Minimizing Communication in Sparse Matrix Solvers

Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, Kathy Yelick marghoob@eecs.berkeley.edu

EECS Department, University of California at Berkeley
SC09, Nov 17, 2009

Outline

(1) Background
(2) The Kernels

- The matrix powers kernel
- Tall skinny QR
- Block Gram-Schmidt orthogonalization
(3) Integrated Solver (GMRES)

4 Conclusions

Outline

(1) Background
(2) The Kernels

- The matrix powers kernel
- Tall skinny QR
- Block Gram-Schmidt orthogonalization
(3) Integrated Solver (GMRES)
(4) Conclusions

What is communication?

Algorithms incur 2 costs:

What is communication?

Algorithms incur 2 costs:
(1) Arithmetic (flops)
(2) Communication (data movement)

What is communication?

Algorithms incur 2 costs:
(1) Arithmetic (flops)
(2) Communication (data movement)

- Bandwidth (\#words) and latency (\#messages) components

What is communication?

Algorithms incur 2 costs:
(1) Arithmetic (flops)
(2) Communication (data movement)

- Bandwidth (\#words) and latency (\#messages) components

What is communication?

Algorithms incur 2 costs:
(1) Arithmetic (flops)
(2) Communication (data movement)

- Bandwidth (\#words) and latency (\#messages) components

Communication is expensive, computation is cheap

- Time per flop $\gg 1 /$ bandwidth \gg latency
- Gap between processing power and communication cost increasing exponentially

Annual improvements	
Flop rate	59%
DRAM bandwidth	26%
DRAM latency	5%

- Reduce communication \Rightarrow improve efficiency
- Trading off communication for computation is okay

The problem with sparse iterative solvers

Conventional GMRES (solve for $A x=b$)
(1) for $i=1$ to r
(2) $w=A v_{i-1} / * S p M V$ */
(3) Orthogonalize w against $\left\{v_{0}, \ldots, v_{i-1}\right\} / * M G S$ */
(4) Update vector v_{i}, matrix H
(5) Use $H,\left\{v_{0}, \ldots, v_{r}\right\}$ to construct the solution

The problem with sparse iterative solvers

Conventional GMRES (solve for $A x=b$)

(1) for $i=1$ to r
(2) $w=A v_{i-1} / * S p M V$ */
(3) Orthogonalize w against $\left\{v_{0}, \ldots, v_{i-1}\right\} / * M G S$ */
(4) Update vector v_{i}, matrix H
(5) Use $H,\left\{v_{0}, \ldots, v_{r}\right\}$ to construct the solution

- Repeated calls to sparse matrix vector multiply (SpMV) \& Modified Gram Schmidt orthogonalization (MGS)
- SpMV: performs 2 flops/matrix nonzero entry \Rightarrow communication bound
- MGS: vector dot-products (BLAS level 1) \Rightarrow communication bound

The problem with sparse iterative solvers

Conventional GMRES (solve for $A x=b$)

(1) for $i=1$ to r
(2) $w=A v_{i-1}{ }^{*} S p M V$ */
(3) Orthogonalize w against $\left\{v_{0}, \ldots, v_{i-1}\right\} / *$ MGS */
(-) Update vector v_{i}, matrix H
© Use $H,\left\{v_{0}, \ldots, v_{r}\right\}$ to construct the solution

Solution

- Replace SpMV and MGS by new kernels:
- SpMV by matrix powers
- MGS by block Gram-Schmidt + TSQR
- Reformulate to use the new kernels

Outline

(1) Background
(2) The Kernels

- The matrix powers kernel
- Tall skinny QR
- Block Gram-Schmidt orthogonalization
(3) Integrated Solver (GMRES)
(4) Conclusions

Outline

(1) Background

(2) The Kernels

- The matrix powers kernel
- Tall skinny QR
- Block Gram-Schmidt orthogonalization
(3) Integrated Solver (GMRES)
(4) Conclusions

The matrix powers kernel

- Usual kernel $y=A x$ communication-bound for large matrices
- Large \Rightarrow does not fit in cache
- Need to read stream through the matrix
- Given sparse matrix A, vector x, integer $k>0$, compute $\left[p_{1}(A) x, p_{2}(A) x, \ldots, p_{k}(A) x\right], p_{i}(A)$ degree i polynomial i A
- Easier to consider the special case: $\left[A x, A^{2} x, \ldots, A^{k} x\right]$

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

Tridiagonal only for illustration

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

(1) Fetch green entries of x : 1 message/neighbor

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

(1) Fetch green entries of x : 1 message/neighbor
(2) Compute local entries of $A x$

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

(1) Fetch green entries of x : 1 message/neighbor
(2) Compute local entries of $A x$
(3) Fetch green entries of $A x$: 1 message/neighbor

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

(1) Fetch green entries of x : 1 message/neighbor
(2) Compute local entries of $A x$
(3) Fetch green entries of $A x$: 1 message/neighbor
(4) Compute local entries of $A^{2} x$

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

(1) Fetch green entries of x : 1 message/neighbor
(2) Compute local entries of $A x$
(3) Fetch green entries of $A x$: 1 message/neighbor
(4) Compute local entries of $A^{2} x$
(5) Fetch green entries of $A^{2} x$: 1 message/neighbor

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

(1) Fetch green entries of x : 1 message/neighbor
(2) Compute local entries of $A x$
(3) Fetch green entries of $A x$: 1 message/neighbor
(4) Compute local entries of $A^{2} x$
(5) Fetch green entries of $A^{2} x$: 1 message/neighbor
(6) Compute local entries of $A^{3} x$

Naïve parallel algorithm

Example: tridiagonal matrix, $k=3,4$ processors

- 3 messages/neighbor
- k messages/neighbor in general
- k times min. latency cost

A better parallel algorithm for matrix powers

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, $k=3,4$ processors

- Green+black entries of x sufficient to compute all the local entries
- Blue entries represent redundant computation

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, $k=3,4$ processors

(1) Fetch 'ghost' entries (green) from other processors

- 1 message per neighbor

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, $k=3,4$ processors

(1) Fetch 'ghost' entries (green) from other processors

- 1 message per neighbor
(2) Compute required entries of $A x$

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, $k=3,4$ processors

(1) Fetch 'ghost' entries (green) from other processors

- 1 message per neighbor
(2) Compute required entries of $A x$
(3) Compute required entries of $A^{2} x$

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, $k=3,4$ processors

(1) Fetch 'ghost' entries (green) from other processors

- 1 message per neighbor
(2) Compute required entries of $A x$
(3) Compute required entries of $A^{2} x$
(4) Compute required entries of $A^{3} x$

A better parallel algorithm for matrix powers

Example: Tridiagonal matrix, $k=3,4$ processors

- 1 message/neighbor ($O(k)$ improvement)
- Redundant computation \Rightarrow want it to be small
- Can order local+ghost entries to reuse tuned SpMV

General matrix/graph example

- Our algorithms work for general matrices
- Performance improvement best when the surface-to-volume ratio is small

General matrix/graph example

- Our algorithms work for general matrices
- Performance improvement best when the surface-to-volume ratio is small

Red entries of x needed when $k=1$

General matrix/graph example

- Our algorithms work for general matrices
- Performance improvement best when the surface-to-volume ratio is small

Red+green entries of x needed when $k=2$

General matrix/graph example

- Our algorithms work for general matrices
- Performance improvement best when the surface-to-volume ratio is small

Red+green+blue entries of x needed when $k=3$

Sequential algorithms: Explicitly blocked algorithm

Example: 40×40 tridiagonal matrix, $k=3$

- Simulate parallel algorithm on 1 processor
- Each block should be small enough to fit in cache
- Redundant flops performed
- Read the matrix once per k iterations ($O(k)$ improvement) \Rightarrow bandwidth savings

Sequential algorithms: Implicitly blocked algorithm

Example: 40×40 tridiagonal matrix, $k=3$

- Improve upon the explicit algorithm
- Eliminate redundant computation
- No redundant flops
- Implicit blocking by reordering computations
- Bookkeeping overhead for computation schedule
- Computation inside blocks depends on block order \Rightarrow need to solve Traveling Salesman problems

Hybrid algorithm for multicores

- Multicore $\Rightarrow 2$ kinds of communication:
- Inter-core on-chip
- DRAM Off-chip

Hybrid algorithm for multicores

- Multicore $\Rightarrow 2$ kinds of communication:
- Inter-core on-chip
- DRAM Off-chip
- Parallel algorithm minimizes inter-core on-chip communication
- Sequential algorithm minimizes off-chip communication

Hybrid algorithm for multicores

- Multicore $\Rightarrow 2$ kinds of communication:
- Inter-core on-chip
- DRAM Off-chip
- Parallel algorithm minimizes inter-core on-chip communication
- Sequential algorithm minimizes off-chip communication
- Hierarchical blocking of the matrix and vectors
- Minimize inter-block communication: reordering may occur
- Cache blocks small enough to hold the matrix and vector entries in cache

Hybrid algorithm for multicores

- Multicore $\Rightarrow 2$ kinds of communication:
- Inter-core on-chip
- DRAM Off-chip
- Parallel algorithm minimizes inter-core on-chip communication
- Sequential algorithm minimizes off-chip communication
- Hierarchical blocking of the matrix and vectors
- Minimize inter-block communication: reordering may occur
- Cache blocks small enough to hold the matrix and vector entries in cache
- Redundant work due to parallelization (+explicit sequential algorithm)

Tuning the matrix powers kernel

- Tuning parameters and choices:
- Sequential algorithm: explicit/implicit
- Explicit: using cyclic buffers or not
- Partitioning strategy: reorder or not, \# partitions
- Solving the ordering problems
- SpMV tuning parameters: register tile size, SW prefetch distance
- Autotuning
- Choice of parameter values dependent on matrix structure

Outline

(1) Background

(2) The Kernels

- The matrix powers kernel
- Tall skinny QR
- Block Gram-Schmidt orthogonalization
(3) Integrated Solver (GMRES)
(4) Conclusions

Tall skinny QR factorization

Compute the QR factorization of an $n \times(k+1)$ matrix

- "Tall skinny" matrix ($n \gg k$)
- MPI_Reduce with QR as the reduction operator \Rightarrow only one reduction

Reduction tree for 4 processors

- Implementation uses a hybrid approach
- Sequential reduction inside a parallel reduction

Outline

(1) Background

(2) The Kernels

- The matrix powers kernel
- Tall skinny QR
- Block Gram-Schmidt orthogonalization
(3) Integrated Solver (GMRES)
(4) Conclusions

Block GRAM-Schmidt Orthogonalization

- Original MGS: orthogonalize a vector against a block of n orthogonal vectors
- BLAS level 1 operations: dot-products
- Orthogonalize a block of k vectors against a block of n orthogonal vectors
- BLAS level 3 operations: matrix-matrix multiplies \Rightarrow better cache reuse \Rightarrow better performance

Outline

(1) Background

(2) The Kernels

- The matrix powers kernel
- Tall skinny QR
- Block Gram-Schmidt orthogonalization
(3) Integrated Solver (GMRES)
(4) Conclusions

CA-GMRES: Putting the pieces together

Conventional GMRES (solve for $A x=b$)

(1) for $i=1$ to r
(2) $w=A v_{i-1}{ }^{*} S p M V^{*} /$
(3) Orthogonalize w against $\left\{v_{0}, \ldots, v_{i-1}\right\} / * M G S$ */
(1) Update vector v_{i}, matrix H
© Use $H,\left\{v_{0}, \ldots, v_{r}\right\}$ to construct the solution

CA-GMRES: Putting the pieces together

Conventional GMRES (solve for $A x=b$)

(1) for $i=1$ to r
(2) $w=A v_{i-1}{ }^{*} S p M V$ */
(3) Orthogonalize w against $\left\{v_{0}, \ldots, v_{i-1}\right\} /^{*} M G S$ */
(.) Update vector v_{i}, matrix H
(5) Use $H,\left\{v_{0}, \ldots, v_{r}\right\}$ to construct the solution

CA-GMRES (Communication-Avoiding GMRES)

(1) for $i=0, k, 2 k, \ldots, k(t-1) / *$ Outer iterations: $t=r / k$ */
(2) $W=\left\{A v_{i}, A^{2} v_{i}, \ldots, A^{k} v_{i}\right\} / *$ Matrix powers */
(3) Make W orthogonal against $\left\{v_{0}, \ldots, v_{i}\right\} /{ }^{*}$ Block GS */
(4) Make W orthogonal /* TSQR */
(5) Update $\left\{v_{i+1}, \ldots, v_{i+k}\right\}, H$
(6) Use $H,\left\{v_{0}, v_{1}, \ldots, v_{k t}\right\}$ to construct the solution

Does CA-GMRES converge?

Does CA-GMRES converge?

- Monomial basis: matrix powers kernel computes $\left[A x, A^{2} x, \ldots, A^{k} x\right]$

Does CA-GMRES converge?

- Monomial basis: matrix powers kernel computes $\left[A x, A^{2} x, \ldots, A^{k} x\right]$
- Newton basis: matrix powers kernel computes

$$
\left[\left(A-\lambda_{1} I\right) x,\left(A-\lambda_{2} I\right)\left(A-\lambda_{1} I\right) x, \ldots,\left(A-\lambda_{k} I\right) \cdots\left(A-\lambda_{1} I\right) x\right]
$$

Speedups over conventional GMRES: Sparse kernel

- Sparse: median speedup of $1.7 \times$

Speedups over conventional GMRES: Dense kernels

- Dense: median speedup of $2 \times$

Overall speedups over conventional GMRES

- Overall: medial speedup of $2.1 \times$

Overall speedups over conventional GMRES

- Median speedup of $1.6 \times$
- More available bandwidth \Rightarrow speedups lower

Outline

(1) Background
(2) The Kernels

- The matrix powers kernel
- Tall skinny QR
- Block Gram-Schmidt orthogonalization
(3) Integrated Solver (GMRES)

4 Conclusions

Conclusions/Future work

- Implemented a communication-avoiding solver using three new kernels
- Amortized reading matrix over multiple iterations
- Built on prior work, introduced new algorithms for modern multicores, auto-tuned implementation
- Achieve $2.1 \times$ median speedup on Intel Clovertown and $1.6 \times$ median speedup on Intel Nehalem
- Implication for HW design: communication-avoiding
\Rightarrow lower bandwidth \Rightarrow lower cost

Conclusions/Future work

- Implemented a communication-avoiding solver using three new kernels
- Amortized reading matrix over multiple iterations
- Built on prior work, introduced new algorithms for modern multicores, auto-tuned implementation
- Achieve $2.1 \times$ median speedup on Intel Clovertown and $1.6 \times$ median speedup on Intel Nehalem
- Implication for HW design: communication-avoiding
\Rightarrow lower bandwidth \Rightarrow lower cost
- Future work:
- Extending to distributed memory implementations
- Extensions to other iterative solvers
- Add preconditioning
- Incorporate TSP solver to solve the ordering problems
- Autotuning compositions of kernels

Contributions

- High performance implementations and co-tuning of all relevant kernels on multicore
- Simultaneous optimizations to reduce parallel and sequential communication
- New algorithm allows independent choice of restart length r and kernel size k
- Prior work required $r=k$, but want $k \ll r$ in most cases
- Showed how to incorporate preconditioning
- Still need to implement
- See paper for lots of references on prior work
- Questions?

Sparse Matrices

Tridiagonal matrix (1M, 3M, 3)		cant FEM cantilever (62K, 4M, 65)	Pressure matrix (123K, 3.1M, 25)
		xenon Complex zeolite, sodalite crystals (157K, 3.9M, 25)	

Example 1: CA-GMRES same as standard GMRES

- Discretized $-\Delta u=f$ in $[0,1]^{2}$
- CA-GMRES w/ any basis converges as fast as standard (restarted) GMRES, but. . .

Example 2: CA-GMRES beats standard GMRES

- Added a Cu_{x} convection term to the PDE
- CA-GMRES beats standard restarted GMRES!

CA-GMRES may be better than GMRES

- Previous metric for success: CA-GMRES = GMRES
- For some problems, CA-GMRES converges faster
- Future work: investigate and control this phenomenon

