be the basis matrices of \mathcal{U} and \mathcal{V}, respectively. If $W \stackrel{\text { def }}{=} U^{\mathrm{T}} V$ is nonsingular, then

$$
\sum_{j=1}^{k} \omega_{j}=\frac{1}{2} \inf _{\substack{\operatorname{span}(\hat{U}) \subseteq \mathcal{U}_{s p \operatorname{span}(\hat{V}) \subseteq \mathcal{V}}}} \operatorname{trace}\left(\hat{U}^{\mathrm{T}} K \hat{U}+\hat{V}^{\mathrm{T}} M \hat{V}=I_{k}\right)
$$

and the best approximations to λ_{1} in the sense of (3.1) or to $\lambda_{j}(1 \leq j \leq k)$ in the sense of (3.2) are the eigenvalues $\left\{\omega_{j}\right\}$ of H_{SR} defined in (2.1) with the corresponding approximate eigenvectors given by (3.6).

We recall that even though H_{SR} is not uniquely determined by the given subspaces \mathcal{U} and \mathcal{V}, the approximate eigenpairs $\left(\omega_{j}, \widetilde{z}_{j}\right)$ by (3.5) and (3.6) are uniquely determined, as guaranteed by [2, Theorem 2.7].

It turns out the treatment of the second case (namely W is singular) is much involved, but the conclusion is similar in that both the optimization problems in (3.1) and (3.2) can still be solved through solving a smaller eigenvalue problem for a projection matrix $\hat{H}_{\text {SR }}$ to be defined in appendix A, where Theorem A. 1 similar to Theorem 3.1 is obtained.

Remark 3.1. The best approximation technique so far is based on the minimization principles in [2, Theorems 3.1 and 3.2]. Naturally one may wonder if a similar technique could be devised using the minimization principles in [2, Theorem 3.3] for the original LR eigenvalue problem (1.3) of [2]:

$$
\left(\begin{array}{rr}
A & B \\
-B & -A
\end{array}\right)\binom{u}{v}=\lambda\binom{u}{v}
$$

But that seems hard, if at all possible. The difficulty lies in that there appears no good way to define a proper projection matrix of $\left(\begin{array}{ll}A & B \\ B & A\end{array}\right)$ or of $\left(\begin{array}{rr}A & B \\ -B & -A\end{array}\right)$ onto the given subspaces.

4 4-D CG algorithms

4.1 4-D search

The line search is a common approach in the process of optimizing a function value. For our case, we are interested in solving

$$
\begin{equation*}
\inf _{x, y \in \mathbb{D}} \rho(x, y)=\inf _{x, y \in \mathbb{D}} \frac{x^{\mathrm{T}} K x+y^{\mathrm{T}} M y}{2\left|x^{\mathrm{T}} y\right|} \tag{4.1}
\end{equation*}
$$

in order to compute λ_{1} and its associated eigenvector of H.
From the theoretical point of view, this task of minimizing $\rho(x, y)$ may end up with no optimal arguments because possibly no x and y attend the infimum, unless both K and M are definite. Of course, one may argue that in this case, λ_{1} is already known, i.e., 0 , when the infimum cannot be attained and it happens if one of K and M is singular, but in
practice, that one of them is singular may not be known a priori, except that both are semidefinite is usually known from the problem setup. A likely scenario would be that one may still attempt to minimize $\rho(x, y)$ anyway. What would happen then? First numerically rarely a matrix is exactly singular. This means that the singular K or M is not actually singular (even might be slightly indefinite). With carefully written computer codes, one may safely regard the singular one barely definite. Consequently any computation by minimizing $\rho(x, y)$ can still yield meaningful numerical results: the computed λ_{1} is very tiny, as tiny as about $O(\|K\|+\|M\|) \boldsymbol{u}$, and one of x and y is negligible compared to the other, where \boldsymbol{u} is the machine unit roundoff. Therefore, despite of the implied theoretical impasse by [2, Theorem 3.1] when one of K and M is singular, attempting to minimize $\rho(x, y)$ is still a worthwhile thing to do in seeking λ_{1} and its associated eigenvector of H. In view of this, for the ease of presentation we shall assume, in what follows, that $\lambda_{1}>0$.

Given a search direction $\binom{q}{p}$ from the current position $\binom{y}{x}$, the basic idea of the standard line search ${ }^{2}$ is to look for the best possible scalar argument t on the line

$$
\begin{equation*}
\left\{\binom{y}{x}+t\binom{q}{p}: t \in \mathbb{R}\right\} \tag{4.2}
\end{equation*}
$$

to minimize ρ. Carrying out the line search, i.e., minimizing ρ along the line (4.2), is rather straightforward. Note along the line, $(x+t p)^{\mathrm{T}}(y+t q)$ may change its sign. It can be computed that

$$
\frac{d}{d t} \rho(x+t p, y+t q)=\frac{\gamma+2 \beta t+\alpha t^{2}}{ \pm 2\left[(x+t p)^{\mathrm{T}}(y+t q)\right]^{2}}
$$

at any t for which $(x+t p)^{\mathrm{T}}(y+t q) \neq 0$, where

$$
\begin{aligned}
\alpha & =\left(x^{\mathrm{T}} q+p^{\mathrm{T}} y\right)\left(p^{\mathrm{T}} K p+q^{\mathrm{T}} M q\right)-p^{\mathrm{T}} q\left(x^{\mathrm{T}} K p+y^{\mathrm{T}} M q\right) \\
\beta & =x^{\mathrm{T}} y\left(p^{\mathrm{T}} K p+q^{\mathrm{T}} M q\right)-p^{\mathrm{T}} q\left(x^{\mathrm{T}} K x+y^{\mathrm{T}} y\right) \\
\gamma & =x^{\mathrm{T}} y\left(x^{\mathrm{T}} K p+y^{\mathrm{T}} M q\right)-\left(x^{\mathrm{T}} q+p^{\mathrm{T}} y\right)\left(x^{\mathrm{T}} K x+y^{\mathrm{T}} M y\right)
\end{aligned}
$$

There are two cases to consider:

- Equation $\gamma+2 \beta t+\alpha t^{2}=0$ has two real solutions $t_{i}(i=1,2)$ with the possibility $t_{1}=t_{2}$. Then

$$
\inf _{t} \rho(x+t p, y+t q)=\min \left\{\rho\left(x+t_{i} p, x+t_{i} q\right), \lim _{t \rightarrow \infty} \rho(x+t p, y+t q)=\rho(p, q)\right\}
$$

Dependent on which value of $\rho\left(x+t_{i} p, x+t_{i} q\right)$ and $\rho(p, q)$ gives $\inf _{t} \rho(x+t p, y+t q)$, the optimal t is either t_{i} or ∞.

- Equation $\gamma+2 \beta t+\alpha t^{2}=0$ has no solution. Then the optimal t is ∞ and

$$
\inf _{t} \rho(x+t p, y+t q)=\lim _{t \rightarrow \infty} \rho(x+t p, y+t q)=\rho(p, q)
$$

[^2]However we decided to give up this standard idea for reasons to be detailed in a moment. Instead, we shall look for four scalars α, β, s, and t to minimize

$$
\rho(\alpha x+s p, \beta y+t q)=\frac{(\alpha x+s p)^{\mathrm{T}} K(\alpha x+s p)+(\beta y+t q)^{\mathrm{T}} M(\beta y+t q)}{2\left|(\alpha x+s p)^{\mathrm{T}}(\beta y+t q)\right|}
$$

This no longer performs a line search, but a 4-dimensional subspace search (or, 4-D search for short):

$$
\begin{equation*}
\inf _{\alpha, \beta, s, t} \rho(\alpha x+s p, \beta y+t q)=\min _{u \in \operatorname{span}(U), v \in \operatorname{span}(V)} \rho(u, v), \tag{4.3}
\end{equation*}
$$

within the 4-dimensional subspace

$$
\begin{equation*}
\left\{\binom{\beta y+t q}{\alpha x+s p} \quad \text { for all scalars } \alpha, \beta, s, \text { and } t\right\} \tag{4.4}
\end{equation*}
$$

where $U=(x, p)$ and $V=(y, q)$. The right-hand side of (4.3) can be solved by the methods given in section 3 if $U^{\mathrm{T}} V$ is nonsingular (the common case) or in appendix A if $U^{\mathrm{T}} V$ is singular (the rare case).

We prefer our 4-D search to the standard line search along the line (4.2) for the following reasons:

1. The standard line search cannot be related to a (much) smaller projected problem of the same kind.
2. The standard line search is not readily extensible to the subspace search, a crucial technique for our development for simultaneously computing few smallest positive eigenvalues and corresponding eigenvectors of H.
3. The standard line search yields the best possible approximation along the line (4.2) that is contained in the 4-dimensional subspace over which our 4-D search minimizes. Starting with the same p and q, the solution by our 4-D search is and can be much better at about the same cost.
4. Although we restricted our developments so far on real K and M, they are actually valid for Hermitian K and M after minor changes, i.e., replacing all transposes $(\cdot)^{\mathrm{T}}$ by complex conjugate transposes $(\cdot)^{\mathrm{H}}$. When K and M are Hermitian and some of their entries are complex, our 4-D search is truly a 4-D search over a 4-dimensional subspace in $\mathbb{C}^{2 n}$ (the $2 n$-dimensional Euclidean vector space over the complex field), whereas the standard line search does not minimize ρ over a straight line in $\mathbb{C}^{2 n}$ because t is restricted to be real. Conceivably the standard line search solution could be even worse in the complex case.

The partial gradients of the Thouless functional $\rho(x, y)$ with respect to x and y will be needed later for minimization. To find the gradients, we perturb x and y to $x+p$ and $y+q$, respectively, where p and q are assumed tiny in magnitude. Assuming $x^{\mathrm{T}} y \neq 0$, we have for sufficiently tiny p and q, up to the first order in p and q,

$$
\begin{aligned}
\rho(x+p, y+q) & =\frac{(x+p)^{\mathrm{T}} K(x+p)+(y+q)^{\mathrm{T}} M(y+q)}{2\left|(x+p)^{\mathrm{T}}(y+q)\right|} \\
& =\frac{x^{\mathrm{T}} K x+2 p^{\mathrm{T}} K x+y^{\mathrm{T}} M y+2 q^{\mathrm{T}} M y}{2\left|x^{\mathrm{T}} y+p^{\mathrm{T}} y+q^{\mathrm{T}} x\right|} \\
& =\frac{x^{\mathrm{T}} K x+2 p^{\mathrm{T}} K x+y^{\mathrm{T}} M y+2 q^{\mathrm{T}} M y}{2\left|x^{\mathrm{T}} y\right|}\left[1-\frac{p^{\mathrm{T}} y+q^{\mathrm{T}} x}{x^{\mathrm{T}} y}\right] \\
& =\rho(x, y)+\frac{1}{x^{\mathrm{T}} y} p^{\mathrm{T}}[K x-\rho(x, y) y]+\frac{1}{x^{\mathrm{T}} y} q^{\mathrm{T}}[M y-\rho(x, y) x]
\end{aligned}
$$

Therefore the partial gradients of $\rho(x, y)$ with respect to x and y are given by

$$
\begin{equation*}
\nabla_{x} \rho=\frac{1}{x^{\mathrm{T}} y}[K x-\rho(x, y) y], \quad \nabla_{y} \rho=\frac{1}{x^{\mathrm{T}} y}[M y-\rho(x, y) x] \tag{4.5}
\end{equation*}
$$

There is a close relation between these two partial gradients and the residual:

$$
H z-\rho(x, y) z \equiv\left(\begin{array}{cc}
0 & K \tag{4.6}\\
M & 0
\end{array}\right)\binom{y}{x}-\rho(x, y)\binom{y}{x}=x^{\mathrm{T}} y\binom{\nabla_{x} \rho}{\nabla_{y} \rho} .
$$

Namely the block vector obtained by stacking $\nabla_{x} \rho$ over $\nabla_{y} \rho$ is parallel to the residual.

4.2 4-D CG algorithms

The minimization principles $(1.4) /(1.6)$ and (1.8) make it tempting to apply memoryefficient nonlinear CG algorithms [24] to solve LR eigenvalue problem. Not surprisingly, such applications had been attempted in [21, 23] based on the Thouless functional ϱ in (1.5). Conceivably when only one eigenvalue and its associated eigenvector are requested, it matters little, if any, to apply CG to (1.4) for the Hamiltonian matrix in (1.2) or to (1.6) for H in (1.1). But it is very different story if more than one eigenpairs are requested, in which case block algorithms become necessary. It seems hard, if at all possible, to create a block CG algorithm for the Hamiltonian matrix eigenvalue problem (1.2) directly, even with our new minimization principle in [2, Theorem 3.3] for the same reason as we pointed out in Remark 3.1. On the other hand, the developments in section 3 and appendix A make it possible for designing efficient block CG algorithms to compute the first few smallest positive eigenvalues λ_{j} and their corresponding eigenvectors simultaneously, based on the minimization principle in [2, Theorem 3.2] and the Cauchy-like interlacing inequalities in [2, Theorem 3.4]. This is the precise reason we prefer to work with H.

It has been noted that the locally optimal CG algorithm $[28,34]$ is often better suited for solving large scale Hermitian eigenvalue problems, especially with a proper preconditioner $[16,17]$ than the (classical) nonlinear CG algorithms [24]. It converges fast, has no parameters to worry about, and is (much) easier to implement. For this reason, we shall only present here our locally optimal CG algorithms (with or without preconditioners).

For most nonlinear optimization problems, even solving simple line searches poses challenges. But for the eigenvalue problem for H, thanks to Theorem 3.1 and Theorem A.1, the optimal approximate solution within a pair of subspaces of dimension higher than 1 is easily computed, very much like the case for the standard Hermitian eigenvalue problem. This enables us to go for block CG algorithms.

Algorithm 4.1 below summarizes four locally optimal 4-D CG algorithms in one. We attach "4-D" to them because of their relation to the 4-D search idea in subsection 4.1. Each of the algorithms is realized through adjusting its integer parameter k and preconditioner Φ :

- Locally Optimal 4-D CG algorithm (LO4DCG): $k=1$ and

$$
\Phi=\left(\begin{array}{cc}
0 & I_{n} \tag{4.7}\\
I_{n} & 0
\end{array}\right)
$$

- Locally Optimal Preconditioned 4-D $C G$ algorithm (LOP4DCG): $k=1$ and $\Phi \approx$ $\left(H-\mu I_{2 n}\right)^{-1}$;
- Locally Optimal Block 4-D CG algorithm (LOB4DCG): $k>1$ and Φ as in (4.7);
- Locally Optimal Block Preconditioned 4-D CG algorithm (LOBP4DCG): $k>1$ and $\Phi \approx\left(H-\mu I_{2 n}\right)^{-1}$.

The key iterative step in these locally optimal 4-D CG algorithms is to seek the best possible approximations in the subspace spanned by two most recent approximations and the (preconditioned) gradients at the most recent approximations, except for the first iterative step for which the search subspace is simply spanned by the most recent approximations and the (preconditioned) gradients at the approximations. A straightforward application would be to search the next approximations within

$$
\operatorname{span}\left\{\binom{y_{i}}{x_{i}},\binom{y_{i-1}}{x_{i-1}},\binom{q_{i}}{p_{i}}, \quad 1 \leq i \leq k\right\},
$$

except that for the first iteration the vectors in the middle is deleted from the list because they are not available yet, where

$$
\begin{equation*}
\binom{q_{i}}{p_{i}}=\left.\Phi\binom{\nabla_{x} \rho}{\nabla_{y} \rho}\right|_{(x, y)=\left(x_{i}, y_{i}\right)}, \tag{4.8}
\end{equation*}
$$

and Φ is a preconditioner. To utilize the best approximation methods in section 3 and appendix A, we modify this approach by using the search space

$$
\operatorname{span}\left\{\binom{y_{i}}{0},\binom{y_{i-1}}{0},\binom{q_{i}}{0},\binom{0}{x_{i}},\binom{0}{x_{i-1}},\binom{0}{p_{i}} \quad 1 \leq i \leq k\right\} .
$$

We are now ready to give our four locally optimal CG algorithms collectively in one.
Algorithm 4.1. The locally optimal block preconditioned 4-D CG algorithms:
0 Given initial approximations X_{0} and Y_{0} having k columns such that columns of $Z_{0}=\binom{Y_{0}}{X_{0}}$ are approximate eigenvectors of H associated with $\lambda_{j}, 1 \leq j \leq k$.
for $i=0,1, \ldots$ until convergence:

$$
\begin{aligned}
& \rho_{j}=\rho\left(\left(X_{i}\right)_{(:, j)},\left(Y_{i}\right)_{(:, j, j}\right), 1 \leq j \leq k ; \\
& P_{i}=K X_{i}-Y_{i} \operatorname{diag}\left(\rho_{1}, \ldots, \rho_{k}\right), Q_{i}=M Y_{i}-X_{i} \operatorname{diag}\left(\rho_{1}, \ldots, \rho_{k}\right)
\end{aligned}
$$

$$
\binom{Q_{i}}{P_{i}} \leftarrow \Phi\binom{P_{i}}{Q_{i}} \text { if the preconditioner } \Phi \text { is given; }
$$

4.1 \quad For $i=0: U=\left(X_{i}, P_{i}\right), V=\left(Y_{i}, Q_{i}\right)$;
4.2 For $i>0: U=\left(X_{i}, X_{i-1}, P_{i}\right), V=\left(Y_{i}, Y_{i-1}, Q_{i}\right)$;
4.3 Orthogonalize the columns of U and V;
$4.4 \quad W=U^{\mathrm{T}} V=W_{1}^{\mathrm{T}} W_{2}$;
$5 \quad$ Construct $H_{\text {SR }}$ as in (2.1) (assume W is nonsingular);
$6 \quad$ Compute the k smallest positive eigenvalues of H_{SR}, and the associated eigenvectors as in (3.5);
7
$8 \quad$ Normalize each column of $Z_{i+1}=\binom{Y_{i+1}}{X_{i+1}}$.
9 end
A few comments are in order for Algorithm 4.1:

1. At Line 2 , evaluations of ρ_{j} are needed only for sweep $i=0$; for $i \geq 1$, they are the k smallest positive eigenvalues of H_{SR} in the previous sweep.
2. For the convergence test, we can use the relative residual norm

$$
\frac{\left\|H z_{j}^{(i)}-\rho\left(x_{j}^{(i)}, y_{j}^{(i)}\right) z_{j}^{(i)}\right\|}{\left[\|H\|+\rho\left(x_{j}^{(i)}, y_{j}^{(i)}\right)\right]\left\|z_{j}^{(i)}\right\|}
$$

to determine if the approximate eigenpair $\left(\rho\left(x_{j}^{(i)}, y_{j}^{(i)}\right), z_{j}^{(i)}\right)$ has converged to a desired accuracy, where $z_{j}^{(i)}=\left(Z_{i}\right)_{(:, j)}, x_{j}^{(i)}=\left(X_{i}\right)_{(:, j)}$, and $y_{j}^{(i)}=\left(Y_{i}\right)_{(:, j)}$, and $\|\cdot\|$ is some matrix/vector norm, e.g., the ℓ_{1}-vector norm and ℓ_{1}-operator norm.
3. U and V constructed at Line 4.1 or Line 4.2 may be ill-conditioned, especially when near convergence because then the gradients tend to the zero vector and X_{i} and Y_{i} are almost converged. To ensure that U and V are well-conditioned for better numerical stability, we may have to orthogonalize their columns via, e.g., the (classical/modified) Gram-Schmidt orthogonalization process. This is the reason we have Line 4.3 there.
4. From Line 5 to Line 8 , we leave out the case when $U^{\mathrm{T}} V$ is singular for simplicity. Actual implementation should include the case for which the optimal solution has been given in detail in appendix A. Specifically, instead of H_{SR} as in (2.1), we compute \hat{H}_{SR} as in (A.5) and its $\min \{k, r\}$ smallest positive eigenvalues and the associated eigenvectors as in (A.7), and finally compute $Z_{i+1}=\left(\widetilde{z}_{1}, \ldots, \widetilde{z}_{\min \{k, r\}}\right)$ by (A.8) - (A.10), where r is the (numerical) rank of W.
5. At Line 6, LAPACK's routine xSYSVD for the types 2 and 3 generalized symmetric definite eigenvalue problems can be used to solve the eigenvalue problems of H_{SR} because of its small size.
6. At Line 8 , we can simply scale each column of Z_{i+1} to be a unit vector in some vector norm.
7. Sometimes it can be helpful to use a k that is somewhat bigger than the actual number of requested eigenpairs for the acceleration of the convergence.
8. The algorithm without Line 4.2 (and Line 4.1 for all i) and the preconditioner Φ is reminiscent of the so-called Simultaneous Rayleigh Quotient Minimization Method (SIRQIT) due to Longsine and McCormick [20] for the standard Hermitian eigenvalue problem.
9. Φ as in (4.7) gives the plain 4-D CG algorithm (i.e., without preconditioning). An efficient preconditioner to compute the eigenvalues of H close to a prescribed point μ is

$$
\Phi=\left(H-\mu I_{2 n}\right)^{-1}
$$

Then the vectors p_{i} and q_{i} defined by (4.8) can be computed through approximately solving a linear system with the coefficient matrix $\left(H-\mu I_{2 n}\right)^{-1}$ in practice. Note that the arrangement of the two n-entry blocks in the vector applied to by Φ is not mistaken. In fact the vector is parallel to the corresponding residual vector as given by (4.6). The modified directions are parallel to the ones obtained from one step of the inverse power iteration on the residual. When μ is closer to the desired eigenvalues than any others, the preconditioned directions should have "larger" components in the desired eigenvectors than the ones obtained without preconditioning. Since
we are particularly interested in the smallest positive eigenvalues, $\mu=0$ is often an obvious choice. Then

$$
\Phi\binom{\nabla_{x} \rho}{\nabla_{y} \rho}=\left(\begin{array}{cc}
0 & M^{-1} \\
K^{-1} & 0
\end{array}\right)\binom{\nabla_{x} \rho}{\nabla_{y} \rho}=\binom{M^{-1} \nabla_{y} \rho}{K^{-1} \nabla_{x} \rho}=:\binom{q}{p} .
$$

In this case, both p and q vectors can be computed by using the conjugate gradient method $[9,12]$. The search direction in the x-component depends only on $\nabla_{x} \rho$ while the search direction in the y-component depends only on $\nabla_{y} \rho$. This in part also justifies the correct block ordering in the vector applied to by Φ in (4.8).

5 Numerical examples

In this section, we present numerical experiment results to illustrate the essential convergence behaviors of locally optimal 4-D CG algorithms in section 4 . We use the pair of matrices K and M of $H(1.1)$ generated from the linear response analysis of the density matrix calculated from the Quantum ESPRESSO, an electronic structure calculation code that implements density functional theory (DFT) using plane-waves as a basis set and pseudopotentials [10]. For simplicity, we use a synthesized pair of matrices K and M for the sodium dimer Na_{2}, namely a simple biatomic molecule. Such small molecules are often used as benchmark tests to assess various simulation models, functionals and methods (for example see [22]). Both K and M are symmetric positive definite and of order $n=1862$.

Our goal is to compute 4 smallest positive eigenvalues $0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$ and corresponding eigenvectors $z_{1}, z_{2}, z_{3}, z_{4}$ of H. The initial approximate eigenvectors of z_{i} are chosen as $\left(e_{j}^{\mathrm{T}}, e_{j}^{\mathrm{T}}\right)^{\mathrm{T}}$ for $j=1,2,3,4$. The relative residual norms and relative eigenvalue errors for the j th approximate eigenpair $\left(\lambda_{j}^{(i)}, z_{j}^{(i)}\right)$ at the i th iterative step to the exact j th eigenpairs $\left(\lambda_{j}, z_{j}\right)$ are defined by

$$
\frac{\left\|H z_{j}^{(i)}-\lambda_{j}^{(i)} z_{j}^{(i)}\right\|_{1}}{\left(\|H\|_{1}+\lambda_{j}^{(i)}\right)\left\|z_{j}^{(i)}\right\|_{1}} \quad \text { and } \frac{\left|\lambda_{j}^{*}-\lambda_{j}^{(i)}\right|}{\left|\lambda_{j}^{*}\right|}
$$

respectively, where $\left(\lambda_{j}^{*}, z_{j}\right)$ are computed by the QR algorithm (via MATLAB's function eig) and considered to be the "exact" eigenpairs. The preconditioner is chosen to be

$$
\Phi=H^{-1}=\left(\begin{array}{cc}
0 & M^{-1} \\
K^{-1} & 0
\end{array}\right) .
$$

The preconditioned vectors $q_{i}:=M^{-1} p_{i}$ and $p_{i}:=K^{-1} q_{i}$ are computed by the CG method $[9,12]$ with stopping tolerance 10^{-2} or maximum 20 iterations.

Figure 5.1 shows the relative residual norms and the relative eigenvalue errors of a MATLAB implementation of the locally optimal block 4-D CG algorithm with and without preconditioning (Algorithm 4.1 with $k=4$). We observe the initially steady convergence of the algorithm without preconditioning. However, it is quickly stagnated. This phenomenon is common to methods of the CG type for solving linear systems and standard symmetric eigenvalue problems. On the other hand, by incorporating preconditioning, the method converges rapidly.

6 Concluding remarks

Basing on the theoretical results in [2] for the LR (a.k.a. RPA) eigenvalue problem (1.1), we developed a 4-D search technique to enhance the standard line search method in optimization and then devised locally optimal CG methods that are capable of computing the

Figure 5.1: The convergence behaviors of the locally optimal block 4-D CG algorithms with/without preconditioning for computing the 4 smallest positive eigenvalues (excitation states) of a synthesized bi-atomic molecule: relative residual norms (left) and relative eigenvalue errors (right).
few smallest positive eigenvalues and their corresponding eigenvectors simultaneously. The numerical example in section 5 demonstrate the effectiveness of the new algorithms, especially with suitable preconditioners. Extended numerical experiment results on a block 4-D steepest descent (SD) type method for the first-principle calculation of the excitation states of large molecules is presented in [31]. However, we do not have any precise estimate on rates of convergence yet.

In both [2] and this paper, we have focused on the case where the LR (RPA) eigenvalue problem has only real eigenvalues with eigenvalue 0 allowed. There are cases in which imaginary eigenvalues occur. For example, the positive-definiteness condition of $A+B$ and/or $A-B$ is not met in $[26,29]$. The development of efficient numerical methods for treating such large scale problems is a subject of future study.

Acknowledgments

We thank Dario Rocca and Giulia Galli for inspiring us the linear response eigenvalue problems, and for providing the test matrices used in the numerical experiment.

A Best approximations: the singular case

This appendix continues the investigation in section 3 to seek best approximate eigenpairs of H for given $\{\mathcal{U}, \mathcal{V}\}$, a pair of approximate deflating subspaces of $\{K, M\}$ with $\operatorname{dim}(\mathcal{U})=$ $\operatorname{dim}(\mathcal{V})=\ell$. In section 3, we have treated the case in which $W \stackrel{\text { def }}{=} U^{\mathrm{T}} V$ is nonsingular, where $U, V \in \mathbb{R}^{n \times \ell}$ are the basis matrices of \mathcal{U} and \mathcal{V}, respectively. In what follows, we will treat the case in which W is singular.

Suppose that W is singular, and factorize

$$
\begin{equation*}
W=W_{1}^{\mathrm{T}} W_{2}, \quad W_{i} \in \mathbb{R}^{r \times \ell}, \quad r=\operatorname{rank}(W)<\ell \tag{A.1}
\end{equation*}
$$

So both W_{i} have full row rank. Factorize ${ }^{3}$

$$
\begin{equation*}
W_{i}^{\mathrm{T}}=Q_{i}\binom{R_{i}}{0} \quad \text { for } i=1,2 \tag{A.2}
\end{equation*}
$$

where $R_{i} \in \mathbb{R}^{r \times r}, Q_{i} \in \mathbb{R}^{\ell \times \ell}(i=1,2)$ are nonsingular.
Consider the best approximation to λ_{1} by (3.1). We still have (3.3):

$$
\begin{equation*}
\rho(x, y)=\frac{\hat{u}^{\mathrm{T}} U^{\mathrm{T}} K U \hat{u}+\hat{v}^{\mathrm{T}} V^{\mathrm{T}} M V \hat{v}}{2\left|\hat{u}^{\mathrm{T}} W \hat{v}\right|} \tag{3.3}
\end{equation*}
$$

where $x=U \hat{u}$ and $y=V \hat{v}$ for some $\hat{u}, \hat{v} \in \mathbb{R}^{\ell}$. Note the correspondence between $x \in \mathcal{U}$ and $\hat{u} \in \mathbb{R}^{\ell}$ and that between $y \in \mathcal{V}$ and $\hat{v} \in \mathbb{R}^{\ell}$ are one-one. Let $\hat{x}=W_{1} \hat{u} \in \mathbb{R}^{r}$ and $\hat{y}=W_{2} \hat{v} \in \mathbb{R}^{r}$. Since $r<\ell, \hat{u}$ is not uniquely defined by \hat{x}; neither is \hat{v} by \hat{y}. But use (A.2) to see that

$$
\hat{u}=Q_{1}^{-\mathrm{T}}\binom{R_{1}^{-\mathrm{T}} \hat{x}}{u}, \quad \hat{v}=Q_{2}^{-\mathrm{T}}\binom{R_{2}^{-\mathrm{T}} \hat{y}}{v}
$$

where $u, v \in \mathbb{R}^{\ell-r}$ are arbitrary. Partition

$$
Q_{1}^{-1} U^{\mathrm{T}} K U Q_{1}^{-\mathrm{T}}={ }_{\ell-r}^{r}\left(\begin{array}{cc}
r & \ell-r \tag{A.3}\\
K_{11} & K_{12} \\
K_{12}^{\mathrm{T}} & K_{22}
\end{array}\right), \quad Q_{2}^{-1} V^{\mathrm{T}} M V Q_{2}^{-\mathrm{T}}={ }_{\ell-r}^{r}\left(\begin{array}{cc}
r & \ell-r \\
M_{11} & M_{12} \\
M_{12}^{\mathrm{T}} & M_{22}
\end{array}\right) .
$$

We have

$$
\begin{aligned}
\hat{u}^{\mathrm{T}} U^{\mathrm{T}} K U \hat{u} & =\binom{R_{1}^{-\mathrm{T}} \hat{x}}{u}^{\mathrm{T}}\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{12}^{\mathrm{T}} & K_{22}
\end{array}\right)\binom{R_{1}^{-\mathrm{T}} \hat{x}}{u}, \\
\hat{v}^{\mathrm{T}} V^{\mathrm{T}} M V \hat{v} & =\binom{R_{2}^{-\mathrm{T}} \hat{y}}{v}^{\mathrm{T}}\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{\mathrm{T}} & M_{22}
\end{array}\right)\binom{R_{2}^{-\mathrm{T}} \hat{y}}{v} .
\end{aligned}
$$

Given $\hat{x}, \hat{u}^{\mathrm{T}} U^{\mathrm{T}} K U \hat{u}$ is minimized at these u such that $K_{22} u=-K_{12}^{\mathrm{T}} R_{1}^{-\mathrm{T}} \hat{x}$. This equation always has a solution because that $Q_{1}^{-1} U^{\mathrm{T}} K U Q_{1}^{-\mathrm{T}}$ is positive semi-definite implies $\operatorname{span}\left(K_{12}^{\mathrm{T}}\right) \subseteq \operatorname{span}\left(K_{22}\right)$, and its solution is not unique if K_{22} is singular. But the nonuniqueness does not matter as far as the minimal value of $\hat{u}^{\mathrm{T}} U^{\mathrm{T}} K U \hat{u}$ is concerned. The same can be said about $\hat{v}^{\mathrm{T}} V^{\mathrm{T}} M V \hat{v}$. In fact,

$$
\begin{align*}
& \min _{u} \hat{u}^{\mathrm{T}} U^{\mathrm{T}} K U \hat{u}=\hat{x}^{\mathrm{T}} R_{1}^{-1}\left(K_{11}-K_{12} K_{22}^{\dagger} K_{12}^{\mathrm{T}}\right) R_{1}^{-\mathrm{T}} \hat{x} \tag{A.4a}\\
& \min _{v} \hat{v}^{\mathrm{T}} V^{\mathrm{T}} M V \hat{v}=\hat{y}^{\mathrm{T}} R_{2}^{-1}\left(M_{11}-M_{12} M_{22}^{\dagger} M_{12}^{\mathrm{T}}\right) R_{2}^{-\mathrm{T}} \hat{y} \tag{A.4b}
\end{align*}
$$

where K_{22}^{\dagger} and M_{22}^{\dagger} are the Moore-Penrose inverses of K_{22} and M_{22}, respectively. The minimums in (A.4) are attained at those u and v satisfying

$$
K_{22} u=-K_{12}^{\mathrm{T}} R_{1}^{-\mathrm{T}} \hat{x}, \quad M_{22} v=-M_{12}^{\mathrm{T}} R_{2}^{-\mathrm{T}} \hat{y}
$$

Finally, the quantity in (3.1) is

$$
\inf _{\hat{x}, \hat{y}} \frac{\hat{x}^{\mathrm{T}} R_{1}^{-1}\left(K_{11}-K_{12} K_{22}^{\dagger} K_{12}^{\mathrm{T}}\right) R_{1}^{-\mathrm{T}} \hat{x}+\hat{y}^{\mathrm{T}} R_{2}^{-1}\left(M_{11}-M_{12} M_{22}^{\dagger} M_{12}^{\mathrm{T}}\right) R_{2}^{-\mathrm{T}} \hat{y}}{2\left|\hat{x}^{\mathrm{T}} \hat{y}\right|}
$$

[^3]which, by [2, Theorem 3.1], is the smallest positive eigenvalue of \hat{H}_{SR} :
\[

\hat{H}_{\mathrm{SR}}=\left($$
\begin{array}{cc}
0 & R_{1}^{-1}\left(K_{11}-K_{12} K_{22}^{\dagger} K_{12}^{\mathrm{T}}\right) R_{1}^{-\mathrm{T}} \tag{A.5}\\
R_{2}^{-1}\left(M_{11}-M_{12} M_{22}^{\dagger} M_{12}^{\mathrm{T}}\right) R_{2}^{-\mathrm{T}} & 0
\end{array}
$$\right) \in \mathbb{R}^{2 r \times 2 r}
\]

Now we turn to the best approximations to $\lambda_{i}(1 \leq i \leq k)$ by (3.2). Assume (A.1) and (A.2). Any $\hat{U}, \hat{V} \in \mathbb{R}^{n \times k}$ such that $\operatorname{span}(\hat{U}) \in \mathcal{U}, \operatorname{span}(\hat{V}) \in \mathcal{V}$, and $\hat{U}^{\mathrm{T}} \hat{V}=I_{k}$ can be written as

$$
\hat{U}=U Q_{1}^{-\mathrm{T}} \tilde{U}, \quad \hat{V}=V Q_{2}^{-\mathrm{T}} \tilde{V}
$$

where $\widetilde{U}, \widetilde{V} \in \mathbb{R}^{\ell \times k}$ that make $\hat{U}^{\mathrm{T}} \hat{V}=I_{k}$, and vice versa. We note that necessarily

$$
k=\operatorname{rank}\left(I_{k}\right)=\operatorname{rank}\left(\hat{U}^{\mathrm{T}} \hat{V}\right) \leq \operatorname{rank}(W)=r
$$

We first look into what constraint is needed on \widetilde{U} and \widetilde{V} in order to enforce $\hat{U}^{\mathrm{T}} \hat{V}=I_{k}$. To this end, we partition

$$
\widetilde{U}={ }_{\ell-r}^{r}\left(\begin{array}{c}
k \\
\widetilde{U}_{1} \\
\widetilde{U}_{2}
\end{array}\right), \quad \widetilde{V}=\begin{gathered}
r \\
\ell-r
\end{gathered}\left(\begin{array}{c}
k \\
\widetilde{V}_{1} \\
\widetilde{V}_{2}
\end{array}\right) .
$$

We have

$$
\hat{U}^{\mathrm{T}} \hat{V}=\widetilde{U}^{\mathrm{T}} Q_{1}^{-1} W_{1}^{\mathrm{T}} W_{2} Q_{2}^{-\mathrm{T}} \tilde{V}=\widetilde{U}^{\mathrm{T}}\binom{R_{1}}{0}\left(R_{2}^{\mathrm{T}}, 0\right) \widetilde{V}=\widetilde{U}_{1}^{\mathrm{T}} R_{1} R_{2}^{\mathrm{T}} \widetilde{V}_{1}
$$

Let $\hat{X}=R_{1}^{T} \widetilde{U}_{1}, \hat{Y}=R_{2}^{\mathrm{T}} \widetilde{V}_{1} \in \mathbb{R}^{r \times k}$. Then $\hat{U}^{\mathrm{T}} \hat{V}=I_{k}$ is equivalent to $\hat{X}^{\mathrm{T}} \hat{Y}=I_{k}$ which will be enforced henceforth, while \widetilde{U}_{2} and \widetilde{V}_{2} are arbitrary. Assume the partitioning in (A.3). We have

$$
\begin{aligned}
& \hat{U}^{\mathrm{T}} K \hat{U}=\widetilde{U}^{\mathrm{T}} Q_{1}^{-1} U^{\mathrm{T}} K U Q_{1}^{-\mathrm{T}} \widetilde{U}=\binom{R_{1}^{-\mathrm{T}} \hat{X}}{\widetilde{U}_{2}}^{\mathrm{T}}\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{12}^{\mathrm{T}} & K_{22}
\end{array}\right)\binom{R_{1}^{-\mathrm{T}} \hat{X}}{\widetilde{U}_{2}}, \\
& \hat{V}^{\mathrm{T}} M \hat{V}=\widetilde{V}^{\mathrm{T}} Q_{1}^{-1} V^{\mathrm{T}} K V Q_{1}^{-\mathrm{T}} \widetilde{V}=\binom{R_{2}^{-\mathrm{T}} \hat{Y}}{\widetilde{V}_{2}}^{\mathrm{T}}\left(\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{\mathrm{T}} & M_{22}
\end{array}\right)\binom{R_{2}^{-\mathrm{T}} \hat{Y}}{\widetilde{V}_{2}} .
\end{aligned}
$$

Given \hat{X} and \hat{Y}, it can be verified that

$$
\begin{align*}
\min _{\widetilde{U}_{2}} \operatorname{trace}\left(\hat{U}^{\mathrm{T}} K \hat{U}\right) & =\operatorname{trace}\left(\hat{X}^{\mathrm{T}} R_{1}^{-1}\left[K_{11}-K_{12} K_{22}^{\dagger} K_{12}^{\mathrm{T}}\right] R_{1}^{-\mathrm{T}} \hat{X}\right), \tag{A.6a}\\
\min _{\widetilde{V}_{2}} \operatorname{trace}\left(\hat{V}^{\mathrm{T}} M \hat{V}\right) & =\operatorname{trace}\left(\hat{Y}^{\mathrm{T}} R_{2}^{-1}\left[M_{11}-M_{12} M_{22}^{\dagger} M_{12}^{\mathrm{T}}\right] R_{2}^{-\mathrm{T}} \hat{Y}\right) \tag{A.6b}
\end{align*}
$$

with the minimums are attained at those \widetilde{U}_{2} and \widetilde{V}_{2} satisfying

$$
K_{22} \widetilde{U}_{2}=-K_{12}^{\mathrm{T}} R_{1}^{-\mathrm{T}} \hat{X}, \quad M_{22} \widetilde{V}_{2}=-M_{12}^{\mathrm{T}} R_{2}^{-\mathrm{T}} \hat{Y}
$$

Therefore the quantity in (3.2) is

$$
\inf _{\hat{X}^{\mathrm{T}} \hat{Y}=I_{k}} \operatorname{trace}\left(\hat{X}^{\mathrm{T}} R_{1}^{-1}\left[K_{11}-K_{12} K_{22}^{\dagger} K_{12}^{\mathrm{T}}\right] R_{1}^{-\mathrm{T}} \hat{X}+\hat{Y}^{\mathrm{T}} R_{2}^{-1}\left[M_{11}-M_{12} M_{22}^{\dagger} M_{12}^{\mathrm{T}}\right] R_{2}^{-\mathrm{T}} \hat{Y}\right)
$$

which, by [2, Theorem 3.2], is the sum of the k smallest positive eigenvalues of \hat{H}_{SR} defined by (A.5).

In summary, the best approximations to some of the eigenvalues of H within the pair of approximate deflating subspaces are the eigenvalues of \hat{H}_{SR}. Denote by $\omega_{j}(j=1, \ldots, r)$ the positive eigenvalues of \hat{H}_{SR} in ascending order and by \hat{z}_{j} the associated eigenvectors:

$$
\begin{equation*}
\hat{H}_{\mathrm{SR}} \hat{z}_{j}=\omega_{j} \hat{z}_{j}, \quad \hat{z}_{j}=\binom{\hat{y}_{j}}{\hat{x}_{j}} \tag{A.7}
\end{equation*}
$$

Following the derivations above, we conclude

$$
\rho\left(\widetilde{x}_{j}, \widetilde{y}_{j}\right)=\omega_{j} \quad \text { for } j=1, \ldots, r
$$

where

$$
\begin{equation*}
\widetilde{x}_{j}=U Q_{1}^{-\mathrm{T}}\binom{R_{1}^{-\mathrm{T}} \hat{x}_{j}}{u_{j}}, \quad \widetilde{y}_{j}=V Q_{2}^{-\mathrm{T}}\binom{R_{2}^{-\mathrm{T}} \hat{y}_{j}}{v_{j}} \tag{A.8}
\end{equation*}
$$

for u_{j} and v_{j} satisfying

$$
\begin{equation*}
K_{22} u_{j}=-K_{12}^{\mathrm{T}} R_{1}^{-\mathrm{T}} \hat{x}_{j}, \quad M_{22} v_{j}=-M_{12}^{\mathrm{T}} R_{2}^{-\mathrm{T}} \hat{y}_{j} \tag{A.9}
\end{equation*}
$$

Naturally the approximate eigenvectors of H should be taken as

$$
\begin{equation*}
\widetilde{z}_{j}=\binom{\widetilde{y}_{j}}{\widetilde{x}_{j}} \quad \text { for } j=1, \ldots, r \tag{A.10}
\end{equation*}
$$

For easy of reference, we summarize our findings into the following theorem.
Theorem A.1. Suppose that one of K and M is definite. Let $\{\mathcal{U}, \mathcal{V}\}$ be a pair of approximate deflating subspaces of $\{K, M\}$ with $\operatorname{dim}(\mathcal{U})=\operatorname{dim}(\mathcal{V})=\ell$, and let $U, V \in \mathbb{R}^{n \times \ell}$ be the basis matrices of \mathcal{U} and \mathcal{V}, respectively. Suppose that $W \stackrel{\text { def }}{=} U^{\mathrm{T}} V$ is singular and let \hat{H}_{SR} be defined by (A.5). Then the best approximations to λ_{1} in the sense of (3.1) or to $\lambda_{j}(1 \leq j \leq k)$ in the sense of (3.2) are the corresponding eigenvalues of \hat{H}_{SR} defined in (A.5), with the corresponding approximate eigenvectors given by (A.8) - (A.10).

In $[2$, Theorem 2.7], we proved the approximate eigenpairs are unique for given $\{\mathcal{U}, \mathcal{V}\}$ with nonsingular $U^{\mathrm{T}} V$, even though there are infinitely many different H_{SR} associated with the pair of subspaces. We are facing with the same question for \hat{H}_{SR} in whose construction there are three non-unique choices:

$$
\left\{\begin{array}{l}
\text { 1. Factorizations in }(\mathrm{A} .2) \text { are not unique. } \tag{A.11}\\
2 . \text { Factorization } W=W_{1}^{\mathrm{T}} W_{2} \text { in (A.1) is not unique. } \\
3 . \text { Basis matrices } U \text { and } V \text { are not unique. }
\end{array}\right.
$$

The question would arise if different \hat{H}_{SR} could produce different approximate eigenpairs. This is addressed by the following theorem.

Theorem A.2. Suppose that one of K and M is definite. Let \mathcal{U} and \mathcal{V} be two subspaces of \mathbb{R}^{n} of dimension ℓ with basis matrices $U, V \in \mathbb{R}^{n \times \ell}$, respectively. Suppose that $W=U^{\mathrm{T}} V$ is singular and define \hat{H}_{SR} by (A.5). Then

1. the approximate eigenvalues, i.e., the eigenvalues of \hat{H}_{SR}, are invariant with respect to any of the non-uniqueness listed in (A.11) for constructing \hat{H}_{SR};
2. the approximate eigenvectors by (A.8) - (A.10) are invariant with respect to any of the non-uniqueness listed in (A.11) if and only if both K_{22} and M_{22} are definite.

Proof. To see the first conclusion, we notice that the infimum (3.2) only depends on $\{\mathcal{U}, \mathcal{V}\}$ and is invariant with respect to any of the non-uniqueness in (A.11) for $1 \leq k \leq r$. Since the infimum is the sum of the first k smallest positive eigenvalues of \hat{H}_{SR}, let k go from 1 to r to conclude that the positive eigenvalues of \hat{H}_{SR} are invariant with respect to any of the non-uniqueness in (A.11); so are all eigenvalues of \hat{H}_{SR}.

For the second conclusion, let us first select one choice for each of them in (A.11), namely basis matrices U and V, a factorization $W=W_{1}^{\mathrm{T}} W_{2}$ in (A.1), and two factorizations in (A.2). Let $H_{0} \stackrel{\text { def }}{=} \hat{H}_{\text {SR }}$ with these selected choices, and suppose that both K_{22} and M_{22} are definite. We shall now prove that the approximate eigenvectors are invariant with respect to any variation to the selected ones. Along the way, we will also see the definiteness of K_{22} and M_{22} does not change with the variations, either.

1. Invariance with respect to different choices of factorizations in (A.2). Any factorizations other than the given ones in (A.2) can be written as

$$
W_{i}^{\mathrm{T}}=Q_{i}\left(\begin{array}{cc}
S_{i 1} & \tag{A.12}\\
& S_{i 2}
\end{array}\right)\binom{S_{i 1}^{-1} R_{i}}{0}
$$

for some nonsingular $S_{i 1} \in \mathbb{R}^{r \times r}, S_{i 2} \in \mathbb{R}^{(\ell-r) \times(\ell-r)}$. Denote by $H_{1} \stackrel{\text { def }}{=} \hat{H}_{\mathrm{SR}}$ with given U, V and (A.1), and (A.12). Perform substitutions

$$
Q_{i}\left(\begin{array}{cc}
S_{i 1} & \\
& S_{i 2}
\end{array}\right) \leftarrow Q_{i}, S_{i 1}^{-1} R_{i} \leftarrow R_{i}, S_{1 i}^{-1} K_{i j} S_{1 j}^{-\mathrm{T}} \leftarrow K_{i j}, S_{2 i}^{-1} M_{i j} S_{2 j}^{-\mathrm{T}} \leftarrow M_{i j}
$$

to see $H_{0}=H_{1}$ and that the approximate eigenvectors for H by (A.8) - (A.10) do not change. Also the definiteness of K_{22} and M_{22} does not change with the variation in (A.12).
2. Invariance with respect to different choice of factorization $W=W_{1}^{\mathrm{T}} W_{2}$. Any factorization other than the given one in (A.1), can be written as

$$
\begin{equation*}
W=W_{1}^{\mathrm{T}} S S^{-1} W_{2}=\left(S^{\mathrm{T}} W_{1}\right)^{\mathrm{T}}\left(S^{-1} W_{2}\right) \tag{A.13}
\end{equation*}
$$

for some nonsingular $S \in \mathbb{R}^{r \times r}$. Define $H_{1} \stackrel{\text { def }}{=} \hat{H}_{\mathrm{SR}}$ with given U, V, and (A.13) and

$$
\begin{equation*}
\left(S^{\mathrm{T}} W_{1}\right)^{\mathrm{T}}=Q_{1}\binom{R_{1} S}{0}, \quad\left(S^{-1} W_{2}\right)^{\mathrm{T}}=Q_{2}\binom{R_{2} S^{-\mathrm{T}}}{0} \tag{A.14}
\end{equation*}
$$

Since we just proved the invariance with respect to different choices of factorizations in (A.2), it suffices to prove that the approximate eigenvectors obtained through H_{0} and H_{1} are the same. Upon using substitutions $R_{1} S \leftarrow R_{1}$ and $R_{2} S^{-\mathrm{T}} \leftarrow R_{2}$, we find

$$
H_{1}=\left(S^{-1} \oplus S^{\mathrm{T}}\right) H_{0}\left(S^{-1} \oplus S^{\mathrm{T}}\right)^{-1}
$$

and thus the relationships between the eigenvectors for H_{0} and H_{1}. It can then be verified that the approximate eigenvectors obtained through H_{0} and H_{1} via (A.8) (A.10) are the same. Also the definiteness of K_{22} and M_{22} does not change with the variation in (A.13).
3. Invariance with respect to different choices of basis matrices. Given basis matrices U and V of \mathcal{U} and \mathcal{V}, respectively, any other basis matrices can be written as $U R$ and $V S$ for some nonsingular $R, S \in \mathbb{R}^{\ell \times \ell}$. Define $H_{1} \stackrel{\text { def }}{=} \hat{H}_{\mathrm{SR}}$ with $U R$ and $V S$, and

$$
\begin{equation*}
W=(U R)^{\mathrm{T}}(V S)=R^{\mathrm{T}} U^{\mathrm{T}} V S=\left(W_{1} R\right)^{\mathrm{T}}\left(W_{2} S\right) \tag{A.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(W_{1} R\right)^{\mathrm{T}}=R^{\mathrm{T}} Q_{1}\binom{R_{1}}{0}, \quad\left(W_{2} S\right)^{\mathrm{T}}=S^{\mathrm{T}} Q_{2}\binom{R_{2}}{0} . \tag{A.16}
\end{equation*}
$$

By the two invariance properties we just proved, it suffices to prove that the approximate eigenvectors obtained through H_{0} and H_{1} are the same. Perform substitutions

$$
U R \leftarrow U, \quad V S \leftarrow V, \quad R^{\mathrm{T}} Q_{1} \leftarrow Q_{1}, \quad S^{\mathrm{T}} Q_{2} \leftarrow Q_{2}
$$

to see $H_{0}=H_{1}$ and that the approximate eigenvectors for H by (A.8) - (A.10) do not change. Again the definiteness of K_{22} and M_{22} does not change with the variation from U to $U R$ and from V to $V S$.

Finally if K_{22} is singular, u_{j} satisfying the first equation in (A.9) is not unique. In fact, if u_{j} is one, any $u_{j}+g$ is another, for any g in the kernel of K_{22}. So the defining equation in (A.8) for \widetilde{x}_{j} gives

$$
\begin{equation*}
\widetilde{x}_{j}=U Q_{1}\binom{R_{1}^{-\mathrm{T}} \hat{x}_{j}}{-K_{22}^{\dagger} K_{12}^{\mathrm{T}} R_{1}^{-\mathrm{T}} \hat{x}_{j}+g} \tag{A.17}
\end{equation*}
$$

leading to different approximate eigenvectors as g varies within the kernel of K_{22}. The same thing happens if M_{22} is singular.

The proof of Theorem A. 2 exposes the cause for the approximate eigenvectors by (A.8) - (A.10) not to be uniquely determined, namely, one of the equations (A.10) may have infinitely many solutions ${ }^{4}$. When that's the case, we can either always take

$$
u_{j}=-K_{22}^{\dagger} K_{12}^{\mathrm{T}} R_{1}^{-\mathrm{T}} \hat{x}_{j}, \quad v_{j}=-M_{22}^{\dagger} M_{12}^{\mathrm{T}} R_{1}^{-\mathrm{T}} \hat{y}_{j}
$$

or settle the non-uniqueness by

$$
\begin{equation*}
\min _{g, h}\left\{\left\|K \widetilde{x}_{j}-\omega_{j} \widetilde{y}_{j}\right\|_{2}^{2}+\left\|M \widetilde{y}_{j}-\omega_{j} \widetilde{x}_{j}\right\|_{2}^{2}\right\} \tag{A.18}
\end{equation*}
$$

over all g in the kernel of K_{22} and h in the kernel of M_{22}, upon noticing (A.17) and

$$
\begin{equation*}
\widetilde{y}_{j}=V Q_{2}^{-\mathrm{T}}\binom{R_{2}^{-\mathrm{T}} \hat{y}_{j}}{-M_{22}^{\dagger} M_{12}^{\mathrm{T}} R_{2}^{-\mathrm{T}} \hat{y}_{j}+h} \tag{A.19}
\end{equation*}
$$

Finally it can be seen that (A.18) is a least squares problem in g and h.
Remark A.1. Noticeably our treatment above is much more involved than the nonsingular case in section 3. Certainly an argument can be made not to use $\{\mathcal{U}, \mathcal{V}\}$ with a singular W at all because [2, Lemma 2.1] says that W is nonsingular if $\{\mathcal{U}, \mathcal{V}\}$ is exact. But in practice, especially at the beginning of an iterative process, it is hard to guarantee this is so at all time. Our treatment, albeit tedious, shows that the optimums in (3.1) and (3.2) can still be realized. An alternative and much simpler treatment for the singular case at a tradeoff of achieving only suboptimal approximations to (3.1) and (3.2) is as follows. Suppose (A.1) and (A.2). We have

$$
\left(R_{1}^{-1}, 0\right) Q_{1}^{-1} U^{\mathrm{T}} V Q_{2}^{-\mathrm{T}}\binom{R_{2}}{0}=I_{r}
$$

After substitutions

$$
U \leftarrow U Q_{1}^{-\mathrm{T}}\binom{R_{1}}{0}, \quad V \leftarrow V Q_{2}^{-\mathrm{T}}\binom{R_{2}}{0}
$$

two new subspaces \mathcal{U} and \mathcal{V} with dimension r are born with new basis matrices U and V satisfying $U^{\mathrm{T}} V=I_{r}$, returning to the nonsingular W case in section 3 .

[^4]
References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide (third ed.). SIAM, Philadelphia, 1999.
[2] Z. Bai and R.-C. Li. Minimization principles for the linear response eigenvalue problem I: Theory. submitted, 2011.
[3] P. Benner, H. Faßbender, and M. Stoll. A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process. Report 09/32, Oxford Centre for Collaborative Applied Mathematics, September 2009.
[4] P. Benner and H. Faßbender. An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem. Linear Algebra Appl., 263:75-111, 1997.
[5] P. Benner, V. Mehrmann, and H. Xu. A numerically stable structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils. Nu mer. Math., 78:329-357, 1998.
[6] D. Bohm and D. Pines. A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas. Phys. Rev., 92:609-625, 1953.
[7] A. Bunse-Gerstner and V. Mehrmann. A symplectic QR like algorithm for the solution of the real algebraic Riccati equation. IEEE Trans. Automat. Control, 31(12):11041113, 1986.
[8] B. E. Chi. The eigenvalue problem for collective motion in the random phase approximation. Nuclear Physics, A146(2):449-456, 1970.
[9] J. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997.
[10] P. Giannozzi et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condensed Matter, 21:395502, 2009. available http://www.quantum-espresso.org/.
[11] U. Flaschka, W.-W. Lin, and J.-L. Wu. A KQZ algorithm for solving linear-response eigenvalue equations. Linear Algebra Appl., 165:93-123, 1992.
[12] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, Maryland, 3rd edition, 1996.
[13] M. Gruning, A. Marini, and X. Gonze. Exciton-plasmon states in nanoscale materials: breakdown of the Tamm-Dancoff approximation. Nano Letters, 9:2820-2824, 2009.
[14] M. Gruning, A. Marini, and X. Gonze. Implementation and testing of Lanczosbased algorithms for random-phase approximation eigenproblems. Technical report, arXiv:1102.3909v1, February 2011.
[15] M. E. Hochstenbach. A Jacobi-Davidson type method for the product eigenvalue problem. J. Comput. Appl. Math., 212:46-62, 2008.
[16] A. V. Knyazev. A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace. Internat. Series Numer. Math., 96:143-154, 1991.
[17] A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput., 23(2):517541, 2001.
[18] D. Kressner. A periodic Krylov-Schur algorithm for large matrix products. Numer. Math., 103:461-483, 2006.
[19] R.-C. Li. Accuracy of computed eigenvectors via optimizing a Rayleigh quotient. BIT, 44(3):585-593, 2004.
[20] D. E. Longsine and S. F. McCormick. Simultaneous Rayleigh-quotient minimization methods for $A x=\lambda B x$. Linear Algebra Appl., 34:195-234, 1980.
[21] M. J. Lucero, A. M. N. Niklasson, S. Tretiak, and M. Challacombe. Molecular-orbital-free algorithm for excited states in time-dependent perturbation theory. J. Chem. Phys., 129(6):064114, 2008.
[22] M. A. Marques, A. Castro, and A. Rubio. Assessment of exchange-correlation functionals for the calculation of dynamical properties of small clusters in time-dependent density functional theory. J. Chem. Phys., 115(7):3006-3014, 2001.
[23] A. Muta, J.-I. Iwata, Y. Hashimoto, and K. Yabana. Solving the RPA eigenvalue equation in real-space. Progress Theoretical Physics, 108(6):1065-1076, 2002.
[24] J. Nocedal and S. Wright. Numerical Optimization. Springer, 2nd edition, 2006.
[25] J. Olsen, H. J. Aa. Jensen, and P. Jørgensen. Solution of the large matrix equations which occur in response theory. J. Comput. Phys., 74(2):265-282, 1988.
[26] P. Papakonstantinou. Reduction of the RPA eigenvalue problem and a generalized Cholesky decomposition for real-symmetric matrices. EPL (Europhysics Letters), 78(1):12001, 2007.
[27] B. N. Parlett. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, 1998.
[28] B. T. Polyak. Introduction to optimization. Optimization Software, New York, 1987.
[29] P. Ring, Z.-Y. Ma, N. Van Giai, D. Vretenar, A. Wandelt, and L.-G. Gao. The time-dependent relativistic mean-field theory and the random phase approximation. Nuclear Physics A, 249:249-268, 2001.
[30] P. Ring and P. Schuck. The Nuclear Many-Body Problem. Springer-Verlag, New York, 1980.
[31] D. Rocca, Z. Bai, R.-C. Li, and G. Galli. to appear, 2011.
[32] G. W. Stewart and Ji-Guang Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.
[33] R. E. Stratmann, G. E. Scuseria, and M. J. Frisch. An efficient implementation of time-dependent density-functional theory for the calculation of excitation of large molecules. J. Chem. Phys., 109:8218-8824, 1998.
[34] I. Takahashi. A note on the conjugate gradient method. Inform. Process. Lett., 5:45-49, 1965.
[35] D. J. Thouless. The quantum mechanics of many-body systems. Academic, 1972.
[36] D.J. Thouless. Vibrational states of nuclei in the random phase approximation. Nu clear Physics, 22(1):78-95, 1961.
[37] S. Tretiak, C. M. Isborn, A. M. N. Niklasson, and M. Challacombe. Representation independent algorithms for molecular response calculations in time-dependent selfconsistent field theories. J. Chem. Phys., 130(5):054111, 2009.
[38] S. Tretiak and S. Mukamel. Density matrix analysis and simulation of electronic excitations in conjugated and aggregated molecules. Chem. Rev., 102:3171-3212, 2002.
[39] E. V. Tsiper. Variational procedure and generalized Lanczos recursion for smallamplitude classical oscillations. JETP Letters, 70(11):751-755, 1999.
[40] E. V. Tsiper. A classical mechanics technique for quantum linear response. J. Phys. B: At. Mol. Opt. Phys., 34(12):L401-L407, 2001.
[41] H. A. van der Vorst. A generalized Lanczos scheme. Math. Comp., 39(160):559-561, 1982.
[42] D. S. Watkins. The Matrix Eigenvalue Problems: GR and Krylov Subspace Methods. SIAM, Philadelphia, 2007.
[43] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, 1965.

[^0]: *Department of Computer Science and Department of Mathematics, University of California, Davis, CA 95616. (bai@cs.ucdavis.edu)
 ${ }^{\dagger}$ Department of Mathematics, University of Texas at Arlington, P.O. Box 19408, Arlington, TX 76019 (rcli@uta.edu.)

[^1]: ${ }^{1}$ Note our convention of assigning the plus sign to half of the 0 eigenvalues and the negative sign to the other half in [2].

[^2]: ${ }^{2}$ Since ρ is homogeneous of degree 0, i.e., $\rho(t x, t y) \equiv \rho(x, y)$ for any scalar t, minimizing ρ along the line (4.2) is in fact minimizing ρ in $\left\{\alpha\binom{y}{x}+\alpha t\binom{q}{p}: \alpha, t \in \mathbb{R}\right\}$ which in general form a plan in $\mathbb{R}^{2 n}$ spanned by $\binom{y}{x}$ and $\binom{q}{p}$, excluding the line $\left\{t\binom{q}{p}: t \in \mathbb{R}\right\}$. Therefore the standard line search becomes a defacto plane search for ρ. To be consistent with the standard terminology in optimization, we still call it the line search.

[^3]: ${ }^{3}$ Computationally, this can be realized by the QR decompositions of $W_{i}{ }^{\mathrm{T}}$. For more generality in presentation, we do not assume they are QR decompositions.

[^4]: ${ }^{4}$ By default, one of K and M is definite. Thus at most one of K_{22} and M_{22} is singular.

