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Abstract

In 1981 Hong and Kung [HK81] proved a lower bound on the amount of communication
(amount of data moved between a small, fast memory and large, slow memory) needed to
perform dense, n-by-n matrix-multiplication using the conventional O(n3) algorithm, where the
input matrices were too large to fit in the small, fast memory. In 2004 Irony, Toledo and Tiskin
[ITT04] gave a new proof of this result and extended it to the parallel case (where communication
means the amount of data moved between processors). In both cases the lower bound may be
expressed as Ω(#arithmetic operations /

√
M), where M is the size of the fast memory (or local

memory in the parallel case).
Here we generalize these results to a much wider variety of algorithms, including LU factoriza-

tion, Cholesky factorization, LDLT factorization, QR factorization, algorithms for eigenvalues
and singular values, i.e., essentially all direct methods of linear algebra.

The proof works for dense or sparse matrices, and for sequential or parallel algorithms. In
addition to lower bounds on the amount of data moved (bandwidth) we get lower bounds on
the number of messages required to move it (latency).

We illustrate how to extend our lower bound technique to compositions of linear algebra
operations (like computing powers of a matrix), to decide whether it is enough to call a sequence
of simpler optimal algorithms (like matrix multiplication) to minimize communication, or if we
can do better. We give examples of both. We also show how to extend our lower bounds to
certain graph theoretic problems.

We point out recently designed algorithms for dense LU, Cholesky, QR, eigenvalue and the
SVD problems that attain these lower bounds; implementations of LU and QR show large
speedups over conventional linear algebra algorithms in standard libraries like LAPACK and
ScaLAPACK. Many open problems remain.

1 Introduction

Algorithms have two kinds of costs: arithmetic and communication, by which we mean either
moving data between levels of a memory hierarchy (in the sequential case) or over a network
connecting processors (in the parallel case). There are two costs associated with communication:
bandwidth (proportional to the total number of words of data moved) and latency (proportional to
the number of messages in which these words are packed and sent). For example, we may model the
cost of sending m words in a single message as α+βm, where α is the latency (measured in seconds)
and β is the reciprocal bandwidth (measured in seconds per word). Depending on the technology,
either latency or bandwidth costs may be larger, often dominating the cost of arithmetic. So it is
of interest to have algorithms minimizing both communication costs.

In this paper we prove a general lower bound on the amount of data moved (i.e., bandwidth)
by a general class of algorithms, including most dense and sparse linear algebra algorithms, as well
as some graph theoretic algorithms. Our model is the result of Hong and Kung [HK81] which says
that to multiply two dense n-by-n matrices on a machine with a large slow memory (in which the
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matrices initially reside) and a small fast memory of size M (too small to store the matrices, but
arithmetic may only be done on data in fast memory), Ω(n3/

√
M) words of data must be moved

between fast and slow memory. This lower bound is attained by a variety of “blocked” algorithms.
This lower bound may also be expressed as Ω(#arithmetic operations /

√
M) 1.

This result was proven differently by Irony, Toledo and Tiskin [ITT04] and generalized to the
parallel case, where P processors multiply two n-by-n matrices. In the “memory-scalable” case,
where each processor stores the minimal O(n2/P ) words of data, they obtain the lower bound
Ω(#arithmetic operations per processor / √memory per processor) = Ω( n3/P√

n2/P
) = Ω( n2

√
P

), which

is attained by Cannon’s algorithm [Can69] [Dem96, Lecture 11]. The paper [ITT04] also considers
the “3D” case, which does less communication by replicating the matrices and so using O(P 1/3)
times as much memory as the minimal possible.

Here we begin with the proof in [ITT04], which starts with the sum Cij =
∑

k Aik · Bkj ,
and uses a geometric argument on the lattice of indices (i, j, k) to bound the number of updates
Cij+ = Aik · Bkj that can be performed when a subset of matrix entries are in fast memory. This
proof generalizes in a number of ways: in particular it does not depend on the matrices being dense,
or the output being distinct from the input. These observations let us state and prove a general
Theorem 2 in section 2, that a lower bound on the number of words moved into or out of a fast or
local memory of size M is Ω(#arithmetic operations /

√
M ). This applies to both the sequential

case (where M is a fast memory) and the parallel case; in the parallel case further assumptions
about whether the algorithm is memory balanced (to estimate the effective M) are needed to get
a lower bound on the overall algorithm.

Corollary 3 of Theorem 2 provides a simple lower bound on latency (just the lower bound
on bandwidth divided by the largest possible message size, namely the memory size M). Both
bandwidth and latency lower bounds apply straightforwardly to a nested memory hierarchy with
more than two layers, bounding from below the communication between any adjacent layers in the
hierarchy [Sav95, BDHS09].

In Section 3, we present simple corollaries applying Theorem 2 to conventional (non-Strassen-
like) implementations of matrix multiplication and other BLAS operations [BLA, BDD+02, BDD+01]
(dense or sparse), LU factorization, Cholesky factorization and “LDLT ” factorization. These fac-
torizations may also be dense or sparse, with any kind of pivoting, and be exact or “incomplete”,
e.g., ILU [Saa96] (some of these results can be also obtained, just for dense matrices, by suitable
reductions from [HK81] or [ITT04], and we point these out).

Section 4 considers lower bounds for algorithms that apply orthogonal transformations to the
left and/or right of matrices. This class includes the QR factorization, the standard algorithms for
eigenvalues and eigenvectors, and the singular value decomposition (SVD). For reasons explained
there, the counting techniques of [HK81] and [ITT04] do not apply, so we need a different but
related lower bound argument.

Section 5 shows how to extend our lower bounds to more general computations where we com-
pose a sequence of simpler linear algebra operations (like matrix multiplication, LU decomposition,
etc.), so the outputs of one operation may be inputs to later ones. If these intermediate results do
not need to be saved in slow memory, or if some inputs are given by formulas (like A(i, j) = 1/(i+j))
and so do not need to be fetched from memory, or if the final output is just a scalar (the norm
or determinant of a matrix), then it is natural to ask whether there is a better algorithm than
just using optimized versions of each operation in the sequence. We give examples where this

1The sequential communication model used here is sometimes called the two-level I/O model or disk access machine
(DAM) model (see [AV88], [BBF+07], [CR06]). Our model follows that of [HK81] and [ITT04] in that it assumes the
block-transfer size is one word of data (B = 1 in the common notation).

2



simple approach is optimal, and when it is not. We also exploit the natural correspondence be-
tween matrices and graphs to derive communication lower bounds for certain graph algorithms,
like All-Pairs-Shortest-Path.

Finally, Section 6 discusses attainability of these lower bounds, and open problems. Briefly, in
the dense case all the lower bounds are attainable (in the parallel case, this is modulo polylogP
factors, and assuming the minimal O(n2/P ) storage per processor); see Tables 1 and 2 (some of
these algorithms are also pointed out in sections 3 and 4). The optimal algorithms for square matrix
multiplication are well known, as mentioned above. Optimal algorithms for dense LU, Cholesky,
QR, eigenvalue problems and the SVD are more recent, and not part of standard libraries like
LAPACK [ABB+92] and ScaLAPACK [BCC+97]. Only in the case of Cholesky do we know of a
sequential algorithm that both minimizes bandwidth and latency across arbitrary levels of memory
hierarchy. No optimal algorithm is known for architecture mixing parallelism and multiple memory
hierarchies, i.e., most real architectures. Optimal “3D” algorithms for anything other than matrix-
multiplication, and optimal sparse algorithms for anything are unknown. For highly rectangular
dense matrices (e.g., matrix-vector multiplication), or for sufficiently sparse matrices, our new
lower bound is sometimes lower than the trivial lower bound (#inputs + #outputs), and so it is
not always attainable.

2 First Lower Bound

Let c(i, j) be the memory address of a destination to put a computed result, where i and j are
integer indices (thus Mem(c(i, j)) will contain the actual value). All we assume is that c(i, j) is a
one-to-one function on a set SC of pairs (i, j) for destinations we want to compute; in other words
all c(i, j) for (i, j) ∈ SC are distinct. On a parallel machine c(i, j) refers to a location on some
processor; the processor number is implicitly part of c(i, j).

Similarly, let a(i, k) and b(k, j) be memory addresses of operands, also one-to-one on sets made
explicit below. We make no assumptions about whether or not some c(i, j) can ever equal some
a(i′, j′); they may or may not. Similarly, the addresses given by a and b, or by b and c, may overlap
arbitrarily. We assume that the result to be stored at each c(i, j) is computed only once.

Now let fij and gijk be “nontrivial” functions in a sense we make clear below. The computation
we want to perform is for all (i, j) ∈ SC :

Mem(c(i, j)) = fij(gijk(Mem(a(i, k)),Mem(b(k, j))) for k ∈ Sij , any other arguments) (1)

Here fij depends nontrivially on its arguments gijk(·, ·) which in turn depend nontrivially on their
arguments Mem(a(i, k)) and Mem(b(k, j)), in the following sense: we need at least one word of
space to compute fij (which may or may not be Mem(c(i, j))) to act as “accumulator” of the value
of fij , and we need the values Mem(a(i, k)) and Mem(b(k, j)) in fast memory before evaluating
gijk. Note also that we may not know until after the computation what SC , fij , Sij , gijk or “any
other arguments” were, since they may be determined on the fly (e.g., pivot order).

The question is how many slow memory references are required to perform this computation,
when all we are allowed to do is compute the gijk in a different order, and compute and store
the fij is a different order. This appears to restrict possible reorderings to those where fij is
computed correctly, since we are not assuming it is an associative or commutative function, or
those reorderings that avoid races because some c(i, j) may be used later as inputs. But there is no
need for such restrictions: the lower bound applies to all reorderings, correct or incorrect. Using
only structural information, e.g., about the sparsity patterns of the matrices, we can sometimes
deduce that the computed result fij(·) is exactly zero, to possibly avoid a memory reference to
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store the result at c(i, j). Section 3.3 discusses this possibility more carefully, and shows how to
carefully count operations to preserve the validity of our lower bounds.

The argument, following [ITT04], is: (1) Break the stream of instructions executed into seg-
ments, where each segment contains exactly M load and store instructions (i.e., that cause com-
munication), where M is the fast (or local) memory size. (2) Bound from above the number of
evaluations of functions gijk that can be performed during any segment, calling this upper bound
F . (3) Bound from below the number of (complete) segments by the total number of evaluations
of gijk (call it G) divided by F , i.e., #G/F $. (4) Bound from below the number of loads and stores
by M times the minimum number of complete segments, M · #G/F $.

Now we compute the upper bound F using a geometric theorem of Loomis and Whitney [LW49,
BZ88]. We need only the simplest version of their result here:

Lemma 1. [LW49, BZ88]. Let V be a finite set of lattice points in R3, i.e., points (x, y, z) with
integer coordinates. Let Ax be the projection of V in the x-direction, i.e., all points (y, z) such that
there exists an x so that (x, y, z) ∈ V . Define Ay and Az similarly. Let | · | denote the cardinality
of a set. Then |V | ≤

√
|Ax| · |Ay| · |Az|.

Now we must bound the maximum number of possibly different Mem(c(i, j)) (or corresponding
“accumulators”), Mem(a(i, k)), and Mem(b(k, j)) that can reside in fast memory during a segment.
Since we want to accommodate the most general case where input and output arguments can
overlap, we need to use a more complicated model than in [ITT04], where no such overlap was
possible. To this end, we consider each input or output operand of (1) that appears in fast memory
during a segment of M slow memory operations. It may be that an operand appears in fast memory
for a while, disappears, and reappears, possibly several times (we assume there is at most one copy
at a time in the sequential model, and at most one for each processor in the parallel model; this
obviously is consistent with obtaining a lower bound). For each period of continuous existence of an
operand in fast memory, we label its Source (how it came to be in fast memory) and its Destination
(what happens when it disappears):

• Source S1: The operand was already in fast memory at the beginning of the segment, and/or
read from slow memory. There are at most 2M such operands altogether, because the fast
memory has size M , and because a segment contains at most M reads from slow memory.

• Source S2: The operand is computed (created) during the segment. Without more infor-
mation, there is no bound on the number of such operands.

• Destination D1: An operand is left in fast memory at the end of the segment (so that it
is available at the beginning of the next one), and/or written to slow memory. There are at
most 2M such operands altogether, again because the fast memory has size M , and because
a segment contains at most M writes to slow memory.

• Destination D2: An operand is neither left in fast memory nor written to slow memory,
but simply discarded. Again, without more information, there is no bound on the number of
such operands.

We may correspondingly label each period of continuous existence of any operand in fast memory
during one segment by one of four possible labels Si/Dj, indicating the Source and Destination
of the operand at the beginning and end of the period. Based on the above description, the
total number of operands of all types except S2/D2 is bounded by 4M (the maximum number of
S1 operands plus the number of D1 operands, an upper bound) 2. The S2/D2 operands, those

2More careful but complicated accounting can reduce this upper bound to 3M .
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created during the segment and then discarded without causing any slow memory traffic, cannot be
bounded without further information. For our simplest model, adequate for matrix multiplication,
LU decomposition, etc., we have no S2/D2 arguments; they reappear when we analyze the QR
decomposition in Section 4.

Using the set of lattice points (i, j, k) to represent each function evaluation
gijk(Mem(a(i, k)),Mem(b(k, j))), and assuming there are no S2/D2 arguments, then by Lemma 1
their number is then bounded by F =

√
(4M)3, so the total number of loads and stores is bounded

by M#G
F $ = M# G√

(4M)3
$ ≥ G

8
√

M
−M . This proves the first lower bound:

Theorem 2. In the notation defined above, and in particular assuming there are no S2/D2 argu-
ments (created and discarded without causing memory traffic) the number of loads and stores needed
to evaluate (1) is at least G

8
√

M
−M .

We may also write this as Ω(#arithmetic operations /
√

M) understanding that we only count
arithmetic operations required to evaluate the gijk for (i, j) ∈ SC and k ∈ Sij . We note that a more
careful, problem-dependent analysis that depends on how much the three arguments can overlap,
may sometimes increase the lower bound by a factor of as much as 8, but for simplicity we omit
this.

This lower bound is not always attainable, even for dense matrix multiplication: If the matrices
are so small that they all fit in fast memory simultaneously, so 3n2 ≤ M , then the number of loads
and stores may be just 3n2, which can be much larger than n3/

√
M . So a more refined lower bound

is max(G/(8
√

M) − M,#inputs + #outputs). We generally omit this detail from statements of
later corollaries.

Theorem 2 is a lower bound on bandwidth, the total number of words communicated. But it
immediately provides a lower bound on latency as well, the minimum number of messages that
need to be sent, where each message may contain many words.

Corollary 3. In the notation defined above, the number of messages needed to evaluate (1) is at
least G/(8M3/2)− 1 = #evaluations of gijk/(8M3/2)− 1.

The proof is simply that the largest possible message size is the fast (or local) memory size M ,
so we divide the lower bound from Theorem 1 by M .

On a parallel computer it is possible for a processor to pack M words into a single message to be
sent to a different processor. But on a sequential computer the words to be sent in a single message
must generally be located in contiguous memory locations, which depends on the data structures
used. This assumption is appropriate to capture the behavior of real hardware, e.g., cache lines,
memory prefetching, disk accesses, etc. This means that to attain the latency lower bound on a
sequential computer, rather different matrix data structures may be required than row-major or
column-major [BDHS09, FLPR99, EGJK04, AGW01, AP00].

Finally, we note that real computers typically don’t have just one level of memory hierarchy, but
many, each with its own underlying bandwidth and latency costs. So it is of interest to minimize
all communication, between every pair of adjacent levels of the memory hierarchy. As has been
noted before [Sav95, BDHS09], when the memory hierarchy levels are nested (the L2 cache stores
a subset of L3 cache, etc.) we can apply lower bounds like ours at every level in the hierarchy.

3 Consequences for BLAS, LU , Cholesky, and LDLT

We now show how Theorem 2 applies to a variety of conventional algorithms from numerical linear
algebra, by which we mean algorithms that would cost O(n3) arithmetic operations when applied
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to dense n-by-n matrices, as opposed to Strassen-like algorithms.
It is natural to ask whether algorithms exist that attain these lower bounds. We point out

cases where we know such algorithms exist, which are therefore optimal in the sense of minimizing
communication. In the case of dense matrices, many optimal algorithms are known, though not
yet in all cases. In the case of sparse matrices, little seems to be known.

3.1 Matrix Multiplication and the BLAS

We begin with matrix multiplication, on which our model in Equation (1) is based:

Corollary 4. G/(8
√

M)−M is the bandwidth lower bound for multiplying explicitly stored matrices
C = A·B on a sequential machine, where G is the number of multiplications performed in evaluating
all the Cij =

∑
k Aik · Bkj, and M is the fast memory size. In the special case of multiplying a

dense n-by-r matrix times a dense r-by-m matrix, this lower bound is n · r · m/
√

8M −M .

This nearly reproduces a result in [ITT04] for the case of two distinct, dense matrices, whereas
we need no such assumptions; their bound is

√
8 times larger than ours, but as stated before our

bound could be improved by specializing it to this case. We note that this result could have been
stated for sparse A and B in [HK81]: Combine their Theorem 6.1 (their Ω(|V |) is the number of
multiplications) with their Lemma 6.1 (whose proof does not require A and B to be dense).

As noted in the previous section, an independent lower bound on the bandwidth is simply the
total number of inputs that need to be read plus the number of outputs that need to be written.
But counting the number of inputs is not as simple as counting the number of nonzero entries of A
and B: if A and B are sparse, and column i of A is filled with zeros only, then row i of B need not
be loaded at all, since C does not depend on it. An algorithm that nevertheless loads row i of B
will still satisfy the lower bound. And an algorithm that loads and multiplies by explicitly stored
zero entries of A or B will also satisfy the lower bound; this is an optimization sometimes used in
practice [VDY05].

When A and B are dense and distinct, there are well-known algorithms mentioned in the
Introduction that (nearly) attain the combined lower bound

Ω(max(n · r · m/
√

M,#inputs + #outputs)) = Ω(max(n · r · m/
√

M, n · r + r · m + n · m)) ,

see [ITT04] for a more complete discussion. Attaining the corresponding latency lower bound of
Corollary 3 requires a different data structure than the usual row-major or column-major orders,
so that words to be sent in a single message are contiguous in memory, and is variously referred
to as recursive block storage or storage using space filling curves, see [FLPR99, EGJK04, BDHS09]
for discussion. Some of these algorithms also minimize bandwidth and latency for arbitrarily many
levels of memory hierarchy. Little seems to be known about the attainability of this lower bound
for general sparse matrices.

Now we consider the parallel case, with P processors. Let nnz(A) be the number of nonzero
entries of A; then NNZ = nnz(A) + nnz(B) + nnz(C) is a lower bound on the total memory
required to store the inputs and outputs. We need to make some assumption about how this data
is spread across processors (each of which has its own memory), since if A, B and C were all stored
in one processor, and all arithmetic done there (i.e., no parallelism at all), then no communication
would be needed. So we assume that each processor stores an equal share NNZ/P of this data,
and perhaps at most o(NNZ/P ) more words, a kind of memory-balance or memory-scalability
assumption. Also, at least one processor must perform at least G/P multiplications, where G is

6



the total number of multiplications. Combining all this with Theorem 2 yields3

Corollary 5. Suppose we have a parallel algorithm on P processors for multiplying matrices C =
A · B that is memory-balanced in the sense described above. Then at least one processor must
communicate Ω

(
G/
√

P · NNZ −NNZ/P
)

words, where G is the number of multiplications Aij ·

Bkj performed. In the special case of dense n-by-n matrices, this lower bound is Ω
(
n2/

√
P

)
.

There are again well-known algorithms that attain the bandwidth and latency lower bounds in
the dense case, but not in the sparse case.

We next extend Theorem 2 beyond matrix multiplication. The simplest extension is to the so-
called BLAS3 (Level-3 Basic Linear Algebra Subroutines [BLA, BDD+01, BDD+02]), which include
related operations like multiplication by (conjugate) transposed matrices, by triangular matrices
and by symmetric (or Hermitian) matrices. The last two corollaries apply to these operations
without change (in the case of AT ·A we use the fact that Theorem 2 makes no assumptions about
the matrices being multiplied not overlapping).

More interesting is the BLAS3 operation TRSM, computing C = A−1B where A is triangular.
The inner loop of the algorithm (when A is upper triangular) is

Cij = (Bij −
n∑

k=i+1

Aik · Ckj)/Aii (2)

which can be executed in any order with respect to j, but only in decreasing order with respect
to i. None of this matters for the lower bound, since equation (2) still matches Equation (1), so
the lower bounds apply. Sequential algorithms that attain these bounds for dense matrices, for
arbitrarily many levels of memory hierarchy, are discussed in [BDHS09].

We note that our lower bound also applies to the so-called Level 2 BLAS (like matrix-vector
multiplication) and Level 1 BLAS (like dot products), but the larger lower bound #inputs +
#outputs is attainable.

3.2 LU factorization

Independent of sparsity and pivot order, the formulas describing LU factorization are as follows,
with the understanding the summations may be over some subset of the indices k in the sparse
case, and pivoting has already been incorporated in the interpretation of the indices i, j and k.

Lij = (Aij −
∑

k<j

Lik · Ukj)/Ujj for i > j (3)

Uij = Aij −
∑

k<i

Lik · Ukj for i ≤ j

It is easy to see that these formulas correspond to our model in Equation (1), with gijk identified
with multiplying Lik ·Ukj . The fact that the “outputs” Lij and Uij can overwrite the inputs does not
matter, and the subtraction from Aij and division by Ujj are all accommodated by Equation (1).

With this in mind, these formulas are also general enough to accommodate incomplete LU
(ILU) factorization [Saa96] where some entries of L and U are omitted in order to speedup the

3We present the conclusions for the parallel model in asymptotic notation. One could instead assume that each

processor had memory of size M = µ · n2

P for some constant µ, and obtain the hidden constant of the lower bounds
as a function of µ, as done in [ITT04].
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computation. If we model an ILU implementation that is threshold based, i.e., one that computes
a possible nonzero entry Lij or Uij and compares it to a threshold, storing it only if it is larger
than the threshold and discarding it otherwise, then we should not count the multiplications that
led to the discarded output. Thus we see that analogs of Corollaries 4 and 5 apply to LU and ILU
as well.

A sequential dense LU algorithm that attains this bandwidth lower bound is given by [Tol97],
although it does not always attain the latency lower bound [DGHL08a]. The conventional parallel
dense LU algorithm implemented in ScaLAPACK [BCC+97] attains the bandwidth lower bound
(modulo an O(log P ) factor), but not the latency lower bound. A parallel algorithm that attains
both lower bounds (again modulo a factor O(log P )) is given in [DGX08], where significant speedups
are reported. Interestingly, it does not seem possible to attain both lower bounds and retain
conventional partial pivoting, a different (but still stable) kind of pivoting is required. We also
know of no dense sequential LU algorithm that minimizes bandwidth and latency across multiple
levels of a memory hierarchy (unlike Cholesky). There is an elementary reduction proof that dense
LU factorization is “as hard as dense matrix multiplication” [DGHL08a], but it does not address
sparse or incomplete LU, as does our approach.

3.3 How to carefully count operations gijk

Using only structural information, e.g., about the sparsity patterns of the underlying matrices, it
is sometimes possible to deduce that the computed result fij(·) is exactly zero, and so to possibly
avoid a memory reference to location c(i, j) to store the result. This may either be because the
values gijk(·) being accumulated to compute fij are all identically zero, or, more interestingly,
because it is possible to prove there is exact cancellation (independent of the values of the nonzero
arguments Mem(a(i, k)) and Mem(b(k, j))); we give an example of this below. In these cases it is
possible to imagine algorithms that (1) pay no attention to these possibilities and simply load, store
and compute with zeros (e.g., a “dense algorithm” applied to a sparse matrix), or (2) recognize
that zeros will be computed and avoid doing any memory traffic or arithmetic to compute them, or
(3) do the work of computing the zero entry, recognize it is zero (perhaps by comparing to a tiny
threshold), and do not bother storing it. In this last case one might worry that our lower bounds
are too high. However, such operations would not count toward our lower bound, because they do
not satisfy Equation (1), since they do not lead to a write to Mem(c(i, j)). This may undercount
the actual number of memory operations, but does not prevent our lower bound from being a right
lower bound.

Here is an example to illustrate that counting the number of gijk to get a true lower bound
requires care. This is because, as suggested above, it is possible for an LU algorithm to infer from
the sparsity pattern of A that some (partial) sums in equation (3) are zero and so avoid computing
them. For example, consider a matrix A that is nonzero in its first r rows and columns, and possibly
in the trailing (n−2r)-by-(n−2r) submatrix; call this submatrix A′. First suppose A′ = 0, so that
A has rank at most 2r, and that pivots are chosen along the diagonal. It is easy to see that the
first 2r−1 steps of Gaussian elimination will generically fill in the entire matrix with nonzeros, but
that step 2r will cause cancellation to zero (in exact arithmetic) in all entries of A′. If A′ starts as a
nonzero sparse matrix, then this cancellation will not be to zero but to the sparse LU factorization
of A′ alone. So one can imagine an algorithm that may or may not recognize this opportunity to
avoid work in some or all of the entries of A′. To accommodate all these possibilities, we will, as
stated above, only count those multiplications in (3) that contribute to a result Lij or Uij that is
stored in memory. The discussion of this paragraph also applies to QR factorization.
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3.4 Cholesky Factorization

Now we consider Cholesky factorization. Independent of sparsity and (diagonal) pivot order, the
formulas describing Cholesky factorization are as follows, with the understanding the summations
may be over some subset of the indices k in the sparse case, and pivoting has already been incor-
porated in the interpretation of the indices i, j and k.

Ljj = (Ajj −
∑

k<j

L2
jk)

1/2 (4)

Lij = (Aij −
∑

k<j

Lik · Ljk)/Ljj for i > j

It is easy to see that these formulas correspond to our model in Equation (1), with gijk identified
with multiplying Lik ·Ljk. As before, the fact that the “outputs” Lij can overwrite the inputs does
not matter, and the subtraction from Aij , division by Lii, and square root are all accommodated by
Equation (1). As before, these formulas are general enough to accommodate incomplete Cholesky
(IC) factorization [Saa96].

Dense algorithms that attain these lower bounds are discussed in [BDHS09], both parallel
and sequential, including analyzing one that minimizes bandwidth and latency across all levels of
a memory hierarchy [AP00]. We note that there was a proof in [BDHS09] showing that dense
Cholesky was “as hard as dense matrix multiplication” by a method analogous to that for LU.

3.4.1 Sparse Cholesky Factorization on Matrices whose Graphs are Meshes

Hoffman, Martin, and Rose [HMR73] and George [Geo73] prove that a lower bound on the number
of multiplications required to compute the sparse Cholesky factorization of an n2-by-n2 matrix
representing a 5-point stencil on a 2D grid of n2 nodes is Ω(n3). This lower bound applies to any
matrix containing the structure of the 5-point stencil. This yields:

Corollary 6. In the case of the sparse Cholesky factorization of the matrix representing a 5-point
stencil on a two-dimensional grid of n2 nodes, the bandwidth lower bound is Ω

(
n3
√

M

)
.

George [Geo73] shows that this arithmetic lower bound is attainable with a nested dissection
algorithm in the case of the 5-point stencil. Gilbert and Tarjan [GT87] show that the upper bound
also applies to a larger class of structured matrices, including matrices associated with planar
graphs.

3.5 LDLT Factorization

We next show that analogous lower bounds apply to the symmetric indefinite factorization
A = LDLT , where D is block diagonal with 1-by-1 and 2-by-2 blocks, and L is a lower trian-
gular matrix with 1 on its diagonal elements. If A is positive definite then all the blocks of D
are 1-by-1. It sufficient to consider the lower bound for the positive definite case, as any LDLT

decomposition algorithm for the general case has to deal with this case as well. Independent of
sparsity and (diagonal) pivot order, the formulas describing Cholesky factorization are as follows,
with the understanding the summations may be over some subset of the indices k in the sparse
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case, and pivoting has already been incorporated in the interpretation of the indices i, j and k.

Djj = Ajj −
∑

k<j

L2
jkDk (5)

Lij =
1

Djj



Aij −
∑

k<j

Lik · LjkDkk



 for i > j (6)

It is easy to see that these formulas correspond to our model in Equation (1), with gijk identified
with multiplying Lik ·Ljk, thus the lower bounds apply to LDLT decomposition as well. As in the
Cholesky case, the only difference is that the number of multiplications G is about half as large
(n3/6 + O(n2)), as is the memory size NNZ = n(n + 1)/2.

4 Applying Orthogonal Transformations

In this section we consider algorithms that compute and apply sequences of orthogonal transfor-
mations to a matrix, which includes the most widely used algorithms for least squares problems
(the QR factorization), eigenvalue problems, and the SVD. We need to treat algorithms that apply
orthogonal transformations separately because Loomis-Whitney alone is not enough to bound the
number of arithmetic operations that can occur in a segment.

4.1 The QR Factorization

The QR factorization of a rectangular matrix A is more subtle to analyze than LU or Cholesky,
because there is more than one way to represent the Q factor (e.g., Householder reflections and
Givens rotations), because the standard ways to reorganize or “block” QR to minimize communica-
tion involve using the distributive law, not just summing terms in a different order [BVL87, SVL89,
Pug92, Dem97, GVL96], and because there may be many intermediate terms that are computed,
used, and discarded without causing any slow memory traffic. This forces us to use a different
argument than Loomis-Whitney to bound the number of arithmetic operations in a segment.

To be concrete, we consider the widely used Householder reflections, in which an n-by-n ele-
mentary real orthogonal matrix Qi is represented as Qi = I − τiuiuT

i , where ui is a column vector
called a Householder vector, and τi = 2/‖ui‖2

2. A single Householder reflection Qi is chosen so that
multiplying Qi · A zeros out selected rows in a particular column of A, and modifies one other row
in the same column (for later use, we let ri be index of this other row).

Once entries in a column are zeroed out, they are not operated on again, and remain zero; this
fact will be critical to our later counting argument. This means that a sequence of k Householder
reflections is chosen to zero out a common set of selected rows of a sequence of k columns of
A by forming Qk · Qk−1 · · ·Q1 · A. Each Qi zeros out a subset of the rows zeroed out in the
previous column (so that once created, zeros are preserved). We furthermore model the way
libraries like LAPACK [ABB+92] and ScaLAPACK [BCC+97] may “block” Householder vectors,
writing Qk · · ·Q1 = I − UkTkUT

k , where Uk = [u1, u2, . . . , uk] is n-by-k, and Tk is k-by-k. Uk is
nonzero only in the rows being modified, and furthermore column i of Uk is zero in entries r1,...,ri−1

and nonzero in entry ri. (In conventional algorithms for dense matrices this means ri = i, and Uk is
lower trapezoidal with nonzero diagonal.) Furthermore Ti, which may be computed recursively from
Ti−1, is lower triangular with nonzero diagonal. Our lower bound considers all possible sequences of
Householder transformations that preserve previously created zeros, and all possible ways to collect
them into blocks.

10



Next, we will apply such block Householder transformations to a (sub)matrix by inserting
parentheses as follows: (I −U ·T ·UT ) ·A = A−U · (T ·UT ·A) ≡ A−U ·Z, which is also the way
Sca/LAPACK does it. Finally, we overwrite the output onto A = A− U · Z, which is how all fast
implementations do it, analogously to LU decomposition, to minimize memory requirements.

But we do not need to assume any more commonality with the approach in Sca/LAPACK, in
which a vector ui is chosen to zero out all of column i of A below the diagonal. For example, we
can choose each Householder vector to zero out only part of a column at a time, as is the case with
the algorithms for dense matrices in [DGHL08a, DGHL08b]. Nor do we even need to assume we
are zeroing out any particular set of entries, such as those below the main diagonal as the usual
QR algorithm; later this generality will let us apply this result to algorithms for eigenproblems
and the SVD. As stated before, all we assume is that the algorithm “makes progress” in the sense
that a Householder transformation in column j is not allowed to fill in zeros that were deliberately
created by other Householder transformations in columns k < j.

To get our lower bound, we consider just the multiplications in all the different applications
of block Householder transformations A = A − U · Z. We argue in Section 4.1.1 that this con-
stitutes a large fraction of all the multiplications in the algorithm. There are two challenges to
straightforwardly applying our previous approach to the matrix multiplications in all the updates
A = A− U · Z. The first challenge is that we need to collect all these multiplications into a single
set indexed in an appropriate one-to-one fashion by (i, j, k). The second challenge is that Z need
not be read from memory, rather it may be computed on-the-fly from U and A and discarded
without necessarily ever being read or written from memory. So we have to account for its memory
traffic more carefully. Furthermore, each Householder vector (column of U) is created on the fly
by modifying certain (sub)columns of A, so it is both an output and an input. So we will have to
account for the memory operations for U and Z more carefully.

Here is how we address the first challenge: Let index k indicate the number of the Householder
vector; in other words U(:, k) are all the entries of k-th Householder vector (the ordering is arbi-
trary). Thus k is not the column of A from which U(:, k) arises (there may be many Householder
vectors associated with a given column as in [DGHL08a]) but k does uniquely identify that column.
Then the operation A− U · Z may be rewritten as A(i, j)−

∑
k U(i, k) · Z(k, j), where the sum is

over the Householder vectors k making up U that both lie in column j and have entries in row i.
The use of this index k lets us combine all the operations A = A−U ·Z for all different Householder
vectors into one collection

A(i, j) = A(i, j)−
∑

k

U(i, k) · Z(k, j) (7)

where all operands U(i, k) and Z(k, j) are uniquely labeled by the index pairs (i, k) and (k, j), resp.
For the second challenge, we revisit the model of section 2, where we distinguished arguments

by their sources (S1 or S2) and destinations (D1 or D2). Unlike the algorithms in section 3, we now
have the possibility of S2/D2 arguments, Z(k, j), which are created during the segment and then
discarded without causing any slow memory traffic. To bound the number of S2/D2 arguments,
we need to exploit the mathematical structure of Householder transformations.

Now let us consider the possible labels Si/Dj for the arguments in model (7). We assume each
required value is only computed once (reflecting practical implementations).

A(i, j): Every A(i, j) operand is destined either to be output (eg as an entry of the R factor)
or converted into a Householder vector. So the only possible S2/D2 operands from A are
(sub)columns that become Householder vectors, and hence become S2 operands of U . We
bound the number of these as follows.
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U(i, k): All U operands are eventually output, so there are no D2 operands of U (recall that we
may only compute each result U(i, k) once, so it cannot be discarded). So all S2 operands
U(i, k) are also D1, and so there are at most 2M of them. This also bounds the number of
S2/D2 operands A(i, j), and so bounds the total number of A(i, j) operands by 4M .

Z(k, j): There are possible S2/D2 operands, as many as the product of the number of columns
U(:, k) and the number of columns A(:, j) that can reside entirely in fast memory during the
segment.

Unlike LU and matrix multiplication, the number of Z(k, j) arguments is not bounded by 4M ,
so we cannot hope to apply Loomis-Whitney to bound the number of arithmetic operations, see
Section 4.1.1 for an example. So our proof has to try to bound the number of arithmetic operations
possible in a segment without using Loomis-Whitney. We do this by exploiting the mathematical
structure of Householder transformations, and the O(M) bound on the number of A(i, j) and U(i, k)
entries in fast memory during a segment, to still bound the maximum number of multiplies during
a segment by O(M3/2), which is all we need to get our ultimate lower bound.

In the case that all Z(k, j) are S2/D2 operands, according to (7), the maximum number of
arithmetic operations for column j of A is the number of U(i, k) entries, 2M , if every possible Z(k, j)
is nonzero. So the maximum total number of arithmetic operations is 2M times the maximum
number of columns of A that can be present. The maximum number of columns of A is in turn the
total number of A(i, j) entries that can be present (4M) divided by the minimum number of rows
present from each column of A. So the question is: what is the fewest number of rows in which
we can pack 2M Householder vector entries? We need to rely on the fact that these Householder
vectors must satisfy the dependency relationship of QR, that previously created zeros in previous
columns are preserved. So the fewest rows are touched when the nonzero Householder vector entries
in each column lie in a strict subset of the rows occupied by nonzero Householder vector entries in
previous columns (this follows by induction on columns from right to left). Note that if the matrix is
sparse, these Householder vectors are not necessarily in adjacent columns. So if there are r nonzero
Householder vector entries in the leftmost occupied column, there can be at most r− 1 in the next
occupied column, and so on, and so at most r(r+1)/2 nonzero Householder vector entries altogether
in r rows. So if there are 0 < h ≤ 2M nonzero Householder vector entries altogether, residing in r
rows, then r(r + 1)/2 ≥ h or r ≥ 2h1/2 − 1 ≥ h1/2. Then the maximum number c of columns of A
that can be present is bounded by r · c ≤ 4M or c ≤ 4M/r ≤ 4M/h1/2, and the maximum number
of multiplications that can be performed is h · c ≤ h · 4M/h1/2 = 4Mh1/2 ≤

√
32M3, as desired.

In the case that some Z(k, j) are S2/D2 operands and some are not, we must use Loomis-
Whitney and the above argument to bound the number of multiplies within a segment. Since there
are no more that 4M non-S2/D2 Z(k, j) operands in a segment, the Loomis-Whitney argument
bounds the number of multiplies involving such operands by (32M3)1/2, so with the above argument,
the total number of multiplies is less than

√
128M3.

The rest of the proof is similar to before: A lower bound on the number of segments is then
##multiplies/(128M3)1/2$ ≥ #multiplies/(128M3)1/2− 1, so a lower bound on the number of slow
memory accesses is M · ##multiplies/(128M3)1/2$ ≥ #multiplies/(128M)1/2 −M . For dense m-
by-n matrices with m ≥ n, the conventional algorithm does Θ(mn2) multiplies. Altogether, this
yields the following theorem:

Theorem 7. G/
√

128M − M is the bandwidth lower bound for computing the QR factorization
of a matrix on a sequential machine, where Q is computed as a product of (arbitrarily blocked)
Householder transformations, and G is the number of multiplications performed when updating
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A(i, j) = A(i, j) + U(i, k) · Z(k, j), i.e., adding multiples of Householder vectors to the matrix. In
the special case of a dense m-by-n matrix with m ≥ n, this lower bound is Ω(mn2/

√
M).

An analogous result holds for parallel QR.
Regarding related work, a lower bound just for the dense case appears in [DGHL08a], which

also discusses algorithms that meet (some of) these lower bounds, and shows significant speedups.
The proof in [DGHL08a] assumed each Z was written to memory (which we do not here), and so
could use the Loomis-Whitney approach. For example, the sequential algorithm in [EG98, EG00],
as well as LAPACK’s DGEQRF, can minimize bandwidth, but not latency. The paper [DGHL08a]
also describes sequential and parallel QR algorithms that do attain both bandwidth and latency
lower bounds; this was accomplished by applying block Householder transformations in a tree-like
pattern, each one of which zeroing out only part of a block column of A. We know of no sequential
QR factorization algorithm that minimizes communication across more than 2 levels of the memory
hierarchy.

4.1.1 Discussion of QR Model

To get our lower bound, we consider just the multiplications in all the different applications of block
Householder transformations A = A−U · Z, where Z = T · UT · A. We argue that under a natural
“genericity assumption” this constitutes a large fraction of all the multiplications in the algorithm.
(although this is not necessary to get a valid lower bound). Suppose (UT · A)(k, j) is nonzero;
the amount of work to compute this is at most proportional to the total number of entries stored
(and so treated as nonzeros) in column k of U . Since T is triangular and nonsingular, this means
Z(k, j) will be generically nonzero as well, and will be multiplied by column k of U and added to
column j of A, which costs at least as much as computing (UT · A)(k, j). The cost of the rest of
the computation, forming and multiplying by T and computing the actual Householder vectors,
are lower order terms in practice; the dimension of T is chosen small enough by the algorithm to
try to assure this. Thus, for a lower bound of Ω(mn2) total multiplies for a dense m-by-n matrix
given by [DGHL08a], there are Ω(mn2) multiplies of the form given by (7).

Unlike LU and matrix multiplication, the number of Z(k, j) arguments is not bounded by 2M ,
so we cannot hope to apply Loomis-Whitney to bound the number of arithmetic operations. As
an example, suppose we do QR on the matrix [A1, A2] where each Ai is n-by-n, and the matrix
just fits in fast memory, so that 2n2 ≈ M . Suppose that we have performed QR on A1 using
n(n− 1)/2 2-by-2 Householder transformations (for example zeroing the subdiagonal entries of A1

from column 1 to column n−1, and from bottom to top in each column). Now suppose we want to
bound the number of the operations (7) gotten from applying these Householder transformations to
A2. Then there is one (generically) nonzero Z(k, j) for each pair consisting of a Householder vector
k = 1, ..., n(n− 1)/2 and a column j = 1, ..., n of A2, or n2(n− 1)/2 = Θ(n3) = Θ(M3/2) values of
Z(k, j) in all. This is too large to use Loomis-Whitney to bound the number of multiplications in
the (single) segment constituting the algorithm, which is still Θ(n3) = Θ(M3/2).

We note that we cannot use the fact that RT · R = AT · A, so that R is the Cholesky factor
of AT · A, to get a lower bound based on our lower bound for Cholesky, because QR works very
differently than Cholesky. For example, when A is m-by-n with m + n, its R factor will have the
same shape and cost O(mn2) operations to compute, but AT ·A will be n-by-n, as will its Cholesky
factor, which would cost O(n3) to compute. Similarly, when A is sparse, AT · A may be much
denser. So there is no simple relationship between the two algorithms.

We note that a Givens rotation may be replaced by a 2-by-2 Householder reflection, and so we
conjecture that algorithms using Givens rotations are covered by this analysis.
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4.2 Eigenvalue and Singular Value Problems

Standard algorithms for computing eigenvalues and eigenvectors, or singular values and singular
vectors (the SVD), start by applying orthogonal transformations to both sides of A to reduce it to
a “condensed form” (Hessenberg, tridiagonal or bidiagonal) with the same eigenvalues or singular
values, and simply related eigenvectors or singular vectors [Dem97]. We begin this section by getting
communication lower bounds for these reductions, and then discuss the communication complexity
of the algorithms for the condensed forms. Finally, we briefly discuss a completely different family
of algorithms that does attain the same lower bounds for all these eigenvalue problems and the
SVD, but at the cost of doing more arithmetic.

We extend our argument from the last section as follows. We can have some arbitrary inter-
leaving of (block) Householder transformations applied on the left:

A = (I − UL · TL · UT
L ) · A = A− UL · (TL · UT

L · A) ≡ A− UL · ZL

and the right:

A = A · (I − UR · TR · UT
R ) = A− (A · UR · TR) · UT

R ≡ A− ZR · UT
R .

Combining these, we can write

A(i, j) = A(i, j)−
∑

kL

UL(i, kL) · ZL(kL, j)−
∑

kR

ZR(i, kR) · UR(j, kR) (8)

Of course there are lots of possible dependencies ignored here, much as we wrote down a similar
formula for LU. But we do assume that two-sided factorizations “make progress” in the same
sense as one-sided QR: entries that are zeroed out remain zeroed out by subsequent Householder
transformations, from the left or right. By the same argument as the previous section, we can
classify the Sources and Destinations of the components of (8) as follows:

A(i, j): Every A(i, j) operand is destined either to be output (e.g., as an entry of the eventual
Hessenberg, tridiagonal or bidiagonal matrix) or converted into a left or right Householder
vector. So the only possible S2/D2 operands from A are (sub)columns or (sub)rows that
become Householder vectors, and hence become S2 operands of either UL or UR. We bound
the number of these as follows.

UL(i, kL): All UL operands are eventually output, so there are no D2 operands of UL (recall that we
may only compute each result UL(i, kL) once, so it cannot be discarded). So all S2 operands
UL(i, kL) are also D1, and so there are at most 2M of them. This also bounds the number of
S2/D2 operands A(i, j) that become S2 operands of UL.

UR(j, kR): This is analogous to UL(i, kL). Again, 2M bounds the number of S2/D2 operands A(i, j)
that become S2 operands of UR.

Finally, since S2/D2 operands of A(i, j) must either be S2 operands of UL or UR, there are at most
4M of these.

Thus, in one segment, there can be at most 6M entries A(i, j), 2M entries UL(i, kL) and
2M entries UR(j, kR). Since there are no more than 4M non-S2/D2 ZL(kL, j) operands and
4M non-S2/D2 ZR(kR, j) operands in a segment, the Loomis-Whitney argument bounds the
number of multiplies UL(i, kL) · ZL(kL, j) or UR(i, kR) · ZR(kR, j) involving such operands by
(48M3)1/2 + (48M3)1/2 = (192M3)1/2. An argument similar to the one given in section 4 bounds
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the number of multiplies involving S2/D2 operands by (72M3)1/2 + (72M3)1/2 = (288M3)1/2.
Thus, the upper bound on the total number of multiplies within a segment is (192M3)1/2 +
(288M3)1/2 < (1152M3)1/2, so the final lower bound on the number of memory operations is
#multiplies/(1152M)1/2 −M .

This extends our lower bound to any algorithm that applies any sequence of left/right House-
holder transformations, under the restriction of “making progress”, and so cover reduction to tridi-
agonal, bidiagonal or Hessenberg forms. In all these cases, for dense n-by-n matrices, #multiplies
is a multiple of n3.

Theorem 8. G/
√

1152M −M is the bandwidth lower bound for reducing a matrix to Hessenberg,
tridiagonal or bidiagonal form on a sequential machine, where the reduction is done by multiplying
on the left and right by products of (arbitrarily blocked) Householder transformations, and G is the
number of multiplications performed when adding multiples of Householder vectors to the matrix.
In the special case of a dense n-by-n matrix, this lower bound is Ω(n3/

√
M).

Again, an analogous result holds for parallel reductions.
None of the reduction algorithms in LAPACK [ABB+92] attain these bounds, instead having

bandwidth O(n3) (the worst possible, asymptotically, even though these algorithm try to do as much
work with matrix-matrix multiplication as possible). ScaLAPACK’s tridiagonal and bidiagonal
reduction routines minimize bandwidth but not latency [BCC+97, Table 5.8].

Now we consider the rest of the eigenvalue or singular value problem. Once a (symmetric)
matrix has been reduced to tridiagonal form T , it of course requires much less memory to store,
just O(n). Assuming M is at least a few times larger than n, there are a variety of classical
algorithms to compute some or all of T ’s eigenvalues also using just O(n) fast memory. There is
also a well-known algorithm [DPV06, DP04] (routine xSTEMR in LAPACK [ABB+92]) to compute
T ’s eigenvalues and eigenvectors one-at-a-time using O(n2) flops, and requiring O(n) fast memory
in general. So in the common case that n is at least a few times smaller than the fast memory size
M , this can be done with as many slow memory references as there are inputs and outputs, which
is a lower bound. A similar discussion applies to the SVD of a bidiagonal matrix B, although there
are open numerical stability problems regarding extending the algorithm in xSTEMR to the SVD.
Once the eigenvectors of T or singular vectors of B have been computed, they must be multiplied
by the orthogonal matrices used in the reduction to get the final eigenvectors or singular vectors of
A. Our previous analysis of applying Householder transformations applies here.

Now we consider the more challenging computation of the eigenvalues and eigenvectors of a
Hessenberg matrix H. Our analysis applies to one pass of standard QR iteration on a dense upper
Hessenberg matrix to find its eigenvalues, but this does O(n2) flops on O(n2) data, and so does not
improve the trivial lower bound of the input size. We conjecture that improvements of Braman,
Byers and Mathias [BBM02a, BBM02b] to combine m passes into one increase the flop count to
O(mn2), so we get a lower bound of Ω(mn2/M1/2). This starts to get interesting as soon as
m > M1/2. In practice, for numerical reasons, m is usually chosen to be 256 or lower, which limits
the applicability of this result.

We conjecture that our analysis applies to solving the generalized eigenvalues problem of a
matrix pencil A − λB: The standard algorithm begins by reducing the pair (A, B) to Hessen-
berg/triangular form by applying orthogonal transformations to the left and right of A and B.
After this the QZ algorithm is used to find eigenvalues and eigenvectors.

Finally, there is a completely different, divide-and-conquer approach to solving dense eigenprob-
lems and the SVD [DDH07, BDD09], that only uses QR factorization and matrix multiplication to
do its work, and attains the communication lower bounds described above. We discuss this briefly
in Section 6.
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5 Lower Bounds for Compositions of Linear Algebra Operations

We next demonstrate how our lower bounds can be applied to more general computations where
any or all of the following apply:

1. We might do a sequence of basic operations (matrix multiplication, LU, etc.).

2. The outputs of one operation are the inputs to a later one but do not necessarily need to be
saved in slow memory,

3. The inputs may be computed by formulas (like A(i, j) = 1/(i + j)) requiring no memory
traffic.

4. The ultimate output written to slow memory may just be a scalar, like the norm of a matrix.

5. An algorithm might compute but discard some results rather than save them to memory (e.g.,
ILU might discard entries of L or U whose magnitudes falls below a threshold).

In particular we would like a lower bound where we are allowed to arbitrarily interleave all the
instructions from all basic operations in the computation together, and so get a lower bound for
a global optimization of the entire program. For example, if two different matrix multiplications
share a common input matrix, is it worth trying to interleave instructions from these two different
matrix multiplications?

A natural question is whether it is good enough to just use optimal implementations of the
basic operations, like matrix multiplication, to attain the global lower bound. This would clearly
be the simplest way to implement the program. We know from experience that this is not always
the case. For example, LU itself can be decomposed in many ways in terms of operations like
matrix multiplication. Yet only recently have optimal LU algorithms been constructed. Previous
LU algorithms did not attain optimal bandwidth and latency, even when each of their composing
operations had optimal bandwidth and latency.

We give some examples, such as computing matrix powers, where it is indeed good enough to
use repeated calls to an optimal matrix multiplication, as opposed to needing a new algorithm,
and another example where the straightforward composition does not suffice, and a more careful
interleaving of the computation is needed in order to attain the lower bound.

5.1 The Sequential Case

5.1.1 When eliminating input/output does not save much

In this example we consider a single linear algebra operation, where inputs are given by formulas
and the output is a scalar (e.g., norm of the product of two matrices given by formulas, each used
once; computing the determinant of a matrix with entries given by formulas, where one does the
LU decomposition and takes the product of the diagonal elements of U , etc.)

Even though this seems to eliminate a large number of reads and writes, we can prove (for this
and similar examples) that the communication lower bound is still Ω

(
#flops√

M

)
, by using a technique

of imposing reads and writes: We take an algorithm to which Theorem 2 does not apply, because it
may potentially have S2/D2 operands, and add (impose) memory traffic to eliminate such operands.
Then we use Theorem 2 to bound below the communication of this modified algorithm, and subtract
the amount of imposed communication to get a lower bound for the original algorithm.

16



Here is an example. Consider computing r = ‖A · B‖2
F =

∑
ij(A · B)2ij , where Aik = 1/(i + k)

and Bkj = k1/j are given by formulas. Let C = A · B. Whenever the final value of some Cij is
computed, squared, and added to r, we impose a write (if it is missing) so that Cij is saved in slow
memory, and so has destination D1 instead of possibly D2 (it may still have source S2). Thus no
entries of C can be S2/D2. Whenever the value of some Aik or Bkj is computed by a formula, we
impose a read to get it from a location in slow memory, so it has source S1 instead of S2 (it may
still have destination D2). Now, no entries of A or B can be S2/D2. Thus this modified algorithm
has lower bound n3/(8

√
M)−M by Theorem 2.

To get a lower bound for the original algorithm, we need to bound how many reads and writes
we imposed. There are clearly at most n2 imposed writes. If the original algorithm only evaluates
each formula for Aik and Bkj once, and keeps their computed values in memory if necessary for later
use, then the number of imposed reads is 2n2, and the communication lower bound for the original
algorithm is n3/(8

√
M)−M − 3n2 = Ω(n3/

√
M), close to standard dense matrix multiplication.

On the other hand, if the original algorithm evaluates the formulas for Aik and Bkj whenever it
needs them, so n3 times, then the communication lower bound for the original algorithm becomes
n3/(8

√
M)−M − n2 − 2n3, which degenerates to zero.

5.1.2 A sequence of basic linear algebra operations

In the following example, we compose a sequence of basic linear algebra operations where interme-
diate outputs are used as inputs later, and never written to memory (e.g., computing consecutive
powers of a matrix, or repeated squaring). Again, even though this seems to eliminate a large
number of reads and writes, we show that in some cases the lower bound is still Ω

(
#flops√

M

)
, by

imposing reads and writes and merging all the operations into a single set satisfying Equation (1).
This means that in such cases we can simply call a sequence of individually optimized linear algebra
routines and do asymptotically as well as we would do with any arbitrary interleaving.

Corollary 9 (Consecutive powers of a matrix). Let A be an n-by-n matrix, and let Alg be a
sequential algorithm that computes A2 = A·A, A3 = A2 ·A, ... , At = At−1 ·A, but only needs to save
At in slow memory. Let G be the total number of multiplications performed (e.g., G = (t− 1)n3 if
A is dense), where we assume that each entry of each Ai is computed at most once. Then no matter
how the operations of Alg are interleaved, its bandwidth lower bound is Ω( G√

8M
−M − (t − 2)n2)

(if the Ai are sparse, we can subtract less than (t− 2)n2 and get a better lower bound).

Proof. We give two proofs, each of which may be applied to other examples. For the first proof,
we show how all the operations A2 = A · A , ... , At = At−1 · A, may be combined into one set to
which Equation (1), and so Theorem 2, applies. For Equation (1) to apply, we must show that all
the inputs, outputs and multiplications can be indexed by one index set (i, j, k) in the one-to-one
manner described in section 2; this is most easily seen by writing all the operations as





A2

A3

...
At




=





A
A2

...
At−1




· A

Recall that Equation (1) permits inputs and output to overlap, and “a(i, k)” and “b(k, j)” inputs
to overlap, but the “a(i, k)” inputs alone must be indexed one-to-one, and similarly the “b(k, j)”
inputs alone must be indexed one-to-one; this is the case above.
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Next, we impose writes of all the intermediate results A2, ..., At−1, yielding a new algorithm
Alg′. This means that there are no S2/D2 arguments, so Theorem 2 applies to Alg′. Thus the
bandwidth lower bound of Alg′ is G√

8M
−M , and the bandwidth lower bound of Alg is lower by

the number of imposed writes, at most (t− 2)n2 (less if the matrices are sparse).
Now we present a second proof, which uses the Loomis-Whitney-based analysis of a segment

more directly. We let #Ai be the number of entries of Ai in fast memory during a segment of Alg′.
From the definition of a segment, we can bound

∑t
i=1 #Ai ≤ 4M . Applying Loomis-Whitney to

each multiplication Ai+1 = Ai · A that one might do (some of) during a segment, we can bound
the number of multiplications during a segment by F =

∑t−1
i=1

√
#Ai+1 · #Ai · #A1. We can now

bound F subject to the constraint
∑t

i=1 #Ai ≤ 4M , yielding

F =
t−1∑

i=1

√
#Ai+1 · #Ai · #A1

=
√

#A1 ·
t−1∑

i=1

√
#Ai+1 · #Ai

≤
√

#A1 ·

√√√√
t−1∑

i=1

#Ai+1 ·

√√√√
t−1∑

i=1

#Ai ... by the Cauchy− Schwarz inequality

≤
√

4M ·
√

4M ·
√

4M = 8
√

M3

This yields the ultimate bandwidth lower bound of G/(8
√

M)−M .

Both proof techniques also apply to repeated squaring: Ai+1 = A2
i for i = 1, ..., t− 1, the first

proof via the identity




A2

A4

. . .
A2t




=





A
A2

. . .
A2t−1




·





A
A2

. . .
A2t−1





and the second proof by bounding the number of multiplications during a segment by maximizing
F =

∑t−1
i=1

√
#Ai · #Ai · #Ai+1 subject to

∑t
i=1 #Ai ≤ 4M (here #Ai denotes the number of

entries of A2i−1 available during a segment).

5.1.3 Interleaved vs. Phased Sequences of Operations

In some cases, one can combine and interleave basic linear algebra operations, (e.g., a sequence of
matrix multiplications) so that the resulting algorithm no longer agrees with Equation (1), although
the algorithms for performing each of the basic linear algebra operations separately do agree with
Equation (1). This may lead to an algorithm whose minimum communication is not proportional
to #flops, but asymptotically better.

Before giving an example, we first observe that a “phased” algorithm, consisting of a sequence
of calls to individually optimized basic linear algebra operations (like matrix multiplication), where
each such basic linear algebra operation (phase) must complete before the next can begin, can offer
no such asymptotic improvements. Indeed, if we perform Alg1, ... ,Algt in phases, where Algi has
bandwidth lower bound Bi, then the sequence has bandwidth lower bound B =

∑t
i=1 Bi−2(t−1)M .

If each Bi is proportional to the operation count of Algi, then B is proportional to the total operation
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count. (the modest improvement 2(t−1)M arises since we can possibly avoid a little communication
by Algi+1 using the results left in fast memory by Algi).

Let us now look at an example, where the interleaved algorithm can do asymptotically less
communication than the phased algorithm: Consider computing the dense matrix multiplications
C(k) = A · B(k) for k = 1, 2, ..., t where B(k)

i,j = k
√

Bi,j .
The idea is that having both Ai,k and Bk,j in fast memory lets us do up to t evaluations of gijk.

Moreover, the union of all these tn3 operations does not match Equation (1), since the inputs Bk,j

cannot be indexed in a one-to-one fashion. However, we can still give a non-trivial lower bound
as follows, analyzing the algorithm segment by segment. Let us begin with the lower bound, then
show an algorithm attaining this lower bound.

No operands in a segment are S2/D2. By the same argument as in Section 2, a maximum of 4M
arguments of A, B and any C(i)’s are available during a segment. We want to bound the number
of gijk’s that we can do during such a segment. Let #A,#B and #C(i) denote the number of each
type of argument available during the segment. Then by Loomis-Whitney (applied t times) the
maximum number of gijk’s is bounded by F =

∑t
i=1

√
#A · #B · #C(i). We want to maximize

F subject to the constraint #A + #B +
∑t

i=1 #C(i) ≤ 4M . Applying Cauchy-Schwarz as before
yields

F =
√

#A·
√

#B·
t∑

i=1

√
#C(i) ≤

√
#A·

√
#B·

√√√√
t∑

i=1

#C(i)·
√

t ≤
√

4M ·
√

4M ·
√

4M ·
√

t = 8
√

tM3

The number of segments is thus at least
⌊

tn3

8M3/2t1/2

⌋
and the number of memory operations at least

t1/2n3

8M1/2 −M . This is smaller than the “phased” lower bound for t matrix multiplications in sequence,
tn3

8
√

M
− tM , by an asymptotic factor of Θ(

√
t).

We next show that this bound is indeed attainable, using a different blocked matrix multiplica-
tion algorithm whose block sizes b1 and b2 depend on M and t (see Algorithm 1). The bandwidth
count for this algorithm is as follows. In the innermost loop we read/write t blocks of C(1), ...., C(t),
of M/3t words each. So we have 2M/3 reads/writes for the innermost loop. Before this loop we
read two blocks (of A and B) of M/3 words each. This adds up to O(M) read/writes. This is
performed n3

b21b2
times. So the total bandwidth count is O

(
M ·

(
n3

b21b2

))
= O

(√
tn3
√

M

)
.

5.2 The Parallel Case

The techniques in the above Section 5.1 for composing sequential linear algebra operations can be
extended to the parallel case in two different ways. When we impose reads and writes to get an
algorithm to which our previous lower bounds apply, we need to decide which processor’s memory
will participate in those reads and writes. The first option is to create a “twin processor” for each
processor, whose memory will hold this data. This doubles the number of processors to which
the previous lower bound applies, and also requires us to bound the total memory per processor
not by NNZ/P (again assuming memory is balanced among processors) but by the maximum of
NNZ/P and the largest number of reads and writes imposed on any processor. The second option
is to have all the imposed reads and writes be in the local processor’s memory. This keeps the
number of processors constant, but increases NNZ/P by adding the largest number of imposed
reads and writes on each processor. The details are algorithm-dependent. For example, similar
to the sequential case, we obtain a tight lower bound for repeated matrix multiplication and for
repeated matrix squaring.

19



Algorithm 1 Matrix-Matrices multiplication
1: b1 =

√
M/3t, b2 =

√
Mt/3, {so b1b2 = M/3 }

2: Break A into blocks of size b1 × b2.
3: Break B into blocks of size b2 × b1.
4: Break each C(i) into blocks of size b1 × b1.
5: Do block matrix multiplication, where the innermost loop reads in a block of A, a block of B,

and one block each of C(1), ...., C(t), and updates each C(i) :
6: for i = 1 to n/b1 do
7: for j = 1 to n/b1 do
8: for k = 1 to n/b2 do
9: Read block Ai,k and block Bk,j

10: for m = 1 to t do
11: Read block C(m)

i,j

12: C(m)
i,j + = Ai,k · (B(m)

k,j ) ...{(B(m)
k,j ) is recomputed each time }

13: Write C(m)
i,j

14: end for
15: end for
16: end for
17: end for

5.3 Applications to Graph Algorithms

Matrix multiplication algorithms are used to solve many graph related problems. Thus our lower
bounds may hold, as long as the matrix multiplication algorithm that is used agrees with Equation
(1). The bounds do not apply when using Strassen-like algorithm (e.g., [YZ05]).

In some cases, one can directly match the flops performed by an algorithm to Equation (1),
and obtain a communication lower bound. We next consider, for example, matrix-multiplication-
like recursive algorithms for finding the shortest path between any pair of vertices in a graph (the
All-Pairs Shortest-Path problem). For tight upper and lower bounds for the bandwidth of Floyd-
Warshall and other related algorithms, see [MPP02]. The algorithm works as follows [CLRS01]. Let
l(m)
ij be the minimum weight of any path from vertex i to vertex j that contains at most m edges,

where the weight of the edge (i, j) is wij = l(1)ij . Then l(m)
ij = min1≤k≤n

(
l(m−1)
ik + wkj

)
, and the

recursive naive algorithm for the All-Pairs Shortest-Path problems performs exactly these Θ(n4)
computations. If all values l(m)

ij are written to slow memory, then, by Theorem 2, the bandwidth

lower bound is Ω
(

n4
√

M

)
. Although this may not be the case —some of the intermediate values may

never reach the slow memory— there are fewer than n3 intermediate l(m)
ij values. Thus, by imposing

reads and writes, the bandwidth lower bound is Ω
(

n4
√

M

)
(note that here, similar to the repeated

matrix multiplication arguments of Corollary 9, after imposing writes, no two gijk operations use
the same two inputs, so Equation 1 applies). Similarly, the Θ(n3 log n) recursive algorithm for
APSP has O(n2 log n) intermediate values, therefore, by Theorem 2 and imposing reads and writes,
the bandwidth lower bound is Ω

(
n3 log n√

M

)
.

Note that these lower bounds are attainable. As noted before (see e.g., [CLRS01]) any matrix
powering algorithm can be converted into a APSP algorithm, by using ‘+’ instead of ‘∗’ and
‘min’ instead of summation. Starting with any of the communication-avoiding optimal matrix-
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multiplication algorithms (e.g., [FLPR99]) guarantees a bandwidth upper bound of O
(

n4
√

M

)
and

O
(

n3 log n√
M

)
respectively. Using recursive-block data structure further guarantees optimal latency

for both algorithms.
The above repeated-matrix-squaring-like algorithm may, in some cases, perform better than

the communication-avoiding implementation of Floyd-Warshall algorithm [MPP02]. Consider the
problem of finding the neighbors of distance t of every vertex.

One can use the above repeated-matrix-squaring-like algorithm for log t phases, obtaining a
running time of Θ(n3 log t) and communication complexity Θ

(
n3 log t√

M

)
for dense graphs. For sparse

input graphs this may further reduce. For example, when G is a union of cycles and paths, the
running time and communication bandwidth are O(n22t) and O

(
n22t
√

M

)
(as the degree of a vertex

of the ith phase is at most 22i).
If, however, we use the Floyd-Warshall algorithm for this purpose, we have to run it all the

way through, regardless of the input graph, resulting in running time of Θ(n3) and communication
complexity of Θ

(
n3
√

M

)
(assuming the above communication-avoiding implementation). Thus, for

t = o(log n) the repeated-matrix-squaring-like algorithm performs better for constant-degree inputs,
both from flops count and from communication bandwidth perspectives.

6 Attaining the lower bounds, and open problems

A major problem is to find algorithms that attain the lower bounds described in this paper, for
the various linear algebra problems, for dense and sparse matrices, and for sequential and parallel
machines. Tables 1 and 2 summarize the current state-of-the-art (to the best of our knowledge)
for the communication complexity of dense algorithms. Briefly, all the lower bounds are attainable
in the dense sequential case (Table 1), and in the dense parallel case (Table 2, assuming minimal
memory O(n2/P ) per processor, and modulo polylogP terms). However, only a few of these
algorithms appear in standard libraries like LAPACK [ABB+92] and ScaLAPACK [BCC+97]; the
complexity of ScaLAPACK implementations is taken from [BCC+97, Table 5.8]. Other libraries
may well attain similar bounds [GGHvdG01, vdG].

Best understood are dense matrix-multiplication, other BLAS routines, and Cholesky, which
have algorithms that attain (perhaps modulo polylogP factors) both bandwidth and latency lower
bounds on parallel machines, and on sequential machines with multiple levels of memory hierarchy.
The optimal sequential Cholesky algorithm cited in Table 1 was presented in [AP00], but first
analyzed later in [BDHS09]. The complexity of ScaLAPACK’s parallel Cholesky cited in Table 2
assumes that the largest possible block size is chosen (NB ≈ N/

√
P in line “PxPOSV” in [BCC+97,

Table 5.8]).
More recently, optimal dense LU and QR algorithms have been proposed that attain both

bandwidth and latency lower bounds in parallel or sequentially (with just 2 levels of memory
hierarchy). Interestingly, conventional partial pivoting must apparently be abandoned in order to
minimize both latency and bandwidth in LU [DGX08]; we can retain partial pivoting if we only want
to minimize bandwidth [Tol97]. Similarly, we must apparently change the standard representation
of the Q matrix in QR in order to minimize both latency and bandwidth [DGHL08a]; we can retain
the usual representation if we only want to minimize bandwidth [EG98]. See the above references
for large speedups reported over algorithms that do not try to minimize communication. The ideas
behind communication-optimal dense QR first appear in [GPS88], and include [BLKD07, GG05,
EG98]; see [DGHL08a] for a more complete list of references.
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Lower bound Upper bound
Algorithm Bandwidth Latency Bandwidth Latency

Matrix-Multiplication O
(

n3
√

M

)
O

(
n3

M3/2

)

[FLPR99]
Cholesky O

(
n3
√

M

)
O

(
n3

M3/2

)

[AP00, BDHS09]
LU O

(
n3
√

M

)
O

(
n3

M3/2

)

[Tol97] [DGX08]
QR Ω

(
n3
√

M

)
Ω

(
n3

M3/2

)
O

(
n3
√

M

)
O

(
n3

M3/2

)

[EG98] [DGHL08a]
Symmetric Eigenvalues O( n3

√
M

) O
(

n3

M3/2

)

[BDD09]
SVD O( n3

√
M

) O
(

n3

M3/2

)

[BDD09]
(Generalized) Nonsymmetric O( n3

√
M

) O
(

n3

M3/2

)

Eigenvalues [BDD09]

Table 1: Sequential Θ(n3) algorithms: bandwidth and latency lower bound vs. upper bounds. M
denotes the size of the fast memory.

ScaLAPACK’s parallel symmetric eigensolver and SVD routine also minimize bandwidth (mod-
ulo a log P factor), but not latency, sending O(n) messages. ScaLAPACK’s nonsymmetric eigen-
solver communicates much more, indeed just the Hessenberg QR iteration has n-times higher band-
width. LAPACK’s symmetric and nonsymmetric eigensolvers and SVD minimize neither bandwidth
nor latency, with O(n3) bandwidth. Recently proposed algorithms in [BDD09, DDH07] for the
symmetric and nonsymmetric eigenproblems, generalized nonsymmetric eigenproblems and SVD
do appear to attain the desired communication complexity (modulo polylogP factors) but at the
cost of doing a possibly large constant factor more arithmetic. (This is in contrast to the new
dense LU and QR algorithms, which do at most O(n2) more arithmetic than their conventional
counterparts.) We note that our lower bound in Section 4 does not apply to the first phase of the
conventional algorithm for the generalized nonsymmetric eigenproblem (reducing the pair (A,B)
to (Hessenberg,triangular) form), but we conjecture that it can be extended to do so. The lower
bound does apply for the generalized nonsymmetric eigenvalue algorithm in [BDD09, DDH07].

Otherwise, for LDLT , for “3D” parallel algorithms other than matrix-multiplication [ITT04]
that replicate data and so use more memory in order to reduce communication, for Strassen-like
algorithms, and for sparse matrices in general, the problems are open.

We note that for sufficiently rectangular dense matrices (e.g., matrix-vector multiplication) or
for sufficiently sparse matrices, our lower bound may be lower than the trivial lower bound (#inputs
+ #outputs) and so not be attainable. In this case the natural question is whether the maximum
of the two lower bounds is attainable (as it is for dense matrix multiplication).
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Lower bound Upper bound
Algorithm Bandwidth Latency Bandwidth Latency

Matrix-Multiplication O
(

n2
√

P

)
O

(√
P

)

[Can69]
Cholesky O

(
n2 log P√

P

)
O

(√
P log P

)

[BCC+97]
LU Ω

(
n3

P
√

M

)
Ω

(
n3

PM3/2

)
O

(
n2 log P√

P

)
O

(√
P log P

)

[DGX08] [DGX08]
QR = Ω

(
n2
√

P

)
= Ω

(√
P

)
O

(
n2 log P√

P

)
O

(√
P log3 P

)

[DGHL08a] [DGHL08a]
Symmetric Eigenvalues O

(
n2 log P√

P

)
O(
√

P log3 P )
[BDD09]

SVD O
(

n2 log P√
P

)
O(
√

P log3 P )
[BDD09]

(Generalized) Nonsymmetric O
(

n2 log P√
P

)
O(
√

P log3 P )
Eigenvalues [BDD09]

Table 2: Parallel Θ
(

n3

P

)
flops algorithms: bandwidth and latency lower bound vs. upper bounds.

P denotes the number of processors, and M = Θ
(

n2

P

)
denotes the size of the memory per processor

(this is the smallest possible memory per processor).
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