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Abstract

In Part I of this paper we presented a minimization principle and related theoretical
results for the linear response eigenvalue problem. Here we develop best approxima-
tions of the smallest few positive eigenvalues via a structure-preserving subspace pro-
jection. Then we present a four-dimensional subspace search conjugate gradient-like
algorithm for simultaneously computing these eigenvalues and their associated eigen-
vectors. Finally, we present a numerical example to illustrate convergence behaviors
of the proposed methods with and without preconditioning.
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1 Introduction

This is the second paper of ours in a sequel of two. Building upon the theoretical results
in [2], here we will focus on the numerical aspect of the LR eigenvalue problem:

Hz ≡

(
0 K

M 0

)(
y

x

)
= λ

(
y

x

)
≡ λz, (1.1)

where K and M are n × n symmetric positive semi-definite matrices and one of them is
definite. It is an equivalent problem obtained from the original LR (a.k.a. Random Phase
Approximation (RPA)) eigenvalue problem:

(
A B

−B −A

)(
u

v

)
= λ

(
u

v

)
(1.2)

by an orthogonal similarity transformation to give K = A − B and M = A + B, where

A and B are n × n real symmetric matrices such that the symmetric matrix

(
A B

B A

)

is positive definite [30, 35]. Note that K and M are both definite in the original LR
eigenvalue problem, but here we relax this condition to one of them being definite.
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It can be seen, as noted in [2], that the eigenvalue problem (1.1) is equivalent to any
one of the following product eigenvalue problems

KMy = λ2y, (1.3a)

MKx = λ2x. (1.3b)

Their equivalences have led to solve (1.1) through solving one of the eigenvalue problems
in (1.3). They also imply that the eigenvalues of H come in ±λ pairs. As in [2], we will
denote the positive eigenvalues1 of H by λi (1 ≤ i ≤ n) and

−λn ≤ · · · ≤ −λ2 ≤ −λ1 ≤ 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

The eigenvalue problem (1.2) has the same eigenvalues ±λi.
An important minimization principle of Thouless [36] is

λ1 = min
u,v

̺(u, v), (1.4)

where ̺(u, v) is defined by

̺(u, v) =

(
u

v

)T(
A B

B A

)(
u

v

)

|uTu− vTv|
, (1.5)

and the minimization is taken among all vectors u, v such that uTu − vTv 6= 0. For H,
this minimization principle translates into

λ1 = min
x,y∈D

ρ(x, y), (1.6)

where

̺(u, v) ≡ ρ(x, y)
def
=

xTKx + yTMy

2|xTy|
, (1.7)

the domain D consists of all x and y such that either xTy 6= 0 or xTy = 0 but xTKx +
yTMy > 0. This removes those x and y that annihilate both the numerator and the
denominator from the domain. In particular x = y = 0 is not in the domain D.

Thouless’ minimization principle (1.4) and consequently the induced (1.6) for H were
proved under the condition that both A±B (thus K and M , too) are symmetric positive
definite. In [2], they were extended to include the case when one of K and M are definite.

Since the linear response (a.k.a. random phase approximation) theory was proposed
by Bohm and Pines for studying the collective motion of many particles in the early 1950’s
[6], the development of numerical methods for solving the LR eigenvalue problem (1.2)
and equivalently (1.1) has been an active research subject in computational (quantum)
physics and chemistry for decades. In [8], it was suggested to solve the equivalent product
eigenvalue problem (1.3a) instead by converting it to the symmetric eigenvalue problem of
RTKR through the Cholesky decomposition of M = RTR. In [25, 33], Davidson’s algo-
rithm for the symmetric eigenvalue problem was extended to the LR eigenvalue problem
(1.2). Lanczos-like algorithms were studied in [39, 40, 38, 13, 14]. Given the minimiza-
tion principle (1.4) or equivalently (1.6), conjugate gradient (CG) methods become nature
choices for finding the smallest positive eigenvalue and indeed they have, see for example
[21, 23].

1Note our convention of assigning the plus sign to half of the 0 eigenvalues and the negative sign to the
other half in [2].
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Meanwhile, the eigenvalue problems in the forms of (1.1), (1.3) and (1.2) have also
attracted a great deal of attention in numerical analysis community. As early as in 1960’s,
Wilkinson discussed the product eigenvalue problems (1.3) arising from theoretical physics,
and proposed the method of transforming them to the standard symmetric eigenvalue
problems by using the Cholesky decomposition [43, p.35, p.337]. Wilkinson’s method is
implemented as LAPACK’s routine xSYGVD [1]. In [1], the product eigenvalue problems in
(1.3) are classified as the types 2 and 3 of the generalized symmetric definite eigenvalue
problems, respectively. Alternatively the structure-preserving GR algorithm, a generaliza-
tion of the well-known QR algorithm, can also be used for small to medium size problems
[42, Chapter 8]. For large sparse cases, the Lanczos algorithm, Krylov-Schur algorithm and
Jacobi-Davidson algorithm all have been generalized to the product eigenvalue problems
(see [15, 18, 41]). On the other hand, since the RPA eigenvalue problem (1.2) is a special
case of the Hamiltonian matrix eigenvalue problem, an extension of the QR algorithm made
for Hamiltonian matrix eigenvalue problems can be used to solve the problems of small
to medium sizes [5, 7, 11, 42]. In particular, the work [11] treated a more general linear
response eigenvalue problem via a QZ-like algorithm. Algorithms for large scale Hamilto-
nian eigenvalue problems can be found in [3, 4] and references therein. An RPA test case is
given in [3] to illustrate the computational efficiency of a Hamiltonian Krylov-Schur-type
algorithm.

A recent survey study [37] compared four numerical methods (namely Lanczos, Arnoldi,
Davidson, and CG) and discussed the limitations of each of these methods for developing
an efficient linear-scaling eigensolver for the RPA eigenvalue problem (1.2). In the study,
severe limitations were experienced for the Lanczos-type methods due to the orthogonal-
ity constraints (also see [38]), for the CG type methods to compute several eigenpairs
simultaneously and for incorporating preconditioning techniques (see also [21]).

In [2], we obtained a trace (or subspace) version of (1.6):

k∑

i=1

λi =
1

2
inf

U,V ∈Rn×n

UTV =Ik

trace(UTKU + V TMV ), (1.8)

as well as Cauchy-like interlacing inequalities. Based on this newly developed theory, we
have the opportunity to develop efficient numerical methods for the LR eigenvalue problem
(1.1) in the much same way as the conjugate gradient and Lanczos methods for solving
the large scale symmetric eigenvalue problem. In particular, in this paper we will show
an important computational implication of the minimization principle (1.8) that is that
it lends itself to seek approximations to a cluster of smallest positive eigenvalues λi (1 ≤
i ≤ k) simultaneously through minimizing the objective function trace(UTKU + V TMV )
subject to UTV = Ik and that span(U) and span(V ) are restricted inside two suitably
built subspaces U and V, respectively:

k∑

i=1

λi ≈
1

2
inf

span(U)⊆U, span(V )⊆V

UTV =Ik

trace(UTKU + V TMV ), (1.9)

where span(U) denotes the subspace spanned by the column vectors of U .
The minimization problem in the right-hand side of (1.9) does not look easy to solve

at first sight. But we obtain a structure-preserving projection matrix HSR and show that
the sum of its first k smallest positive eigenvalues is the infimum. In this sense, HSR is
the best projection matrix from the given subspaces U and V, and solving its eigenvalue
problem yields the best approximations to λi (1 ≤ i ≤ k) and their associated eigenvectors.
Moreover, HSR has the same block structure as H. With these new developments, we will
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be able to construct efficient numerical algorithms that can compute several smallest
positive eigenvalues of H simultaneously. We will present our versions of locally optimal
conjugate gradient type algorithms, including blocked versions for computing smallest
positive eigenvalues simultaneously and preconditioned versions for speedy convergence.
An extended presentation about the steepest descent-like methods and their applications
in ab initio calculation of optical absorption spectra will appear in [31]. We point out
that these new algorithms are not straightforward applications of the standard steepest
decent and nonlinear conjugate gradient algorithms, but improved ones to take advantage
of best projection matrices HSR we have uncovered. All these are made possible by the
new theory parallel to some of the well-known and important results for the symmetric
eigenvalue problem [19, 27, 32].

The rest of this paper is organized as follows. Section 2 presents an algorithm to
construct approximate eigenpairs for H from a pair of approximate deflating subspaces
{U ,V}. It is derived from the result in [2] for the case when the subspaces do consist
of a pair of deflating subspaces. Section 3 and appendix A discuss how to construct the
best approximations to some of the eigenpairs of H from a pair of approximate deflating
subspaces {U ,V}. The results in section 3 justifies the algorithm in section 2 from a
different perspective. In section 4, we apply newly established minimization principles in
[2] to derive a four-dimensional subspace search CG-type algorithms for computing a set
of the smallest positive eigenvalues. In section 5, we present numerical results to illustrate
the convergence behaviors of the CG methods. Concluding remarks are in section 6. We
will follow the notation as specified at the end of section 1 in [2].

2 Approximate deflating subspaces

Recall that U ,V ⊆ R
n is a pair of deflating subspaces of {K, M} if KU ⊆ V and MV ⊆ U .

Each such a pair will yield a subset of H’s eigenvalues and their corresponding eigenvec-
tors [2, §2.1 and §2.2]. However, in practical computations, rarely pairs of exact deflating
subspaces are known, only approximate ones. The question then arises: how to compute
approximate eigenpairs of H from a given pair of approximate deflating subspaces.

Let {U ,V} be a pair of approximate deflating subspaces with dimU = dimV = ℓ such

that W
def
= UTV is nonsingular. In [2, §2], we defined a structure-preserving projection

HSR =

(
0 W−T

1 UTKUW−1
1

W−T
2 V TMV W−1

2 0

)
(2.1)

of H onto the pair of the subspaces {U ,V}, where Wi ∈ R
ℓ×ℓ are from factorizing W =

WT
1 W2 and nonsingular. It will become clear later that HSR in many ways play the same

role for H as the Rayleigh quotient matrix for the symmetric eigenvalue problem.
Theorem 2.6 in [2] shows how to construct the eigenpairs of H from those of HSR when

{U ,V} is an exact pair of deflating subspaces of {K, M}. The way of construction there
naturally leads us to propose the following algorithm.

Algorithm 2.1. Given the basis matrices {U, V } of an approximate deflating
subspaces {U ,V} of {K, M}, this algorithm returns approximate eigenvalues
and eigenvectors for H as follows.

1. Construct HSR as in (2.1) if UTV is nonsingular;

2. Compute the eigenpairs

{
λ̂,

(
ŷ

x̂

)}
of HSR;
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3. The computed eigenvalues λ̂ approximate some eigenvalues of H, and the

associated approximate eigenvectors can be recovered as

(
V W−1

2 ŷ

UW−1
1 x̂

)
.

In view of [2, Theorem 2.7], as far as the eigenvalue problem of H is concerned, in theory
any one of HSR associated with a given pair of approximate deflating subspaces is just as
good as another. Numerically, however, we should pick basis matrices that are sufficiently
well-conditioned, like with orthonormal columns.

3 Best approximations by a pair of subspaces

Two most important aspects in solving large scale eigenvalue problems are

1. building subspaces which the desired eigenvectors (or invariant subspaces) are close
to, and

2. seeking “best possible” approximations from the suitably built subspaces.

In this section, we shall address the second aspect for our current problem, i.e., seeking
“best possible” approximations to a few smallest positive eigenvalues of H and their asso-
ciated eigenvectors from a given pair of subspaces. we will prove that HSR provides best
approximations. We leave the first aspect to the next section when we consider numerical
algorithms.

The concept of “best possible” comes with a quantitative measure as to what constitutes
“best possible”. There may not be such a measure in general. But for the eigenvalue
problem here, each of the minimization principles we have in [2] provides a quantitative
measure.

Under the assumption that K, M ∈ R
n×n are symmetric positive semi-definite and

one of them is definite, let {U ,V} be a pair of approximate deflating subspaces of {K, M}
and dim(U) = dim(V) = ℓ. Motivated by the minimization principles in [2] we would seek

1. the best approximation to λ1 in the sense of

inf
x∈U , y∈V

ρ(x, y) (3.1)

and its associated approximate eigenvector;

2. the best approximations to λj (1 ≤ j ≤ k) in the sense of

1

2
inf

span(Û)⊆U,span(V̂ )⊆V

ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ ) (3.2)

and their associated approximate eigenvectors. Necessarily k ≤ ℓ.

To this end, we divide our investigation into two cases. Let U, V ∈ R
n×ℓ be the basis

matrices of U and V, respectively, and set W = UTV . The two cases are

1. W = UTV is nonsingular;

2. W = UTV is singular.
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For the first case, i.e., W = UTV is nonsingular. Factorize W = WT
1 W2, where

Wi ∈ R
ℓ×ℓ are nonsingular. How this factorization is done is not essential mathematically.

But it is included to accommodate cases when such a factorization may offer certain
conveniences. In general, simply taking W1 = WT and W2 = Iℓ or W1 = Iℓ and W2 = W

may just be good enough.
For the best approximation to λ1 by (3.1), we note that any x ∈ U and y ∈ V be

written as x = Uû and y = V v̂ for some û, v̂ ∈ R
ℓ and vice versa. Therefore, we have

ρ(x, y) =
ûTUTKUû + v̂TV TMV v̂

2|ûTWv̂|
(3.3)

=
x̂TW−T

1 UTKUW−1
1 x̂ + ŷTW−T

2 V TMV W−1
2 ŷ

2|x̂Tŷ|
,

where x̂ = W1û and ŷ = W2v̂. By [2, Theorem 3.1], the quantity in (3.1) is the smallest
positive eigenvalue of HSR

Now turn to the best approximations to λj (1 ≤ j ≤ k) by (3.2). Note that any Û and
V̂ such that span(Û) ⊆ U , span(V̂ ) ⊆ V, and ÛTV̂ = Ik can be written as

Û = UW−1
1 X̂, V̂ = V W−1

2 Ŷ ,

where X̂, Ŷ ∈ R
ℓ×k and X̂TŶ = Ik, and vice versa. Hence we have

ÛTKÛ + V̂ TMV̂ = X̂TW−T
1 UTKUW−1

1 X̂ + Ŷ TW−T
2 V TMV W−1

2 Ŷ

and thus

inf
span(Û)⊆U,span(V̂ )⊆V

ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ )

= inf
X̂TŶ =Ik

trace(X̂TW−T
1 UTKUW−1

1 X̂ + Ŷ TW−T
2 V TMV W−1

2 Ŷ ). (3.4)

By [2, Theorem 3.2], we know that the right-hand side of (3.4) is the sum of the k smallest
positive eigenvalues of HSR defined in (2.1):

HSR =

(
0 W−T

1 UTKUW−1
1

W−T
2 V TMV W−1

2 0

)
∈ R

2ℓ×2ℓ. (2.1)

In summary, the best approximations to the first k positive eigenvalues of H within
the pair of approximate deflating subspaces are the eigenvalues of HSR. Algorithmically,
denote by ωj (j = 1, . . . , ℓ) the positive eigenvalues of HSR in ascending order and by ẑj

the associated eigenvectors, i.e., 0 ≤ ω1 ≤ · · · ≤ ωℓ, and

HSRẑj = ωj ẑj , ẑj =

(
ŷj

x̂j

)
. (3.5)

It can be verified that

ρ(UW−1
1 x̂j , V W−1

2 ŷj) = ωj for j = 1, . . . , ℓ.

Naturally, according to Algorithm 2.1, we take λj ≈ ωj and the corresponding approximate
eigenvectors of H as

z̃j ≡

(
ỹj

x̃j

)
=

(
V W−1

2 ŷj

UW−1
1 x̂j

)
for j = 1, . . . , ℓ. (3.6)
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In practice, not all of the approximate eigenpairs (ωj , z̃j) are equally accurate to the same
level. Usually the first few pairs are more accurate than the rest.

For the easy of reference, we summarize the findings for the first case of nonsingular
W = UTV into the following theorem.

Theorem 3.1. Suppose that one of K and M is definite. Let {U ,V} be a pair of approx-
imate deflating subspaces of {K, M} with dim(U) = dim(V) = ℓ, and let U, V ∈ R

n×ℓ be

the basis matrices of U and V, respectively. If W
def
= UTV is nonsingular, then

k∑

j=1

ωj =
1

2
inf

span(Û)⊆U,span(V̂ )⊆V

ÛTV̂ =Ik

trace(ÛTKÛ + V̂ TMV̂ ),

and the best approximations to λ1 in the sense of (3.1) or to λj (1 ≤ j ≤ k) in the sense of
(3.2) are the eigenvalues {ωj} of HSR defined in (2.1) with the corresponding approximate
eigenvectors given by (3.6).

We recall that even though HSR is not uniquely determined by the given subspaces U
and V, the approximate eigenpairs (ωj , z̃j) by (3.5) and (3.6) are uniquely determined, as
guaranteed by [2, Theorem 2.7].

It turns out the treatment of the second case (namely W is singular) is much involved,
but the conclusion is similar in that both the optimization problems in (3.1) and (3.2) can
still be solved through solving a smaller eigenvalue problem for a projection matrix ĤSR

to be defined in appendix A, where Theorem A.1 similar to Theorem 3.1 is obtained.

Remark 3.1. The best approximation technique so far is based on the minimization
principles in [2, Theorems 3.1 and 3.2]. Naturally one may wonder if a similar technique
could be devised using the minimization principles in [2, Theorem 3.3] for the original LR
eigenvalue problem (1.3) of [2]:

(
A B

−B −A

)(
u

v

)
= λ

(
u

v

)
.

But that seems hard, if at all possible. The difficulty lies in that there appears no good

way to define a proper projection matrix of

(
A B

B A

)
or of

(
A B

−B −A

)
onto the given

subspaces. 3

4 4-D CG algorithms

4.1 4-D search

The line search is a common approach in the process of optimizing a function value. For
our case, we are interested in solving

inf
x,y∈D

ρ(x, y) = inf
x,y∈D

xTKx + yTMy

2|xTy|
(4.1)

in order to compute λ1 and its associated eigenvector of H.
From the theoretical point of view, this task of minimizing ρ(x, y) may end up with no

optimal arguments because possibly no x and y attend the infimum, unless both K and
M are definite. Of course, one may argue that in this case, λ1 is already known, i.e., 0,
when the infimum cannot be attained and it happens if one of K and M is singular, but in
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practice, that one of them is singular may not be known a priori, except that both are semi-
definite is usually known from the problem setup. A likely scenario would be that one may
still attempt to minimize ρ(x, y) anyway. What would happen then? First numerically
rarely a matrix is exactly singular. This means that the singular K or M is not actually
singular (even might be slightly indefinite). With carefully written computer codes, one
may safely regard the singular one barely definite. Consequently any computation by
minimizing ρ(x, y) can still yield meaningful numerical results: the computed λ1 is very
tiny, as tiny as about O(‖K‖+ ‖M‖)u, and one of x and y is negligible compared to the
other, where u is the machine unit roundoff. Therefore, despite of the implied theoretical
impasse by [2, Theorem 3.1] when one of K and M is singular, attempting to minimize
ρ(x, y) is still a worthwhile thing to do in seeking λ1 and its associated eigenvector of H.
In view of this, for the ease of presentation we shall assume, in what follows, that λ1 > 0.

Given a search direction

(
q

p

)
from the current position

(
y

x

)
, the basic idea of the

standard line search2 is to look for the best possible scalar argument t on the line

{(
y

x

)
+ t

(
q

p

)
: t ∈ R

}
(4.2)

to minimize ρ. Carrying out the line search, i.e., minimizing ρ along the line (4.2), is
rather straightforward. Note along the line, (x + tp)T(y + tq) may change its sign. It can
be computed that

d

dt
ρ(x + tp, y + tq) =

γ + 2βt + αt2

±2[(x + tp)T(y + tq)]2

at any t for which (x + tp)T(y + tq) 6= 0, where

α = (xTq + pTy)(pTKp + qTMq)− pTq(xTKp + yTMq),

β = xTy(pTKp + qTMq)− pTq(xTKx + yTy),

γ = xTy(xTKp + yTMq)− (xTq + pTy)(xTKx + yTMy).

There are two cases to consider:

• Equation γ + 2βt + αt2 = 0 has two real solutions ti (i = 1, 2) with the possibility
t1 = t2. Then

inf
t

ρ(x + tp, y + tq) = min
{

ρ(x + tip, x + tiq), lim
t→∞

ρ(x + tp, y + tq) = ρ(p, q)
}

.

Dependent on which value of ρ(x+ tip, x+ tiq) and ρ(p, q) gives inft ρ(x+ tp, y + tq),
the optimal t is either ti or ∞.

• Equation γ + 2βt + αt2 = 0 has no solution. Then the optimal t is ∞ and

inf
t

ρ(x + tp, y + tq) = lim
t→∞

ρ(x + tp, y + tq) = ρ(p, q).

2Since ρ is homogeneous of degree 0, i.e., ρ(tx, ty) ≡ ρ(x, y) for any scalar t, minimizing ρ along the

line (4.2) is in fact minimizing ρ in



α

„

y

x

«

+ αt

„

q

p

«

: α, t ∈ R

ff

which in general form a plan in R
2n

spanned by

„

y

x

«

and

„

q

p

«

, excluding the line



t

„

q

p

«

: t ∈ R

ff

. Therefore the standard line search becomes

a defacto plane search for ρ. To be consistent with the standard terminology in optimization, we still call
it the line search.
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However we decided to give up this standard idea for reasons to be detailed in a
moment. Instead, we shall look for four scalars α, β, s, and t to minimize

ρ(αx + sp, βy + tq) =
(αx + sp)TK(αx + sp) + (βy + tq)TM(βy + tq)

2|(αx + sp)T(βy + tq)|
.

This no longer performs a line search, but a 4-dimensional subspace search (or, 4-D search
for short):

inf
α,β,s,t

ρ(αx + sp, βy + tq) = min
u∈span(U), v∈span(V )

ρ(u, v), (4.3)

within the 4-dimensional subspace
{(

βy + tq

αx + sp

)
for all scalars α, β, s, and t

}
, (4.4)

where U = (x, p) and V = (y, q). The right-hand side of (4.3) can be solved by the
methods given in section 3 if UTV is nonsingular (the common case) or in appendix A if
UTV is singular (the rare case).

We prefer our 4-D search to the standard line search along the line (4.2) for the
following reasons:

1. The standard line search cannot be related to a (much) smaller projected problem
of the same kind.

2. The standard line search is not readily extensible to the subspace search, a crucial
technique for our development for simultaneously computing few smallest positive
eigenvalues and corresponding eigenvectors of H.

3. The standard line search yields the best possible approximation along the line (4.2)
that is contained in the 4-dimensional subspace over which our 4-D search minimizes.
Starting with the same p and q, the solution by our 4-D search is and can be much
better at about the same cost.

4. Although we restricted our developments so far on real K and M , they are actually
valid for Hermitian K and M after minor changes, i.e., replacing all transposes (·)T

by complex conjugate transposes (·)H. When K and M are Hermitian and some of
their entries are complex, our 4-D search is truly a 4-D search over a 4-dimensional
subspace in C

2n (the 2n-dimensional Euclidean vector space over the complex field),
whereas the standard line search does not minimize ρ over a straight line in C

2n

because t is restricted to be real. Conceivably the standard line search solution
could be even worse in the complex case.

The partial gradients of the Thouless functional ρ(x, y) with respect to x and y will
be needed later for minimization. To find the gradients, we perturb x and y to x + p and
y + q, respectively, where p and q are assumed tiny in magnitude. Assuming xTy 6= 0, we
have for sufficiently tiny p and q, up to the first order in p and q,

ρ(x + p, y + q) =
(x + p)TK(x + p) + (y + q)TM(y + q)

2|(x + p)T(y + q)|

=
xTKx + 2pTKx + yTMy + 2qTMy

2|xTy + pTy + qTx|

=
xTKx + 2pTKx + yTMy + 2qTMy

2 |xTy|

[
1−

pTy + qTx

xTy

]

= ρ(x, y) +
1

xTy
pT [Kx− ρ(x, y) y] +

1

xTy
qT [My − ρ(x, y)x] .
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Therefore the partial gradients of ρ(x, y) with respect to x and y are given by

∇xρ =
1

xTy
[Kx− ρ(x, y) y] , ∇yρ =

1

xTy
[My − ρ(x, y)x] . (4.5)

There is a close relation between these two partial gradients and the residual:

Hz − ρ(x, y)z ≡

(
0 K

M 0

)(
y

x

)
− ρ(x, y)

(
y

x

)
= xTy

(
∇xρ

∇yρ

)
. (4.6)

Namely the block vector obtained by stacking ∇xρ over ∇yρ is parallel to the residual.

4.2 4-D CG algorithms

The minimization principles (1.4)/(1.6) and (1.8) make it tempting to apply memory-
efficient nonlinear CG algorithms [24] to solve LR eigenvalue problem. Not surprisingly,
such applications had been attempted in [21, 23] based on the Thouless functional ̺ in
(1.5). Conceivably when only one eigenvalue and its associated eigenvector are requested,
it matters little, if any, to apply CG to (1.4) for the Hamiltonian matrix in (1.2) or to (1.6)
for H in (1.1). But it is very different story if more than one eigenpairs are requested, in
which case block algorithms become necessary. It seems hard, if at all possible, to create
a block CG algorithm for the Hamiltonian matrix eigenvalue problem (1.2) directly, even
with our new minimization principle in [2, Theorem 3.3] for the same reason as we pointed
out in Remark 3.1. On the other hand, the developments in section 3 and appendix A make
it possible for designing efficient block CG algorithms to compute the first few smallest
positive eigenvalues λj and their corresponding eigenvectors simultaneously, based on the
minimization principle in [2, Theorem 3.2] and the Cauchy-like interlacing inequalities in [2,
Theorem 3.4]. This is the precise reason we prefer to work with H.

It has been noted that the locally optimal CG algorithm [28, 34] is often better suited
for solving large scale Hermitian eigenvalue problems, especially with a proper precondi-
tioner [16, 17] than the (classical) nonlinear CG algorithms [24]. It converges fast, has no
parameters to worry about, and is (much) easier to implement. For this reason, we shall
only present here our locally optimal CG algorithms (with or without preconditioners).

For most nonlinear optimization problems, even solving simple line searches poses
challenges. But for the eigenvalue problem for H, thanks to Theorem 3.1 and Theorem A.1,
the optimal approximate solution within a pair of subspaces of dimension higher than 1 is
easily computed, very much like the case for the standard Hermitian eigenvalue problem.
This enables us to go for block CG algorithms.

Algorithm 4.1 below summarizes four locally optimal 4-D CG algorithms in one. We at-
tach “4-D” to them because of their relation to the 4-D search idea in subsection 4.1. Each
of the algorithms is realized through adjusting its integer parameter k and preconditioner
Φ:

• Locally Optimal 4-D CG algorithm (LO4DCG): k = 1 and

Φ =

(
0 In

In 0

)
; (4.7)

• Locally Optimal Preconditioned 4-D CG algorithm (LOP4DCG): k = 1 and Φ ≈
(H − µI2n)−1;

• Locally Optimal Block 4-D CG algorithm (LOB4DCG): k > 1 and Φ as in (4.7);
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• Locally Optimal Block Preconditioned 4-D CG algorithm (LOBP4DCG): k > 1 and
Φ ≈ (H − µI2n)−1.

The key iterative step in these locally optimal 4-D CG algorithms is to seek the best
possible approximations in the subspace spanned by two most recent approximations and
the (preconditioned) gradients at the most recent approximations, except for the first
iterative step for which the search subspace is simply spanned by the most recent approx-
imations and the (preconditioned) gradients at the approximations. A straightforward
application would be to search the next approximations within

span

{(
yi

xi

)
,

(
yi−1

xi−1

)
,

(
qi

pi

)
, 1 ≤ i ≤ k

}
,

except that for the first iteration the vectors in the middle is deleted from the list because
they are not available yet, where

(
qi

pi

)
= Φ

(
∇xρ

∇yρ

)∣∣∣∣
(x,y)=(xi,yi)

, (4.8)

and Φ is a preconditioner. To utilize the best approximation methods in section 3 and
appendix A, we modify this approach by using the search space

span

{(
yi

0

)
,

(
yi−1

0

)
,

(
qi

0

)
,

(
0
xi

)
,

(
0

xi−1

)
,

(
0
pi

)
1 ≤ i ≤ k

}
.

We are now ready to give our four locally optimal CG algorithms collectively in one.

Algorithm 4.1. The locally optimal block preconditioned 4-D CG algorithms:

0 Given initial approximations X0 and Y0 having k columns such that

columns of Z0 =

(
Y0

X0

)
are approximate eigenvectors of H associated with

λj , 1 ≤ j ≤ k.
1 for i = 0, 1, . . . until convergence:
2 ρj = ρ((Xi)(:,j), (Yi)(:,j)), 1 ≤ j ≤ k;

3 Pi = KXi − Yi diag(ρ1, . . . , ρk), Qi = MYi −Xi diag(ρ1, . . . , ρk);

3.1

(
Qi

Pi

)
← Φ

(
Pi

Qi

)
if the preconditioner Φ is given;

4.1 For i = 0: U = (Xi, Pi), V = (Yi, Qi);
4.2 For i > 0: U = (Xi, Xi−1, Pi), V = (Yi, Yi−1, Qi);
4.3 Orthogonalize the columns of U and V ;
4.4 W = UTV = WT

1 W2;
5 Construct HSR as in (2.1) (assume W is nonsingular);
6 Compute the k smallest positive eigenvalues of HSR,

and the associated eigenvectors as in (3.5);

7 Xi+1 = UW−1
1 (x̂1, . . . , x̂k), Yi+1 = V W−1

2 (ŷ1, . . . , ŷk);

8 Normalize each column of Zi+1 =

(
Yi+1

Xi+1

)
.

9 end

A few comments are in order for Algorithm 4.1:

1. At Line 2, evaluations of ρj are needed only for sweep i = 0; for i ≥ 1, they are the
k smallest positive eigenvalues of HSR in the previous sweep.

11



2. For the convergence test, we can use the relative residual norm

‖Hz
(i)
j − ρ(x

(i)
j , y

(i)
j )z

(i)
j ‖[

‖H‖+ ρ(x
(i)
j , y

(i)
j )
]
‖z

(i)
j ‖

to determine if the approximate eigenpair (ρ(x
(i)
j , y

(i)
j ), z

(i)
j ) has converged to a de-

sired accuracy, where z
(i)
j = (Zi)(:,j), x

(i)
j = (Xi)(:,j), and y

(i)
j = (Yi)(:,j), and ‖ · ‖ is

some matrix/vector norm, e.g., the ℓ1-vector norm and ℓ1-operator norm.

3. U and V constructed at Line 4.1 or Line 4.2 may be ill-conditioned, especially
when near convergence because then the gradients tend to the zero vector and Xi

and Yi are almost converged. To ensure that U and V are well-conditioned for
better numerical stability, we may have to orthogonalize their columns via, e.g., the
(classical/modified) Gram-Schmidt orthogonalization process. This is the reason we
have Line 4.3 there.

4. From Line 5 to Line 8, we leave out the case when UTV is singular for simplicity.
Actual implementation should include the case for which the optimal solution has
been given in detail in appendix A. Specifically, instead of HSR as in (2.1), we
compute ĤSR as in (A.5) and its min{k, r} smallest positive eigenvalues and the
associated eigenvectors as in (A.7), and finally compute Zi+1 = (z̃1, . . . , z̃min{k,r}) by
(A.8) – (A.10), where r is the (numerical) rank of W .

5. At Line 6, LAPACK’s routine xSYSVD for the types 2 and 3 generalized symmetric
definite eigenvalue problems can be used to solve the eigenvalue problems of HSR

because of its small size.

6. At Line 8, we can simply scale each column of Zi+1 to be a unit vector in some
vector norm.

7. Sometimes it can be helpful to use a k that is somewhat bigger than the actual
number of requested eigenpairs for the acceleration of the convergence.

8. The algorithm without Line 4.2 (and Line 4.1 for all i) and the preconditioner Φ is
reminiscent of the so-called Simultaneous Rayleigh Quotient Minimization Method
(SIRQIT) due to Longsine and McCormick [20] for the standard Hermitian eigen-
value problem.

9. Φ as in (4.7) gives the plain 4-D CG algorithm (i.e., without preconditioning). An
efficient preconditioner to compute the eigenvalues of H close to a prescribed point
µ is

Φ = (H − µI2n)−1.

Then the vectors pi and qi defined by (4.8) can be computed through approximately
solving a linear system with the coefficient matrix (H − µI2n)−1 in practice. Note
that the arrangement of the two n-entry blocks in the vector applied to by Φ is not
mistaken. In fact the vector is parallel to the corresponding residual vector as given
by (4.6). The modified directions are parallel to the ones obtained from one step of
the inverse power iteration on the residual. When µ is closer to the desired eigenval-
ues than any others, the preconditioned directions should have “larger” components
in the desired eigenvectors than the ones obtained without preconditioning. Since
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we are particularly interested in the smallest positive eigenvalues, µ = 0 is often an
obvious choice. Then

Φ

(
∇xρ

∇yρ

)
=

(
0 M−1

K−1 0

)(
∇xρ

∇yρ

)
=

(
M−1∇yρ

K−1∇xρ

)
=:

(
q

p

)
.

In this case, both p and q vectors can be computed by using the conjugate gradient
method [9, 12]. The search direction in the x-component depends only on ∇xρ while
the search direction in the y-component depends only on ∇yρ. This in part also
justifies the correct block ordering in the vector applied to by Φ in (4.8).

5 Numerical examples

In this section, we present numerical experiment results to illustrate the essential con-
vergence behaviors of locally optimal 4-D CG algorithms in section 4. We use the pair
of matrices K and M of H (1.1) generated from the linear response analysis of the den-
sity matrix calculated from the Quantum ESPRESSO, an electronic structure calculation
code that implements density functional theory (DFT) using plane-waves as a basis set
and pseudopotentials [10]. For simplicity, we use a synthesized pair of matrices K and
M for the sodium dimer Na2, namely a simple biatomic molecule. Such small molecules
are often used as benchmark tests to assess various simulation models, functionals and
methods (for example see [22]). Both K and M are symmetric positive definite and of
order n = 1862.

Our goal is to compute 4 smallest positive eigenvalues 0 < λ1 < λ2 < λ3 < λ4 and
corresponding eigenvectors z1, z2, z3, z4 of H. The initial approximate eigenvectors of zi are
chosen as (eT

j , eT
j )T for j = 1, 2, 3, 4. The relative residual norms and relative eigenvalue

errors for the jth approximate eigenpair (λ
(i)
j , z

(i)
j ) at the ith iterative step to the exact

jth eigenpairs (λj , zj) are defined by

‖Hz
(i)
j − λ

(i)
j z

(i)
j ‖1

(‖H‖1 + λ
(i)
j )‖z

(i)
j ‖1

and
|λ∗

j − λ
(i)
j |

|λ∗
j |

,

respectively, where (λ∗
j , zj) are computed by the QR algorithm (via MATLAB’s function

eig) and considered to be the “exact” eigenpairs. The preconditioner is chosen to be

Φ = H−1 =

(
0 M−1

K−1 0

)
.

The preconditioned vectors qi := M−1pi and pi := K−1qi are computed by the CG
method [9, 12] with stopping tolerance 10−2 or maximum 20 iterations.

Figure 5.1 shows the relative residual norms and the relative eigenvalue errors of a
MATLAB implementation of the locally optimal block 4-D CG algorithm with and without
preconditioning (Algorithm 4.1 with k = 4). We observe the initially steady convergence
of the algorithm without preconditioning. However, it is quickly stagnated. This phe-
nomenon is common to methods of the CG type for solving linear systems and standard
symmetric eigenvalue problems. On the other hand, by incorporating preconditioning, the
method converges rapidly.

6 Concluding remarks

Basing on the theoretical results in [2] for the LR (a.k.a. RPA) eigenvalue problem (1.1),
we developed a 4-D search technique to enhance the standard line search method in opti-
mization and then devised locally optimal CG methods that are capable of computing the
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Figure 5.1: The convergence behaviors of the locally optimal block 4-D CG algorithms
with/without preconditioning for computing the 4 smallest positive eigenvalues (excitation
states) of a synthesized bi-atomic molecule: relative residual norms (left) and relative
eigenvalue errors (right).

few smallest positive eigenvalues and their corresponding eigenvectors simultaneously. The
numerical example in section 5 demonstrate the effectiveness of the new algorithms, es-
pecially with suitable preconditioners. Extended numerical experiment results on a block
4-D steepest descent (SD) type method for the first-principle calculation of the excitation
states of large molecules is presented in [31]. However, we do not have any precise estimate
on rates of convergence yet.

In both [2] and this paper, we have focused on the case where the LR (RPA) eigenvalue
problem has only real eigenvalues with eigenvalue 0 allowed. There are cases in which
imaginary eigenvalues occur. For example, the positive-definiteness condition of A + B

and/or A− B is not met in [26, 29]. The development of efficient numerical methods for
treating such large scale problems is a subject of future study.
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A Best approximations: the singular case

This appendix continues the investigation in section 3 to seek best approximate eigenpairs
of H for given {U ,V}, a pair of approximate deflating subspaces of {K, M} with dim(U) =

dim(V) = ℓ. In section 3, we have treated the case in which W
def
= UTV is nonsingular,

where U, V ∈ R
n×ℓ are the basis matrices of U and V, respectively. In what follows, we

will treat the case in which W is singular.
Suppose that W is singular, and factorize

W = WT
1 W2, Wi ∈ R

r×ℓ, r = rank(W ) < ℓ. (A.1)
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So both Wi have full row rank. Factorize3

WT
i = Qi

(
Ri

0

)
for i = 1, 2, (A.2)

where Ri ∈ R
r×r, Qi ∈ R

ℓ×ℓ (i = 1, 2) are nonsingular.
Consider the best approximation to λ1 by (3.1). We still have (3.3):

ρ(x, y) =
ûTUTKUû + v̂TV TMV v̂

2|ûTWv̂|
, (3.3)

where x = Uû and y = V v̂ for some û, v̂ ∈ R
ℓ. Note the correspondence between x ∈ U

and û ∈ R
ℓ and that between y ∈ V and v̂ ∈ R

ℓ are one-one. Let x̂ = W1û ∈ R
r and

ŷ = W2v̂ ∈ R
r. Since r < ℓ, û is not uniquely defined by x̂; neither is v̂ by ŷ. But use

(A.2) to see that

û = Q−T
1

(
R−T

1 x̂

u

)
, v̂ = Q−T

2

(
R−T

2 ŷ

v

)
,

where u, v ∈ R
ℓ−r are arbitrary. Partition

Q−1
1 UTKUQ−T

1 =

( r ℓ−r

r K11 K12

ℓ−r KT
12 K22

)
, Q−1

2 V TMV Q−T
2 =

( r ℓ−r

r M11 M12

ℓ−r MT
12 M22

)
. (A.3)

We have

ûTUTKUû =

(
R−T

1 x̂

u

)T(
K11 K12

KT
12 K22

)(
R−T

1 x̂

u

)
,

v̂TV TMV v̂ =

(
R−T

2 ŷ

v

)T(
M11 M12

MT
12 M22

)(
R−T

2 ŷ

v

)
.

Given x̂, ûTUTKUû is minimized at these u such that K22u = −KT
12R

−T
1 x̂. This equa-

tion always has a solution because that Q−1
1 UTKUQ−T

1 is positive semi-definite implies
span(KT

12) ⊆ span(K22), and its solution is not unique if K22 is singular. But the non-
uniqueness does not matter as far as the minimal value of ûTUTKUû is concerned. The
same can be said about v̂TV TMV v̂. In fact,

min
u

ûTUTKUû = x̂TR−1
1

(
K11 −K12K

†
22K

T
12

)
R−T

1 x̂, (A.4a)

min
v

v̂TV TMV v̂ = ŷTR−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 ŷ, (A.4b)

where K
†
22 and M

†
22 are the Moore-Penrose inverses of K22 and M22, respectively. The

minimums in (A.4) are attained at those u and v satisfying

K22u = −KT
12R

−T
1 x̂, M22v = −MT

12R
−T
2 ŷ.

Finally, the quantity in (3.1) is

inf
x̂,ŷ

x̂TR−1
1

(
K11 −K12K

†
22K

T
12

)
R−T

1 x̂ + ŷTR−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 ŷ

2|x̂Tŷ|

3Computationally, this can be realized by the QR decompositions of WT
i . For more generality in

presentation, we do not assume they are QR decompositions.
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which, by [2, Theorem 3.1], is the smallest positive eigenvalue of ĤSR:

ĤSR =


 0 R−1

1

(
K11 −K12K

†
22K

T
12

)
R−T

1

R−1
2

(
M11 −M12M

†
22M

T
12

)
R−T

2 0


 ∈ R

2r×2r.

(A.5)
Now we turn to the best approximations to λi (1 ≤ i ≤ k) by (3.2). Assume (A.1) and

(A.2). Any Û , V̂ ∈ R
n×k such that span(Û) ∈ U , span(V̂ ) ∈ V, and ÛTV̂ = Ik can be

written as
Û = UQ−T

1 Ũ , V̂ = V Q−T
2 Ṽ ,

where Ũ , Ṽ ∈ R
ℓ×k that make ÛTV̂ = Ik, and vice versa. We note that necessarily

k = rank(Ik) = rank(ÛTV̂ ) ≤ rank(W ) = r.

We first look into what constraint is needed on Ũ and Ṽ in order to enforce ÛTV̂ = Ik.
To this end, we partition

Ũ =

( k

r Ũ1

ℓ−r Ũ2

)
, Ṽ =

( k

r Ṽ1

ℓ−r Ṽ2

)
.

We have

ÛTV̂ = ŨTQ−1
1 WT

1 W2Q
−T
2 Ṽ = ŨT

(
R1

0

)(
RT

2 , 0
)
Ṽ = ŨT

1 R1R
T
2 Ṽ1.

Let X̂ = RT
1 Ũ1, Ŷ = RT

2 Ṽ1 ∈ R
r×k. Then ÛTV̂ = Ik is equivalent to X̂TŶ = Ik which

will be enforced henceforth, while Ũ2 and Ṽ2 are arbitrary. Assume the partitioning in
(A.3). We have

ÛTKÛ = ŨTQ−1
1 UTKUQ−T

1 Ũ =

(
R−T

1 X̂

Ũ2

)T(
K11 K12

KT
12 K22

)(
R−T

1 X̂

Ũ2

)
,

V̂ TMV̂ = Ṽ TQ−1
1 V TKV Q−T

1 Ṽ =

(
R−T

2 Ŷ

Ṽ2

)T(
M11 M12

MT
12 M22

)(
R−T

2 Ŷ

Ṽ2

)
.

Given X̂ and Ŷ , it can be verified that

min
eU2

trace(ÛTKÛ) = trace(X̂TR−1
1 [K11 −K12K

†
22K

T
12]R

−T
1 X̂), (A.6a)

min
eV2

trace(V̂ TMV̂ ) = trace(Ŷ TR−1
2 [M11 −M12M

†
22M

T
12]R

−T
2 Ŷ ) (A.6b)

with the minimums are attained at those Ũ2 and Ṽ2 satisfying

K22Ũ2 = −KT
12R

−T
1 X̂, M22Ṽ2 = −MT

12R
−T
2 Ŷ .

Therefore the quantity in (3.2) is

inf
X̂TŶ =Ik

trace
(
X̂TR−1

1 [K11 −K12K
†
22K

T
12]R

−T
1 X̂ + Ŷ TR−1

2 [M11 −M12M
†
22M

T
12]R

−T
2 Ŷ

)

which, by [2, Theorem 3.2], is the sum of the k smallest positive eigenvalues of ĤSR defined
by (A.5).
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In summary, the best approximations to some of the eigenvalues of H within the pair
of approximate deflating subspaces are the eigenvalues of ĤSR. Denote by ωj (j = 1, . . . , r)
the positive eigenvalues of ĤSR in ascending order and by ẑj the associated eigenvectors:

ĤSRẑj = ωj ẑj , ẑj =

(
ŷj

x̂j

)
. (A.7)

Following the derivations above, we conclude

ρ(x̃j , ỹj) = ωj for j = 1, . . . , r,

where

x̃j = UQ−T
1

(
R−T

1 x̂j

uj

)
, ỹj = V Q−T

2

(
R−T

2 ŷj

vj

)
(A.8)

for uj and vj satisfying

K22uj = −KT
12R

−T
1 x̂j , M22vj = −MT

12R
−T
2 ŷj . (A.9)

Naturally the approximate eigenvectors of H should be taken as

z̃j =

(
ỹj

x̃j

)
for j = 1, . . . , r. (A.10)

For easy of reference, we summarize our findings into the following theorem.

Theorem A.1. Suppose that one of K and M is definite. Let {U ,V} be a pair of approx-
imate deflating subspaces of {K, M} with dim(U) = dim(V) = ℓ, and let U, V ∈ R

n×ℓ be

the basis matrices of U and V, respectively. Suppose that W
def
= UTV is singular and let

ĤSR be defined by (A.5). Then the best approximations to λ1 in the sense of (3.1) or to
λj (1 ≤ j ≤ k) in the sense of (3.2) are the corresponding eigenvalues of ĤSR defined in
(A.5), with the corresponding approximate eigenvectors given by (A.8) – (A.10).

In [2, Theorem 2.7], we proved the approximate eigenpairs are unique for given {U ,V}
with nonsingular UTV , even though there are infinitely many different HSR associated with
the pair of subspaces. We are facing with the same question for ĤSR in whose construction
there are three non-unique choices:





1. Factorizations in (A.2) are not unique.

2. Factorization W = WT
1 W2 in (A.1) is not unique.

3. Basis matrices U and V are not unique.

(A.11)

The question would arise if different ĤSR could produce different approximate eigenpairs.
This is addressed by the following theorem.

Theorem A.2. Suppose that one of K and M is definite. Let U and V be two subspaces of
R

n of dimension ℓ with basis matrices U, V ∈ R
n×ℓ, respectively. Suppose that W = UTV

is singular and define ĤSR by (A.5). Then

1. the approximate eigenvalues, i.e., the eigenvalues of ĤSR, are invariant with respect
to any of the non-uniqueness listed in (A.11) for constructing ĤSR;

2. the approximate eigenvectors by (A.8) – (A.10) are invariant with respect to any of
the non-uniqueness listed in (A.11) if and only if both K22 and M22 are definite.
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Proof. To see the first conclusion, we notice that the infimum (3.2) only depends on {U ,V}
and is invariant with respect to any of the non-uniqueness in (A.11) for 1 ≤ k ≤ r. Since
the infimum is the sum of the first k smallest positive eigenvalues of ĤSR, let k go from 1
to r to conclude that the positive eigenvalues of ĤSR are invariant with respect to any of
the non-uniqueness in (A.11); so are all eigenvalues of ĤSR.

For the second conclusion, let us first select one choice for each of them in (A.11),
namely basis matrices U and V , a factorization W = WT

1 W2 in (A.1), and two factor-

izations in (A.2). Let H0
def
= ĤSR with these selected choices, and suppose that both K22

and M22 are definite. We shall now prove that the approximate eigenvectors are invariant
with respect to any variation to the selected ones. Along the way, we will also see the
definiteness of K22 and M22 does not change with the variations, either.

1. Invariance with respect to different choices of factorizations in (A.2). Any factor-
izations other than the given ones in (A.2) can be written as

WT
i = Qi

(
Si1

Si2

)(
S−1

i1 Ri

0

)
, (A.12)

for some nonsingular Si1 ∈ R
r×r, Si2 ∈ R

(ℓ−r)×(ℓ−r). Denote by H1
def
= ĤSR with

given U , V and (A.1), and (A.12). Perform substitutions

Qi

(
Si1

Si2

)
← Qi, S−1

i1 Ri ← Ri, S−1
1i KijS

−T
1j ← Kij , S−1

2i MijS
−T
2j ←Mij

to see H0 = H1 and that the approximate eigenvectors for H by (A.8) – (A.10) do
not change. Also the definiteness of K22 and M22 does not change with the variation
in (A.12).

2. Invariance with respect to different choice of factorization W = WT
1 W2. Any factor-

ization other than the given one in (A.1), can be written as

W = WT
1 SS−1W2 = (STW1)

T(S−1W2) (A.13)

for some nonsingular S ∈ R
r×r. Define H1

def
= ĤSR with given U , V , and (A.13) and

(STW1)
T = Q1

(
R1S

0

)
, (S−1W2)

T = Q2

(
R2S

−T

0

)
. (A.14)

Since we just proved the invariance with respect to different choices of factorizations
in (A.2), it suffices to prove that the approximate eigenvectors obtained through H0

and H1 are the same. Upon using substitutions R1S ← R1 and R2S
−T ← R2, we

find
H1 =

(
S−1 ⊕ ST

)
H0

(
S−1 ⊕ ST

)−1
,

and thus the relationships between the eigenvectors for H0 and H1. It can then be
verified that the approximate eigenvectors obtained through H0 and H1 via (A.8) –
(A.10) are the same. Also the definiteness of K22 and M22 does not change with the
variation in (A.13).

3. Invariance with respect to different choices of basis matrices. Given basis matrices
U and V of U and V, respectively, any other basis matrices can be written as UR

and V S for some nonsingular R, S ∈ R
ℓ×ℓ. Define H1

def
= ĤSR with UR and V S, and

W = (UR)T(V S) = RTUTV S = (W1R)T(W2S), (A.15)
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and

(W1R)T = RTQ1

(
R1

0

)
, (W2S)T = STQ2

(
R2

0

)
. (A.16)

By the two invariance properties we just proved, it suffices to prove that the approxi-
mate eigenvectors obtained through H0 and H1 are the same. Perform substitutions

UR← U, V S ← V, RTQ1 ← Q1, STQ2 ← Q2

to see H0 = H1 and that the approximate eigenvectors for H by (A.8) – (A.10)
do not change. Again the definiteness of K22 and M22 does not change with the
variation from U to UR and from V to V S.

Finally if K22 is singular, uj satisfying the first equation in (A.9) is not unique. In fact, if
uj is one, any uj + g is another, for any g in the kernel of K22. So the defining equation
in (A.8) for x̃j gives

x̃j = UQ1

(
R−T

1 x̂j

−K
†
22K

T
12R

−T
1 x̂j + g

)
(A.17)

leading to different approximate eigenvectors as g varies within the kernel of K22. The
same thing happens if M22 is singular.

The proof of Theorem A.2 exposes the cause for the approximate eigenvectors by (A.8)
– (A.10) not to be uniquely determined, namely, one of the equations (A.10) may have
infinitely many solutions4. When that’s the case, we can either always take

uj = −K
†
22K

T
12R

−T
1 x̂j , vj = −M

†
22M

T
12R

−T
1 ŷj

or settle the non-uniqueness by

min
g,h

{
‖Kx̃j − ωj ỹj‖

2
2 + ‖Mỹj − ωj x̃j‖

2
2

}
(A.18)

over all g in the kernel of K22 and h in the kernel of M22, upon noticing (A.17) and

ỹj = V Q−T
2

(
R−T

2 ŷj

−M
†
22M

T
12R

−T
2 ŷj + h

)
. (A.19)

Finally it can be seen that (A.18) is a least squares problem in g and h.

Remark A.1. Noticeably our treatment above is much more involved than the nonsin-
gular case in section 3. Certainly an argument can be made not to use {U ,V} with a
singular W at all because [2, Lemma 2.1] says that W is nonsingular if {U ,V} is exact. But
in practice, especially at the beginning of an iterative process, it is hard to guarantee this
is so at all time. Our treatment, albeit tedious, shows that the optimums in (3.1) and
(3.2) can still be realized. An alternative and much simpler treatment for the singular case
at a tradeoff of achieving only suboptimal approximations to (3.1) and (3.2) is as follows.
Suppose (A.1) and (A.2). We have

(R−1
1 , 0)Q−1

1 UTV Q−T
2

(
R2

0

)
= Ir.

After substitutions

U ← UQ−T
1

(
R1

0

)
, V ← V Q−T

2

(
R2

0

)
,

two new subspaces U and V with dimension r are born with new basis matrices U and V

satisfying UTV = Ir, returning to the nonsingular W case in section 3. 3

4By default, one of K and M is definite. Thus at most one of K22 and M22 is singular.
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