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Abstract

Objective To identify CT-acquisition parameters accounting for radiomics variability and to develop a post-acquisition CT-

image correction method to reduce variability and improve radiomics classification in both phantom and clinical applications.

Methods CT-acquisition protocols were prospectively tested in a phantom. The multi-centric retrospective clinical study

included CT scans of patients with colorectal/renal cancer liver metastases. Ninety-three radiomics features of first order

and texture were extracted. Intraclass correlation coefficients (ICCs) between CT-acquisition protocols were evaluated to

define sources of variability. Voxel size, ComBat, and singular value decomposition (SVD) compensation methods were

explored for reducing the radiomics variability. The number of robust features was compared before and after correction

using two-proportion z test. The radiomics classification accuracy (K-means purity) was assessed before and after

ComBat- and SVD-based correction.

Results Fifty-three acquisition protocols in 13 tissue densities were analyzed. Ninety-seven liver metastases from 43 patients with

CT from two vendors were included. Pixel size, reconstruction slice spacing, convolution kernel, and acquisition slice thickness

are relevant sources of radiomics variability with a percentage of robust features lower than 80%. Resampling to isometric voxels

increased the number of robust features when images were acquired with different pixel sizes (p < 0.05). SVD-based for thickness

correction and ComBat correction for thickness and combined thickness–kernel increased the number of reproducible features

(p < 0.05). ComBat showed the highest improvement of radiomics-based classification in both the phantom and clinical

applications (K-means purity 65.98 vs 73.20).

Conclusion CT-image post-acquisition processing and radiomics normalization by means of batch effect correction allow for

standardization of large-scale data analysis and improve the classification accuracy.
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Key Points

• The voxel size (accounting for the pixel size and slice spacing), slice thickness, and convolution kernel are relevant sources of

CT-radiomics variability.

• Voxel size resampling increased the mean percentage of robust CT-radiomics features from 59.50 to 89.25% when comparing

CT scans acquired with different pixel sizes and from 71.62 to 82.58% when the scans were acquired with different slice

spacings.

• ComBat batch effect correction reduced the CT-radiomics variability secondary to the slice thickness and convolution kernel,

improving the capacity of CT-radiomics to differentiate tissues (in the phantom application) and the primary tumor type from

liver metastases (in the clinical application).
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Abbreviations

GLCM Gray-level co-occurrence matrix

GLDM Gray-level dependence matrix

GLRLM Gray-level run length matrix

GLSZM Gray-level size zone matrix

ICC Intraclass correlation coefficient

NGTDM Neighboring gray-tone different matrix

PCA Principal component analysis

SVD Singular value decomposition

TCGA-KIRC The Cancer Genome Atlas Kidney

Renal Clear Cell Carcinoma

VOI Volume of interest

Introduction

Radiomics is revolutionizing medical image assessment and

interpretation, moving from a subjective evaluation to a quan-

tifiable -omics image assessment method [1, 2]. Multiple stud-

ies have shown that radiomics provides meaningful informa-

tion about cancer and correlates with histological and molec-

ular tumor phenotypes, creating opportunities to develop nov-

el predictive and prognostic biomarkers for cancer [3, 4]. The

maximum benefit for cancer patients has been shown when

tailoring treatments to specific cancer characteristics [5].

Thus, radiomics can play a key role in improving personalized

medicine. However, radiomics features are influenced by the

image-acquisition technique and the reconstruction parame-

ters [6–9]. Studies performed at a single institution usually

do not account for this source of variability, and then, the

results entail low scalability of the signatures for multi-

centric applications.

To achieve meaningful generalizable radiomics-based

tools, large-scale studies are necessary [10]. These require

multicenter data collection, which implies scans acquired with

different protocols, particularly when including retrospective

data. Different strategies have been followed to minimize the

effects of radiomics variability. Aerts et al considered

radiomics variability as a feature selection tool by using

test–retest analysis, eliminating radiomics features with high

variability based on their cohort results [5, 11]. Sun et al in-

troduced the image-acquisition parameters as a confounding

variable into the model [3], and Choe et al explored

convolutional neural networks-based kernel conversion for

reducing radiomics variability [12].

There is an unmet need to establish robust pre- or post-

image-acquisition methods for radiomics data harmonization.

In this study, we explore the main image-acquisition factors

that generate radiomics variability. These variability-causing

factors are called “batch effects” [13]. Different batch effect

correction techniques have been developed, allowing for ge-

nomics and proteomics data harmonization [14]. These batch

effect correction techniques aim to remove the variance of the

signal caused by the variability between batches to improve

the biological signal. Alter et al defined the singular value

decomposition (SVD)-based batch effect removal, where the

principal components associated with the batch variability are

filtered from the data and the matrix is reconstructed without

these factors [15]. Johnson et al implemented the ComBat

algorithm for batch correction based on an empirical Bayes

approach to standardize the means and variances across

batches to reduce the batch effect error [16, 17]. However,

there is little evidence of the application of these methods

towards reducing radiomics variability [18].

In this study, we aim to describe the image-acquisition-

based sources of CT-radiomics variability. We also explore

the role of image resampling and batch effect as post-image-

acquisition correction methods for reducing radiomics vari-

ability, thereby improving the classification accuracy of

radiomics in phantom and clinical applications.

Materials and methods

Multiple images of a phantom were acquired with different

CT-acquisition protocols to explore the radiomics variability

and identify the sources of variability according to the CT-

acquisition parameters. Then, image post-processing and

batch correction methods were implemented to reduce the

radiomics variability in phantom and clinical applications.
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Finally, we explored the improvement of radiomics classi-

fication performance by reducing the radiomics variability

(Fig. 1).

The retrospective clinical study was approved by the insti-

tutional review board. Informed consent for the computational

analysis of the CT images was waived.

Phantom image acquisition

The Gammex Model 467 Tissue Characterization Phantom

(Gammex RMI) was used to describe intra-scanner vari-

ability for different acquisition parameters. This phantom

includes a matrix with 13 rods of 33 cm diameter with

different density materials simulating human tissues

(Supplementary Material 1).

Phantom CT scans were acquired in a 16-channel Philips

CT scanner by fixing all the acquisition parameters except the

one tested. The tested acquisition parameters included voltage,

current, slice thickness, and voxel size (accounting for the

slice spacing and the pixel size) with a total of 25 different

acquisition protocols (Supplementary Material 2). The mini-

mum and maximum values of the acquisition parameters

(voltage, slice thickness, slice spacing, and pixel size) were

reconstructed with all the available Philips-specific recon-

struction kernels (A, B, C, D, and E) to study the kernel var-

iability with different acquisition parameter sets. The rest was

reconstructed with kernel “A,” leading to 53 different proto-

cols (Supplementary Material 3).

Clinical image acquisition

The clinical study included 43 patients (mean [range] age

66.41 [41–77] years; 46.51% [20/43] female, 53.49% [23/

43] male) with 97 liver metastases (mean [range] lesions per

patient 2.26 [1–7]) from colorectal adenocarcinoma (53.61%

[52/97]) and clear cell renal carcinoma (46.39% [45/97]) [19].

Contrast-enhanced CT scans were collected retrospectively

and acquired at Vall d’Hebron University Hospital and

Bellvitge University Hospital between November 2013 and

September 2019 with two specific acquisition protocols from

General Electric and Siemens CT scanners. Additionally, all

CT scans from the open-access database The Cancer Genome

Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC)

[20] were acquired with a General Electric scanner. Only pa-

tients with liver metastases from this open-access database

were included in the analysis. Detailed information of CT-

scan acquisition and reconstruction protocols for each hospital

and the TCGA-KIRC database are defined in Supplementary

Material 4.

Image processing and radiomics features extraction

In the phantom application, the 13 rods were delineated (in-

cluding the entire rod) with a semi-automatic contouring func-

tion from 3DSlicer v4.8.1 [21], obtaining one volume of in-

terest (VOI) per rod. The same VOI per rod was used to

extract the radiomics features from the phantom in all the

studied CT-acquisition protocols (Fig. 2a, b). Image registra-

tion was not needed, given that the scans were acquired with

the same starting and ending position, and the phantom’s po-

sition did not change between scans.

In the clinical application, all well-defined liver metastases

were included in the analyses (Fig. 2c, d). Small metastases

(i.e., largest diameter < 1 cm) or with artifacts were excluded.

Lesions were delineated with the 3DSlicer v4.8.1 semi-

automatic contouring function [21] supervised by a radiologist

physician with 10-year experience in oncological imaging.

In the phantom application, radiomics data from images

without voxel resampling were extracted to study the impact

of image resampling on radiomics data. For batch correction

analysis, the images and masks were resampled to isometric

voxels of 1 × 1 × 1 mm3 using spline interpolation and

nearest-neighbor interpolation, respectively. Image values

were discretized to a bin size of 50 HU; afterwards, the CT-

radiomics features from the VOIs were extracted. The

radiomics features, including first-order and texture analyses,

were derived using an in-house program based on the

Pyradiomics package for Python [22]. For texture feature ex-

traction, five gray-level matrices (gray-level co-occurrence

matrix [GLCM], gray-level dependence matrix [GLDM],

gray-level run length matrix [GLRLM], gray-level size zone

matrix [GLSZM], and neighboring gray-tone different matrix

Fig. 1 Methodology flowchart
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[NGTDM]) were calculated in three dimensions. Ninety-three

radiomics variables were obtained for each VOI, including

variables from the first-order histogram and the five gray-

level matrices (Supplementary Material 5).

Sources of variability identification

Relevant sources of variability were identified by the

intraclass correlation coefficient (ICC) of all the radiomics

features between different acquisition parameters accounting

for pixel size, reconstruction slice spacing (interpolated from

the raw CT-image data without voxel resampling), acquisition

slice thickness, convolution kernel, current, and voltage. The

CT-acquisition variables that presented less than 80% of ro-

bust radiomics features (i.e., less than 80% of the features with

ICC > 0.8 [23]) were defined as relevant sources of variability

(batches) for further correction.

Techniques for radiomics variability correction

Image resampling

To correct variability from parameters related to voxel size,

radiomics data were extracted from images resampled to iso-

metric voxels of 1 × 1 × 1 mm3. Acquisition voxel size vari-

ability was analyzed separately by pixel size and slice spacing.

Radiomics data of all the phantom materials with different

acquisition pixel sizes (0.35 × 0.35, 0.78 × 0.78, and 1 × 1

mm2) and slice spacings (1, 1.25, 2, 2.5, and 5 mm) were

included while the rest of parameters remained fixed.

To assess the effect of resampling data on variability cor-

rection, the ICCs between groups of different acquisition pixel

sizes and slice spacings were computed before and after re-

sampling. Principal component analysis (PCA) was imple-

mented to qualitatively show the reduction of variability on

radiomics data variance caused by resampling the acquisition

voxel size.

Batch effect removal

To correct variability sources related to image acquisition and

reconstruction, two methods of batch correction were applied:

singular value decomposition-based (SVD-based) correction

[15] and ComBat correction [16]. ComBat correction was

applied using the SVA package from R version 3.6.1. [17].

For SVD-based correction, principal components (PC) with

higher correlation with batches (i.e., convolution kernel and

slice thickness defined as per the ICC analysis) were removed

from the PCA space, and the matrix was reconstructed back to

the feature space (SupplementaryMaterial 6). ComBat correc-

tion with parametric adjustments was applied three times con-

sidering the sources of variability as batches (i.e., convolution

kernel and slice thickness and the slice thickness–convolution

kernel combination).

Fig. 2 Axial CT of the Gammex

467 Tissue Characterization

Phantom showing the thirteen

tissue andwater materials (a) with

the segmented volumes of interest

(VOI) for the different rod

materials (b). Axial enhanced CT

of the abdomen showing the

target liver metastases (green

and red masks) of a patient with

clear cell renal carcinoma (c) and

a patient with colorectal

adenocarcinoma (d)
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To evaluate data correction, the ICCs between groups of

acquisition parameters were assessed before and after the ap-

plication of two different batch corrections. Principal compo-

nent analysis (PCA) was implemented to qualitatively show

the reduction of variability on radiomics data variance caused

by batch correction techniques.

Two-proportion z test was applied to compare the percent-

age of robust features before and after correction. The p value

threshold for significance was established at 0.05. Adjustment

for multiple testing was performed by controlling the false

discovery rate at 0.05 according to the Benjamini and

Hochberg method.

Validation analysis

Unsupervised K-means clustering purity was used to evaluate

the improvement in data classification after batch variability

correction with SVD and ComBat. To measure clustering pu-

rity, each cluster is assigned to the most frequent class in the

cluster. Then, the accuracy is measured by counting the num-

ber of correctly classified data in the assigned class. The per-

formance of the unsupervised clustering before and after the

implementation of batch correction was analyzed in a phan-

tom and a clinical application. The clustering performance

was also analyzed in non-resampled data.

Phantom application

Two similar phantom materials (liver and brain) were includ-

ed. Batch effect correction byComBat was applied three times

considering different sources of variability as batches: convo-

lution kernel (five batches: A, B, C, D, E), slice thickness

(three batches: 2, 3, 5 mm), and the combination of convolu-

tion kernel with slice thickness (15 batches; all possible com-

binations of convolutional kernel and slice thickness).

Clinical application

The clinical application aimed to analyze the performance of

clustering different primary tumor types (colorectal versus

renal) based on liver metastasis radiomics data. Batch effect

correction by ComBat was applied three times considering

different sources of variance as batches: manufacturer-

dependent convolution kernel (two batches: General Electric

and Siemens), slice thickness (four batches: 1.25, 2, 2.5, 5

mm), and the combination of convolution kernel with slice

thickness (eight batches; all possible combinations of manu-

facturers and slice thickness).

The K-means clustering was computed 1000 times, and the

highest purity of the clustering appearing onmore than 20% of

the iterations was chosen for the comparison between the ini-

tial data and the data after different batch correction tech-

niques (SVD-based, ComBat) [24].

Results

Population (phantom and clinical applications)

In the phantom application, a total of 53 different CT scans

of the 13 phantom materials were acquired in a Big Bore 16

CT scanner (Philips) with different acquisition parameters and

reconstruction kernels.

The clinical population included 97 liver metastases from 43

patients. CT scans were retrospectively collected from Vall

d’Hebron University Hospital (26/43) and Bellvitge University

Hospital (12/43). In addition, five cases from the open-access

database TCGA-KIRC were also included. CT images were ac-

quired in CT scanners from two manufacturers: 60.46% (26/43)

from Sensation 64 CT scanner (Siemens) and 39.53% (17/43)

fromLight Speed Pro 16CT scanner (General Electric) (Table 1).

Defined sources of variability

For the phantom data, including all materials, ICCs between the

different batches were assessed. Pixel size, slice spacing, slice

thickness, convolution kernel, and voltage presented a low per-

centage of robust radiomics features (i.e., less than 80% of the

radiomics features with ICC > 0.8) in at least one of the com-

binations from the ranging CT-acquisition parameters (Fig. 3).

Voxel size was defined as a relevant source of variability with

a percentage of robust features ranging from 48.40 to 78.49% for

pixel size and from 43.01 to 86.02% for slice spacing.

According to the slice thickness, the percentage of robust

features ranged from 75.25% (when 2 mm and 5 mm were

compared) to 88.17% (when 2 mm and 3 mmwere compared).

The percentage of robust radiomics features according to the

convolution kernel ranged between 55.92% (when A and D

were compared) and 97.85% (when A and B were compared).

The acquisition voltage of 90 kV showed the highest var-

iability on radiomics data (65.59% of reproducible features).

The standard voltage in clinical protocol range (i.e., 120–140

kV) showed higher radiomics robustness (81.72% of repro-

ducible features). The percentages of robust features are de-

scribed in Supplementary Material 7.

Therefore, voxel size, slice thickness, and convolution ker-

nel were defined as the sources of variability with the highest

impact on radiomics data reproducibility; voxel size was

corrected by resampling, whereas slice thickness and convo-

lution kernel were considered for batch correction.

Evaluation of processing effects on radiomics data
correction

Image resampling

Voxel size resampling increased the mean percentage of ro-

bust features from 59.50 to 89.25% for pixel size and from

1464 Eur Radiol  (2021) 31:1460–1470



71.62 to 82.58% for slice spacing (Fig. 4). The percentage of

robust radiomics features (ICC > 0.8) before and after resam-

pling data to isometric voxels of 1 × 1 × 1 mm3 are defined in

Table 2.

Batch effect removal

Batch effect removal was implemented in all phantom mate-

rials based on the previously defined sources of variability

(slice thickness and convolution kernel). For SVD-based

batch correction, from the principal component analysis

(PCA), PC2 significantly associated with convolution kernel

(p < 0.001), and PC3 and PC4 significantly associated with

slice thickness (p < 0.001); these principal components were

removed at the transformed space, and the data matrix was

back reconstructed to the feature space. The SVD-based cor-

rection technique increased the mean number of robust fea-

tures (Table 3). Importantly, when analyzing images with dif-

ferent slice thicknesses, the mean number of robust radiomics

features increased: from 82.79%without correction to 92.83%

with SVD-based batch correction. When analyzing images

restructured with different convolutional kernels, the mean

percentage of robust radiomics features increased: from

78.45% without correction to 85.25% with SVD-based cor-

rection (Table 3, Supplementary Material 8).

The ComBat correction technique increased the mean per-

centage of robust features to 95.34% for slice thickness and to

89.55% for convolution kernel when considering as batches

the convolution kernel–slice thickness combination (Table 3,

Supplementary Material 8).

Improvement in K-means clustering performance

To test the classification performance based on radiomics fea-

tures and the potential improvement by reducing radiomics

variability by batch correction, a classification of similar den-

sity tissues was performed.

Phantom application

The phantom application included liver and brain phantom

tissues. SVD-based correction was applied, removing the

PC2 (24.84%) and PC3 (13.53%), which associated signifi-

cantly with slice thickness (p < 0.001), and PC5 (3.21%) that

Table 1 Population description

by tumor type (clinical

application)

Colorectal

adenocarcinoma

Clear cell renal

cancer

Total

N patients 24/43 (55.81%) 19/43 (44.19%) 43/43 (100%)

N patients Vall d’Hebron University

Hospital

18/26 (69.23%) 8/26 (30.77%) 26/43 (60.47%)

N patients Bellvitge University Hospital 6/12 (50.00%) 6/12 (50.00%) 12/43 (27.90%)

N patients TCGA-KIRC 0/5 (0%) 5/5 (100%) 5/43 (11.63%)

N lesions 52/97 (53.61%) 45/97 (46.39%) 97/97 (100%)

N lesions Siemens 28/51 (54.90%) 23/51 (45.10%) 51/97 (52.58%)

N lesions GE 24/46 (52.17 %) 22/46 (47.83%) 46/97 (47.42%)

TCGA-KIRC The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma, GE General Electric

Fig. 3 Intraclass correlation

coefficients (ICCs) of the

radiomics features of first order

and texture matrices (gray-level

co-occurrence matrix [GLCM],

gray-level dependence matrix

[GLDM], gray-level run length

matrix [GLRLM], gray-level size

zone matrix [GLSZM],

neighboring gray-tone different

matrix [NGTDM]) between

extreme CT-acquisition

parameters in the phantom

application
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associated significantly with convolution kernel (p < 0.001).

ComBat was applied three times for batch correction, de-

fined as convolution kernel, slice thickness, and convolu-

tion kernel–slice thickness combination. The K-means pu-

rity for tissue classification after SVD and ComBat batch

correction is described in Table 4. Importantly, ComBat

correction considering convolution kernel–slice thickness

combination as batch effects showed the highest clustering

purity (85.85%) (Fig. 5).

In the phantom study, the clustering performance from

resampled images did not show improvement from non-

resampled image data clustering (Supplementary Material 9).

Clinical application

In the clinical application of tumor type classification based on

liver metastasis, the SVD was applied removing the PC1

(34.21%) that associated significantly with slice thickness

Table 2 Effect of voxel

resampling to 1 × 1 × 1 mm3 on

the percentage of robust features

when comparing radiomics data

from phantom CT scans with

different voxel sizes. The

percentage of robust radiomics

features was compared before and

after correction using two-

proportion z test (p value < 0.05 in

italics)

% reproducible features (ICC > 0.8)

comparing CT scans of the phantom with different acquisition parameters

Pixel size (mm2) Non-resampled data Pixel size resampled data 1 × 1 mm2 p value*

0.39 × 0.39–0.78 × 0.78 51.61 (48/93) 87.10 (81/93) < 0.01

0.78 × 0.78–1 × 1 78.49 (73/93) 94.62 (88/93) < 0.01

0.39 × 0.39–1 × 1 48.40 (45/93) 86.02 (80/93) < 0.01

Slice spacing (mm) Non-resampled data Slice spacing resampled data 1 mm p value

1–1.25 86.02 (80/93) 88.17 (82/93) 0.83

1.25–2 79.60 (74/93) 98.92 (92/93) < 0.01

2–2.5 83.87 (78/93) 87.09 (81/93) 0.83

2.5–5 65.59 (61/93) 82.80 (77/93) 0.03

1–5 43.01 (40/93) 55.91 (52/93) 0.18

ICC intraclass correlation coefficient

*Adjustment for multiple testing was performed in each variability factor by controlling the false discovery rate

according to the Benjamini and Hochberg method

Fig. 4 Principal component

analysis (PCA) before and after

resampling to 1 × 1 × 1 mm3

voxels of CT images acquired

with different pixel sizes (a) and

slice spacings (b). PC4

(explaining 7.14% of the

radiomics data variance) is

associated with the different

acquisition pixel sizes before

resampling. PC2 (18.42%) is

associated with the distribution of

the different acquisition pixel

heights. After resampling, the

acquisition voxel size (accounting

for pixel size and slice spacing) is

not associated with the variance

explained by the PCA
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and convolution kernel (p < 0.001). Batch correction by

ComBat was applied three times, considering as batches the

convolution kernel, slice thickness, and convolution kernel–

slice thickness combination.

The K-means improvement for tissue classification after

SVD and ComBat batches correction are described in

Table 4. Importantly, ComBat correction for the convolution

kernel showed the best performance for primary tumor type

Table 3 Percentage of robust radiomics features (ICC > 0.8) without

batch correction and after batch correction with singular value

decomposition (SVD) and ComBat methods. The percentage of robust

radiomics features was compared before and after correction using two-

proportion z test (p value < 0.05 in italics)

% Reproducible features

comparing CT scans of the phantom with different acquisition parameters

Initial data Batch effect correction methods

SVD

Thickness–kernel

SVD

Kernel

SVD

Thickness

ComBat

Thickness–kernel

ComBat

Kernel

ComBat

Thickness

Slice thickness (mm)

2–3 88.17

p value**

97.85

0.06

96.77

0.16

98.92*

0.01

97.85

0.026

94.62

0.28

97.85

0.02

3–5 84.95

p value

93.55

0.10

88.17

1

96.77*

0.01

95.70

0.026

93.55

0.28

96.77*

0.02

2–5 75.27

p value

87.10

0.09

75.27

1

90.32

0.01

92.47*

0.008

82.80

0.28

89.25

0.02

Convolution kernel

A–B` 97.85

p value

98.92*

1

97.85

1

98.92*

1

97.85

1

97.85

1

96.77

1

B–C 93.55

p value

95.70

0.87

94.62

1

95.70

1

98.92*

0.14

96.77

0.58

92.47

1

C–D 72.04

p value

81.72

0.38

78.49

0.62

78.49

1

86.02*

0.07

86.02*

0.05

73.12

1

D–E 79.57

p value

86.02

0.58

84.95

0. 62

82.80

1

90.32

0.11

91.40*

0.05

78.49

1

A–E 83.87

p value

88.17

0.74

89.25

0.3-

90

83.87

1

92.47

0.14

95.70*

0.04

82.79

1

B–D 62.37

p value

75.27

0.21

73.11

0. 62

64.51

1

81.72

0.01

83.87*

< 0.01

61.29

1

D–A 55.91

p value

70.97

0.21

65.59

0. 62

62.37

1

79.57

0.01

83.87*

< 0.01

59.13

0.767

ICC intraclass correlation coefficient, SVD singular value decomposition

*The highest increase of robust radiomics features

**Adjustment for multiple testing was performed in each variability factor and correction method by controlling the false discovery rate according to the

Benjamini and Hochberg method

Table 4 K-means purity for phantom tissue (brain vs liver) and tumor type (colorectal carcinoma vs clear cell renal carcinoma) classification before and

after batch correction

K-means purity

Initial data SVD

Thickness–kernel

SVD

Kernel

SVD

Thickness

Combat

Thickness–kernel

Combat

Kernel

Combat

Thickness

Phantom 83.02 78.30 78.30 85.85* 85.85* 84.90 82.07

Tumor type 65.98 62.89 62.89 62.89 67.01 73.20* 67.01

SVD singular value decomposition

*The highest improvement of K-means purity classification

1467Eur Radiol  (2021) 31:1460–1470



classification based on radiomics data from liver metastasis

(purity = 73.20%) (Fig. 6).

In the clinical application, the clustering performance from

resampled images did not show improvement from non-

resampled image data clustering (Supplementary Material 9).

Discussion

The capacity to extract a large amount of valuable quantitative

data from medical images, such as CT, is revolutionizing the

way medical scans can be evaluated. However, the develop-

ment of reliable imaging biomarkers requires robust CT-based

radiomics data. In this study, we defined the main sources of

CT-radiomics variability based on a comprehensive phantom

study with multiple CT-acquisition protocols. We also evalu-

ated the influence of image resampling and the effect of

radiomics data normalization by means of batch effect correc-

tion to reduce the variability and improve the tissue-

classification capacity of radiomics in a phantom and clinical

application.

We have shown that voxel size, convolution kernel, and

slice thickness are relevant sources of variability. The voxel

size has the highest impact on radiomics variability, particu-

larly on texture features. Convolution kernel also affects first-

order features, which are overall the most robust features re-

gardless of the CT-acquisition protocol. Similarly to

Berenguer et al [8], we also found that the radiomics features

presented more variability when evaluated in CT scans ac-

quired with low voltage values (90 kV). Importantly, the

radiomics features were more robust when the voltage was

within the range applied in standard clinical practice (i.e.,

120–140 kV).

The pixel size varies in each scan and for each patient due

to the changing field of view, limiting the possibility to pre-

define this parameter. This study shows that image processing

techniques regarding voxel resampling reduce the variability

caused by the acquisition voxel size. A possible explanation

for this variability decrease could be the resolution homoge-

nization and the smoothness in gray-level transitions in the

resampling direction. Therefore, in the z-direction, despite that

we cannot restore the missing information in a large voxel size

Fig. 5 Principal component analysis (PCA) of the brain and liver material

radiomics distribution before and after convolution kernel–slice thickness

ComBat correction. The distance between the radiomics data of the brain

and liver materials from CT scans with different acquisitions protocols

increases after applying batch correction (i.e., the radiomics distribution

better reflects differences between materials and not due to the CT-

acquisition parameters)

Fig. 6 Principal component analysis (PCA) of the liver metastasis

radiomics distribution from CT scans of patients with colorectal

adenocarcinoma and clear cell renal carcinoma. PCA before and after

convolution kernel ComBat correction. The distribution of the groups

of patients with different tumor types differs more after batch

correction. The first component (PC1 [%]) of data variance can

differentiate better between groups (colorectal versus renal) after

correction
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(e.g., 5 mm), when resampling, the texture analysis considers

the changes in gray levels inside the original voxel size and

avoids abrupt gray-level changes to make them more compa-

rable to the x- and y-directions.

In order to correct the variability caused by the reconstruc-

tion kernel and acquisition slice thickness, SVD-based and

ComBat batch correction techniques were applied to

radiomics data considering both image parameters as batches.

In line with Orlhac et al [18], we demonstrate that after apply-

ing ComBat, the distribution of the data (using PCA) was

modified to differentiate the phantom materials based on

radiomics features. In our study, we also show that the repro-

ducibility improves by means of ICCs. However, we aimed to

study not only the variability correction by ComBat but also

how the tissue-classification performance of radiomics im-

proves after this variability correction. We have shown that

ComBat correction for kernel and for kernel–slice thickness

combinations in both the phantom and clinical applications

outperforms the classification accuracy of radiomics data.

The SVD-based correction improved the reproducibility of

the radiomics features, although this could have suffered from

overcorrection, leading to a loss of biological meaning and

decreasing the tissue-clustering accuracy of radiomics.

Deep learning techniques have been developed to reduce

radiomics variability by reconstructing images to the same

convolution kernels [12]. However, the need for large data

sets and the wide variety of intra- and inter-manufacturer re-

construction kernels limits the application of these techniques.

ComBat correction can be applied in smaller datasets due to

the non-parametric adjusting methods used to correct data

variance associated to a particular factor.

The results of our study are promising, but we acknowl-

edge some limitations. First, we implemented a variability

correction method in both phantom and clinical applications.

The phantom was used to assess the intra-scanner variability

from one CT vendor while the clinical application analyzed

the inter-scanner variability for ComBat and SVD-based cor-

rection. Further studies with intra- and inter-manufacturer CT

scans could be performed to extend the application of batch

correction methods. Moreover, there are several reconstruc-

tion kernels along manufacturers that could be considered

comparable, as proposed by Mackin et al [25]. This would

reduce the inter-manufacturer variability and would facilitate

the definition of batches based on inter-manufacturer similar

kernels for large-scale multicenter studies. Second, the

radiomics variability correction was clinically tested as a

method to improve the tumor type classification. Although

this highlights the impact of post-acquisition CT-radiomics

normalization by means of batch correction, further applica-

tions need to be tested and validated in larger populations.

Finally, the described normalization methods have been tested

in CT images; it is of interest to test these in multi-image

modalities including MRI.

In conclusion, the main sources of CT-radiomics variability

are slice thickness and reconstruction kernels. The application

of image post-processing and the ComBat correction method

minimizes radiomics data variability regardless of the differ-

ences in the CT-image-acquisition protocols. These methods

are easy to apply to expand the potential of radiomics imple-

mentation in new retrospective and prospective multicenter

large-scale studies where the variability of the acquisition pro-

tocols and scanners is the major limitation.
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