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Minimizing Beam-On Time in Can
er Radiation

Treatment Using Multileaf Collimators

Natashia Boland� Horst W. Hama
hery Frank Lenzenz

January 4, 2002

Abstra
t

In this paper the modulation of intensity matri
es arising in 
an
er radiation

therapy using multileaf 
ollimators (MLC) is investigated. It is shown that the

problem is equivalent to de
omposing a given integer matrix into a positive linear


ombination of (0; 1) matri
es. These matri
es, 
alled shape matri
es, must have
the stri
t 
onse
utive-1-property, together with another property derived from the

te
hnologi
al restri
tions of the MLC equipment. Various de
ompositions 
an be

evaluated by their beam-on-time (time in whi
h radiation is applied to the patient)

or the treatment time (beam-on-time plus time for set-ups). We fo
us on the former,

and develop a nonlinear mixed integer programming formulation of the problem.

This formulation 
an be de
omposed to yield a 
olumn generation formulation: a

linear program with a large number of variables that 
an be pri
ed out by solving

a subproblem. We then develop a network model in whi
h paths in the network


orrespond to feasible shape matri
es. As a 
onsequen
e, we dedu
e that the 
olumn

generation subproblem 
an be solved as a shortest path problem, and so obtain our

main theoreti
al result that the problem is solvable in polynomial time. Furthermore,
we are able to develop two alternative models of the problem as side-
onstrained

network 
ow formulations. Finally, a numeri
al 
omparison of our exa
t solutions

with those of well-known heuristi
 methods shows that the beam-on time 
an be

redu
ed by a 
onsiderable margin.

1 Introdu
tion

In most parts of the world, 
an
er is one of the major 
auses of deaths. In order to �ght this
disease, radiation therapy is used very often, in parti
ular, in 
ases where the tumor 
an
be lo
alized and metastases have not yet started to form. In su
h a situation, radiation is
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applied to destroy the tumor (target volume) while maintaining the fun
tionality of organs
whi
h are 
lose to the tumor (organs at risk) and thus subje
t to at least some of the
radiation applied to the tumor.

In order to apply radiation from an external sour
e, medi
al linear a

elerators are used.
They are part of a gantry whi
h 
an be rotated about the patient, who is positioned and
�xed on a 
ou
h (see Figure 1).

Figure 1: A medi
al linear a

elarerator with a beam head and a treatment 
ou
h

In the design of the treatment plan information has to be 
olle
ted and several de
isions
have to be made individually for ea
h patent, all of whi
h are of 
ru
ial importan
e for the
quality of the radiation plan. (see Figure 2.)

(1) The lo
ation of the target volume and organs at risk.

(2) A dis
retization of the radiation beam head into bixels.

(3) A dis
retization of the target volume and risk organs into voxels.

(4) A set of positions at whi
h the gantry stops in order to release radiation.

(5) A de
ision on the intensity fun
tion, i.e. the amount of radiation released at ea
h
stop and in ea
h bixel.

(6) The modulation of the uniform radiation to a
hieve (5).

The lo
ation of target volume and organs at risk is done using 
omputer tomography (CT).
Corre
t three-dimensional images are assumed in all subsequent models. Resear
h in this
area is on updating images due to movement of the patient on the 
ou
h or due to the
impa
t of previous radiation.
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Figure 2: Radiation planning problems: Stops of the gantry and the two-dimensional in-
tensity fun
tions have to be found. For this purpose ea
h 3-dimensional organ at risk and
the target volume are dis
retized into voxels and the 2-dimensional beam heads into bixels.

The radiation head is assumed to be a re
tangle whi
h is partitioned into equidistant 
ells.
This partitioning will be dis
ussed in more detail in Se
tion 2. Correspondingly, target
volume and organs at risk are assumed to be partitioned into 
ubes. Again, all available
models assume that this is done in an equidistant way. Better radiation plans may, however,
be a
hieved by 
onsidering non-equidistant partitions, a topi
 whi
h is 
urrently under
resear
h. Radiation gantries are typi
ally designed in su
h a way that they may stop at
36 positions, equally distributed on the gantry's moving 
ir
le around the patient. The
number of stops is not �xed, but in the 
lini
al pra
ti
e a number between 3 and 7 stops
is most 
ommon. The problem of �nding the best positions for stops has been addressed
in previous work, su
h as that on (
ontinuous) inverse approa
hes to treatment planning,
whi
h we dis
uss further below. However this problem 
an also be modeled as a dis
rete
lo
ation problem, an approa
h whi
h is 
urrently under investigation.

The amount of radiation released at ea
h stop and in ea
h bixel 
an be written as a system
of linear equations

Px = D

where P = (pij) is the bixel-voxel unit radiation matrix, i.e. pij is the amount of radiation
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rea
hing voxel i if one unit of radiation is released at bixel j, and where x = (xj) is the
amount of time radiation is sent o� at bixel j. Correspondingly, D is the dosage ve
tor
representing in ea
h 
omponent Di the radiation of ea
h voxel i obtained as 
umulative ra-
diation from all bixels j. The dosage has to satisfy 
onstraints, the most important of whi
h
are lower bounds in voxels of the target volume (to destroy the 
an
er) and upper bounds
in voxels of the organs at risk (to maintain fun
tionality). In general, these bounds make
the system of linear equations in
onsistent and mathemati
al programming methods are
used to minimize the deviation from the bounds ([Bortfeld, 1995℄, [Burkard et al., 1995℄),
[Shepard et al., 1999℄. For an interesting dis
ussion of issues that arise in modeling the
obje
tives of the treatment planning pro
ess, see the work of [Raphael, 1992℄. Mu
h
previous work on radiation treatment planning has attempted to handle the underlying
physi
s in more details, and has not ne
essarily assumed dis
retized models of the tar-
get volume and treatment spa
e, nor simple linear relationships between treatment beam
intensities and dosages in the target volume. Examples 
an be found in the work of
[Kolmonen et al., 1998℄ and in [Tervo and Kolmonen, 2000℄, and referen
es therein. Ap-
proa
hes su
h as these are based on inverse te
hniques, whi
h typi
ally lead to diÆ
ult
nonlinear programming or optimal 
ontrol problems. [Lee et al., 2000℄ adopt a 
on
eption
of the problem similar to that we des
ribe above, and give an integer programming ap-
proa
h. They show that in modest 
omputational time, signi�
ant improvements 
an be
obtained in the quality of the treatment plans over those developed by human experts.
([Hama
her and K�ufer, 2001℄) have re
ently used multi
riteria approa
hes to ta
kle this
problem. In re
ent work, [Wu and Zhu, 2001℄ also take a multi
riteria approa
h, but use
geneti
 algorithms to determine both the intensities and the importan
e fa
tors of the dif-
ferent 
riteria. In this paper we will fo
us on the modulation of the uniform radiation to
realize the radiation x in ea
h stopping position.

The rest of the paper is organized as follows. In Se
tion 2, the stati
, or \step-and-shoot",
multileaf te
hnology will be introdu
ed and optimization problems resulting from the usage
of this te
hnology will be dis
ussed. We fo
us primarily on the problem of minimizing the
total radiation time at ea
h stopping position. The following two se
tions, Se
tions 3 and 4
will 
ontain two di�erent models for ta
kling these problems. The �rst model is based on
mixed integer programming, the se
ond one on a shortest path/network 
ow formulation.
The latter allows us to show that the problem of minimizing total treatment time 
an
be solved in polynomial time, and that 
olumn generation approa
hes yield subproblems
whi
h take the form of shortest path problems. This insight is espe
ially important, as the
same 
olumn generation subproblem is likely to arise within 
olumn generation approa
hes
to the overar
hing dosage problem. In Se
tion 5, we dis
uss the improvements over existing
heuristi
 methods that result from solving the problem exa
tly, using the side-
onstrained
network 
ow model.
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2 Modulating Radiation Using Multileaf Collimators

In this se
tion we assume that (1) - (5) from Se
tion 1 have been dealt with. In parti
ular,
we know for ea
h stop of the gantry the intensity fun
tion represented as a two-dimensional
array of the amount of time uniform radiation is released in ea
h bixel, i.e. as intensity
matrix I. We assume in the following that I is an integer valued matrix. If we have 
hosen
a dis
retization of the beam head into a 6� 6 grid,

I =

0
BBBBBB�

0 0 2 2 2 0
0 1 1 3 1 0
0 0 2 2 1 0
1 2 2 2 1 0
0 1 2 3 2 1
0 1 2 2 2 2

1
CCCCCCA

is su
h a possible intensity matrix.

In order to generate I the uniform radiation leaving the linear a

elerator has to be modu-
lated by inserting �lters between radiation sour
e and patient. The 
urrently most 
ommon
way to do this is by using metal �lters and shaping them in su
h a way that the intensity
matrix I is generated.

A more advan
ed way of modulation is a
hieved by using a multileaf 
ollimator (MLC).
Here, ea
h row of I (often referred to as a 
hannel) has an asso
iated pair of leaves - a
right leaf and a left leaf. If I has n 
olumns the left leaf may be positioned in 
olumn
0; 1; : : : ; n, and the right leaf 
an be pla
ed in 
olumns 1; : : : ; n; n+1, where 
olumns 0 and
n+ 1 are notional 
olumns used to represent the respe
tive leaf's fully retra
ted position.
Radiation 
an pass in between left and right leaf, so, if the left leaf is in position l and the
right leaf is in position r, only the bixels in 
olumns l + 1; : : : ; r � 1 of that 
hannel will
transmit radiation. Clearly we require r > l. Figure 3 shows an MLC.
Ea
h 
hoi
e of left/right leaves in all rows is 
hara
terized by a (0; 1) matrix in the following
way. If the left and right leaf is positioned in 
olumn l and r, respe
tively, then the

orresponding row has 
onse
utive ones in entries l + 1; : : : ; r � 1 and zeros everywhere
else. A (0; 1) matrix 
onstru
ted in this way is 
alled a shape matrix. Shape matri
es and
left/right leaf 
on�gurations are in one-to-many 
orresponden
e, sin
e for shape matri
es
with zero rows, more than one left/right leaf 
on�guration 
an be found.

If S1; : : : ; SK are shape matri
es and �1; : : : ; �K is the time the linear a

elerator is opened
to release (uniform) radiation when leaf pairs are in the positions indi
ated by the 
orre-

sponding shape matrix, an intensity of
KP
k=1

�kSk is released. Sin
e we know the intensity

matrix, the MLC problem (basi
 version) is therefore de�ned as follows.

Given an integer matrix I, �nd K, and shape matri
es S1; : : : ; SK and �1; : : : ; �K > 0 su
h
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Figure 3: Leaf pairs of an MLC. Radiation will pass through the openings.

that
KX
k=1

�k Sk = I:

Example 2.1 Let

I =

0
BBBBBB�

0 0 4 4 3 0
0 1 1 6 3 0
0 0 3 4 1 0
1 3 4 4 3 0
0 2 3 6 4 3
0 1 3 3 4 4

1
CCCCCCA

Then I = 3S1 + 1S2 + 2S3; where

S1 =

0
BBBBBB�

0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

1
CCCCCCA

; S2 =

0
BBBBBB�

0 0 1 1 1 0
0 1 1 1 0 0
0 0 1 1 1 0
1 1 1 1 0 0
0 0 1 1 1 0
0 1 1 1 1 1

1
CCCCCCA
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S3 =

0
BBBBBB�

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
0 0 1 1 0 0

1
CCCCCCA

The leaf 
on�gurations 
orresponding to the shape matri
es S1; S2 and S3 are shown in
Figure 4.

Channel 5

Channel 2

Channel 3

Channel 4

L

L

L

L

L

L

L

L

L

L

R

R

R

R

R

R

R

R

R

R

R

R

R

R

L

L

L

L

LL

L

Channel 1

Channel 6

R

Figure 4: Leaf 
on�gurations of shape matri
es S1; S2, and S3 of Example 2.1.

It is obviously easy to represent any given intensity matrix I as a positive linear 
ombina-
tion of shape matri
es Sk. If I = (Iij)i=1;:::;m

j=1;:::;n
(i.e. the dis
retization of the beam head is

into m rows (or 
hannels) and n 
olumns) we 
ould, for instan
e, 
hoose I =
mP
i=1

nP
j=1

IijSij

where Sij is a shape matrix with entries

Sij(k; l) :=

�
1 if k = i and l = j

0 otherwise

i.e. a matrix whi
h has just one non-zero entry at position (i; j). For this trivial de
om-
position of I, the beam-on-time, i.e. the time at whi
h the linear a

elerator is sending
o� radiation is

KX
k=1

�k =
mX
i=1

nX
j=1

Iij

The next example shows that this de
omposition is, in general, not a good one.

Example 2.2 Let

I =

�
2 3
4 2

�
:

The trivial de
omposition des
ribed above yields

I = 2

�
1 0
0 0

�
+ 3

�
0 1
0 0

�
+ 4

�
0 0
1 0

�
+ 2

�
0 0
0 1

�

7



with a beam-on time of
4P

k=1

�k = 2 + 3 + 4 + 2 = 11.

Alternatively, I 
an be de
omposed into

I = 2

�
1 1
1 1

�
+ 1

�
0 1
1 0

�
+ 1

�
0 0
1 0

�

giving a beam-on time of
3P

k=1

�0
k = 2 + 1 + 1 = 4.

Sin
e beam-on time is related to the duration of the radiation treatment and sin
e the latter
time is to be minimized (in order to avoid dis
omfort to the patient, and his/her movement
whi
h would 
hange the data of all optimization models in the radiation problem) we
formulate an MLC optimization problem, the MLC problem with minimal beam-on

time:

min
X
t2T

�t

subje
t to
X
t2T

�tSt = I (1)

�t � 0:

Here, T is the index set of all possible shape matri
es. This is the problem whi
h we will
study in more detail in the subsequent se
tions. Before doing so let us mention additional
models whi
h are 
urrently under investigation.

If we assume that the swit
h between two shape matri
es will take a given �xed amount
of time (set-up time), say T
 se
onds, then the obje
tive of the MLC problem with

minimal beam-on time and 
onstant set-up time is

KX
k=1

�k + (K � 1)T
: (2)

When the set-up time is dominant, this obje
tive is minimized by minimizing the number
of shape matri
es used, K.

In fa
t, it is likely that the set-up time between shape matri
es depends on the form of
these matri
es. In the MLC problem with minimal beam-on time and variable

set-up time we would thus 
onsider the obje
tive

KX
k=1

(�k + 
(Sk; Sk+1)) (3)

where 
(Sk; Sk+1) is the time it takes to 
hange from Sk to Sk+1 (and where 
(SK; SK+1) =
0)).
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A number of authors have 
onsidered the problems of minimizing the beam-on time plus

onstant set-up time, and of minimizing the number of shape matri
es used. A very in
u-
ential paper is that of [Xia and Verhey, 1998℄, who introdu
e a heuristi
 method in whi
h
all beam-on times are powers of two. Larger powers of two are \stripped o�" �rst. They

ompare their method 
omputationally with earlier methods of [Bortfeld et al., 1994℄ and
[Galvin et al., 1993℄, on randomly generated test problems, and a small number of 
lini
al
data sets. Their method was 
learly more e�e
tive than either of the others for mini-
mizing the number of shape matri
es used. This verdi
t was borne out by [Que, 1999℄,
who also tested several variations of the Xia and Verhey heuristi
, as well as the IM-
FAST algorithm, whi
h is based on the work of [Sio
hi, 1999℄, and is implemented in
the 
ommer
ial system CORVUS. [Que, 1999℄ also used many more 
lini
al data sets
for his 
omparisons. Que's 
on
lusions were that the Xia and Verhey heuristi
 outper-
formed the others on a statisti
al basis. However there were 
ases in whi
h other algo-
rithms performed better, and the 
lini
al data sets, in parti
ular, showed a lot of varia-
tion. In other work, [Yu et al., 1995a℄ present models and methods for realizing 
ontin-
uous 2D intensity fun
tions by dynami
 
ontrol of both the leaf velo
ities and the ra-
diation intensity. [Tervo and Kolmonen, 2000℄ ta
kle the overar
hing treatment planning
problem dire
tly in terms of the leaf positions. Their work is more general than that
of [Bortfeld et al., 1994, Galvin et al., 1993, Que, 1999, Xia and Verhey, 1998℄, and of our
own, in the sense that they allow 
ollimator leaves to take on any positions; we allow only n
positions for ea
h leaf in ea
h 
hannel. However they must, as a 
onsequen
e, solve rather
diÆ
ult nonlinear problems. Furthermore, their approa
h is impli
itly dynami
, whereas
we fo
us on the stati
 
ase. Their idea of working dire
tly with the leaf variables to solve
the treatment planning problem is, however, intriguing, and we intend in future work to

onsider embedding the work we present here in a treatment planning problem, in a similar
way.

Less work has been done whi
h 
onsiders variable (sequen
e dependent) set-up time. The
work of [Dai and Hu, 1999℄ is notable. In a two-phase approa
h, they �rstly use the Xia
and Verhey heuristi
 to determine the shape matri
es and asso
iated beam-on times, and
then seek a sequen
e whi
h minimizes the leaf-moving times between shape matri
es using
simulated annealing. However their paper gives very little detail on their method. How
leaf-moving times between pairs of shape matri
es are determined is not given, nor is any
detail of their simulated annealing approa
h. The simulated annealing a
hieves roughly a
10% improvement in the total leaf-moving time, over the initial sequen
e output by the
Xia and Verhey heuristi
. (It should be noted that the main thrust of Dai and Hu's paper
is to examine independent 
ollimators, rather than multi-leaf 
ollimators, and their results
on the former are more signi�
ant.)

In this paper, we do not 
onsider set-up times, but only 
onsider the MLC problem with
minimal beam-on time. In the next se
tion we develop a nonlinear mixed binary pro-
gramming model, in whi
h we also dis
uss restri
tions on the shape matri
es enfor
ed by
te
hnologi
al 
onstraints.
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3 A Nonlinear Mixed-Integer Programming Formula-

tion

In this se
tion we will give a formulation of the MLC problem as nonlinear program with

ontinuous and binary variables. As before, we assume that I is a given, integer-valued
m� n intensity matrix.

For any shape matrix S = (yij)i=1;:::;m
j=1;:::;n

, we introdu
e (0; 1) variables 
hara
terizing the

positions of left and right leaves in ea
h row i = 1; : : : ; m.

Lij :=

�
1 if the left leaf in row i is positioned in 
olumn j

0 otherwise
(4)

8j = 0; : : : ; n

Rij :=

�
1 if the right leaf in row i is positioned in 
olumn j

0 otherwise
(5)

8j = 1; : : : ; n+ 1

Next, we will 
hara
terize shape matri
es suitable for modeling MLCs by introdu
ing

onstraints on the Lij and Rij variables.

� Ea
h row has exa
tly one left and right leaf, respe
tively:

nX
j=0

Lij = 1 8i = 1; : : : ; m (6)

n+1X
j=1

Rij = 1 8i = 1; : : : ; m (7)

� \Left" and \right" leaves deserve their name:

nX
j=0

jLij �
n+1X
j=1

jRij � 1 8i = 1; : : : ; m (8)

Conditions (6) - (8) 
hara
terize left and right leaf positions. Next, we relate variables Lij

and Rij to the entries yij of the shape matrix. Obviously, this relationship is given by the
index 
ondition

yij = 1 , Lij0 = 1 for some j 0 < j and Rij00 = 1 for some j 00 > j

10



where j 0 and j 00 are uniquely de�ned due to (6) and (7). The following set of 
onditions
translates these 
onstraints on the indi
es into 
onstraints on the variables:

yij �

j�1X
l=0

Lil �

jX
r=1

Rir (9)

yij �

j�1X
l=0

Lil (10)

yij �
n+1X

r=j+1

Rir (11)

The 
onstraints hold for i = 1; : : : ; m; j = 1; : : : ; n. It is easy to show that the index

ondition and 
onstraints (9) - (11) are equivalent. Hen
e we have shown the following
result.

Lemma 3.1 The m�n (0; 1)-matrix S = (yij) is a shape matrix with left and right leaves
in positions Lij and Rij, respe
tively, if and only if Lij; Rij and yij are (0; 1) variables
satisfying (6) - (11).

If we want to distinguish di�erent shape matri
es St we add an additional index t to the
variables 
hara
terizing left and right leaf position and radiation, i.e. we use in (6) - (11)
the notation Lijt; Rijt and yijt. We use T to denote an upper bound on the number of
shape matri
es required.

With this notation �tyijt is the amount of time shape matrix St = (yijt) is releasing
radiation at bixel (i; j). The problem of de
omposing a given m � n intensity matrix
I = (Iij) into shape matri
es 
an therefore be written as the problem of �nding �t � 0
and yijt 2 f0; 1g satisfying (6) - (11), so that

TX
t=1

�t yijt = Iij 8i = 1; : : : ; m; j = 1; : : : ; n (12)

holds. Consequently, the MLC problem (1) 
an be formulated as the following (nonlinear)
mixed integer program

min
TX

t=1

�t (13)

subje
t to (6)� (12)

Lijt; Rijt; yijt 2 f0; 1g 8i = 1; : : : ; m; j = 1; : : : ; n; t = 1; : : : ; T

Li0t; Ri(n+1)t 2 f0; 1g 8i = 1; : : : ; m; t = 1; : : : ; T

�t � 0 8t = 1; : : : ; T:

11



As a mathemati
al programming model, in 
ontrast to approa
hes 
onsidered so far in the
literature (for example, those of [Sio
hi, 1999℄, [Xia and Verhey, 1998℄, [Yu et al., 1995b℄),
(13) is very versatile and 
an be easily modi�ed and extended to a

ommodate additional

onstraints. As an example, we 
onsider the ex
lusion of interleaf motion, i.e. the left
leaf in one row should not be to the right of the right leaf in an adja
ent row and vi
e versa
(otherwise 
rashes between the two leaf points or signi�
ant radiation leakage in areas
whi
h ought to be blo
ked will o

ur). Similar to the left-right 
ondition (8), the ex
lusion

an easily be modeled by

nX
j=0

jLij �
n+1X
j=1

jRi�1;j � 1 8i = 2; : : : ; m (14)

and
nX

j=0

jLij �
n+1X
j=1

jRi+1;j � 1 8i = 1; : : : ; m� 1 (15)

An additional example, the ex
lusion of so-
alled tongue-and-groove pairs has been
dis
ussed in Lenzen (2000).

The 
omplexity status of problem (13) has so far not been dis
ussed, nor have its variations
with obje
tive fun
tions (2) and (3). Furthermore, although the mixed integer program in
(13) has the disadvantage of being nonlinear, it 
an be approa
hed by 
olumn generation,
with the y, L and R variables be
oming variables in the 
olumn generation subproblem,
and (13) be
oming the (now linear programming) master problem in � (see Se
tion 4 for
details of this approa
h).

In the next se
tion we will show that the MLC problem 
an be solved in polynomial time
by using a reformulation as a network 
ow problem with side 
onstraints. In doing so,
we also show that the 
olumn generation subproblems 
orrespond to pure network 
ow
problems, and so the 
olumn generation approa
h 
an solve the problem in polynomial
time. This result will be more widely useful, as the same 
olumn generation subproblem
is likely to arise within 
olumn generation approa
hes to the dosage problem.

4 A Network Flow Formulation

In this se
tion we will show that shape matri
es satisfying the interleaf motion 
onstraints

an be represented as paths in a suitably 
hosen network, the shape matrix graph

Gs = (Vs; Es). This network is introdu
ed �rst.

Gs is a layered digraph, 
onsisting of m layers whi
h 
orrespond to the m rows of a shape
matrix. In ea
h layer i = 1; : : : ; m there are 1

2
(n + 1)(n + 2) verti
es, denoted by (i; l; r),

whi
h represent potential positions l and r of the left and right leaf in row i, respe
tively.
Here l 2 f0; 1; : : : ; ng; r 2 f1; : : : ; n; n + 1g and l + 1 � r. Two dummy nodes D and D0

12



whi
h a
t as start and end nodes will be added, so

Vs := f(i; l; r) : i = 1; : : : ; m; l = 0; 1; : : : ; n; r = 1; : : : ; n; n+ 1; l + 1 � rg [ fD;D0g:
(16)

The ar
 set Es 
ontains all edges from D to the �rst layer 1 and from the last layer m to
D0, i.e. Es 
ontains

E+(D) := f(D; (1; l; r)) : (1; l; r) 2 Vsg (17)

E�(D
0) := f((m; l; r); D0) : (m; l; r) 2 Vsg (18)

For i = 1; : : : ; m� 1 we de�ne the ar
s between layers to be

E+(i) := f((i; l; r); (i+ 1; l0; r0)) : (i; l; r; ); (i+ 1; l0; r0) 2 Vs; l
0 � r � 1; r0 � l + 1g : (19)

These ar
s re
e
t the ex
lusion of interleaf motion (see (14) and (15)). Finally we add the
return ar
 (D0; D), so the set of all ar
s is given by

Es := E+(D) [ E�(D
0) [ f(D0; D)g [

m�1[
i=1

E+(i): (20)

An example of a shape matrix graph Gs is shown in Figure 5

D

101 102 103 112 113 123

201

301

401

202

302

402

203

303

403

212

312

412

213

313

413

223

323

423

D’

Figure 5: Shape matrix graph with 
omplete vertex set Vs and some of the ar
s of Es,
in
luding two 
y
les C1 and C2 (straight and dotted ar
s).

The next lemma states some properties of Gs. The proof of this lemma is an immediate

onsequen
e of the de�nition of Gs.

13



Lemma 4.1

(1) Gs n f(D0; D)g is an a
y
li
 digraph.

(2) Every 
y
le in Gs 
orresponds to a shape matrix without interleaf motion and vi
e
versa.

Figure 6 shows the shape matrix and the leaf 
on�guration 
orresponding to the 
y
le

C = (D; (102); (213); (303); (402); D0; D)

in the shape matrix graph of Figure 5.

0
BB�

1 0
0 1
1 1
1 0

1
CCA

0 1 2 3

Figure 6: Shape matrix (left) and leaf 
on�guration (right) 
orresponding to 
y
le C =
(D; (102); (213); (303); (402); D0; D) in Gs of Figure 5.

The 
olumn generation master problem for the 
olumn generation form of the MLC problem
(13) is given by the following linear program in �:

min
X
t2T

�t (21)

subje
t to
X
t2T

�tSt = I

�t � 0 8t 2 T

where T is the index set of all feasible shape matri
es, whi
h we now allow to be generated
\on the 
y". Consider the 
olumn generation subproblem, whi
h seeks the shape matrix of
least redu
ed 
ost. If we let vij denote the dual multiplier of the (ij)th intensity 
onstraint,
where St = (yijt), X

t2T

�t yijt = Iij 8i = 1; : : : ; m; j = 1; : : : ; n; (22)

then the 
olumn generation subproblem 
an be expressed as

min 1�
mX
i=1

nX
j=1

vij yij (23)

s.t S = (yij) is shape matrix:

14



Using Lemma 4.1 this subproblem 
an be solved as a shortest path problem in the shape
network Gs = (Vs; Es) by setting ar
 length

le := �
r�1X

j=l+1

vij (24)

for ea
h ar
 e 2 Es with end node (i; l; r) 2 Vs and l + 1 < r. All other ar
s have zero
ar
 length. Clearly, the shortest path from D to D0 in Gs 
orresponds to the shape matrix
whi
h solves the 
olumn generation subproblem (23). Sin
e a shortest path problem in
an a
y
li
 network is solvable in polynomial time, and so is a linear program, then by the
equivalen
e between separation and optimization (see e.g. [Nemhauser and Wolsey, 1988℄)
we have shown the following result.

Theorem 4.2 The MLC problem with minimal beam-on time is solvable in time polyno-
mial in n and m.

While Theorem 4.2 is proved by the 
olumn generation argument above, we will subse-
quently give an alternative proof by transforming the MLC problem into a polynomially
solvable network 
ow problem with side 
onstraints.

The key observation is that due to formulation (21) and the equivalen
e between shape
matri
es and 
y
les in Gs;

P
t2T

�t 
an be interpreted as the value x(D0; D) of a 
ir
ulation

x whi
h is a 
omposite of 
ows �t on 
y
les Ct 
orresponding to the shape matri
es St.

If we 
onsider, for instan
e, the two 
y
les

C1 = (D; (102); (213); (303); (402); D0; D)

and

C2 = (D; (113); (203); (302); (413); D0; D)

of the shape matrix graph in Figure 5 and x(C1) = 3; x(C2) = 2, (i.e. x is a 
ir
ulation
formed by taking 3 units of 
ow on 
y
le C1 and adding 2 units of 
ow on 
y
le C2), we
get a 
ow 
orresponding to the intensity matrix

3

0
BB�

1 0
0 1
1 1
1 0

1
CCA+ 2

0
BB�

0 1
1 1
1 0
0 1

1
CCA =

0
BB�

3 2
2 5
5 3
3 2

1
CCA :

Sin
e by part (1) of Lemma 4.1 all 
y
les 
ontain ar
 (D0; D) we have that

x(D0; D) = x(C1) + x(C2) = 5

represents the 
ow value whi
h is to be minimized. Sin
e, 
onversely, every 
ir
ula-
tion 
an be de
omposed into 
y
les 
ontaining ar
 (D0; D) (see [Ahuja et al., 1993℄ or

15



[Hama
her and Klamroth, 2000℄), the MLC problem 
an be solved as a network 
ow prob-
lem in Gs, in fa
t as a minimum 
ost 
ir
ulation problem, with respe
t to ar
 
osts given
by


e :=

�
1 if e = (D0; D)
0 if e 2 Es n f(D0; D)g

for ea
h e 2 Es.

We have, however, to enfor
e the side 
onstraint that the values Iij of the intensity matrix
I are generated by the 
ir
ulation, i.e. we have the side 
onstraints

j�1X
l=0

n+1X
r=j+1

X
e2E�(i;l;r)

xe = Iij (25)

for all i = 1; : : : ; m and all j = 1; : : : ; n, where we write E�(q) to denote the set of edges
in Es entering node q, i.e. f(p; q) 2 Esg.

The network 
ir
ulation formulation, together with the side 
onstraints (25), provide a
linear programming formulation for the MLC problem with minimal beam-on time. Note
that its size, in terms of numbers of variables and 
onstraints, is polynomial in n and m,
as opposed to the 
olumn generation formulation, whi
h has exponentially many variables.

However, we do not rest there: it is possible to get a linear programming formulation whi
h
is even 
loser to a pure network 
ow formulation. Rather than stating (25) as an algebrai


onstraint, the shape matrix graphs is expanded to a network Ĝs = (V̂s; Ês) de�ned as
follows (see Figure 7).

Ea
h node (i; l; r) 2 Ns := Vs n fD;D0g is split into two nodes (i; l; r)1 and (i; l; r)2. The
idea is that 
ow will always enter row i via a node of the form (i; l; r)1 and may only leave
row i via a node of the form (i; l; r)2. In between, we will have the 
ow go through ar
s
representing 
ells whi
h are irradiated in row i if leaf positions (l; r) are used. Thus we
introdu
e new nodes of the form (i; j); i = 1; : : : ; m; j = 0; : : : ; n. Hen
e

V̂s :=
�
(i; l; r)1; (i; l; r)2 : (i; l; r) 2 Ns

	
(26)

[f(i; j) : i = 1; : : : ; m; j = 0; : : : ; ng [ fD;D0g

Note that
jV̂sj = m(n + 1)(n+ 3) + 2

nodes, sin
e jNsj =
1
2
m(n + 1)(n + 2), and jV̂sj = 2jNsj +m(n + 1) + 2 = m(n + 1)(n +

2) +m(n+ 1) + 2. Obviously this is polynomial in n and m; it is O(mn2).
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The ar
 set Ês 
onsists of the following subsets

Êold
s :=

��
(i; l; r)2; (i+ 1; l0; r0)1

�
: ((i; l; r); (i+ 1; l0; r0)) 2 Es

	
[
n�

D; (1; l; r)1
�
: (1; l; r)1 2 V̂s

o

[
n�

(m; l; r)2; D0
�
: (m; l; r)2 2 V̂s

o
[f(D0; D)g (27)

are 
opies of the edges in Es 
onne
ted with appropriate nodes in V̂s. In addition we have
new ar
s of two types.

Ê1
s =

n�
(i; l; r)1; (i; l)

�
: (i; l; r)1 2 V̂s

o

[
n�

(i; r � 1); (i; l; r)2
�
: (i; l; r)2 2 V̂s

o

All ar
s e 2 Êold
s [ Ê1

s 
onsidered so far have

lower 
apa
ities ue = 0 and upper 
apa
ities ue = 1 (28)

The se
ond set of new ar
s is given by

Ê2
s := f((i; j � 1); (i; j)) : i = 1; : : : ; m; j = 1; : : : ; ng :

These are 
alled the intensity ar
s, sin
e the 
ow on these ar
s has to be equal to the
intensity. Therefore, we set lower and upper 
apa
ity on these ar
s to be

ue = ue = Iij 8e = ((i; j � 1); (i; j)) 2 Ê2
s (29)

The idea is that where previously 
ow went into a node (i; l; r), and impli
itly this meant
the 
ow would 
ontribute to the intensity 
onstraint for 
ells (i; j); j = l + 1; : : : ; r � 1,
now we for
e the 
ow to go into node (i; l; r)1, then through ar
s ((i; j � 1); (i; j)) for
j = l + 1; : : : ; r � 1, thus 
ontributing to the requirement for lower = upper 
apa
ity (=
intensity) in those ar
s, and then ba
k to node (i; l; r)2 before going on to the next row
i + 1. However, to ensure this 
ow sequen
e o

urs in the 
ow de
omposition, we must
still enfor
e a side 
onstraint, albeit a simpler one than (25), namely that the 
ow in ar

((i; l; r)1; (i; l)) must equal the 
ow in ar
 ((i; r � 1); (i; l; r)2) for all (i; l; r) 2 Vs.

It is straightforward to show that jÊsj is O(mn4), (for ea
h of the m rows, there are O(n2)
nodes, so there are O(n4) ar
s of the form ((i; l; r)2; (i+ 1; l0r0)1), passing from one row to
the next, and this is the dominant term), whi
h is polynomial in n and m.

We have therefore established the following result.

Theorem 4.3 The MLC problem with minimal beam-on-time is equivalent to the network

ow problem
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102 113

3,0 3,1

302

402

402

3,2 3,3

303

303

113

203
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213

413

413

213

1,0

2,0

1,1

2,1

1,2

2,2

1,3

2,3

102
2 2

1 1

1 1

1

2 2

1 1

2

1

3022

4,0 4,1 4,2 4,3

2 2

Figure 7: Extended shape matrix graph. Only nodes and ar
s of extended 
y
les C1 and C2

of Figure 5 are shown.
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minx(D0; D)

subje
t to x a 
ir
ulation in Ĝs lying between lower and upper 
apa
ity limits u and u,
de�ned by (28) and (29), and satisfying

x
�
(i; l; r)1; (i; l)

�
= x

�
(i; r � 1); (i; l; r)2

�
8(i; l; r) 2 Vs: (30)

Theorem 4.3 also yields an alternative proof of the polynomial solvability of the MLC
problem with minimal beam-on time.

The two side-
onstrained network 
ow models we have presented here may be of some
interest in their own right. For example, we will address the question of integrality of
solutions in future work. Combinatorial algorithms for solving them, su
h as generalization
of negative di
y
le and shortest augmenting dipath algorithms, (see [Ahuja et al., 1993℄),
whi
h 
onsider side 
onstraint (30), are 
urrently under investigation ([G�org, 2001℄).

5 Numeri
al Experien
e

In this se
tion, we 
ompare the results of solving the MLC problem with minimal beam-
on time using the network 
ow approa
h with those of the well-known heuristi
 methods
of [Sio
hi, 1999℄ and [Xia and Verhey, 1998℄. Note that we showed in Se
tion 4 that the
network 
ow algorithms solve this problem up to optimiality in polynomial time while the
latter two heuristi
s usually 
ompute suboptimal solutions.

We implemented both network 
ow approa
hes introdu
ed in the pre
eding se
tions using
the pa
kage AMPL (see [Fourer et al, 1993℄), and found that the one on the graph Gs

required less CPU time on our test problems than the model on the expanded graph.
(Of 
ourse, the solutions given by both were the same.) However in both 
ases, the time
required by the CPLEX solver in AMPL to solve the linear programs is negligible.

We refer to our method asNetFlow in Table 1 and Figure 8. The methods of [Sio
hi, 1999℄
and [Xia and Verhey, 1998℄ (denoted Sio
hi and XV, respe
tively) were implemented in
C++. Details of the methods as implemented by us 
an be found in [Lenzen, 2000℄.

Our test set 
onsists of �fteen 10�10 randomly generated intensity matri
es. Ea
h entry in
the matrix is an integer value between 1 and 15, with ea
h integer having equal probability
of being sele
ted. All methods were run on the same ma
hine (1 GHz PC). The results,
summarized in Table 1 and Figure 8, show that the network 
ow approa
h produ
es, as
expe
ted, a radiation plan with the smallest beam-on time in every single example. The
di�eren
e in the beam-on times 
omputed by the three methods in in some examples
quite large. We note, however, that the 
omparison here is slightly unfair, in that the
emphasis of the [Xia and Verhey, 1998℄ heuristi
 is on minimizing the number of shape
matri
es required. [Sio
hi, 1999℄ was 
on
erned with both the number of shape matri
es
and beam-on time.
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Table 1: Total beam-on time used by the three methods

Data Set XV Sio
hi NetFlow

1 87 50 39
2 79 40 33
3 95 42 37
4 87 39 37
5 81 58 46
6 77 51 45
7 87 52 47
8 73 48 41
9 87 40 33
10 89 47 40
11 71 47 41
12 93 43 37
13 69 40 32
14 93 47 43
15 93 42 37

The same dominan
e of the network 
ow approa
h 
an, however, also be observed if the
set-up time is taken into 
onsideration as well (for instan
e by multiplying the number of
di�erent shape matri
es with a �xed set-up time and adding it to the beam-on time). In
every example we have tested so far, the resulting treatment time was shorter than the
treatment times obtained by the algorithms of [Sio
hi, 1999℄ and [Xia and Verhey, 1998℄.
These results are not 
ompletely understood at this point of time and will be dis
ussed in
a forth
oming paper.

6 Con
lusion and Further Resear
h

We have presented new formulations for the multileaf 
ollimator problem: a mixed integer,
nonlinear model, a de
omposition of this model leading to a 
olumn generation formulation,
and two alternative network 
ow models with side 
onstraints. The latter is derived using
a network in whi
h paths from a designated sour
e to a designated sink node 
orrespond
to feasible shape matri
es. This network is used to show that the 
olumn generation
subproblem 
an be modelled as a shortest path problem. This, and more dire
tly the side-

onstrained network 
ow formulations, show that the MLC problem with minimum beam-
on time is polynomially solvable. We illustrated this result by solving a set of randomly
generated test problems, and 
omparing the solutions with those of well known heuristi
s.
We found that the beam-on time is, indeed, redu
ed by a 
onsiderable amount of time
using our new approa
h.
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Our future resear
h e�orts go into the following dire
tions.

Currently, we use AMPL to solve the network 
ow problem with side 
onstraints. This
approa
h is reasonable for the MLC problem with minimal beam-on-time sin
e the CPU
time for a single problem is negle
tably small. Nevertheless, streamlining of the network

ow algorithm is investigated in a diploma thesis (G�org 2002). We expe
t an additional
speed up by taking more advantage of the network stru
ture of the problem. This speed
up 
an be of use in solving the other versions of the MLC problem. In parti
ular, we will
bene�t from this by ta
kling the MLC problem with minimal beam-on time and 
onstant
set-up time.

Moreover, variable set-up times ought to be 
onsidered. As a measure of swit
hing from
one shape matrix Sp to another Sq one 
ould, for instan
e, investigate


(Sp; Sq) = � max
i=1;:::;m

max fjlpi � l
q
i j ; jr

p
i � v

q
i jg ;

the largest distan
e a left or right leaf will have to move (multiplied with some time fa
tor
�). As brie
y dis
ussed at the end of Se
tion 3, the resulting MLC problems will have a
TSP like 
onstraint. Although the variable set-up time MLC model is more realisti
 than
the ones des
ribed in this paper, its solution will be a very big 
hallenge.
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