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A bstract 

We give algorithms to minimize density for chan

nels with terminals that are movable subject to certain 

constraints. The main cases considered are channels 

with linear order constraints, channels with linear or

der constraints and separation constraints, channels 

with movable modules containing fixed terminals, and 

channels with movable modules and terminals. Jn each 

case, we improve previous results for running time and 

space by a factor of L/ lg n and L, respectively, where 

L is the channel length, and n is the number of termi

nals. 

1 Introduction 

The channel routing problem has received a great 

deal of attention in VLSI layout design. Traditionally, 

channel routers have assumed that the positions ofter

minals on each side are fixed, and they seek to mini

mize the width required to route the channel. While 

determining the width required to route a channel 

is NP-complete [8], channel density provides a fairly 
good estimate for channel width. In fact , many ex

isting channel routers achieve widths that are usually 

within one of the density, e.g., [7]. 

In this paper we consider the situation in which 

the orderings of the terminals and components along 

each side of the channel are fixed, but the exact po

sitions may vary. The existence of movable terminals 

is quite typical in practice and can be used to reduce 

the channel density and channel width. When only 

the ordering of terminals on each side is fixed, Gopal, 

Coppersmith, and Wong [4] give an O(n2
) algorithm 

to minimize the channel width 1 , where n is the num

ber of terminals. LaPaugh and Pinter [6] presented an 

*Supported in part by NSF grant CCR-9109550 
1 Th.is does not contrad.ict the NP-completeness result, due 

to the use of a model in which there is complete freedorn to 

choose the amount of space between adjacent tenninals. 

O(n2 lgn) algorithm to minimize the channel density 

with the additional constraint that the relative posi

tions of the terminals on each side are fixed. That is, 

the terminals lie on a single top module and a single 

bottom module, and the only freedom is to shift the 

modules relative to each other . More recently, John

son, LaPaugh, and Pinter [5] provided an O(n3 ) al

gorithm to minimize density when there are multiple 

modules and terminal positions are fixed within each 

module, but the only other constraint is a fixed order 

for the modules on each side. 

In the above works, however, the resulting channel 

length may be as large as p+q, where pis the number 

of top terminals and q is the number of bottom termi

nals (or as large as the sum of the module lengths). In 

contrast, Cai and Wong [l, 2] minimize density for a 

channel of fixed length L under a wide variety of con

straints on the terminal positions. For channels with 

only linear order constraints (the orderings of the ter

minals on each side of the channel are fixed), they pro

posed an O(pqL) algorithm to minimize the channel 

density. If we add separation constraints (the distance 

between each pair of consecutive terminals is within a 

certain range), their running time and space become 
O(pqL3

) and O(pqL 2
), respectively. With multiple 

modules and fixed terminals within each module, they 

obtain O(L3
) time and space. If the terminals within 

the modules are also movable , then the running time 

and space become O(pqL3
). Cai and Wong describe 

the practical applicability of these problems and show 

good reduction of density on sample problems with 

modest values of L. 

In this paper we provide more efficient algorithms 

for these four problems of Cai and Wong [ l , 2]. In 

each case, we improve the running time by a factor 

of L/ lg(p + q) and the space by a factor of L. (It is 

easy to also incorporate "position constraints" , which 

specify a set of allowable columns for each terminal, 

as do Cai and Wong; we will omit further discussion 

of such constraints in this paper.) 

The remainder of this paper is organized as fol-



lows. In Section 2, we introduce some additional ter

minology and notation which will be used through

out this paper. Section 3 describes an algorithm to 

find the minimum channel density for channels with 

linear order constraints by using a dynamic program

ming approach. The algorithm is then extended in 

Sections 4, 5, and 6 to handle channels with separa

tion constraints , channels with movable modules , and 

channels with movable modules and movable termi

nals, respectively. Finally, in Section 7, we provide 

some concluding remarks. 

2 Preliminaries 

We start this section by giving the problem defini

tion and some notations. We define t1, t2 , ... , tp and 

b1 , b2 , .. . , bq to be the terminals on the top and bot

tom side of the channel, which are ordered from left 

to right. We are given L column positions in which to 

place the terminals while retaining the given ordering 

on each side. The goal is to find the positions of the 

terminals such that the channel density is minimized. 

Note that the density at any given column depends 

only on the fixed order of the terminals on each side 

and the position of that column within those order

ings. Then let d1 (i,j) be the density at the column of 

t; when t; is placed between bj and bHi, let d2( i, j) be 

the density at the column of bj when bj is placed be

tween ti and ti+l, and let d3( i, j) be the density at the 

column oft; and bj when they are aligned. These den

sity fun ctions can be computed easily in O(pq) time 

for all possible i,j; we assume throughout this paper 

that these values have been computed and saved. Also 

define 8f(i,j) to be 

8d(· ')={ l ifd1(i ,j):Sd 
1 i,J 00 if di(i ,j) > d, 

and define 8g( i, j) and 8g( i, j) analogously. 

The main idea of our algorithms is as follows. Given 

a target density d, we compute the minimum channel 

length required to achieve the density. Based on the 

computed channel length and L , we increase or de

crease the target density. By using a binary search 

on all the possible channel densities, we can find the 

minimum density achievable in length L. 

3 Channels with Linear Order Con

straints 

In this section, we give an algorithm to minimize 

the channel density for channels with linear order con-

straints. We begin by showing how to find the mini

mum channel length at a given target density d. To 

do that, we introduce some subproblems used as the 

basis for a solution by dynamic programming. (We 

show in detail only how to find the minimum channel 

length, but one can readily retrace the computations 

leading to this result to determine the corresponding 

terminal placement.) 

The length function Ld( i, j) is defined to be the 

minimum number of columns spanned by top termi

nals ti, .. . , t; and bottom terminals bi , ... , bj, with 

the restriction that each of those columns has den

sity at most d when all the other terminals are placed 

to the right of both t; and bj. If the target density 

d is unachievable, then Ld(i,j) is defined to be oo. 

We define Lf(i,j) the same way as Ld(i ,j) but with 

the constraint that t; is to the right of bj. Lg ( i, j) 

and L3(i ,j) are defined similarly but with the con

straint that t; is to the left of bi , and t; is aligned with 

bj , respectively. We now show how to compute these 

functions recursively using the shorthand 

Ld(i,j) = min{Lf(i,j), Lg(i ,j), L3(i,j)} 

The final answer to our problem is Ld(p, q) . 

Consider first the computation of Lf(i , j) . By the 

definition of Lf(i,j), t; must be to the right of bj. 

Thus we require one column more than are spanned 

by t1, t2, .. ., ti-l and bi , b2 , .. ., br 

Lf(i , j) = (Ld(i -1 ,j) + l)81(i,j) 

Similarly, we can express Lg(i ,j) and L3(i ,j) as 

and 

L3(i , j) = (Ld(i - l , j- 1) + l)8g(i ,j) . 

For initial conditions, we have, for c = 1, 2, 3, 

j 

L ~( O ,j) = j IT 8~(0, k), j=O,l, ... , q , 

k=I 

and 

L~(i, 0) = i IT 8~(k , 0) , i=O, l ,. . ., p , 

k=l 

where we think of to and bo as dummy terminals at 

the left of their respective sides that do not contribute 

to density. 



Theorem 1 Given a target density d , the minimum 

channel length subject to linear order constraints can 

be computed in O(pq) time and space. 

Proof. We have already noted that the o values can be 

computed in O(pq) time, and an additional O(p + q) 

time suffices to determine the ini tial conditions . Then 

we compute the values of the three length functions 

together in order of increasing i and j using the re

currences above. There is a total of O(pq) values to 

compute, and each can be computed in 0( 1) time from 

previously computed values. • 

Corollary 2 T he minimum density of a channel 

subject to linear order constraints can be found in 

O(pq lg(p + q)) time and O(pq) space. 

Proof. The minimum density problem can be solved 

by binary search on density, which is at most p + q . 

• 

4 Channels with Linear Order Con

str aints and Separation Constraints 

[n this section, we extend the algorithm of Section 3 

to handle channels with linear order constraints and 

separation constraints. Let the separation constraints 

have the following form: the distance s; between t ; 

and t;+1 must satisfy l; :'.S s; :'.Sr;, and the distance sj 
between bj and bj+1 must satisfy lj :'.S sj :'.S rj. 

To handle the distance constraints, we have to mod

ify the length functions. Let Lf(i,j, k) and L~(i , j , k) 
be defined as in Section 3 but with the restriction that 

the horizontal distance between i; and bj equals k (in 

absolute value). We define Lg(i , j) exactly as before . 

The constraints for the three length functions are il

lustrated in Figure 1. Then , Ld( i , j) is obtained by 

minimizing over the three types of length functions 

and a ll possible k's. 

Consider Lf(i , j , k) first . There are three cases: (1) 

t;_ 1 is to the right of bi , (2) t ; _ 1 is to the left of bj , and 

(3) t;_ 1 is aligned with bj . And the minimum among 

the three cases is the minimum channel length. In the 

first case, 

Lt(i,j, k) = ~~n{Lt(i-1,j, k') + k - k' }of(i , j) , 

with l; - 1 :'.S k - k' :'.S r; - 1. Figure 2( a) illustrates the 

restriction on k'. The second case can be analyzed 

similarly, and we have 

Ld1(i , j , k) = m i n{L~(i - l , j , k') + k}6f(i , j) , 
k' 

t· t · 

: .... k ~ : : .... k ~ : 

bj bj 

(a) (b) 

t 

Figure 1 : Three types of length functions: (a) 

Lf(i,j, k) (b) Lg(i ,j, k) (c) Lg(i,j ) 

: .... k' ~ : k - k' : .... 

b· . 
: .!..--- k ---+- : 

(a) 

(c) 

: .... k' ~ : ... k ~ : 

. b· . 

:-+- k +1
k'- : 

(b) 

Fig ure 2 : Three possibilities of Lf(i ,j, k): (a) ti-I 

is to the right of bj. (b) t;_ 1 is to the left of b1 . (c) 

t;-1 is aligned with b1 . 

with l;-1 :'.S k+k' :'.S r;-1. In the third case, which is 

possible only when l;-1 ~ k ~ r ;-1, we find 

Lt(i , j, k) = (Lg(i - l , j) + k)ot(i , j) . 

All three cases are shown in Figure 2. The range of k 

isO<k<L. 
From the above argument, Lf(i , j, k) can b e ex

pressed as 

d { (minA1)6f(i , j) 
Li(i,j, k)= (minA2)6f(i,j) 

where 

and 

if l; - 1 S k S r;-1 

otherwise 

A2 = {min1,_ 1 <k -k'<r, _ 1 {Lf(i -1 , j , k') + k - k'}, 

min1,_ 1 ~k+k'~r,_ 1 {L~(i - l,j, k') + k}} . 

Similarly, L~( i, j , k) and Lg ( i , j) can be expressed as 

follows: 

d { (minB1)6~(i,j) 
L2 (i , j , k) = (minB2)6~(i , j) 

if LL 1 s ks r;_1 

otherwise 



and 

where 

(min C1)c5g(i, j) 

if [/;-1 , r;-1] n [t;_ 1, r;_ 1] #- 0 
(minC2)c5i(i , j) otherwise 

Bi = { L3( i , j - l) + k} U B2 , 

B2={min1 1 <k+k'<r~ {Lf(i,j-1,k')+k}, 
t-1- - t-1 

min11 <k -k'<r' {L~(i , j-1 , k')+k-k'}} , 
t-1- - t -1 

C1 = {L3(i- l,j- l)+max{l;-1 , /i_i}}UC2 , 

C2 = {min(m,k')Elm k' {Lf(i - l , j - 1, k') + m} , 

min(m,k')EJm"k' { L~( i - 1, j - 1, k') + m}} , 

and 

Im ,k' = {(m, k')ili-1 :Sm :S r;-1 and 

Z:-1 :Sm+ k' :S rL1} , 

lm ,k' = {(m, k')Jl;_ 1 :Sm :S r;_ 1 and 

l;-1 :Sm+ k' :S r;-1} . 

Theorem 3 Given a target density d, the minimum 

channel length subject to linear order constraints and 

separation constraints can be computed in O(pqL 2
) 

tim e and O(pqL) space. 

Proof. We compute values of the length functions in 

order of increasing i, j and k , and then the minimum 

channel length is 

min { min Lt(P, q, k), min L~(p , q, k) , Lg(p , q)} . 
O<k<L O<k<L 

There are O(pqL) values of Lf and L~ to be computed, 

and each can be computed from previously computed 
values in O(L) time. In addition, there are O(pq) val

ues of Lg to be computed, each in time O(L2
). 

• 
Corollary 4 The minimum density of a channel sub

j ect to linear order constraints and separation con

straints can be found in O(pqL2 1g(p + q)) time and 

O(pqL) space. • 

5 Channels with Movable Modules 

This section considers the problem of channels with 

movable modules, but the terminals inside the mod

ules are fixed. We first augment the set of terminals to 

include the endpoints of the modules. Then we insert 

pseudo-terminals on the modules until every column in 

the modules contains a terminal or a pseudo-terminal 

as in (2]. As a result , the separation constraints be

tween terminals inside a top module have the form 

l; = r ; = 1 (an adjacency constraint), and the sep

aration constraints between the right endpoint of a 

top module and the left endpoint of the module im

mediately to its right are l; = 1, and r; = oo. (The 

constraints on the bottom are similar.) Now we can 

see this problem as a channel subj ect to linear order 

constraints and special separation constraints. 

The length functions used in this section are as de

fined in Section 3. The approach to calculate these 

length functions is the same except for a modification 

to handle adjacency constraints. Using the notational 

shorthand 

L~ , y(i , j)=min{L~(i,j) , Li(i , j)} , 

we have: 

{ 
(Ld(i-l , j)+l)c5f(i , j) 

Lf(i , j) = (Lf,
3
(i- l , j) + l)c5f(i , j) 

if ri-1 = 00 

ifr;-1=1 

'f I 
I rj-l = oo 

if rj _1 = 1 

(Ld(i - l , j-1) + l)c5i(i , j) 

L~(i , j) = 

'f I 
i r;-1 = rj-l = oo 

(LL(i- l ,j- 1) + l)og(i , j) 

' if r;_ 1 = 1 and rj_ 1 = oo 

(L~ 3 (i - l , j-1) + l)c5g(i , j) 

' if r ;_ 1 = oo and rj_ 1 = l 

(L3(i - 1, j - 1) + l)c5i(i , j) 

if ri - 1 = rJ-l = 1 

and 

Ld(i , j) = min{Lf (i , j) , L~(i , j) , L~(i , j)} . 

Theore1n 5 Given a target density d, the minimum 

channel length for channels with movable modules can 

be computed in O(L2
) tim e and space. 

Proof. We can compute Lf(i,j) , L~(i , j) , and Lg(i , j) 

from previously computed values in 0(1) time. Includ

ing the pseudo-terminals, there are O(L) terminals on 

each side of the channel, which yields O(L2
) length 

function values to be computed. • 

Corollary 6 The minimum density of a channel with 

movable modules can be solved in O(L 2 lg(p+q)) time 

and O(L2
) space. • 



0 .. .. 1 ii I O · .. ·l ........... J.__i ____. . -k-- . -k--..... 1- · ..... 1-

0 .. I .bj I 0 .. 1 bj l 

(a) (b) 

o .... , ii i . -k-..... 1-

0 .. 1 bi l 

(c) 

Figure 3: Three types of length fw1ctions: (a) 

Lf(i,j,k,l) (b) Lg(i,j,k,l) (c) Lg(i,j,k,l) 

6 Channels w ith M ovable Terminals 

and Modules 

In this section, we consider channels with movable 

terminals and modules. That is, the modules on each 

side of the channel are movable as in Section 5, but 

we also allow the terminals within the modules to be 

movable . To handle this situation, we have to intro

duce new definitions and length functions. 

Define a left terminal to be the leftmost terminal of 

a module, a left endpoint to be the left endpoint of a 

module, and a right endpoint to be the right endpoint 

of a module. Now augment the set of terminals to in

clude the endpoints of the modules. The length func

tions have four variables i, j, k, and l as illustrated in 

Figure 3; here k and l represent the distance from the 

rightmost of t; and bj to the left edges of their mod

ules. The length function Ld(i,j) is equal to the mini

mum of the three types of length functions for all pos

sible k's and l's (where each length function accounts 

for Lhe lengths of the modules containing t 1 , t 2 , ... , t; 

and b1,b2, ... ,bj)· 

In order to compute the length functions, we clas

sify the terminals into four types: left endpoints, right 

endpoints, left terminals, and others. With a lengthy 

case analysis based on the types of t; and bj, we 

can minimize density in O(pqL 2 lg(p + q)) time and 

O(pqL2
) space. 

7 Conclusion 

We have presented algorithms to minimize the 

channel density for a variety of problems. These 

algorithms improve the previous known results by 

O(L/lg(p + q)) in running time and O(L) in space. 

These algorithms can also easily be extended to chan-

nels with exits or channels with irregular boundaries 

as in [l] without increasing the complexity. ln the pro

cess of minimizing density for a fixed channel length, 

we have provided even more efficient algorithms to 

minimize length at a fixed density. By running the 

latter type of algorithm O(p + q) times , we can also 

minimize more complex cost measures, such as area 

(where density is treated as width) in a channel of 

length at most L. 

For the case of movable modules with fixed termi

nals, density can be minimized in a channel of length 

L in O(n3 lg n) time independent of L (which is an 

improvement for large L) using the method of Chao 

and LaPaugh [3]. However, their method can not be 

extended to handle channels with movable terminals. 

An interesting open question is to solve other varia

tions of the problem in time polynominal in n only. 
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