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Minimizing Beam-On Time in Caner Radiation

Treatment Using Multileaf Collimators

Natashia Boland� Horst W. Hamahery Frank Lenzenz

January 4, 2002

Abstrat

In this paper the modulation of intensity matries arising in aner radiation

therapy using multileaf ollimators (MLC) is investigated. It is shown that the

problem is equivalent to deomposing a given integer matrix into a positive linear

ombination of (0; 1) matries. These matries, alled shape matries, must have
the strit onseutive-1-property, together with another property derived from the

tehnologial restritions of the MLC equipment. Various deompositions an be

evaluated by their beam-on-time (time in whih radiation is applied to the patient)

or the treatment time (beam-on-time plus time for set-ups). We fous on the former,

and develop a nonlinear mixed integer programming formulation of the problem.

This formulation an be deomposed to yield a olumn generation formulation: a

linear program with a large number of variables that an be pried out by solving

a subproblem. We then develop a network model in whih paths in the network

orrespond to feasible shape matries. As a onsequene, we dedue that the olumn

generation subproblem an be solved as a shortest path problem, and so obtain our

main theoretial result that the problem is solvable in polynomial time. Furthermore,
we are able to develop two alternative models of the problem as side-onstrained

network ow formulations. Finally, a numerial omparison of our exat solutions

with those of well-known heuristi methods shows that the beam-on time an be

redued by a onsiderable margin.

1 Introdution

In most parts of the world, aner is one of the major auses of deaths. In order to �ght this
disease, radiation therapy is used very often, in partiular, in ases where the tumor an
be loalized and metastases have not yet started to form. In suh a situation, radiation is
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applied to destroy the tumor (target volume) while maintaining the funtionality of organs
whih are lose to the tumor (organs at risk) and thus subjet to at least some of the
radiation applied to the tumor.

In order to apply radiation from an external soure, medial linear aelerators are used.
They are part of a gantry whih an be rotated about the patient, who is positioned and
�xed on a ouh (see Figure 1).

Figure 1: A medial linear aelarerator with a beam head and a treatment ouh

In the design of the treatment plan information has to be olleted and several deisions
have to be made individually for eah patent, all of whih are of ruial importane for the
quality of the radiation plan. (see Figure 2.)

(1) The loation of the target volume and organs at risk.

(2) A disretization of the radiation beam head into bixels.

(3) A disretization of the target volume and risk organs into voxels.

(4) A set of positions at whih the gantry stops in order to release radiation.

(5) A deision on the intensity funtion, i.e. the amount of radiation released at eah
stop and in eah bixel.

(6) The modulation of the uniform radiation to ahieve (5).

The loation of target volume and organs at risk is done using omputer tomography (CT).
Corret three-dimensional images are assumed in all subsequent models. Researh in this
area is on updating images due to movement of the patient on the ouh or due to the
impat of previous radiation.
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Figure 2: Radiation planning problems: Stops of the gantry and the two-dimensional in-
tensity funtions have to be found. For this purpose eah 3-dimensional organ at risk and
the target volume are disretized into voxels and the 2-dimensional beam heads into bixels.

The radiation head is assumed to be a retangle whih is partitioned into equidistant ells.
This partitioning will be disussed in more detail in Setion 2. Correspondingly, target
volume and organs at risk are assumed to be partitioned into ubes. Again, all available
models assume that this is done in an equidistant way. Better radiation plans may, however,
be ahieved by onsidering non-equidistant partitions, a topi whih is urrently under
researh. Radiation gantries are typially designed in suh a way that they may stop at
36 positions, equally distributed on the gantry's moving irle around the patient. The
number of stops is not �xed, but in the linial pratie a number between 3 and 7 stops
is most ommon. The problem of �nding the best positions for stops has been addressed
in previous work, suh as that on (ontinuous) inverse approahes to treatment planning,
whih we disuss further below. However this problem an also be modeled as a disrete
loation problem, an approah whih is urrently under investigation.

The amount of radiation released at eah stop and in eah bixel an be written as a system
of linear equations

Px = D

where P = (pij) is the bixel-voxel unit radiation matrix, i.e. pij is the amount of radiation
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reahing voxel i if one unit of radiation is released at bixel j, and where x = (xj) is the
amount of time radiation is sent o� at bixel j. Correspondingly, D is the dosage vetor
representing in eah omponent Di the radiation of eah voxel i obtained as umulative ra-
diation from all bixels j. The dosage has to satisfy onstraints, the most important of whih
are lower bounds in voxels of the target volume (to destroy the aner) and upper bounds
in voxels of the organs at risk (to maintain funtionality). In general, these bounds make
the system of linear equations inonsistent and mathematial programming methods are
used to minimize the deviation from the bounds ([Bortfeld, 1995℄, [Burkard et al., 1995℄),
[Shepard et al., 1999℄. For an interesting disussion of issues that arise in modeling the
objetives of the treatment planning proess, see the work of [Raphael, 1992℄. Muh
previous work on radiation treatment planning has attempted to handle the underlying
physis in more details, and has not neessarily assumed disretized models of the tar-
get volume and treatment spae, nor simple linear relationships between treatment beam
intensities and dosages in the target volume. Examples an be found in the work of
[Kolmonen et al., 1998℄ and in [Tervo and Kolmonen, 2000℄, and referenes therein. Ap-
proahes suh as these are based on inverse tehniques, whih typially lead to diÆult
nonlinear programming or optimal ontrol problems. [Lee et al., 2000℄ adopt a oneption
of the problem similar to that we desribe above, and give an integer programming ap-
proah. They show that in modest omputational time, signi�ant improvements an be
obtained in the quality of the treatment plans over those developed by human experts.
([Hamaher and K�ufer, 2001℄) have reently used multiriteria approahes to takle this
problem. In reent work, [Wu and Zhu, 2001℄ also take a multiriteria approah, but use
geneti algorithms to determine both the intensities and the importane fators of the dif-
ferent riteria. In this paper we will fous on the modulation of the uniform radiation to
realize the radiation x in eah stopping position.

The rest of the paper is organized as follows. In Setion 2, the stati, or \step-and-shoot",
multileaf tehnology will be introdued and optimization problems resulting from the usage
of this tehnology will be disussed. We fous primarily on the problem of minimizing the
total radiation time at eah stopping position. The following two setions, Setions 3 and 4
will ontain two di�erent models for takling these problems. The �rst model is based on
mixed integer programming, the seond one on a shortest path/network ow formulation.
The latter allows us to show that the problem of minimizing total treatment time an
be solved in polynomial time, and that olumn generation approahes yield subproblems
whih take the form of shortest path problems. This insight is espeially important, as the
same olumn generation subproblem is likely to arise within olumn generation approahes
to the overarhing dosage problem. In Setion 5, we disuss the improvements over existing
heuristi methods that result from solving the problem exatly, using the side-onstrained
network ow model.
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2 Modulating Radiation Using Multileaf Collimators

In this setion we assume that (1) - (5) from Setion 1 have been dealt with. In partiular,
we know for eah stop of the gantry the intensity funtion represented as a two-dimensional
array of the amount of time uniform radiation is released in eah bixel, i.e. as intensity
matrix I. We assume in the following that I is an integer valued matrix. If we have hosen
a disretization of the beam head into a 6� 6 grid,

I =

0
BBBBBB�

0 0 2 2 2 0
0 1 1 3 1 0
0 0 2 2 1 0
1 2 2 2 1 0
0 1 2 3 2 1
0 1 2 2 2 2

1
CCCCCCA

is suh a possible intensity matrix.

In order to generate I the uniform radiation leaving the linear aelerator has to be modu-
lated by inserting �lters between radiation soure and patient. The urrently most ommon
way to do this is by using metal �lters and shaping them in suh a way that the intensity
matrix I is generated.

A more advaned way of modulation is ahieved by using a multileaf ollimator (MLC).
Here, eah row of I (often referred to as a hannel) has an assoiated pair of leaves - a
right leaf and a left leaf. If I has n olumns the left leaf may be positioned in olumn
0; 1; : : : ; n, and the right leaf an be plaed in olumns 1; : : : ; n; n+1, where olumns 0 and
n+ 1 are notional olumns used to represent the respetive leaf's fully retrated position.
Radiation an pass in between left and right leaf, so, if the left leaf is in position l and the
right leaf is in position r, only the bixels in olumns l + 1; : : : ; r � 1 of that hannel will
transmit radiation. Clearly we require r > l. Figure 3 shows an MLC.
Eah hoie of left/right leaves in all rows is haraterized by a (0; 1) matrix in the following
way. If the left and right leaf is positioned in olumn l and r, respetively, then the
orresponding row has onseutive ones in entries l + 1; : : : ; r � 1 and zeros everywhere
else. A (0; 1) matrix onstruted in this way is alled a shape matrix. Shape matries and
left/right leaf on�gurations are in one-to-many orrespondene, sine for shape matries
with zero rows, more than one left/right leaf on�guration an be found.

If S1; : : : ; SK are shape matries and �1; : : : ; �K is the time the linear aelerator is opened
to release (uniform) radiation when leaf pairs are in the positions indiated by the orre-

sponding shape matrix, an intensity of
KP
k=1

�kSk is released. Sine we know the intensity

matrix, the MLC problem (basi version) is therefore de�ned as follows.

Given an integer matrix I, �nd K, and shape matries S1; : : : ; SK and �1; : : : ; �K > 0 suh
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Figure 3: Leaf pairs of an MLC. Radiation will pass through the openings.

that
KX
k=1

�k Sk = I:

Example 2.1 Let

I =

0
BBBBBB�

0 0 4 4 3 0
0 1 1 6 3 0
0 0 3 4 1 0
1 3 4 4 3 0
0 2 3 6 4 3
0 1 3 3 4 4

1
CCCCCCA

Then I = 3S1 + 1S2 + 2S3; where

S1 =

0
BBBBBB�

0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1

1
CCCCCCA

; S2 =

0
BBBBBB�

0 0 1 1 1 0
0 1 1 1 0 0
0 0 1 1 1 0
1 1 1 1 0 0
0 0 1 1 1 0
0 1 1 1 1 1

1
CCCCCCA
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S3 =

0
BBBBBB�

0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 1 0 0
0 0 1 1 0 0

1
CCCCCCA

The leaf on�gurations orresponding to the shape matries S1; S2 and S3 are shown in
Figure 4.
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Figure 4: Leaf on�gurations of shape matries S1; S2, and S3 of Example 2.1.

It is obviously easy to represent any given intensity matrix I as a positive linear ombina-
tion of shape matries Sk. If I = (Iij)i=1;:::;m

j=1;:::;n
(i.e. the disretization of the beam head is

into m rows (or hannels) and n olumns) we ould, for instane, hoose I =
mP
i=1

nP
j=1

IijSij

where Sij is a shape matrix with entries

Sij(k; l) :=

�
1 if k = i and l = j

0 otherwise

i.e. a matrix whih has just one non-zero entry at position (i; j). For this trivial deom-
position of I, the beam-on-time, i.e. the time at whih the linear aelerator is sending
o� radiation is

KX
k=1

�k =
mX
i=1

nX
j=1

Iij

The next example shows that this deomposition is, in general, not a good one.

Example 2.2 Let

I =

�
2 3
4 2

�
:

The trivial deomposition desribed above yields

I = 2

�
1 0
0 0

�
+ 3

�
0 1
0 0

�
+ 4

�
0 0
1 0

�
+ 2

�
0 0
0 1

�
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with a beam-on time of
4P

k=1

�k = 2 + 3 + 4 + 2 = 11.

Alternatively, I an be deomposed into

I = 2

�
1 1
1 1

�
+ 1

�
0 1
1 0

�
+ 1

�
0 0
1 0

�

giving a beam-on time of
3P

k=1

�0
k = 2 + 1 + 1 = 4.

Sine beam-on time is related to the duration of the radiation treatment and sine the latter
time is to be minimized (in order to avoid disomfort to the patient, and his/her movement
whih would hange the data of all optimization models in the radiation problem) we
formulate an MLC optimization problem, the MLC problem with minimal beam-on

time:

min
X
t2T

�t

subjet to
X
t2T

�tSt = I (1)

�t � 0:

Here, T is the index set of all possible shape matries. This is the problem whih we will
study in more detail in the subsequent setions. Before doing so let us mention additional
models whih are urrently under investigation.

If we assume that the swith between two shape matries will take a given �xed amount
of time (set-up time), say T seonds, then the objetive of the MLC problem with

minimal beam-on time and onstant set-up time is

KX
k=1

�k + (K � 1)T: (2)

When the set-up time is dominant, this objetive is minimized by minimizing the number
of shape matries used, K.

In fat, it is likely that the set-up time between shape matries depends on the form of
these matries. In the MLC problem with minimal beam-on time and variable

set-up time we would thus onsider the objetive

KX
k=1

(�k + (Sk; Sk+1)) (3)

where (Sk; Sk+1) is the time it takes to hange from Sk to Sk+1 (and where (SK; SK+1) =
0)).
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A number of authors have onsidered the problems of minimizing the beam-on time plus
onstant set-up time, and of minimizing the number of shape matries used. A very inu-
ential paper is that of [Xia and Verhey, 1998℄, who introdue a heuristi method in whih
all beam-on times are powers of two. Larger powers of two are \stripped o�" �rst. They
ompare their method omputationally with earlier methods of [Bortfeld et al., 1994℄ and
[Galvin et al., 1993℄, on randomly generated test problems, and a small number of linial
data sets. Their method was learly more e�etive than either of the others for mini-
mizing the number of shape matries used. This verdit was borne out by [Que, 1999℄,
who also tested several variations of the Xia and Verhey heuristi, as well as the IM-
FAST algorithm, whih is based on the work of [Siohi, 1999℄, and is implemented in
the ommerial system CORVUS. [Que, 1999℄ also used many more linial data sets
for his omparisons. Que's onlusions were that the Xia and Verhey heuristi outper-
formed the others on a statistial basis. However there were ases in whih other algo-
rithms performed better, and the linial data sets, in partiular, showed a lot of varia-
tion. In other work, [Yu et al., 1995a℄ present models and methods for realizing ontin-
uous 2D intensity funtions by dynami ontrol of both the leaf veloities and the ra-
diation intensity. [Tervo and Kolmonen, 2000℄ takle the overarhing treatment planning
problem diretly in terms of the leaf positions. Their work is more general than that
of [Bortfeld et al., 1994, Galvin et al., 1993, Que, 1999, Xia and Verhey, 1998℄, and of our
own, in the sense that they allow ollimator leaves to take on any positions; we allow only n
positions for eah leaf in eah hannel. However they must, as a onsequene, solve rather
diÆult nonlinear problems. Furthermore, their approah is impliitly dynami, whereas
we fous on the stati ase. Their idea of working diretly with the leaf variables to solve
the treatment planning problem is, however, intriguing, and we intend in future work to
onsider embedding the work we present here in a treatment planning problem, in a similar
way.

Less work has been done whih onsiders variable (sequene dependent) set-up time. The
work of [Dai and Hu, 1999℄ is notable. In a two-phase approah, they �rstly use the Xia
and Verhey heuristi to determine the shape matries and assoiated beam-on times, and
then seek a sequene whih minimizes the leaf-moving times between shape matries using
simulated annealing. However their paper gives very little detail on their method. How
leaf-moving times between pairs of shape matries are determined is not given, nor is any
detail of their simulated annealing approah. The simulated annealing ahieves roughly a
10% improvement in the total leaf-moving time, over the initial sequene output by the
Xia and Verhey heuristi. (It should be noted that the main thrust of Dai and Hu's paper
is to examine independent ollimators, rather than multi-leaf ollimators, and their results
on the former are more signi�ant.)

In this paper, we do not onsider set-up times, but only onsider the MLC problem with
minimal beam-on time. In the next setion we develop a nonlinear mixed binary pro-
gramming model, in whih we also disuss restritions on the shape matries enfored by
tehnologial onstraints.
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3 A Nonlinear Mixed-Integer Programming Formula-

tion

In this setion we will give a formulation of the MLC problem as nonlinear program with
ontinuous and binary variables. As before, we assume that I is a given, integer-valued
m� n intensity matrix.

For any shape matrix S = (yij)i=1;:::;m
j=1;:::;n

, we introdue (0; 1) variables haraterizing the

positions of left and right leaves in eah row i = 1; : : : ; m.

Lij :=

�
1 if the left leaf in row i is positioned in olumn j

0 otherwise
(4)

8j = 0; : : : ; n

Rij :=

�
1 if the right leaf in row i is positioned in olumn j

0 otherwise
(5)

8j = 1; : : : ; n+ 1

Next, we will haraterize shape matries suitable for modeling MLCs by introduing
onstraints on the Lij and Rij variables.

� Eah row has exatly one left and right leaf, respetively:

nX
j=0

Lij = 1 8i = 1; : : : ; m (6)

n+1X
j=1

Rij = 1 8i = 1; : : : ; m (7)

� \Left" and \right" leaves deserve their name:

nX
j=0

jLij �
n+1X
j=1

jRij � 1 8i = 1; : : : ; m (8)

Conditions (6) - (8) haraterize left and right leaf positions. Next, we relate variables Lij

and Rij to the entries yij of the shape matrix. Obviously, this relationship is given by the
index ondition

yij = 1 , Lij0 = 1 for some j 0 < j and Rij00 = 1 for some j 00 > j

10



where j 0 and j 00 are uniquely de�ned due to (6) and (7). The following set of onditions
translates these onstraints on the indies into onstraints on the variables:

yij �

j�1X
l=0

Lil �

jX
r=1

Rir (9)

yij �

j�1X
l=0

Lil (10)

yij �
n+1X

r=j+1

Rir (11)

The onstraints hold for i = 1; : : : ; m; j = 1; : : : ; n. It is easy to show that the index
ondition and onstraints (9) - (11) are equivalent. Hene we have shown the following
result.

Lemma 3.1 The m�n (0; 1)-matrix S = (yij) is a shape matrix with left and right leaves
in positions Lij and Rij, respetively, if and only if Lij; Rij and yij are (0; 1) variables
satisfying (6) - (11).

If we want to distinguish di�erent shape matries St we add an additional index t to the
variables haraterizing left and right leaf position and radiation, i.e. we use in (6) - (11)
the notation Lijt; Rijt and yijt. We use T to denote an upper bound on the number of
shape matries required.

With this notation �tyijt is the amount of time shape matrix St = (yijt) is releasing
radiation at bixel (i; j). The problem of deomposing a given m � n intensity matrix
I = (Iij) into shape matries an therefore be written as the problem of �nding �t � 0
and yijt 2 f0; 1g satisfying (6) - (11), so that

TX
t=1

�t yijt = Iij 8i = 1; : : : ; m; j = 1; : : : ; n (12)

holds. Consequently, the MLC problem (1) an be formulated as the following (nonlinear)
mixed integer program

min
TX

t=1

�t (13)

subjet to (6)� (12)

Lijt; Rijt; yijt 2 f0; 1g 8i = 1; : : : ; m; j = 1; : : : ; n; t = 1; : : : ; T

Li0t; Ri(n+1)t 2 f0; 1g 8i = 1; : : : ; m; t = 1; : : : ; T

�t � 0 8t = 1; : : : ; T:
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As a mathematial programming model, in ontrast to approahes onsidered so far in the
literature (for example, those of [Siohi, 1999℄, [Xia and Verhey, 1998℄, [Yu et al., 1995b℄),
(13) is very versatile and an be easily modi�ed and extended to aommodate additional
onstraints. As an example, we onsider the exlusion of interleaf motion, i.e. the left
leaf in one row should not be to the right of the right leaf in an adjaent row and vie versa
(otherwise rashes between the two leaf points or signi�ant radiation leakage in areas
whih ought to be bloked will our). Similar to the left-right ondition (8), the exlusion
an easily be modeled by

nX
j=0

jLij �
n+1X
j=1

jRi�1;j � 1 8i = 2; : : : ; m (14)

and
nX

j=0

jLij �
n+1X
j=1

jRi+1;j � 1 8i = 1; : : : ; m� 1 (15)

An additional example, the exlusion of so-alled tongue-and-groove pairs has been
disussed in Lenzen (2000).

The omplexity status of problem (13) has so far not been disussed, nor have its variations
with objetive funtions (2) and (3). Furthermore, although the mixed integer program in
(13) has the disadvantage of being nonlinear, it an be approahed by olumn generation,
with the y, L and R variables beoming variables in the olumn generation subproblem,
and (13) beoming the (now linear programming) master problem in � (see Setion 4 for
details of this approah).

In the next setion we will show that the MLC problem an be solved in polynomial time
by using a reformulation as a network ow problem with side onstraints. In doing so,
we also show that the olumn generation subproblems orrespond to pure network ow
problems, and so the olumn generation approah an solve the problem in polynomial
time. This result will be more widely useful, as the same olumn generation subproblem
is likely to arise within olumn generation approahes to the dosage problem.

4 A Network Flow Formulation

In this setion we will show that shape matries satisfying the interleaf motion onstraints
an be represented as paths in a suitably hosen network, the shape matrix graph

Gs = (Vs; Es). This network is introdued �rst.

Gs is a layered digraph, onsisting of m layers whih orrespond to the m rows of a shape
matrix. In eah layer i = 1; : : : ; m there are 1

2
(n + 1)(n + 2) verties, denoted by (i; l; r),

whih represent potential positions l and r of the left and right leaf in row i, respetively.
Here l 2 f0; 1; : : : ; ng; r 2 f1; : : : ; n; n + 1g and l + 1 � r. Two dummy nodes D and D0
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whih at as start and end nodes will be added, so

Vs := f(i; l; r) : i = 1; : : : ; m; l = 0; 1; : : : ; n; r = 1; : : : ; n; n+ 1; l + 1 � rg [ fD;D0g:
(16)

The ar set Es ontains all edges from D to the �rst layer 1 and from the last layer m to
D0, i.e. Es ontains

E+(D) := f(D; (1; l; r)) : (1; l; r) 2 Vsg (17)

E�(D
0) := f((m; l; r); D0) : (m; l; r) 2 Vsg (18)

For i = 1; : : : ; m� 1 we de�ne the ars between layers to be

E+(i) := f((i; l; r); (i+ 1; l0; r0)) : (i; l; r; ); (i+ 1; l0; r0) 2 Vs; l
0 � r � 1; r0 � l + 1g : (19)

These ars reet the exlusion of interleaf motion (see (14) and (15)). Finally we add the
return ar (D0; D), so the set of all ars is given by

Es := E+(D) [ E�(D
0) [ f(D0; D)g [

m�1[
i=1

E+(i): (20)

An example of a shape matrix graph Gs is shown in Figure 5

D

101 102 103 112 113 123

201

301

401

202

302

402

203

303

403

212

312

412

213

313

413

223

323

423

D’

Figure 5: Shape matrix graph with omplete vertex set Vs and some of the ars of Es,
inluding two yles C1 and C2 (straight and dotted ars).

The next lemma states some properties of Gs. The proof of this lemma is an immediate
onsequene of the de�nition of Gs.
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Lemma 4.1

(1) Gs n f(D0; D)g is an ayli digraph.

(2) Every yle in Gs orresponds to a shape matrix without interleaf motion and vie
versa.

Figure 6 shows the shape matrix and the leaf on�guration orresponding to the yle

C = (D; (102); (213); (303); (402); D0; D)

in the shape matrix graph of Figure 5.

0
BB�

1 0
0 1
1 1
1 0

1
CCA

0 1 2 3

Figure 6: Shape matrix (left) and leaf on�guration (right) orresponding to yle C =
(D; (102); (213); (303); (402); D0; D) in Gs of Figure 5.

The olumn generation master problem for the olumn generation form of the MLC problem
(13) is given by the following linear program in �:

min
X
t2T

�t (21)

subjet to
X
t2T

�tSt = I

�t � 0 8t 2 T

where T is the index set of all feasible shape matries, whih we now allow to be generated
\on the y". Consider the olumn generation subproblem, whih seeks the shape matrix of
least redued ost. If we let vij denote the dual multiplier of the (ij)th intensity onstraint,
where St = (yijt), X

t2T

�t yijt = Iij 8i = 1; : : : ; m; j = 1; : : : ; n; (22)

then the olumn generation subproblem an be expressed as

min 1�
mX
i=1

nX
j=1

vij yij (23)

s.t S = (yij) is shape matrix:
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Using Lemma 4.1 this subproblem an be solved as a shortest path problem in the shape
network Gs = (Vs; Es) by setting ar length

le := �
r�1X

j=l+1

vij (24)

for eah ar e 2 Es with end node (i; l; r) 2 Vs and l + 1 < r. All other ars have zero
ar length. Clearly, the shortest path from D to D0 in Gs orresponds to the shape matrix
whih solves the olumn generation subproblem (23). Sine a shortest path problem in
an ayli network is solvable in polynomial time, and so is a linear program, then by the
equivalene between separation and optimization (see e.g. [Nemhauser and Wolsey, 1988℄)
we have shown the following result.

Theorem 4.2 The MLC problem with minimal beam-on time is solvable in time polyno-
mial in n and m.

While Theorem 4.2 is proved by the olumn generation argument above, we will subse-
quently give an alternative proof by transforming the MLC problem into a polynomially
solvable network ow problem with side onstraints.

The key observation is that due to formulation (21) and the equivalene between shape
matries and yles in Gs;

P
t2T

�t an be interpreted as the value x(D0; D) of a irulation

x whih is a omposite of ows �t on yles Ct orresponding to the shape matries St.

If we onsider, for instane, the two yles

C1 = (D; (102); (213); (303); (402); D0; D)

and

C2 = (D; (113); (203); (302); (413); D0; D)

of the shape matrix graph in Figure 5 and x(C1) = 3; x(C2) = 2, (i.e. x is a irulation
formed by taking 3 units of ow on yle C1 and adding 2 units of ow on yle C2), we
get a ow orresponding to the intensity matrix

3

0
BB�

1 0
0 1
1 1
1 0

1
CCA+ 2

0
BB�

0 1
1 1
1 0
0 1

1
CCA =

0
BB�

3 2
2 5
5 3
3 2

1
CCA :

Sine by part (1) of Lemma 4.1 all yles ontain ar (D0; D) we have that

x(D0; D) = x(C1) + x(C2) = 5

represents the ow value whih is to be minimized. Sine, onversely, every irula-
tion an be deomposed into yles ontaining ar (D0; D) (see [Ahuja et al., 1993℄ or
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[Hamaher and Klamroth, 2000℄), the MLC problem an be solved as a network ow prob-
lem in Gs, in fat as a minimum ost irulation problem, with respet to ar osts given
by

e :=

�
1 if e = (D0; D)
0 if e 2 Es n f(D0; D)g

for eah e 2 Es.

We have, however, to enfore the side onstraint that the values Iij of the intensity matrix
I are generated by the irulation, i.e. we have the side onstraints

j�1X
l=0

n+1X
r=j+1

X
e2E�(i;l;r)

xe = Iij (25)

for all i = 1; : : : ; m and all j = 1; : : : ; n, where we write E�(q) to denote the set of edges
in Es entering node q, i.e. f(p; q) 2 Esg.

The network irulation formulation, together with the side onstraints (25), provide a
linear programming formulation for the MLC problem with minimal beam-on time. Note
that its size, in terms of numbers of variables and onstraints, is polynomial in n and m,
as opposed to the olumn generation formulation, whih has exponentially many variables.

However, we do not rest there: it is possible to get a linear programming formulation whih
is even loser to a pure network ow formulation. Rather than stating (25) as an algebrai
onstraint, the shape matrix graphs is expanded to a network Ĝs = (V̂s; Ês) de�ned as
follows (see Figure 7).

Eah node (i; l; r) 2 Ns := Vs n fD;D0g is split into two nodes (i; l; r)1 and (i; l; r)2. The
idea is that ow will always enter row i via a node of the form (i; l; r)1 and may only leave
row i via a node of the form (i; l; r)2. In between, we will have the ow go through ars
representing ells whih are irradiated in row i if leaf positions (l; r) are used. Thus we
introdue new nodes of the form (i; j); i = 1; : : : ; m; j = 0; : : : ; n. Hene

V̂s :=
�
(i; l; r)1; (i; l; r)2 : (i; l; r) 2 Ns

	
(26)

[f(i; j) : i = 1; : : : ; m; j = 0; : : : ; ng [ fD;D0g

Note that
jV̂sj = m(n + 1)(n+ 3) + 2

nodes, sine jNsj =
1
2
m(n + 1)(n + 2), and jV̂sj = 2jNsj +m(n + 1) + 2 = m(n + 1)(n +

2) +m(n+ 1) + 2. Obviously this is polynomial in n and m; it is O(mn2).
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The ar set Ês onsists of the following subsets

Êold
s :=

��
(i; l; r)2; (i+ 1; l0; r0)1

�
: ((i; l; r); (i+ 1; l0; r0)) 2 Es

	
[
n�

D; (1; l; r)1
�
: (1; l; r)1 2 V̂s

o

[
n�

(m; l; r)2; D0
�
: (m; l; r)2 2 V̂s

o
[f(D0; D)g (27)

are opies of the edges in Es onneted with appropriate nodes in V̂s. In addition we have
new ars of two types.

Ê1
s =

n�
(i; l; r)1; (i; l)

�
: (i; l; r)1 2 V̂s

o

[
n�

(i; r � 1); (i; l; r)2
�
: (i; l; r)2 2 V̂s

o

All ars e 2 Êold
s [ Ê1

s onsidered so far have

lower apaities ue = 0 and upper apaities ue = 1 (28)

The seond set of new ars is given by

Ê2
s := f((i; j � 1); (i; j)) : i = 1; : : : ; m; j = 1; : : : ; ng :

These are alled the intensity ars, sine the ow on these ars has to be equal to the
intensity. Therefore, we set lower and upper apaity on these ars to be

ue = ue = Iij 8e = ((i; j � 1); (i; j)) 2 Ê2
s (29)

The idea is that where previously ow went into a node (i; l; r), and impliitly this meant
the ow would ontribute to the intensity onstraint for ells (i; j); j = l + 1; : : : ; r � 1,
now we fore the ow to go into node (i; l; r)1, then through ars ((i; j � 1); (i; j)) for
j = l + 1; : : : ; r � 1, thus ontributing to the requirement for lower = upper apaity (=
intensity) in those ars, and then bak to node (i; l; r)2 before going on to the next row
i + 1. However, to ensure this ow sequene ours in the ow deomposition, we must
still enfore a side onstraint, albeit a simpler one than (25), namely that the ow in ar
((i; l; r)1; (i; l)) must equal the ow in ar ((i; r � 1); (i; l; r)2) for all (i; l; r) 2 Vs.

It is straightforward to show that jÊsj is O(mn4), (for eah of the m rows, there are O(n2)
nodes, so there are O(n4) ars of the form ((i; l; r)2; (i+ 1; l0r0)1), passing from one row to
the next, and this is the dominant term), whih is polynomial in n and m.

We have therefore established the following result.

Theorem 4.3 The MLC problem with minimal beam-on-time is equivalent to the network
ow problem
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Figure 7: Extended shape matrix graph. Only nodes and ars of extended yles C1 and C2

of Figure 5 are shown.
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minx(D0; D)

subjet to x a irulation in Ĝs lying between lower and upper apaity limits u and u,
de�ned by (28) and (29), and satisfying

x
�
(i; l; r)1; (i; l)

�
= x

�
(i; r � 1); (i; l; r)2

�
8(i; l; r) 2 Vs: (30)

Theorem 4.3 also yields an alternative proof of the polynomial solvability of the MLC
problem with minimal beam-on time.

The two side-onstrained network ow models we have presented here may be of some
interest in their own right. For example, we will address the question of integrality of
solutions in future work. Combinatorial algorithms for solving them, suh as generalization
of negative diyle and shortest augmenting dipath algorithms, (see [Ahuja et al., 1993℄),
whih onsider side onstraint (30), are urrently under investigation ([G�org, 2001℄).

5 Numerial Experiene

In this setion, we ompare the results of solving the MLC problem with minimal beam-
on time using the network ow approah with those of the well-known heuristi methods
of [Siohi, 1999℄ and [Xia and Verhey, 1998℄. Note that we showed in Setion 4 that the
network ow algorithms solve this problem up to optimiality in polynomial time while the
latter two heuristis usually ompute suboptimal solutions.

We implemented both network ow approahes introdued in the preeding setions using
the pakage AMPL (see [Fourer et al, 1993℄), and found that the one on the graph Gs

required less CPU time on our test problems than the model on the expanded graph.
(Of ourse, the solutions given by both were the same.) However in both ases, the time
required by the CPLEX solver in AMPL to solve the linear programs is negligible.

We refer to our method asNetFlow in Table 1 and Figure 8. The methods of [Siohi, 1999℄
and [Xia and Verhey, 1998℄ (denoted Siohi and XV, respetively) were implemented in
C++. Details of the methods as implemented by us an be found in [Lenzen, 2000℄.

Our test set onsists of �fteen 10�10 randomly generated intensity matries. Eah entry in
the matrix is an integer value between 1 and 15, with eah integer having equal probability
of being seleted. All methods were run on the same mahine (1 GHz PC). The results,
summarized in Table 1 and Figure 8, show that the network ow approah produes, as
expeted, a radiation plan with the smallest beam-on time in every single example. The
di�erene in the beam-on times omputed by the three methods in in some examples
quite large. We note, however, that the omparison here is slightly unfair, in that the
emphasis of the [Xia and Verhey, 1998℄ heuristi is on minimizing the number of shape
matries required. [Siohi, 1999℄ was onerned with both the number of shape matries
and beam-on time.
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Table 1: Total beam-on time used by the three methods

Data Set XV Siohi NetFlow

1 87 50 39
2 79 40 33
3 95 42 37
4 87 39 37
5 81 58 46
6 77 51 45
7 87 52 47
8 73 48 41
9 87 40 33
10 89 47 40
11 71 47 41
12 93 43 37
13 69 40 32
14 93 47 43
15 93 42 37

The same dominane of the network ow approah an, however, also be observed if the
set-up time is taken into onsideration as well (for instane by multiplying the number of
di�erent shape matries with a �xed set-up time and adding it to the beam-on time). In
every example we have tested so far, the resulting treatment time was shorter than the
treatment times obtained by the algorithms of [Siohi, 1999℄ and [Xia and Verhey, 1998℄.
These results are not ompletely understood at this point of time and will be disussed in
a forthoming paper.

6 Conlusion and Further Researh

We have presented new formulations for the multileaf ollimator problem: a mixed integer,
nonlinear model, a deomposition of this model leading to a olumn generation formulation,
and two alternative network ow models with side onstraints. The latter is derived using
a network in whih paths from a designated soure to a designated sink node orrespond
to feasible shape matries. This network is used to show that the olumn generation
subproblem an be modelled as a shortest path problem. This, and more diretly the side-
onstrained network ow formulations, show that the MLC problem with minimum beam-
on time is polynomially solvable. We illustrated this result by solving a set of randomly
generated test problems, and omparing the solutions with those of well known heuristis.
We found that the beam-on time is, indeed, redued by a onsiderable amount of time
using our new approah.
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Our future researh e�orts go into the following diretions.

Currently, we use AMPL to solve the network ow problem with side onstraints. This
approah is reasonable for the MLC problem with minimal beam-on-time sine the CPU
time for a single problem is negletably small. Nevertheless, streamlining of the network
ow algorithm is investigated in a diploma thesis (G�org 2002). We expet an additional
speed up by taking more advantage of the network struture of the problem. This speed
up an be of use in solving the other versions of the MLC problem. In partiular, we will
bene�t from this by takling the MLC problem with minimal beam-on time and onstant
set-up time.

Moreover, variable set-up times ought to be onsidered. As a measure of swithing from
one shape matrix Sp to another Sq one ould, for instane, investigate

(Sp; Sq) = � max
i=1;:::;m

max fjlpi � l
q
i j ; jr

p
i � v

q
i jg ;

the largest distane a left or right leaf will have to move (multiplied with some time fator
�). As briey disussed at the end of Setion 3, the resulting MLC problems will have a
TSP like onstraint. Although the variable set-up time MLC model is more realisti than
the ones desribed in this paper, its solution will be a very big hallenge.
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