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Abstract. Traditional paging models seek algorithms that maximize
their performance while using the maximum amount of cache resources
available. However, in many applications this resource is shared or its
usage involves a cost. In this work we introduce the Minimum Cache
Usage problem, which is an extension to the classic paging problem that
accounts for the efficient use of cache resources by paging algorithms. In
this problem, the cost of a paging algorithm is a combination of both
its number of faults and the amount of cache it uses, where the relative
cost of faults and cache usage can vary with the application. We present
a simple family of online paging algorithms that adapt to the ratio α

between cache and fault costs, achieving competitive ratios that vary
with α, and that are between 2 and the cache size k. Furthermore, for
sequences with high locality of reference, we show that the competitive
ratio is at most 2, and provide evidence of the competitiveness of our
algorithms on real world traces. Finally, we show that the offline problem
admits a polynomial time algorithm. In doing so, we define a reduction
of paging with cache usage to weighted interval scheduling on identical
machines.

1 Introduction

The efficient management of a computer memory hierarchy is a fundamental
problem in both computer architecture and software design. A program’s data
and instructions reside in various levels of the hierarchy, in which memories at
higher levels have higher capacities, but slower access times. Simplified to a two-
level memory system, the paging problem models a slow memory of infinite size
and a fast memory of limited size, usually known as the cache. The input consists
of a sequence of page requests. If the page of a request is in the cache then the
request is a hit ; otherwise it is a miss or fault and the requested page must be
brought from slow memory to cache, possibly requiring the eviction of one or
more pages currently residing in cache. A paging algorithm must decide which
pages to maintain in the cache at each time in order to minimize a defined cost
measure. In the classic page fault model the cost of an algorithm is measured in
terms of its number of faults and hits have no cost, reflecting the fact that an
access to slow memory is orders of magnitude slower than an access to cache.

As computer architectures and applications evolve, other cost models have
arisen to reflect, for example, varying fetching costs and sizes in web-caches [11,



18, 29], or multi-threaded applications sharing a cache [4, 9, 16, 17, 21]. In this
paper we consider a generalization of the classic page fault model whose per-
formance objective function is a combination of both the number of faults and
the amount of cache used by an algorithm. Thus in addition to the fault cost,
at each step we charge a cost proportional to the number of pages in cache. In
general, the model seeks algorithms with good performance in terms of number
of faults while at the same time using available resources efficiently. Naturally,
minimizing the number of faults and the cache usage of a paging algorithm are
conflicting goals.

Paging strategies that minimize cache usage are relevant in multi-core archi-
tectures where multiple cores share some level of cache. In this context, multiple
request sequences compete for the use of this shared resource. While traditional
models of paging encourage algorithms to use the entire cache so as to minimize
the faults incurred, a model that charges for cache usage can make a paging
algorithm in a shared cache scenario be “context aware”. Varying the parame-
ters of the model for each sequence can be used to achieve a cooperative global
strategy with better overall performance.

The cache minimizing model can also be used as an energy efficient paging
model. Several applications use caches implemented with Content-Addressable
Memories (CAMs), most notably networking routers and switches, and Transla-
tion Lookaside Buffers (TLBs). CAMs provide a single clock cycle throughput,
making them faster than other hardware alternatives [24]. However, speed comes
at a cost of increased power consumption, mainly due to the comparison circuitry.
Reducing this power without sacrificing capacity or speed is an important goal
of research in circuit design [24]. Power consumption could be reduced if inactive
cache lines are turned off, thus our model can provide a framework for paging
strategies that achieve good performance in terms of faults while contributing
to energy savings.

1.1 Paging and Cost Models

The paging problem has been extensively studied; some well-known page re-
placement policies are Least-Recently-Used (LRU), which evicts the page in the
cache whose last access time is furthest in the past; First-In-First-Out (FIFO),
which evicts the page that has been longest in the cache; and Flush-When-Full
(FWF), which when required to evict a page evicts all pages from the cache.

The performance of paging algorithms has been traditionally measured using
competitive analysis [26]. A paging algorithm A has competitive ratio r or is r-
competitive if its cost A(R) over any sequenceR satisfiesA(R) ≤ r·OPT (R)+β,
where OPT (R) is the optimal cost of serving R offline, and β is a constant.
In the page fault model, where a fault has cost 1 and hits have no cost, the
algorithms above are k-competitive, where k is the size of the cache, which is
optimal for deterministic algorithms [6]. A competitive ratio of k is achieved
by all marking and conservative algorithms. An algorithm is conservative if it
incurs at most k faults on any consecutive subsequence of requests that contains
at most k distinct pages [6]. A marking algorithm associates a mark with each



page in its cache (either explicitly or implicitly) and marks a page when it is
brought to cache or if it is unmarked and requested. Upon a fault with a full
cache, it only evicts unmarked pages if there are any, and unmarks all pages in
cache otherwise. The latter event marks the start of a phase, which defines a
k-phase partition of a request sequence. LRU and FWF are marking algorithms,
while LRU and FIFO are conservative algorithms [6]. Randomized algorithms
with optimal competitive ratio Θ(log k) exist for this problem [6]. The offline
problem can be solved optimally by Belady’s algorithm [5]: evict the page in
cache that is going to be requested furthest in the future (FITF).

Other cost models for paging differ in the assumptions of applications with
respect to the cost of bringing a page into the cache, and the size of pages [18,
11, 10, 29]. Unlike these models, which consider only the cost of faults, the full
access cost model [27] charges a cost of 1 for a hit, and a cost of s ≥ 1 for a

fault. In this model, marking algorithms achieve a competitive ratio of 1+ (k−1)s
L+s ,

where L is the average phase length in the k-phase partition of a sequence. In the
worst case, L = k and the ratio is k(s+1)/(k+ s), which is optimal. The model
coincides with the classic model when s → ∞, but can yield competitive ratios
that are significantly smaller if s is small or if a sequence has high locality [6],
properties that, as we shall see, are also shared by our model.

A related paging model that also includes the amount of cache used in the
cost of algorithms is described in [14]. In this model an algorithm can purchase
cache slots, and the overall cost of the algorithm is the number of faults plus
the cost of purchased cache. As cache may only be bought, the cache size can
only increase (with no bound on the maximum size). In our model, however, an
algorithm is charged for the number of pages it has in the cache at every step,
which can both increase or decrease. In this sense our model charges algorithms
for renting cache, while keeping the upper bound k on the maximum cache
available. Finally, we note that the idea of memory renting for reducing RAM
power consumption was previously mentioned in [12].

1.2 Our Contributions

This work introduces a generic model of efficient cache usage in paging that can
be applied to any scenario in which it is desirable for a paging algorithm to
minimize the amount of cache it uses.

We define a family of online algorithms that combine the eviction policies
of traditional marking or conservative algorithms with cache saving policies.
The performance of the algorithms adapts to the relative cost of faults and
cache. More precisely, they achieve a competitive ratio of 2 if α < k, where

α = f/c is the ratio between fault and cache cost, and min
{

k, α(k+1)
α+k−1

}

if α ≥ k,

thus matching the performance of classical algorithms when f ≫ c. We further
parametrize the analysis by considering the locality of reference of the sequence,
and show that for sequences with high locality of reference the competitive ratio
of our algorithms is at most 2. Simulations on real-world inputs show that our



algorithms are close to optimal in terms of the total cost, and both its cache
usage and number of faults are close to those of the optimal offline.

Lastly, we show that the offline problem admits a polynomial time algorithm
via a reduction to interval weighted interval scheduling on identical machines.

The rest of this paper is organized as follows. Section 2 introduces the Mini-
mum Cache Usage model and problem. We present an optimal offline algorithm
in Sect. 3, and present our results related to online algorithms and simulations in
Sect. 4. Due to space constraints, we include only some of the proofs and charts,
while the rest appear in the full version [20].

2 Paging with Cache Usage

The paging model we consider in this paper extends classic paging to a model
in which the cost of a paging algorithm on a request sequence is a weighted
function of the number of faults and the total amount of cache used by the
algorithm. An instance of paging with minimum cache consists of a sequence
R = {r1, r2, . . . , rn} of page requests and a maximum cache size k. Each request
ri is associated with a page σj , for 1 ≤ j ≤ N , where N is the size of the universe
of pages that can be requested. We denote by page(ri) the page associated with
request ri. A paging algorithm can hold at most k pages in its cache, but can
also choose to hold fewer pages, in order to reduce its cache usage.

Definition 1 (Total cache usage). Let A be a paging algorithm and R a re-
quest sequence. Let k(i) ≤ k denote the number of pages in A’s cache immediately
before request ri, where k is the maximum cache size. The total cache usage of
A when serving R is defined as CA(R) =

∑

i k(i).

Given a request sequence R and maximum cache size k, the cost of an al-
gorithm A on R is defined as A(R) = fFA(R) + cCA(R), where FA(R) and
CA(R) are the number of faults and total cache usage of A when serving R,
respectively, and f ≥ 0 and c ≥ 0 are parameters. The Minimum Cache Usage
problem is then the problem of serving a request sequence with minimum cost.

In reality a request sequence is revealed in an online fashion, thus our focus
is on the performance of online algorithms in terms of their competitive ratio.
An online algorithm has competitive ratio r if, given a maximum cache size k,
and parameters f and c, for all request sequences A(R) ≤ r ·OPT (R)+β, where
OPT is the optimal offline, r is a function of k, f and c, and β is a constant
that does not depend on R. As in classic paging, the steps involved in serving
a request ri are as follows: the page associated with the request is revealed to
the algorithm, after which the algorithm acts by possibly evicting one or more
pages, and finally the request is served. Thus, all pages evicted in cache in step
i were held in cache up to time i − 1. A paging algorithm is said to be lazy
or demand paging if it only evicts a page when a page fault occurs. Observe
that unlike classic paging, in which any algorithm can be made demand paging
without sacrificing performance [6], in our model algorithms can benefit from
evicting pages even when there is no page fault.



The relation between the parameters f and c can vary according to the
application to emphasize the importance of minimizing faults or using the cache
efficiently, or a combination of both. Naturally, an instance with c = 0 and
f > 0 is an instance of the classical model, in which the cost of an algorithm
is its number of faults. On the other hand, if f < c then the problem is trivial:
an optimal algorithm always evicts the page of each request immediately after
serving it. We assume in general that f ≥ c > 0.

2.1 Applications

The cost model described above provides incentives for an eviction policy to be
efficient not only in terms of its faults but also with respect to the use of the
resources that are available to it. Thus, the model can be used in any environment
where the latter has significance. We mention the following applications.

Shared Cache Multiprocessors. Multi-core processors are equipped with both
private and shared caches, with threads running in each core usually competing
for the latter type. While there are schedulers that seek to achieve cooperative
use of a shared cache, in general paging strategies for individual threads do not
act cooperatively but use as much of the available cache as possible. The cost
model we propose provides incentives for paging algorithms to balance their own
benefits—a fast execution due to a small number of faults—and the benefits they
can provide to concurrently running threads. Depending on the values of f and
c, an algorithm will favour one or the other.

Energy Efficient Caching. Content Addressable Memories (CAMs) are used in
many applications that require high speed searches, and whose primary applica-
tions are in network routers [24]. CAMs are indexed by stored data words instead
of memory addresses, as in regular caches. Each cell has a matchline that indi-
cates if the stored word in the cell and the searched word match. A search for an
input data word first precharges all matchlines, then each cell compares its bits
against the searched bits, and matchlines corresponding to non-matching entries
are discharged. The overall missing matchline dynamic power consumption for
a system with w matchlines can be modeled as P = wCV 2f , where C is the
matchline capaticance, V is the supply of a matchline and f is the frequency of
misses (the power associated with a matchline in a match is small and can be
neglected) [24]. The power involved in this operation can be therefore reduced
if matchline precharging is controlled based on the valid bit status of each en-
try [22]: on a search, only valid entries require the precharging of matchlines,
thus the power cost of a search can be proportional to the number of valid entries
in the cache. In this scenario, a paging algorithm that uses its cache efficiently
will contribute to power savings.

3 Offline Optimum

In the next section we describe a simple family of online algorithms for the cache
usage problem and analyze their competitiveness. In order to provide a better



intuition for that analysis we first describe a solution to the offline problem.
We recast the paging instance as an instance of weighted interval scheduling on
identical machines, and use an algorithm for this problem to obtain an optimal
polynomial time paging algorithm.

An instance of Weighted Interval Scheduling on Identical Machines consists
of a set J of jobs and a number m of available identical machines. Each job
has a starting time, a duration, and a weight. In order to be processed, a job
must be assigned to a machine immediately after its start time and cannot be
interrupted. A machine can process only one job at a time. The goal is to process
a subset J ′ ⊆ J of jobs such that the total weight of jobs in J ′ is maximized.
Equivalently, each job corresponds to an interval in the real line, and we seek to
schedule the maximum weight subset of intervals such that at most m intervals
overlap at any time. This problem can be solved in polynomial time by reduction
to minimum cost flow [3, 7].

It will be useful to see a paging problem instance as an instance of interval
scheduling on identical machines: each pair of consecutive requests to the same
page defines an interval whose start and end times are the times of the requests.
In each pair of requests, the second request results in a hit if and only if the cor-
responding page is kept in the cache since the previous request, or equivalently,
if the interval is scheduled.

The connection between interval scheduling and paging has been noted be-
fore in [28, 8] where it is used to study cache policies in non-standard caches. It
is assumed, however, that the reduction applies only when bypassing is allowed.
More recently, [13] used this connection to show that offline paging in the fault
and bit models is NP-hard by reducing interval packing problems to paging.
Unlike our model, these models consider pages (and hence intervals) of differ-
ent sizes. The reduction we introduce in this paper is from paging to interval
scheduling, and it is defined as follows.

Definition 2 (Interval representation of a sequence). An interval repre-
sentation of a request R of length n is a set of intervals I(R) = {I1, I2, . . . , In}
where each interval Ii corresponds to request ri in R. The starting time of each
interval Ii is s(Ii) = i + 1 and the end time is e(Ii) = j − 1, where j > i is the
smallest index such that page(rj) = page(ri), or e(Ii) = n if no such j exists.
We say that an interval Ii is feasible if e(Ii) < n and unfinished otherwise. Thus
the length of interval Ii is |Ii| = e(Ii)− s(Ii) + 1.

An example of a sequence and its interval representation is shown in Fig. 1.
Intuitively, an interval corresponding to request rj represents the time interval
in which page(rj) must reside in the cache in order for the next request to this
page to result in a hit. Note that each first request to a page has no preceding
interval thus cannot be a hit. Similarly, a page that is requested for the last time
in a sequence can be held in cache, but as the interval does not finish in the
corresponding page, it cannot result in a hit. Note that intervals do not overlap
with the times in which their corresponding pages are requested, thus using this
reduction theres is no need to assume that bypassing is allowed. All requests are
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Fig. 1. A request sequence and its interval representation. The length of each inter-
val is shown below the interval (I5 of length 0 is not shown). Feasible intervals are
{I1, I2, I3, I4, I5, I6, I7, I8, I9} while {I10, I11, I12, I13} are unfinished. The request can
be served with a cache of size 3 with 8 faults and a cache usage of 29 by scheduling
intervals {I1, I3, I5, I7, I8, I9} on 2 machines (thus requests 5,6,7,10,12,14 are hits and
the rest are faults), which is the optimal cache cost for the minimum number of faults.

served, but only the ones whose interval was scheduled will result in hits. Note as
well that two consecutive requests to the same page define an interval of length
0 that does not overlap any other interval, and thus it is always scheduled. The
following Lemma formalizes the reduction1.

Lemma 1. Let R be a request sequence. Let I ′ = I(R) \ {Ii : Ii is unfinished}.
Let S ⊂ I ′ be a feasible schedule of I ′ on k− 1 machines. Then R can be served
with a cache of size k such that all requests rj with Ii ∈ S and j = i + |Ii| + 1
are hits, with a total cache usage of |R|+

∑

Ii∈S |Ii|.

In light of Lemma 1, when describing the actions of an algorithmwhile serving
a request R, we sometimes use the terminology related to interval scheduling.
Thus we say that an algorithm schedules an interval Ii to mean that it keeps
a page page(ri) in cache until request rj with j = i + |Ii| + 1 (and page(rj) =
page(ri)). We define the cache cost of a request rj as the number of requests
that page(rj) was kept in cache for after ri, which equals |Ii| if rj is a hit, and
is smaller otherwise.

If we are only interested in minimizing faults then the problem corresponds
to Maximal Interval Scheduling. This problem can be solved by sorting intervals
in increasing order of end time, and then greedily scheduling intervals while there
are available machines. Minimizing the number of faults while at the same time
using the least possible cache can be solved instead by computing the maximum
weight schedule in the corresponding interval representation. Weighted interval
scheduling on identical machines can in turn be solved by formulating the prob-
lem as a minimum cost flow problem [3, 7]. Since we are interested in minimizing
cache usage (equivalently, minimizing processing time in the interval schedule),
for a given instance R we assign weights to intervals using the following corollary
from [7]:

1 See full version [20] for full proofs.



Corollary 1. [7, Cor. 2] For each interval Ij ∈ I(R) with processing time |Ij |,
define a weight wj = M −|Ij |+1 2, where M is a positive real number such that
M ≥

∑

|Ij |. Then a solution to maximum weight interval scheduling gives an
optimal solution to maximal interval scheduling with minimum total processing
time.

Using the above weight assignment and a maximum weight scheduling algo-
rithm we obtain a way of serving request R with the minimum number of faults,
and with minimum cache usage. Recall that in general we seek to minimize the
total cost of serving a sequence R, defined as fF (R) + cC(R), which does not
necessarily imply minimizing the number of faults F . However, we can still use
the same reduction to interval scheduling and subsequently to minimum cost
flow by first eliminating from I(R) all intervals whose cache cost is higher than
the fault cost. It is easy to see that any solution that includes an interval Ii such
that c|Ii| > f could be modified to obtain a smaller cost by not scheduling that
interval and paying for the fault instead. Hence, an optimal algorithm does not
schedule any interval whose cost is higher than that of the fault cost. The result-
ing optimal offline algorithm is shown in Algorithm 1, where MaxWeightSchedule
is an algorithm for maximum weight interval scheduling. Clearly, computing the
interval representation of a request R of n pages (lines 2-13) takes O(n) time,
while MaxWeightSchedule takes time O(m2 logm) [3], where m is the number
of intervals of the weighted interval scheduling problem. Naturally, m = O(n),
which yields an O(n2 logn) total running time. However, in general m might be
much smaller than n, depending on the number of different pages in R and the
number of intervals whose length is greater than f/c.

Theorem 1. Given a request sequence R of length n and a cache size k, and
constants f ≥ 0, and c ≥ 0, an optimal way of serving R that minimizes fF (R)+
cC(R), where F (R) and C(R) are the number of faults and cache usage when
serving R, can be computed in O(n2 logn) time.

4 Online Algorithms

In this section we present a family of online algorithms that adapt to the relative
cost of a fault versus the cache cost. These algorithms are k-competitive in the
worst case (when f ≫ c), but can achieve significant cache savings and smaller
cost when the cache cost is closer to the fault cost. As a warm-up, we show that
while classical optimal paging algorithms are also k-competitive, this ratio does
not improve when the cache cost is high relative to the fault cost.

Lemma 2. Let A be any marking or conservative paging algorithm. The com-
petitive ratio of A is at most k.

2 We add 1 to the weight of each interval so that intervals have non-zero weight if all
intervals have length 0.



Algorithm 1 Minimum Cache Usage Cost(R, k, f, c)

1: {Compute interval representation of R without unfinished intervals}
2: I = ∅ ; M ← 0
3: for j = 1 to |R| do
4: lastRequest[page(rj)] = −1
5: for j = 1 to |R| do
6: i←lastRequest[page(rj)]
7: if i 6= −1 then

8: s(Ii)← i+ 1 ; e(Ii)← j − 1
9: if c · |Ii| ≤ f then

10: add Ii to I; M ←M + |Ii|
11: lastRequest[σ] = j

12: for i = 1 to |I| do
13: w(Ii) = M − |Ii|+ 1
14: S ←MaxWeightSchedule(I, k − 1)
15: return f(|R| − |S|) + c(

∑
Ii∈S
|Ii|+ |R|)

Proof. Let R be any sequence and consider its k-phase partition. Since A is
marking or conservative, it faults at most k times per phase. In addition, in a
phase of m requests any algorithm has a cache cost of at most cmk. On the other
hand, any algorithm must fault at least once per phase, and must pay at least
cm for a phase of m requests. Thus A(R)/OPT (R) ≤ (fk+cmk)/(f+cm) = k.

Lemma 3. Let A be any lazy paging algorithm. Then the competitive ratio of A
is at least k.

Proof. Let α = f/c and c 6= 0. Suppose that α is finite. Let R = {σ1, σ2, . . . ,
σk−1, (σk)

x}, with σi 6= σj for all i 6= j, and (σ)x denotes a sequence of x
consecutive requests to σ. Since A is a lazy algorithm, it will not evict any
page from the cache, thus only faulting in the first k requests but using the
entire cache until the end of the sequence. Hence, A(R) ≥ fk+xkc. An optimal
algorithm can use only one cell of cache for a cost of OPT (R) = fk + xc. Since
x can be made arbitrarily large and f/c is bounded, the result follows. In the
case of an unbounded α, the same sequence used in the classic lower bound of
k applies: request the page in {σ1, . . . , σk+1} not currently in the cache. Thus,
A(R) ≥ n(f + c) and OPT (R) ≤ (n/k)f + nkc and the ratio approaches k as
α → ∞.

4.1 A Family of Cost-Sensitive Online Algorithms

Definition 3. For any online paging algorithm A, we define Ad as the algorithm
that acts like A, except that for each ri, it evicts page(ri) at time i + d if this
page has not been requested by that time and is still in the cache. In this case,
we say that page(ri) expires at time i + d. We say that a page suffers an early
eviction if it is evicted as a result of a capacity miss, according to A’s eviction
policy. Thus, if page(ri) is not requested or evicted early within [i, i+ d], it will
reside in cache for d+ 1 requests.



We restrict our choice of online algorithms in the definition above to mark-
ing and conservative algorithms and set d = ⌊α⌋ = ⌊f/c⌋. Consider A=LRU.
For some instances LRU could have a better cost than LRUα

3. We now show,
however, that the cost of LRUα is always at most twice the cost of LRU, while
there exists a sequence for which the cost of LRU is k times worse than the
cost of LRUα, which is the worst possible ratio for a marking algorithm. This
direct comparison of two algorithms can be seen as a variation of relative in-
terval analysis [15] that uses the cost ratio instead of the cost difference: for
algorithms A and B let Min(A,B) = lim infn→∞(min|R|=n{A(R)/B(R)}) and
Max(A,B) = lim supn→∞(max|R|=n{A(R)/B(R)}). Then the relative inter-
val of A and B is I(A,B) = [Min(A,B),Max(A,B)], and I(A,B) ⊆ [γ, δ] if
γ ≤ Min(A,B) and Max(A,B) ≤ δ. Thus, if I(A,B) ⊆ [γ ≥ 1, δ > 1] we say
that B dominates A, since on any sequence B is no worse than A and there is at
least one sequence for which B is better than A. Lemma 51 and Theorem 2 show
that I(LRU,LRUα) ⊆ [1/2, k]. Thus, although LRU does not properly dominate
LRUα, the latter is generally preferable to the former. Throughout the proofs in
this section we use the following lemma:

Lemma 4. [25, Cor. 11] Let two vectors x = (x1, . . . , xn) ≥ 0 and y =
(y1, . . . , yn) > 0 be given. Let π denote a permutation of (1, . . . , n). Then

∑n
i=1 xi

∑n
i=1 yi

≤ min
π

max

{

xi

yπ(i)
: 1 ≤ i ≤ n

}

≤ max

{

xi

yπ(i)
: 1 ≤ i ≤ n, and fixed π

}

Lemma 5. Let α = f/c be finite. Then Max(LRU,LRUα) = k.

Theorem 2. Assume k ≥ 2. Then, for all R, LRUα(R) ≤ 2 LRU(R), and thus
Min(LRU,LRUα) ≥ 1/2.

Proof. Let R be any sequence. Let F and C denote the faults and cache cost
of LRU on R and let Fα and Cα denote the corresponding costs for LRUα. Let
Cα = Cfh + Chh + Cff + Chf + γ, where Cfh is the cache cost of requests
that are faults for LRUα and hits for LRU, and Cff , Chh, and Chf are defined
analogously. γ is the cost of keeping unfinished intervals. We will use the following
properties: (1) every page of a request sequence is kept in LRU’s cache for at
least as long as in LRUα’s cache; and (2) any request that is a fault for LRUα

and is a hit for LRU corresponds to a page that expired in LRUα’s cache.
To see that Property (1) holds, note that if LRU evicts a page σ upon request

ri, then either σ has also expired in LRUα’s cache, or it is evicted at this point on
request ri as well. The latter holds because if σ was evicted from LRU’s cache,
then there are k distinct requests since the last request to σ, and since σ has
not expired in LRUα’s cache, there are k − 1 pages in LRUα’s cache that have
not expired either and are younger than σ. Hence upon request ri, LRUα evicts
σ as well. Property (1) implies that every request that is a hit for LRUα is a hit

3 To keep notation simple, we refer to A⌊α⌋ as Aα.



for LRU, and thus Chf = 0. Property (2) follows from the fact if LRUα evicts a
page σ due a capacity miss, then its cache is full and since all pages stay longer
in LRU’s cache, then LRU’s cache holds the same pages and evicts σ as well,
hence the next request to σ is also a fault for LRU.

Property (1) implies as well that LRU’s cache cost is C ≥ Cfh + Fα − F +
Cff +Chh+γ. Moreover, both properties imply that Cfh = ⌊α⌋(Fα−F ). Hence,

LRUα(R)

LRU(R)
≤

fFα + c(⌊α⌋(Fα − F ) + Chh + Cff + γ)

fF + c(⌊α⌋(Fα − F ) + Fα − F + Cff + Chh + γ)

≤
fFα + c⌊α⌋(Fα − F )

fF + c(⌊α⌋(Fα − F ) + Fα − F )
(by Lemma 4)

=
αFα + ⌊α⌋(Fα − F )

αF + ⌊α⌋(Fα − F ) + Fα − F

The above expression is bounded above by 2 if α ≥ 2. The case α < 2 is
covered by the upper bound on the competitive ratio of Aα in Theorem 3. ⊓⊔

4.2 Upper bound on the Competitive Ratio of Aα

We now show that for any marking or conservative algorithm A, the competitive
ratio of Aα adapts to the relative costs of faults and hits, being at most 2
when the cost of faults is relatively small, and matching the competitiveness of
traditional paging algorithms when the cache cost is negligible.1

Theorem 3. Let A be any marking or conservative algorithm and let α = f/c.

Assume k ≥ 2. The competitive ratio of Aα is at most 2− 1+α−⌊α⌋
α+1 if α < k and

min
{

k, α(k+1)
k+α−1

}

if α ≥ k.

Lemma 6 gives a lower bound on the competitive ratio for Aα, which matches
the upper bound for α < k−1. For larger values of α the gap between upper and
lower bounds is reduced as α grows. Lemma 7 gives a straightforward smaller
lower bound for any online algorithm.1

Lemma 6. For A marking or conservative, the competitive ratio of Aα is at

least 2− 1+α−⌊α⌋
α+1 if α < k − 1 and αk+k2/2

α+k2 otherwise.

Lemma 7. The competitive ratio of any online deterministic algorithm is at

least k(α+1)
α+k2 .

The classic paging cost model has been criticized for not being able to cap-
ture the benefit of online algorithms on sequences with high locality of refer-
ence [6]. Various studies have analyzed the competitiveness of paging algorithms
in a parameterized manner, attempting to capture relevant characteristics of
sequences such as, for example, locality and typical memory accesses [25], and
attack rate [23]. We now give a parameterized competitive ratio for Aα that
varies with the locality of reference of the input sequence, for which we use the
definition in terms of the average phase length in its k-phase partition.1



Theorem 4. Let A be any marking or conservative algorithm, let α = f/c, and
let k ≥ 2. Let R be any request sequence and let φ be the number of phases
in R’s k-phase partition. Let L(R) = |R|/φ. Then Aα(R)/OPT (R) ≤ 2 if

L(R) > kα(α − 2), and Aα(R)
OPT (R) ≤ 1 + αk+1−α

α+k−1+L(R) otherwise.

4.3 Real World Sequences

We measured the performance of various algorithms on real world cache traces
collected from 4 applications using VMTrace (for Linux) and the Etch tool (on
Windows NT)[19]. We obtained the traces from [2] and truncated them to 3×106

entries. We simulated LRU, LRUα, FWF, FWFα, FIFO, FIFOα, and OPT on
these sequences. For each sequence, we used the size of cache that would yield
a fault rate of 1% and 0.1% for LRU. Figure 4.3 shows the cost ratio compared
to OPT, fault rate, and average cache usage for the espresso sequence (a circuit
simulator) for two cache sizes. Results for other sequences are shown in the full
version [20]. For the total cost we set c = 1 and f = α. We implemented the
optimal offline (Algorithm 1) using the reduction to minimum cost flow in [7],
and solved the minimum cost flow instances using the implementation of the cost
scaling algorithm from the LEMON C++ library [1]. Results in these practical
instances show that the cost of Aα algorithms adapt nicely to the value of α,
and that their fault rate and cache usage approaches those ones of the optimal
offline. In fact, the ratio Aα/OPT is never more than 2 and in most cases is
close to 1. As suggested by Theorem 4, the cost ratio of Aα algorithms improves
for sequences with higher locality. Note as well that as α grows, the performance
of the traditional marking algorithms gets closer to that of its cost-sensitive
counterpart, which is more noticeable for instances with smaller caches.

5 Conclusions

We introduced a model for paging with minimum cache usage and presented a
cost-sensitive family of online algorithms whose performance adapts to the rela-
tive costs of cache and faults. The cost model that we propose is able to capture
locality of reference, yielding a competitive ratio of at most 2 for inputs with
high locality. Experiments on request sequences collected from actual programs
agree with the theoretical results.

It would be interesting to show a better lower bound for online algorithms,
and to propose and analyze other online algorithms, including randomized ones.
A natural direction of research would be to evaluate the model in an application,
either in theory or in practice. For example, it would be interesting to study and
design a global shared caching strategy that varies the relative cache and fault
cost for various threads so that the cooperative execution leads to an advantage
in overall performance.
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Fig. 2. Cost ratio, fault rate, and average cache used by LRU, LRUd, FWF, FWFd,
FIFO, FIFOd, and OPT (with d = α) on sequence “espresso” of length 3 × 106 with
cache sizes k = 5 (average phase length 196) and k = 7 (average phase length 1502).
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