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Minimization problems for eigenvalues of the Laplacian ∗

Antoine HENROT

Ecole des Mines and Institut Elie Cartan Nancy,

UMR 7502 CNRS and projet CORIDA, INRIA,

B.P. 239, 54506 Vandoeuvre-lès-Nancy, France.

E-mail : henrot@iecn.u-nancy.fr

Abstract

This paper is a survey on classical results and open questions about minimization
problems concerning the lower eigenvalues of the Laplace operator. After recalling
classical isoperimetric inequalities for the two first eigenvalues, we present recent ad-
vances on this topic. In particular, we study the minimization of the second eigenvalue
among plane convex domains. We also discuss the minimization of the third eigen-
value. We prove existence of a minimizer. For others eigenvalues, we just give some
conjectures. We also consider the case of Neumann, Robin and Stekloff boundary
conditions together with various functions of the eigenvalues.

AMS classification : 49Q10, 35P15, 49J20.
keywords : eigenvalues, minimization, isoperimetric inequalities, optimal domain

1 Introduction

Problems linking the shape of a domain to the sequence of its eigenvalues, or some of
them, are among the most fascinating of mathematical analysis or differential geometry.
In particular, problems of minimization of eigenvalues, or combination of eigenvalues,
brought about many deep works since the early part of the twentieth century. Actually,
this question appeared in the famous book of Lord Rayleigh ”The theory of sound” ( for
example in the edition of 1894). Thanks to some explicit computations and ”physical
evidence”, Lord Rayleigh conjectured that the disk should minimize the first Dirichlet
eigenvalue λ1 of the Laplacian among every open sets of given measure.

It was indeed in the 1920’s that Faber [21] and Krahn [34] solved simultaneously the
Rayleigh’s conjecture using a rearrangement technique. This classical proof is given at
Theorem 1 of section 3 which is devoted to the first Dirichlet eigenvalue. We will also
discuss the case of a multiconnected domain and present some open problems involving

∗A shorter version of this paper appeared in Journal of Evolution Equations, volume 3 (2003), pp.
443-461 special issue dedicated to Philippe Bénilan
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the first eigenvalue. For other problems and a complete bibliography, we refer to [2],
[41], [42], [50], [59], [60]; this kind of question is often called ”isoperimetric inequalities
for eigenvalues” in standard works, see also [6], [38] [48], [49]. In section 4, we investi-
gate similar questions for the second eigenvalue. The open set, of given measure, which
minimizes λ2 is the union of two identical balls. This result is generally attributed to
P. Szegö, as quoted by G. Pólya in [47]), but it was already contained (more or less ex-
plicitly) in one of the Krahn’s papers, see [35]. In this section, we will also present very
recent results about the minimization of λ2 among convex plane domains. In section

Figure 1: The ball minimizes λ1 (left); the union of two identical balls minimizes λ2 (right).

5, we look at the remaining eigenvalues of the Dirichlet-Laplacian. Actually a very few
things are known! We only know the existence of an optimal domain for λ3 and the fact
that this domain is connected in dimension 2 and 3. In section 6, we will consider the
so-called ”Payne-Pólya-Weinberger” conjecture, solved by Ashbaugh and Benguria in the

90’s, concerning the ratio of the two first eigenvalues
λ2

λ1
. We will also present some open

problems on other ratios. Finally, in section 7, we will present some results about other
boundary conditions: Neumann, Robin and also the Stekloff problem. We have decided
here to restrict ourselves to the Laplacian operator on open (Euclidean) sets. Now, there
are also beautiful results and conjectures e.g. for the bi-Laplacian ∆(∆). A good overview
is given by B. Kawohl in the book [32], see also [37] and [5]. There are also many similar
results on manifolds, see e.g. [39] or [60].

2 Notations and prerequisites

For the basic facts we recall here, we refer to any textbook on partial differential equations.
For example, [17] or [20] are good standard references. Let Ω be a bounded open set in
R

N . In the case of Dirichlet boundary conditions, the convenient functional space is the
Sobolev space H1

0 (Ω) which is defined as the closure of C∞ functions compactly supported

in Ω for the norm ‖u‖H1 :=
(∫

Ω u(x)2 dx +
∫

Ω |∇u(x)|2 dx
)1/2

. The Laplacian on Ω with
Dirichlet boundary conditions is a self-adjoint operator with compact inverse, so there
exists a sequence of positive eigenvalues (going to +∞) and a sequence of corresponding
eigenfunctions that we will denote respectively 0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ . . . and
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u1, u2, u3, . . .. In other words, we have:
{

−∆uk = λk(Ω)uk in Ω
uk = 0 on ∂Ω

(1)

We decide to normalize the eigenfunctions by the condition
∫

Ω
uk(x)2 dx = 1 . (2)

The sequence of eigenfunctions defines an Hilbert basis of L2(Ω). By hypo-analyticity of
the Laplacian, each eigenfunction is analytic inside Ω, its behavior on the boundary is
governed by classical regularity results for elliptic partial differential equations. From the
maximum principle and the Krein-Rutman Theorem, it follows that the first eigenfunction
u1 is non negative in Ω and positive as soon as Ω is connected. In particular, since u2 is
orthogonal to u1, it has to change the sign in Ω. The sets

Ω+ = {x ∈ Ω, u2(x) > 0} and Ω− = {x ∈ Ω, u2(x) < 0}

are called the nodal domains of u2. According to the Courant-Hilbert Theorem, these two
nodal domains are connected subsets of Ω. The set

N = {x ∈ Ω, u2(x) = 0}

is called the nodal line of u2. When Ω is a plane convex domain, this nodal line hits
the boundary of Ω at exactly two points, see Melas [36], or Alessandrini [1]. For general
simply connected plane domains Ω, it is still a conjecture, named after Larry Payne,
the ”Payne conjecture”. We will also use the classical variational characterization of
eigenvalues (Poincaré principle):

λk(Ω) = min
Ek ⊂ H1

0 (Ω),
subspace of dim k

max
v∈Ek,v 6=0

∫

Ω |∇v(x)|2 dx
∫

Ω v(x)2 dx
. (3)

This principle implies the following monotonicity for inclusion:

Ω1 ⊂ Ω2 =⇒ λk(Ω1) ≥ λk(Ω2) .

For the first eigenvalue, it reads

λ1(Ω) = inf
v∈H1

0
(Ω),v 6=0

∫

Ω |∇v(x)|2 dx
∫

Ω v(x)2 dx
(4)

the above infimum being achieved by the first eigenfunction. At last, the eigenvalues
have a simple behavior with respect to homothety: if tΩ denotes the image of Ω by an
homothety with ratio t, the eigenvalues of tΩ satisfy:

λk(tΩ) =
λk(Ω)

t2
.
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As a consequence, in two-dimensions, looking for the minimizer of λk(Ω) with a volume
constraint is equivalent to look for a minimizer of the product |Ω|λk(Ω).

In the sequel, we are interested in minimization problems like

min{λk(Ω), Ω open subset of R
N , |Ω| = A}

(where |Ω| denotes the measure of Ω and A is a given constant). Sometimes, we will also
consider other geometric or topologic constraints, this will be specified below.

3 The first eigenvalue of the Dirichlet-Laplacian

3.1 The Rayleigh-Faber-Krahn inequality

For the first eigenvalue, the basic result is (as conjectured by Lord Rayleigh):

Theorem 1 (Rayleigh-Faber-Krahn) Let Ω be any bounded open set in R
N , let us

denote by λ1(Ω) its first eigenvalue for the Laplace operator with Dirichlet boundary con-
ditions. Let B be the ball of the same volume as Ω, then

λ1(B) = min{λ1(Ω), Ω open subset of R
N , |Ω| = |B|}.

Proof : The classical proof makes use of the Schwarz spherical decreasing rear-
rangement. For every bounded open set ω, let ω∗ denotes the ball (centered at the
origin) with the same volume as ω. If u is a non negative function in Ω which vanishes on
∂Ω, its spherical decreasing rearrangement is defined as the function u∗ on B = Ω∗ which
has the following level sets:

∀c > 0, {x ∈ B, u∗(x) > c} = {x ∈ Ω, u(x) > c}∗ .

In other words, the level sets of u∗ are the balls that we obtain by rearranging the sets of
same level of u. We have a first easy consequence (by equi-measurability of the functions
u and u∗):

∫

B
u∗(x)2 dx =

∫

Ω
u(x)2 dx . (5)

The following inequality involving the Dirichlet integrals of u and u∗ is much harder to
prove, but it is one of the main interest of the rearrangement techniques, we refer to [48]
or [6] for the proof:

∫

B
|∇u∗(x)|2 dx ≤

∫

Ω
|∇u(x)|2 dx . (6)

We can now apply (5) and (6) by choosing for the function u the first eigenfunction u1 of
Ω, it comes:

λ1(Ω) =

∫

Ω |∇u1(x)|2 dx
∫

Ω u1(x)2 dx
≥

∫

B |∇u∗
1(x)|2 dx

∫

B u∗
1(x)2 dx

≥ λ1(B)

the last inequality coming from (4), which yields the desired result. ¤

4



3.2 The case of polygons

We can ask the same question for the class of polygons with a given number n of sides.
Actually, the result is known only for n = 3 and n = 4:

Theorem 2 (Pólya) The equilateral triangle has the least first eigenvalue among all tri-
angles of given area. The square has the least first eigenvalue among all quadrilaterals of
given area.

The proof relies on the same technique as the Rayleigh-Faber-Krahn Theorem with the
difference that is now used the so-called Steiner symmetrization (see e.g. [48] or [31]).
This symmetrization is performed with respect to an hyperplane H: we transform a given
set ω in a set ω∗ symmetric w.r.t H by moving the center of each segment of ω orthogonal
to H on H. Doing the same for the level set of a function allows to define the Steiner
symmetrization of a given function. This symmetrization has the same properties (5) and
(6) as the Schwarz rearrangement, therefore any Steiner symmetrization decreases the first
eigenvalue.

By a sequence of Steiner symmetrization with respect to the mediator of each side, a
given triangle converges to an equilateral one. We can do the same for a quadrilateral by
alterning symmetrization w.r.t. mediator of sides and diagonals. It will be transformed
into a square with the means of an infinite sequence of Steiner symmetrization. This is
the idea of Pólya’s proof.

Unfortunately, for n ≥ 5 (pentagons and others), the Steiner symmetrization increases, in
general, the number of sides. This prevents us to use the same technique. So a beautiful
(and hard) challenge is to solve the

Open problem 1 Prove that the regular n-gone has the least first eigenvalue among all
the n-gone of given area for n ≥ 5.

This conjecture is supported by the classical isoperimetric inequality linking area and
length for regular n-gones, see e.g. Theorem 5.1 in Osserman, [38]. Another kind of result
that can be proved on polygons has been stated by J. Hersch in [28]:
Among all parallelograms with given distances between their opposite sides, the rectangle
maximizes λ1.

3.3 Domains in a box

Instead of looking at open sets just with a given volume, we could consider open sets
constrained to lie into a given box D (and also with a given volume). In other words, we
could look for the solution of

min{λ1(Ω), Ω ⊂ D, |Ω| = A (given)}. (7)

According to the Theorem 7 of Buttazzo-DalMaso which will be stated below, the problem
(7) has always a solution. Of course, if the constant A is small enough in such a way
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that the ball of volume A lies in the box D, it will provide the solution. Therefore,
the interesting case is when the ball of volume A is ”too big” to stay into D. In this
case, we can prove, at least formally, that the optimal domain, say Ω∗ has to touch the
boundary of D. Indeed, if it was not the case, and assuming Ω∗ to be regular, we can
use classical Hadamard’s formula for variations of eigenvalues, see e.g. [52], [53] to get an
optimality condition. This formula is the following: if we deform the domain Ω∗ thanks
to a deformation field V such that if we set

Ωt = (Id + tV )(Ω∗),

then the differential quotients
λ1(Ωt) − λ1(Ω

∗)

t

have a limit when t goes to 0. Moreover, this limit is given by the formula:

dλ1(Ω
∗, V ) = −

∫

∂Ω∗

(

∂u1

∂n

)2

V.n dσ. (8)

where ∂u1

∂n denotes the normal derivative of the eigenfunction u1 and V.n is the normal
displacement of the boundary induced by the deformation field V . We have a similar
formula for the first variation of the volume V ol:

dV ol(Ω∗, V ) =

∫

∂Ω∗

V.n dσ. (9)

Therefore, the optimal domain must satisfy a Lagrange identity like

dλ1(Ω
∗, V ) = −c2dV ol(Ω∗, V )

for every deformation field V (with c2 a Lagrange multiplier), which yields the follow-
ing relation for the normal derivative of the first eigenfunction:

∂u1

∂n
= c . (10)

Now, this relation (10) together with the p.d.e. (1) yields a well-known overdetermined
problem whose only solution, according to J. Serrin cf [51], is a ball! Therefore, the optimal
domain must touch ∂D. More precisely, the boundary of Ω∗ has two kind of components:

• free components included in D,

• components lying on the boundary of D.

A natural question is to ask whether the free components are composed of pieces of spheres.
We proved in a recent paper, see [24] that it is not the case:
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D

Ω*

Figure 2: Ω∗ solves the problem (7): the free components of ∂Ω∗ are not arc of circles.

Proposition 2.1 The free components of the domain Ω∗ which solve problem (7) cannot
be pieces of spheres unless the ball of volume A is the solution.

Proof : Let us assume that ∂Ω∗ contains a piece of sphere γ. On γ, Ω∗ satisfies the
optimality condition (10). We put the origin at the center of the corresponding ball and
we introduce the functions

wi,j(x, y) = xi
∂u

∂xj
− xj

∂u

∂xi
.

Then, we easily verify that
−∆wi,j = λ1wi,j in Ω∗

wi,j = 0 in γ
∂wi,j

∂n = 0 in γ.

Now we conclude, using Hölmgren uniqueness theorem, that wi,j must vanish in a neigh-
borhood of γ, so in the whole domain by analyticity. Now, if all these functions wi,j are
identically 0 in Ω∗, this would imply that u is radially symmetric in Ω∗ and therefore that
Ω∗ is a ball. ¤

Nevertheless, there are some interesting open questions for this very simple minimization
problem. For example:

Open problem 2 Let Ω∗ be a solution of the minimization problem (7). Prove that the
free components of the boundary of Ω∗ are C∞ (or analytic). If D is convex, is it
true that Ω∗ is convex?

3.4 Multi-connected domains

This section could also be entitled ”How to place an obstacle” (see [23]). Let us consider
a multi-connected domain Ω with one or several holes whose boundaries are denoted by
Γ0, Γ1, . . ., the outer boundary of Ω being denoted by Γ. We can consider many problems,
letting the boundary conditions varying on the outer boundary and/or the holes. Let me
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mention below the results known by the author on such minimization and maximization
problems.

• One hole, Dirichlet boundary condition on Γ and Γ0. J. Hersch in [27] proves:
Of all such plane domains, with given area A, and given length L and L0 of its outer
and inner boundary satisfying L2 − L2

0 = 4πA, the annular domain (two concentric
circles) maximizes λ1.
This result implies, in particular, that for a domain Ω of the kind Ω = B1\B0 (differ-
ence of two disks of given radii), λ1 is maximal when the disks are concentric. This
particular result has been rediscovered later and extended to the N -dimensional case
by several authors: M. Ashbaugh and T. Chatelain in 1997 (private communication),
E. Harrel, P. Kröger and K. Kurata in [23], Kesavan, see [33]. They also proved that
λ1(B1 \ B0) is a minimum when B0 touches the boundary of B1.

Open problem 3 Let Ω be a fixed domain and B0 a ball of fixed radius. Prove that
λ1(Ω\B0) is minimal when B0 touches the boundary of Ω (where?) and is maximum
when B0 is centered at a particular point of Ω (at what point?). In [23], one can find
some interesting partial answers assuming convexity and/or symmetry properties for
Ω. They also give many illustrative examples. Actually, I think that the optimal
center of B0 depends on the radius and is not fixed (apart in the case of symmetries).
When the radius of B0 goes to zero, classical asymptotic formulae for eigenvalues
of domains with small holes, see e.g. the review paper [22], lead one to think that
the ball must be located at the maximal point of the first eigenvalue of the domain
without holes. Of course, we can state the same question with a non circular hole
of given measure: in such a case, we have to find not only the location but also the
shape of the hole in order to minimize or maximize the first eigenvalue.

Ω Ω

ω

ω

Figure 3: Position of the hole which maximizes λ1(Ω \ ω) (left); one position which mini-
mizes λ1(Ω \ ω) (right).

• Several holes, Dirichlet boundary condition on the outer boundary Γ and Neumann
boundary condition on the boundary of the holes. L. Payne and H. Weinberger
proves in [46]:
Among all multi-connected plane domains, with given area A, and given length L
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of its outer boundary, the annular domain (two concentric circles) maximizes the
first eigenvalue λ1 with Dirichlet boundary condition on the outer boundary Γ and
Neumann boundary condition on the boundary of the holes.

• Several holes, Neumann boundary condition on the outer boundary Γ, Dirichlet
boundary condition on one hole and Neumann boundary condition on the boundary
of the other holes. J. Hersch proves in [27]:
Among all multi-connected plane domains, with given area A, and given length L0

of the first inner boundary, the annular domain (two concentric circles) maximizes
the first eigenvalue λ1 with Neumann boundary condition on the outer boundary Γ,
Dirichlet boundary condition on one hole and Neumann boundary condition on the
boundary of the other holes.

4 The second eigenvalue of the Dirichlet-Laplacian

For the second eigenvalue, the minimizer is not one ball, but two!

Theorem 3 (Krahn-Szegö) The minimum of λ2(Ω) among bounded open sets of R
N

with given volume is achieved by the union of two identical balls.

Proof : Let Ω be any bounded open set, and let us denote by Ω+ and Ω− its nodal
domains. Since u2 satisfies

{

−∆u2 = λ2u2 in Ω+

u2 = 0 on ∂Ω+

λ2(Ω) is an eigenvalue for Ω+. But, since u2 is positive in Ω+, it is the first eigenvalue
(and similarly for Ω−):

λ1(Ω+) = λ1(Ω−) = λ2(Ω) . (11)

We now introduce Ω∗
+ and Ω∗

− the balls of same volume as Ω+ and Ω− respectively.
According to the Rayleigh-Faber-Krahn inequality

λ1(Ω
∗
+) ≤ λ1(Ω+), λ1(Ω

∗
−) ≤ λ1(Ω−) . (12)

Let us introduce a new open set Ω̃ defined as

Ω̃ = Ω∗
+ ∪ Ω∗

− .

Since Ω̃ is disconnected, we obtain its eigenvalues by gathering and reordering the eigen-
values of Ω∗

+ and Ω∗
−. Therefore,

λ2(Ω̃) ≤ max(λ1(Ω
∗
+), λ1(Ω

∗
−)) .

According to (11), (12) we have

λ2(Ω̃) ≤ max(λ1(Ω+), λ1(Ω−)) = λ2(Ω) .

9



This shows that the minimum of λ2 is to be obtained among the union of balls. But,
if the two balls would have different radii, we would decrease the second eigenvalue by
shrinking the largest one and dilating the smaller one (without changing the total volume).
Therefore, the minimum is achieved by the union of two identical balls. ¤

Being disappointed that the minimizer be not a connected set (it’s hard to hit with
one hand on a non-connected drum!), we could be interested in solving the minimization
problem for λ2 among connected sets. Unfortunately, a connectedness constraint does
not really change the situation. Indeed, let us consider the following domain (see Figure
4) Ωε, obtained by joining the union of the two previous balls Ω by a thin pipe of width
ε. We say that Ωε γ-converges to Ω if the resolvent operators Tε associated with the

Ωε

Figure 4: A minimizing sequence of connected domains (left), the stadium does not mini-
mize λ2 among convex sets of given volume (right)

Laplace-Dirichlet operator on Ωε simply converge to the corresponding operator T on Ω,
see e.g. [18]. By a compactness argument, see [12], [26] it can be proved that this simple
convergence implies the convergence in the operator norm and therefore the convergence
of the eigenvalues. Now, it is easy to verify, see [11], [26], that in the above situation Ωε

γ-converges to Ω what yields λ2(Ωε) → λ2(Ω) and therefore:

inf{λ2(Ω), Ω ⊂ R
N , Ω connected , |Ω| = c} = min{λ2(Ω), Ω ⊂ R

N , |Ω| = c}

what shows that this infimum is not achieved (actually, we can prove that the union of
two balls is the unique minimizer of λ2 up to displacements and zero-capacity subsets).

Now, the problem becomes again interesting if we ask the question to find the convex
domain, of given area, which minimizes λ2. For sake of simplicity, we restrict us here to
the two-dimensional case. Existence of a minimizer Ω∗ is easy to obtain (see [15] and [24],
[25]). In a paper of 1973 [55], Troesch did some numerical experiments which led him to
conjecture that the solution was a stadium: the convex hull of two identical tangent disks.
It is actually the convex domain which is the closest to the solution without convexity
constraint. In [24], we refute this conjecture:

Theorem 4 (Henrot-Oudet) The stadium, convex hull of two identical tangent disks,
does not realize the minimum of λ2 among plane convex domains of given area.

Indeed, the proof is exactly the same as the proof of the above Proposition 2.1. Never-
theless, a more precise analysis and some numerical experiments show that the minimizer,
say Ω∗, is very close to the stadium. Actually, we prove in [24], [25]:

10



Theorem 5 (Henrot-Oudet)

Regularity The minimizer Ω∗ is at least C1 and at most C2.

Simplicity The second eigenvalue of Ω∗ is simple.

Geometry The minimizer Ω∗ has two (and only two) segments in its boundary and these
segments are parallel.

Proof : Below, we just give the main lines of the proof, see [25] for the details. Of course
our main ingredient in the following proof will be optimality conditions satisfied on the
boundary of Ω∗. We use again the classical tool of derivative with respect to the domain for
the eigenvalues. The difficulty is to take care of the convexity constraint when deforming
the original domain Ω∗ by a vector field V . Indeed, if we perform a small deformation of
a strictly convex part of the boundary of Ω∗, this part will not remain necessarily convex,
but we can use the fact that the difference between the deformed boundary ant its convex
hull is so small, that for first order terms, the formulae of derivative still holds. On the
contrary, for segments included in the boundary, it is no longer true. Therefore, we need
to make a distinction between the strictly convex parts of the boundary and the segments
included in the boundary. More precisely, we are still able to get an optimality condition
of the kind (10): the normal derivative of the second eigenfunction must be constant on
the strictly convex parts of the boundary of Ω∗. On the segments, we get a weaker relation
also involving the normal derivative.

Regularity • At least C1: we assume, for a contradiction, that Ω∗ has two distinct
supporting lines at some point x0 of its boundary. Then, we prove that we can
decrease the product |Ω∗|λ2(Ω

∗) by cutting a small cap of size ε. The key point
is to estimate precisely the second eigenvalue of the new domain. We use, for
that purpose, the Poincaré variational characterization of the eigenvalues.

• At most C2: this point can be proved after the last point of the item ”Geom-
etry”. If ∂Ω∗ was more than C2, by classical Schauder regularity results for
elliptic p.d.e., the eigenfunction u would be C2 up to the boundary. We assume
that the segments are parallel to the first axis of coordinates and we introduce
the function ∂u

∂x . Using Hopf’s Lemma and the optimality condition on seg-

ments, we are able to prove that ∂u
∂x has at least four nodal lines starting on

each segments. Closing these nodal lines, we define at least three nodal domains
of ∂u

∂x strictly contained in Ω∗. Now ∂u
∂x being an eigenfunction associated to λ2,

the Courant-Fischer nodal domain Theorem would lead to the fact that λ2 is at
least the third eigenvalue of a strict subdomain of Ω∗, which is a contradiction
with the monotonicity of eigenvalues.

Simplicity The proof is based on the following property: assume that Ω is a domain
which has a multiple eigenvalue of order m:

λk+1(Ω) = λk+2(Ω) = . . . = λk+m(Ω) .
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Then, we can always find a deformation field V ∈ C1,1(RN , RN ), preserving the
volume and such that, if we set

Ωt = (Id + tV )(Ω)

we have, for t > 0 small enough

λk+1(Ωt) < λk+1(Ω) = λk+m(Ω) < λk+m(Ωt) .

The proof of this fact uses computations of the domain derivative for multiple eigen-
values. The previous result has the following consequence about minimization of
eigenvalues: if Ω∗ is a domain minimizing the k-th eigenvalue and if λk(Ω

∗) is not
simple, necessarily we have

λk−1(Ω
∗) = λk(Ω

∗). (13)

Actually, numerical experiments show that this relation holds in every case, see [40]:
the domain which minimizes λk(Ω) , k ≥ 2 (with a volume constraint but without
convexity constraint) always satisfies (13). Coming back to a convex domain Ω∗

minimizing λ2, we know that λ1(Ω
∗) is simple and therefore (13) cannot hold.

Geometry • There is at least one segment on the boundary, otherwise the normal
derivative of u would be zero on the whole boundary, because it is constant
(by optimality condition) and it has to be zero where the nodal line hits the
boundary. It is easy to see that it is impossible, e.g. using one more time
Hölmgren uniqueness argument.

• There are at least two segments on the boundary, otherwise the nodal line
would have to close on the same segment and we could adapt an idea of Melas
[36] to reach a contradiction.

• There are at most two segments on the boundary, otherwise we consider the
segment S in the boundary which does not meet the nodal line. We put it
horizontal and we introduce the auxiliary eigenfunction vt = tu + ∂u

∂x . Thanks
to the optimality condition on segments, we prove that this function has at least
three nodal lines starting on S for t small. Then, we reach a contradiction by
letting t increasing up to a critical value where vt would have all its derivatives
which vanish up to the second order at some point and therefore everywhere.

• The two segments have to be parallel. To see that, we use some Rellich-Pucci-
Serrin formulae for a well-chosen vector field together with the optimality con-
ditions. This allow us to prove that the angle between the two segments has to
vanish. ¤

Open problem 4 Prove that a plane convex domain Ω∗ which minimizes λ2 (among
convex domains of given area) has two perpendicular axes of symmetry.

12



5 Other eigenvalues of the Dirichlet-Laplacian

The minimization problem becomes much more complicated for the other eigenvalues!
One of the only known result is the following, cf [10] and [58]:

Theorem 6 (Bucur-Henrot and Wolff-Keller) There exists a set Ω∗
3 which minimizes

λ3 among the (quasi)-open sets of given volume. Moreover Ω∗
3 is connected in dimension

N =2 or 3.

The question of identifying the optimal domain Ω∗
3 remains open. The conjecture is the

following:

Open problem 5 Prove that the optimal domain for λ3 is a ball in dimension 2 and 3
and the union of three identical balls in dimension N ≥ 4.

Wolff and Keller have proved in [58] that the disk is a local minimizer for λ3. There are
two key-points in the existence proof of the above theorem. The first one is a more general
result of Buttazzo-Dal Maso (already cited earlier), see [12]:

Theorem 7 (Buttazzo-Dal Maso) Let D be a fixed ball in R
N . For every fixed integer

k ≥ 1 and c fixed real number 0 < c < |D| the problem

min{λk(Ω); Ω ⊂ D, |Ω| = c} (14)

has a solution.
More generally, the existence result remains valid for any function Φ(λ1, . . . , λk) of the
eigenvalues non decreasing in each of its arguments.

This theorem does not solve the general problem of existence of a minimizer for λk(Ω)
since we assume to work with ”confined” sets (that is to say, sets included in a box D). In
order to remove this assumption in [10], we used a ”concentration-compactness” argument
together with the Wolff-Keller’s result proving that the minimizer of λ3 (if it exists) should
be connected in dimension 2 and 3 (this is the second key-point). Here is the more general
result they prove in [58]. Let us denote by Ω∗

n an open set which minimizes λn (among
open sets of volume 1) and λ∗

n = λn(Ω∗
n) the minimal value of λn. We will also denote by

tΩ the image of Ω by an homothety of ratio t. Then, we have:

Theorem 8 (Wolf-Keller) Let us assume that Ω∗
n is the union of (at least) two disjoints

sets, each of them with positive measure. Then

(λ∗
n)N/2 = (λ∗

i )
N/2 +

(

λ∗
n−i

)N/2
= min

1≤j≤(n−1)/2
(
(

λ∗
j

)N/2
+

(

λ∗
n−j

)N/2
) (15)

where, in the previous equality, i is a value of j ≤ (n − 1)/2 which minimizes the sum
(

λ∗
j

)N/2
+

(

λ∗
n−j

)N/2
. Moreover,

Ω∗
n =

[

(

λ∗
i

λ∗
n

)1/2

Ω∗
i

]

⋃

[

(

λ∗
n−i

λ∗
n

)1/2

Ω∗
n−i

]

. (16)
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We have seen that the value of λ∗
n is not known unless for n = 1 or 2. Let us prove

for example, that the optimal domain is connected in dimension 2. Indeed, if it was not
connected, according to Theorem 8, we should have λ∗

3 = λ∗
1 + λ∗

2 (i = 1 is the only
possible value here). Now λ∗

1 = πj2
0,1 = 18.168.. (j0,1 is the first zero of the Bessel function

J0) while, according to Theorem 3, λ∗
2 = 2λ∗

1 = 36.336. Therefore λ∗
1 + λ∗

2 = 54.504.
But since λ∗

3 is, by definition, lower or equal to the third eigenvalue of the unit disk
λ3(D1) = πj2

1,1 = 46.125.., we see that it cannot be equal to λ∗
1 + λ∗

2.
The same kind of computation works in dimension 3, but not in higher dimension.

This is the reason why we think that the minimizer is the union of three identical balls
in dimension greater than 4. To prove that the disk is a local minimizer of λ3, Wolff
and Keller use some precise perturbation argument. More precisely, they show that the
third eigenvalue of a domain Ωε given in polar coordinates by r = R(θ, ε) where R has an
expansion like

R(θ, ε) = 1 + ε
∞

∑

n=−∞

aneinθ + ε2
∞

∑

n=−∞

bneinθ + O(ε3) (17)

is given by
λ3(Ωε) = πj2

1,1(1 + 2|ε||a2|) + O(ε2).

In the case where a2 6= 0, we immediately get the result. When a2 = 0 it is necessary to
look at the following term in the expansion, but the conclusion is the same. For the fourth

Figure 5: The disk probably minimizes λ3 (left); two disks which probably minimize λ4

(center); a domain candidate to minimize λ5 (right).

eigenvalue, it is conjectured that the minimum is attained by the union of two balls whose

radii are in the ratio

√

j0,1

j1,1
in dimension 2, where j0,1 et j1,1 are respectively the two first

zeros of the Bessel functions J0 et J1, cf Figure 5, but it is not proved!

Open problem 6 Prove that the optimal domain for λ4 is the union of two balls whose

radii are in the ratio

√

j0,1

j1,1
in dimension 2.

14



Looking at the previous results and conjectures, P. Szegö asked the following question:
Is it true that the minimizer of any eigenvalue of the Laplace-Dirichlet operator is a ball
or a union of balls?
The answer to this question is NO. For example, Wolff and Keller remarked that the
thirteenth (!) eigenvalue of a square is lower than the thirteenth eigenvalue of any union
of disks of same area. Actually, it is not necessary to go to the 13th eigenvalue. Numerical
experiments, cf [40] and Figure 5, show that for the n-th eigenvalue with n larger or equal
to 5 the minimizer is no longer a ball or a union of balls.

Let us state now some new open problems:

Open problem 7 Prove that there exist a minimizer for λn among open sets of given
volume. The technique we used in [10] allows us to prove such an existence result as
soon as we are able to prove that the minimizers for λk, k = 1 . . . n − 1 are indeed
bounded.
Study the regularity and the geometric properties (e.g. symmetries) of such a mini-
mizer.

6 Optimizing functions of eigenvalues

6.1 Maximizing ratios of eigenvalues

In 1955 L. Payne, G. Pólya and H. Weinberger in [43] considered the problem of bounding

ratios of eigenvalues. In particular, they proved that the ratio
λ2

λ1
is less than or equal to

3 (in dimension 2). They were led to conjecture that the optimal domain for this ratio is
a disk. This conjecture has been proved 35 years later by M. Ashbaugh and R. Benguria,
see [3] for the two-dimensional case and [4] for the N -dimensional case.

Theorem 9 (Ashbaugh-Benguria) The ball maximizes the ratio
λ2

λ1
.

Their (clever) proof uses

• a variational characterization for the difference λ2 − λ1,

• the Brouwer fixed point theorem,

• a sharp use of some rearrangement inequalities,

• another inequality due to Chiti,

• a careful study of properties of Bessel functions.

For ratios of eigenvalues, many problems remain open. A good overview and discussion
on previous results is given in [2]. Below, some of them are listed
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Open problem 8 (see [43]) Prove that the disk maximizes the quotient
λ2 + λ3

λ1
among

plane domains of given area.

Prove that the ball maximizes the quotient

∑N+1
i=2 λi

λ1
among domains of R

N with

given area.

Open problem 9 Prove existence of a domain which maximizes the following ratios,
study the geometric properties of such maximizers, if possible identify it

•
λ3

λ1
(in the plane this is not the disk)

•
λN+2

λ1
in R

N : it should be the ball

•
λm+1

λm

•
λ2m

λm

6.2 Other functions of eigenvalues

We have already mentioned in Theorem 7 that any function of the kind Ω 7→ Φ(λ1(Ω), λ2(Ω))
with Φ non decreasing with respect to each argument, admits a minimizer among (quasi)-
open sets of given volume. Note than none of the above ratios can be handled by this
theorem. In an interesting paper [9], D. Bucur, G. Buttazzo and I.Figueiredo extended
this result:

Theorem 10 (Bucur, Buttazzo, Figueiredo) Let Φ : R
2
→ R be a lower semi-continu-

ous function, D a given box and A a given constant. Then the problem

min{Φ(λ1(Ω), λ2(Ω)), Ω ⊂ D, |Ω| ≤ A}

has always a solution.

A more precise statement could be: either an optimal domain exists or for the minimizing
sequence Ωn we have Φ(λ1(Ωn), λ2(Ωn)) → −∞. In this last case, we can choose as a
minimizer the empty set. This is the case, for example for the gap function Φ(λ1, λ2) =
λ1 − λ2. Indeed, if we consider a sequence of domains

Ωǫ = B(0, ǫ) ∪Nǫ

i=1 B(xi, aǫǫ)

where aǫ < 1 and Nǫ are chosen such that |Ωǫ| = A and λi(Ωǫ) = λi(B(0, ǫ)) for i = 1, 2,
then

λ1(Ωǫ) − λ2(Ωǫ) → −∞.

The main ingredient of the proof of this theorem is the closedness (in the plane) of the set
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Figure 6: Range, in the plane (λ1, λ2), of the possible values for the two first eigenvalues
of a domain of given area.

E = {(λ1(Ω), λ2(Ω)), Ω ⊂ D, |Ω| ≤ A}. This set is represented in Figure 6. It is of course
above the first bisectrix and, according to Ashbaugh-Benguria Theorem 9, it is below the
line y = 2.5387x (2.5387 is the value of the quotient for the disk). The point A in the
Figure corresponds to the two identical balls (Krahn-Szegö Theorem 3) while the point
B corresponds to one ball (Rayleigh-Faber-Krahn). Indeed, they proved that this set E is
convex in the x and the y direction.

Open problem 10 Prove that the set E defined above is convex.

Among various combinations of the two first eigenvalues, we can also consider for example
λ1 + λ2: what is the set which minimizes the sum of the two first eigenvalues? It is
not the disk, since it does not satisfy the generalized optimality conditions (see e.g. [14],
[13]). More generally, we can ask this question for any convex combination of the two first
eigenvalues of the kind tλ1+(1−t)λ2 . This question has a simple geometric interpretation:
the wanted minimizer is indeed the first point of E we reach when making a line of equation
tx+(1− t)y = c approach the set E (by increasing c). In particular, for t = 1 the solution
is a ball while for t = 0 it is given by two balls.

Open problem 11 For what value of t, the set which minimizes tλ1 + (1 − t)λ2 is no
longer convex, no longer connected (perhaps t = 1 for that second question)?
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7 Eigenvalues of the Laplacian with other boundary condi-

tions

7.1 Neumann boundary conditions

The eigenvalues of the Laplacian with Neumann boundary conditions are also called the
eigenvalues of the free membrane (in the case of Dirichlet boundary conditions, we speak
about the fixed membrane). We will denote it by 0 = µ1(Ω) ≤ µ2(Ω) ≤ µ3(Ω) ≤ . . . (the
first eigenvalue is zero, corresponding to constant functions). They solve

{

−∆uk = µk(Ω)uk in Ω
∂uk

∂n = 0 on ∂Ω .
(18)

Minimizing the eigenvalues of the Laplacian with Neumann boundary conditions, with a
volume constraint, is a trivial problem. Indeed, if we consider a long thin rectangle like

]0, L[×]0, l[, its n-th eigenvalue will be (for L large enough) µn =
(n − 1)2π2

L2
. Therefore,

letting L → +∞, we see that

inf{µn(Ω), |Ω| = A} = 0 .

Moreover, the infimum is attained for any open set which has at least n connected com-
ponents. This shows that limiting the diameter of Ω does not improve the interest of the
question! Now, if we assume that the domains must be convex and with a given diameter,
then the infimum is not zero, but it is not achieved! Actually, L. Payne and H. Weinberger
proved in [45] the following inequality for convex domains Ω in R

N with given diameter d:

µ2(Ω) ≥
(π

d

)2
.

This lower bound is optimal but not attained: any domain shrinking to a one-dimensional
segment [0, d] has its second eigenvalue which converges to the lower bound.

If we want to get a really interesting problem for eigenvalues of the Laplacian with Neu-
mann boundary conditions, we must consider the problem of the maximization instead
of the minimization:

Theorem 11 (Szegö,Weinberger) The ball maximizes the second Neumann eigenvalue
among open sets of given volume.

In the two-dimensional case, the proof (using conformal maps) was given by G. Szegö
in [54]. It has been generalized to any dimension by H. Weinberger in [56]. We must
also mention that Szegö and Weinberger in the above-mentioned papers have proved in
two-dimensions that

1

µ2
+

1

µ3
is minimal for the disk.

Of course this result implies Theorem 11 since the second eigenvalue of the disk is double.
Now, in higher dimensions, it is still an open problem:
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Open problem 12 Prove that
N+1
∑

i=2

1

µi(Ω)

is minimal for the ball among all domains with a given volume.

More generally, the existence of a convex domain which maximizes the n-th Neumann
eigenvalue µn (with given volume) has been proved in [16]. So, we are also led to the
following open problem(s):

Open problem 13 Prove that there exists an open set (of given volume) which maxi-
mizes the n-th Neumann eigenvalue µn, for n ≥ 3. If possible, identify this maxi-
mizer.

7.2 Robin boundary condition

The eigenvalues of the Laplacian with Robin boundary conditions are called the eigenvalues
of the elastically supported membrane. We will denote them by 0 < ν1(α,Ω) ≤ ν2(α,Ω) ≤
ν3(α,Ω) ≤ . . . where α is a parameter, 0 < α < 1 (the cases α = 0 or 1 obviously
correspond to Neumann or Dirichlet conditions). The p.d.e. system is

{

−∆uk = νk(α,Ω)uk in Ω

αu + (1 − α)∂uk

∂n = 0 on ∂Ω .
(19)

In two dimensions, we recover the Rayleigh-Faber-Krahn inequality; this result is not well
known, it is due to M.H. Bossel in her thesis:

Theorem 12 (Bossel) The disk minimizes the first eigenvalue of the Robin problem
among open sets with a given volume (for every value of α ∈]0, 1]).

Her proof uses a new variational method, see [7]. This method is inspired by that of
extremal length.

Open problem 14 Generalize Bossel’s Theorem to dimension N .

Open problem 15 (see [44]) For what values of α, the ratio
λ2

λ1
achieves its maximum

for the disk? Let us remark that Problem 14 is already stated in Daners, see [19]
where a lower bound for ν1 is given.

7.3 Stekloff eigenvalue problem

The Stekloff eigenvalue problem is the following:

{

∆u = 0 in Ω
∂u
∂n = pu on ∂Ω .

(20)
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We will denote its eigenvalues by 0 = p1(Ω) ≤ p2(Ω) ≤ p3(Ω) ≤ . . . (the first eigenvalue is
zero, corresponding to constant functions). Like in the Neumann case, it is the problem
of maximization of the eigenvalues which is interesting here.

Theorem 13 (Weinstock,Brock) The ball maximizes the second Stekloff eigenvalue
among open sets of given volume.

R. Weinstock gave the proof of this theorem in the two-dimensional case in [56]. His proof
was inspired by the one of Szegö for the free membrane problem. F. Brock in [8] proved
actually a sharper inequality, namely:
Let Ω be a bounded domain in R

N and R the radius of the ball Ω∗ of same volume than
Ω, then

N+1
∑

i=2

1

pi(Ω)
≥ NR (21)

the equality sign in (21) is attained if Ω is a ball. It is clear that (21) implies the above
theorem since p2(Ω

∗) = 1/R has multiplicity N for the ball. I must also mention that J.
Hersch and L. Payne have already proved (21) in two-dimensions in [29] and that they
have also proved a sharper inequality, together with M.M. Schiffer in [30], namely:
the disk maximizes the product p2(Ω)p3(Ω) among plane open sets of given volume.

Open problem 16 Study the maximization problem for other Stekloff eigenvalues.

Open problem 17 Prove that the N -ball maximizes the product ΠN+1
k=2 pk(Ω) among

open sets in R
N with given volume.
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[34] E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises,
Math. Ann., 94 (1924), 97-100.
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