
MINIMIZING DNF FORMULAS AND AC0 CIRCUITS GIVEN A TRUTH TABLE
�

ERIC ALLENDER†, LISA HELLERSTEIN‡, PAUL MCCABE §, TONIANN PITASSI ¶, AND MICHAEL

SAKS
�

Abstract. For circuit classes R, the fundamental computational problem Min-R asks for the minimum R-size of
a Boolean function presented as a truth table. Prominent examples of this problem include Min-DNF, which asks
whether a given Boolean function presented as a truth table has a k-term DNF, and Min-Circuit (also called MCSP),
which asks whether a Boolean function presented as a truth table has a size k Boolean circuit. We present a new
reduction proving that Min-DNF is NP-complete. It is significantly simpler than the known reduction of Masek [31],
which is from Circuit-SAT. We then give a more complex reduction, yielding the result that Min-DNF cannot be
approximated to within a factor smaller than � logN � γ , for some constant γ � 0, assuming that NP is not contained
in quasipolynomial time. The standard greedy algorithm for Set Cover is often used in practice to approximate Min-
DNF. The question of whether Min-DNF can be approximated to within a factor of o � logN � remains open, but we
construct an instance of Min-DNF on which the solution produced by the greedy algorithm is Ω � logN � larger than
optimal. Finally, we extend known hardness results for Min-TC0

d to obtain new hardness results for Min-AC0
d , under

cryptographic assumptions.
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1. Introduction. A fundamental computational problem is to determine the minimum
size of a Boolean function in some representation, given a truth table for the function. Two
prominent examples are Min-DNF, which asks whether a Boolean function presented as a
truth table has a k-term DNF; and Min-Circuit (also called MCSP, for Minimum Circuit Size
Problem), which asks whether a Boolean function presented as a truth table has a size k
Boolean circuit. By varying the representation class, we can obtain a hierarchy of problems
between Min-DNF and Min-Circuit, including such problems as Min-AC0, Min-TC0, and
Min-NC1.

The main focus of this paper is the Min-DNF problem. Min-DNF is the decision version
of finding the smallest DNF formula consistent with a truth table, where the size of a DNF
formula is considered to be the number of terms in it. This is a classic problem in com-
puter science and circuit design. Heuristic approaches to solving this problem range from the
Karnaugh maps of the 1960’s to state-of-the-art software packages (cf. [14]).

Masek proved Min-DNF to be NP-complete in the 1970’s [31]. This result was cited by
Garey and Johnson [19] and is widely known, but Masek never published his proof. More
recently, Czort presented a modernized, more readable version of Masek’s proof [15] (see also
[43]). Masek’s proof is by direct reduction from Circuit-SAT, using gadget constructions, and
even in Czort’s version it is long and involved. We present a new, simple NP-completeness
proof for Min-DNF by reduction from 3-Partite Set Cover (or, more particularly, from 3D-
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2 MINIMIZING DNF FORMULAS

Matching).
It is well-known that Min-DNF can be viewed as a special case of Set Cover, and that

the greedy Set Cover algorithm can be applied to Min-DNF to produce a DNF with O � logN �
times as many terms as the optimal, where N is the size (number of entries) of the input truth
table. This prompts the question of whether a better approximation factor can be achieved.
Czort considered this question, but showed only that unless P � NP, the size of the smallest
DNF cannot be approximated to within an additive constant k [15]. We also give a more
complicated reduction (again from a restricted version of Set Cover) that allows us to prove
the following inapproximability result for Min-DNF: If NP is not contained in quasipolyno-
mial time, then Min-DNF cannot be approximated to within a factor smaller than � logN � γ for
some constant γ � 0, where N is the size of the input truth table.

There is a gap between our Ω ��� logN � γ � inapproximability lower bound for Min-DNF,
and the O � logN � upper bound of the greedy Set Cover algorithm. Closing this gap remains an
open question. We do, however, construct an instance of Min-DNF for which the greedy Set
Cover algorithm produces a DNF formula that has Ω � logN � times as many terms as the opti-
mal. The greedy Set Cover algorithm is commonly used as a heuristic for solving Min-DNF
in practice. We also prove an Ω ��� logN � inapproximability lower bound for Min-DNF under
the additional assumption that a restriction of Set Cover is Ω � logn � -hard to approximate.

Although the general Min-DNF problem is NP-hard, for k � O ��� logN � it is tractable
[20]. Using a simple padding argument, we show hardness results for Min-DNF where k �
ω � logN � . The question of whether Min-DNF is tractable for k � logN remains open. This
question was posed in [20]; a negative result would imply that logn-term DNF cannot be
learned with membership and proper equivalence queries.

In addition to our results for Min-DNF, we also prove a result for Min-AC0
d for all suf-

ficiently large d. Under cryptographic assumptions, it is known that Min-Circuit, Min-NC1

and Min-TC0
d are not polynomial-time solvable [4]. (Nothing is stated explicitly in [4] regard-

ing Min-TC0
d , but it is implicit.) We extend the hardness results for Min-TC0

d to obtain new
hardness results for Min-AC0

d, under cryptographic assumptions. This still leaves open the in-
teresting question of whether Min-Circuit (or the other problems) are NP-complete. Kabanets
and Cai [24] give evidence that such a reduction will not be straightforward.

The organization of this paper is as follows. In Section 2 we define the relevant mini-
mization problems and present necessary background. In Section 3 we present our new proof
that Min-DNF is NP-hard. In Section 4 we present our hardness results for approximating
Min-DNF. In Section 5 we give our construction of the instance of Min-DNF on which the
greedy Set Cover algorithm produces an Ω � logN � factor approximation. Section 6 concerns
the fixed parameter versions of Min-DNF. Our hardness results for Min-AC0

d appear in Section
8. Conclusions are in Section 9.

A preliminary version of this paper appeared in [3]. Feldman independently proved
an Ω ��� logN � δ � factor inapproximability result for Min-DNF [18] using related techniques.
Feldman’s result is based on the assumption P 	� NP, rather than on the assumption that NP is
not contained in quasipolynomial time. Feldman also proved new results on proper learning
of DNF, which are discussed in Section 7.

2. Preliminaries. We begin with a few definitions. The set 
 1 ��������� n  is denoted by � n � .
We use the bitwise ordering on vectors: for v � w ��
 0 � 1  n, we write v � w if vi � wi for all
i ��� n � . Let Vn ��
 x1 ��������� xn  . A prime implicant T of a function f � x1 ��������� xn � is a conjunction
of literals over the variables Vn such that T � 1 � f � 1, and removing any literal from T
violates this property. (In the literature, prime implicants are sometimes called minterms).
A DNF formula over the variables Vn is a formula φ � T1 � T2 � ����� Tk for some k, where
T1 ��������� Tk are each conjunctions of literals over Vn. Each Ti in φ is a term of φ . Every Boolean
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function f can be expressed by a DNF formula in which every term is a prime implicant of
f . The size of a DNF formula is the number of terms in it; for a Boolean function or partial
function f , dnf-size � f � denotes the size of the smallest DNF formula consistent with f . The
class of Boolean circuits AC0

d consists of all depth-d circuits of AND and OR gates with
arbitrary fan-in.

The classic Set Cover optimization problem is, given input ��� ��� � , where � is a finite
universe, and � is a collection of subsets of � , find a smallest subcollection ����� , such
that that the union of the sets in � equals � . It is NP-hard to approximate Set Cover to within
a factor smaller than c logn, where c is a constant and n is the size of the input (cf. [7]). On
the other hand, there is a simple greedy algorithm that achieves an O � logn � approximation
for Set Cover [22, 29, 13].

For r a positive integer, the r-Uniform Set Cover problem is as follows: on input � n � k ��� �
where n and k are positive integers and � is a set of subsets of � n � , each subset having size r,
determine whether there is a subcollection ���	� of size at most k whose union is � n � . The
r-Partite Set Cover problem is a restriction: on input � n � k � Π �
� � where n and k are positive
integers, Π is a partition of � n � into r sets, and � is a collection of subsets of � n � , where every
subset contains exactly one element from each of the sets of Π, determine whether there is a
subcollection ���	� of size at most k whose union is � n � . The 3D-Matching problem is the
NP-complete restriction of 3-Partite Set Cover where k � n � 3 (cf. [19]).

We consider a general family of computational problems of the form Min-R(S) where
the input is a Boolean function with input representation from S, and the output should be a
minimum representation of the function from R. For example, Min-DNF(tt) is the problem
of determining a smallest DNF representation of a Boolean function f on n variables, if f is
presented as a truth table of size N � 2n. Our default input representation will be the truth
table representation and when we write Min-R, rather than Min-R(S), we will assume the
default input representation.

We focus primarily on DNF minimization. We consider the following four variations:

Min-DNF(A): The input is a total Boolean function, specified by explicitly listing all 1’s of
the function. That is, A � 
 0 � 1  n is the input, and we look for a minimum DNF
that realizes the total function fA, where fA � a � � 1 for a � A, and fA � b � � 0 for
b � 
 0 � 1  n � A.

Min-DNF: In the full-truth table version, the input is the entire truth table of f : 
 0 � 1  n 

 0 � 1  , and we look for a minimum DNF that realizes the function f .

Min-DNF(A,B): The input is a partial Boolean function, specified by listing the 1’s and 0’s
of the function, and we look for a minimum DNF that is consistent with the input.
That is, A � B � 
 0 � 1  n is the input, and we look for a minimum DNF that realizes a
function f : 
 0 � 1  n  
 0 � 1  , where f � a � � 1 for a � A and f � b � � 0 for b � B.

Min-DNF(*): The input is a partial Boolean function, specified by the entire truth table of
f : 
 0 � 1  n  
 0 � 1 ���  , where f � a � ��� means that the value of f is not defined on
a. We look for a minimum DNF that realizes a function f � : 
 0 � 1  n  
 0 � 1  , where
f � � a � � 1 for a � f � 1 � 1 � and f � � b � � 0 for b � f � 1 � 0 � . Note that as in the � A � B �
version, the input here also specifies a partial function, but now the partial function
is specified by a 2n sized input, regardless of the size of the domain of the partial
function.

The decision versions of the above problems ask, given a function f and a natural number
k, whether or not there is a DNF formula realizing f that has at most k terms. All decision ver-
sions are easily seen to lie in NP. It is also easy to see that Min-DNF is a special case of Min-
DNF(*) and therefore reduces to Min-DNF(*), and Min-DNF(*) reduces to Min-DNF(A,B).
Also Min-DNF reduces to Min-DNF(A). Thus NP-hardness of Min-DNF implies NP-hardness
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of all other versions. The first three of the above problems are covered by Czort [15] in an
excellent survey of previous related work. There is a hodgepodge of interesting but incompa-
rable hardness results that are known for versions of DNF minimization, dating back to the
1960’s. The simplest of these is the NP-hardness of the � A � B � version due to Pitt and Valiant
[35]. As shown by Czort, there is also a clean NP-hardness proof of the A version that follows
from a reduction of Gimpel. Masek [31] proved the NP-completeness of Min-DNF. In terms
of inapproximability, Pitt and Valiant’s proof of the � A � B � hardness result preserves solution
values and thus shows the NP-hardness of achieving a factor nε approximation. Neither of
the other two NP-hardness proofs (for the A version or for Min-DNF) give much in the way
of inapproximability results.

A starting point for this paper is the well-known observation that Min-DNF easily reduces
to Set Cover, and in fact can be viewed as a special case of Set Cover. Given the truth table
of a Boolean function f over n variables, all prime implicants of f can be generated in time
2O � n � . Each prime implicant can then be viewed as a subset of 
 0 � 1  n (corresponding to those
inputs that satisfy the prime implicant). Thus given all the prime implicants, finding a smallest
DNF is equivalent to finding a smallest cover for these prime implicant sets. Applying the
standard greedy algorithm for Set Cover, it follows that Min-DNF can be approximated to
within a factor of O � logN � , where N is the size (number of entries) of the truth table.

For a partial Boolean function f , the prime implicants of f are the prime implicants of
the total function f � that satisfies f � ���x � � 1 iff f ���x � � 1 � f ���x � � � . Every partial function f
has a smallest consistent DNF whose terms are prime implicants of f . The greedy Set Cover
algorithm can also be used to approximate Min-DNF(*) in the same way that it is applied
to Min-DNF, except that it chooses sets that cover the maximum number of 1’s of the input
function (i.e. it ignores � ’s when greedily choosing sets).

The pseudocode for applying the greedy Set Cover algorithm to Min-DNF and Min-
DNF(*) is shown below. The input is the full truth table of a Boolean function or partial
function f .

1: � : � 
 T � T is a prime implicant of f 
2: ϕ : ���
3: while ϕ does not cover all 1’s of f do
4: let T �	� cover the most uncovered 1’s of f
5: ϕ : � ϕ � T
6: end while
7: return ϕ

FIG. 2.1. Greedy Min-DNF and Min-DNF(*) algorithm

3. Simple proof that Min-DNF is NP-complete. Our new proof that Min-DNF is NP-
complete is a modification of the reduction of Gimpel mentioned above, which was was used
by Czort to prove the NP-completeness of the A version of DNF minimization [15].

We start by briefly describing Gimpel’s reduction. It can be viewed as consisting of two
phases. In the first phase, an instance � � ��� � of Set Cover over the ground set � � � n � is
mapped to a partial function f , as follows. First, both the sets as well as the ground elements
are mapped to truth assignments in 
 0 � 1  n, such that a set covers a ground element in � n � if
and only if the assignment corresponding to the ground element is less than the assignment
corresponding to the set (where comparison of assignments is with respect to the bitwise
ordering of the vectors). Each ground element i � � n � is mapped to the assignment that is all
zero except for bit i, which is 1. Each set is mapped to the assignment corresponding to the
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characteristic function of the set. The 1’s of f are those assignments corresponding to ground
elements; the � ’s of f are those assignments α such that α � β for some β corresponding to
a set; and the remaining truth assignments are zeroes of f . It can be shown that the size of
the minimum DNF consistent with the partial function f is equal to the minimum size of the
cover for the input instance of Set Cover.

In the second phase of Gimpel’s reduction, the partial function f is mapped to a total
function, g. We give the details of g below in Section 3.2. The truth table size of f and
g are exponential in the size of the Set Cover instance from the first phase. Thus Gimpel’s
reduction does not give a hardness result for Min-DNF. As Czort notes, it does, however, give
a hardness result for Min-DNF(A), provided that we begin the reduction not from the general
Set Cover problem, but from 3-Uniform Set Cover .

Our reduction proving that Min-DNF is NP-complete also has two phases. The first
phase is similar to that of Gimpel. The main difference is that we need a much more compact
mapping from the sets and ground elements of the Set Cover instance onto truth assignments,
to ensure that the size of the truth table for the resulting function is only polynomial in the
size of the input Set Cover instance. To do such a compact mapping in a simple way, we
reduce from 3-Partite Set Cover, rather than from 3-Uniform Set Cover. The second phase of
our reduction is essentially identical to Gimpel’s.

3.1. Reducing 3-Partite Set Cover to Min-DNF(*). In the first phase of our reduction,
we reduce 3-Partite Set Cover to Min-DNF(*). We note that our reduction from 3-Partite Set
Cover would also work from 3D-Matching. We use the following lemma, which is implicit
in Gimpel’s reduction:

LEMMA 3.1. Let � be a set of subsets of � n � . Let t � 0 and let V � 
 vi : i � � n �  and
W � 
 wA : A � �  be sets of vectors from 
 0 � 1  t satisfying

(*) For all A � � and i � � n � , i � A iff vi � wA

Let R � 
 x ��
 0 � 1  t � x 	� V and for some w � W � x � w  . Let f be a partial function with
domain 
 0 � 1  t such that f � x � � 1 if x � V, f � x � � � if x � R, and f � x � � 0 otherwise. Then
� has a cover of size m if and only if there is an m-term DNF consistent with f .

Proof. For u � 
 0 � 1  t , let D � u � � 
 w : w � u  and let τ � u � denote the DNF term�
i:ui � 0 � xi. Note that D � u � is exactly the set of satisfying assignments of τ � u � . For a set U of

vectors D � U � ��� u � U D � u � . By (*), we have that V � D � W � . Also, f � x � � � iff x � D � W � � V .
Given a cover ����� of size m, the m-term DNF whose terms are 
 τ � wC � � C � �  is

easily seen to be consistent with f . Conversely, suppose φ is an m-term DNF consistent with
f . For each term τ � φ , let u � τ � be the maximal vector satisfying τ . Since φ is consistent
with f , we have that u � τ � � D � W � , so there must be a set S � τ � � � for which u � τ � � wS � τ � .
We claim that 
 S � τ � : τ � φ  is a cover of � . Let j ��� n � . We must show that j is covered.
The consistency of φ implies that v j is satisfied by some term τ j � φ . This implies v j � u � τ j � .
Thus v j � wS � τ j � , which by (*) implies j � S � τ j � .

The reduction from 3-Partite Set Cover to Min-DNF(*) is given in the following lemma.

LEMMA 3.2. There is an algorithm that takes as input an instance � n � k � Π �
� � of 3-
Partite Set Cover and outputs an instance of Min-DNF(*). The instance of Min-DNF(*)
defines a partial function f on O � logn � variables, such that the size of the smallest DNF
consistent with f is equal to the size of the smallest cover for the input 3-Partite Set Cover
instance. The algorithm runs in time polynomial in n.

Proof. Given an input instance � n � k � Π �
� � of 3-Partite Set Cover, the algorithm pro-
duces an indexed set of vectors V � 
 vi : i � � n �  and W � 
 wA : A � �  all of the same
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(small) length t satisfying the condition (*) of Lemma 3.1. We will specify V and then define
W according to the rule that for A � � , wA is the bitwise OR of 
 vi : i � A  . This guarantees
the forward implication of condition (*) for any choice of V ; it is the backward implication
that requires some care in choosing V .

Let q be the smallest integer such that � q
q � 2 ��� n. Thus q � O � logn � . Assign to each

i � � n � a unique q-bit Boolean vector b � i � containing exactly q � 2 1’s. For i � � n � , write Π � i �
for the index of the block of Π that contains i. Let t � 3q. We will consider the t-bit vectors
in V and W as being divided into 3 blocks of size q. For i � � n � , let vi be equal to 0 on all
blocks but block Π � i � ; on block Π � i � it is b � i � . To see that the backward implication of ��� �
holds, let A � � and i � � n � and assume that vi � wA. Then A contains one element i � with
Π � i � � � Π � i � and so we must have b � i � � b � i � � , which implies i � i � .

V and W can be generated in time nO � 1 � . The partial function f will have domain 
 0 � 1  t .
The lemma then follows immediately from Lemma 3.1.

3.2. Reducing Min-DNF(*) to Min-DNF. As mentioned above, the second phase of our
reduction is taken from Gimpel. We describe the phase here, and will build on it later in order
to prove inapproximability results. The second phase of Gimpel’s reduction maps a partial
function f to a total function g. The variables underlying g are V (the variables of f ) plus two
additional variables, y1 and y2. The total function g is defined as follows:

g ���x y1y2 � �

����� ����
1 � if f ���x � � 1 and y1 � y2 � 1

1 � if f ���x � � � and y1 � y2 � 1

1 � if f ���x � � � , y1 � p ���x � , and y2 � � p ���x �
0 � otherwise

where p ���x � � 0 if the parity of �x is even, and p ���x � � 1 if the parity of �x is odd. Let
s � � f � 1 ��� � � . The following lemma is implicit in Gimpel’s reduction (cf. [15]).

LEMMA 3.3. dnf-size � g � � dnf-size � f �
	 s.

Proof. The idea behind the proof is as follows. The key observation is that every DNF
for g requires s distinct terms to cover the inputs of the third type in the definition of g above;
these terms can simultaneously cover all inputs of the second type, but not those of the first
type. The remaining terms of the DNF must therefore cover the terms of the first type; and
may optionally cover the terms of the second type; they thus constitute a solution to the
Min-DNF(*) problem for f . It follows that dnf-size � g � � dnf-size � f �
	 s. We now prove this
formally.

We first show that dnf-size � g � � dnf-size � f ��	 s. Suppose ϕ is a minimum-size DNF
consistent with f . Define a DNF ψ with terms of two types: first, for every input �x � f � 1 �
� � ,
ψ contains the term � � i: xi � 1 xi ��� � � i: xi � 0 � xi ��� y2 � p ��x � . These terms cover all inputs of the

second and third types in the definition of g. Second, for every term T of ϕ , ψ contains the
term T � y1 � y2. These terms cover all inputs of the first type in the definition of g.

Finally, suppose that �xy1y2 satisfies ψ . Then one of the following three conditions holds:
(1) �x � f � 1 �
� � , y1 � p ���x � , and y2 � � p ���x � , (2) �x � f � 1 �
� � , and y1 � y2 � 1, (3) �x satisfies ϕ
(and thus �x � f � 1 � 1 ��� f � 1 ��� � ) and y1 � y2 � 1. In all three cases we have g ���xy1y2 � � 1, and
thus ψ is consistent with g. The number of terms in ψ is � f � 1 �
� � ��	 �ϕ � � dnf-size � f �
	 s.

We now show that dnf-size � g � � dnf-size � f ��	 s. Suppose that ψ is a smallest DNF
for g. We assume without loss of generality that each term of ψ is a prime implicant of g.
We begin by proving that, for every �x � f � 1 �
� � , ψ contains the term t ���x � � y2 � p ��x � , where
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t ���x � � � � i: xi � 1 xi � � � � i: xi � 0 � xi � . The proof is as follows. Let �x � f � 1 ��� � , and suppose

that the parity of �x is odd: the case of even parity is symmetric. Let T be a term of ψ that is
satisfied by �x10 (where 1 and 0 are the values of y1 and y2 respectively). If, for some index
i, T does not contain the variable xi, let �x � be obtained by flipping the i-th bit of �x. Then �x � 10
falsifies g (since �x � has even parity), but satisfies T , contradicting the assumption that ψ is
consistent with g. Thus T contains each of the variables x1 ��������� xn. In addition, T contains
the variable y1, as otherwise �x00 would satisfy T . Finally, since T is a prime implicant of g,
we have that T � t ���x � y1.

We now prove that there exists a subformula ψ̂ of ψ and a DNF ψ � over the �x variables
that is consistent with f , such that ψ̂ � �

T � ψ � � T � y1 � y2 � . Let ψ̂ be the subformula of

ψ consisting of those terms that are satisfied by �x11 for some �x � f � 1 � 1 � . Each term of
ψ̂ contains y1 � y2, since flipping y1 or y2 produces an input that falsifies g. It follows that
ψ̂ � �

T � ψ � � T � y1 � y2 � where ψ � is a DNF. It remains to show that ψ � is consistent with f .

For every �x � f � 1 � 1 � , there is a term of ψ satisfied by �x11, and thus there is a corresponding
term of ψ � satisfied by �x. On the other hand, every �x � f � 1 � 0 � must falsify ψ � , as otherwise
�x11 would satisfy ψ .

It follows from the above that ψ consists of the terms t ���x � � y2 � p ��x � for each �x � f � 1 �
� � ,
together with the subformula ψ̂ . These components are pairwise disjoint. Since ψ � is consis-
tent with f , ψ̂ contains at least dnf-size � f � terms, and thus the size of ψ is at least dnf-size � f � 	
s.

It follows that there is a polynomial-time reduction from Min-DNF(*) to Min-DNF. Com-
bining this with the previous reduction from 3-Partite Set Cover to Min-DNF(*), it follows
that Min-DNF is NP-complete.

4. On the Approximability of Min-DNF. Although the two-phase reduction above
proves the NP-completeness of Min-DNF, it does not give us inapproximability results. There
are two problems. First, the reduction begins with an instance of 3-Partite Set Cover, a prob-
lem that can be approximated in polynomial time to within a factor of ln3 [22, 29] (since the
size of the largest subset is 3); to obtain inapproximability results we need to reduce from
a problem that is difficult to approximate. Also, the second phase of the reduction, from
Min-DNF(*) to Min-DNF, is not approximation preserving.

We replace the first phase of the reduction with a reduction that exploits properties of the
Set Cover instance obtained by the PCP-based inapproximability results of Lund/Yannakakis
and Feige [30, 17]. We then modify the second phase to make it approximation preserving.
The final two-phase reduction gives an inapproximability factor of Ω ��� logN � γ � assuming that
NP is not contained in quasipolynomial time.

In Appendix A we also present a modified version of the first phase of the reduction,
which reduces from r-Uniform Set Cover rather than from 3-Partite Set Cover. This allows
us to obtain an inapproximability result for Min-DNF by applying known inapproximability
results for r-Uniform Set Cover. However, the result we obtain for Min-DNF is weak (inap-
proximability to within a factor of Ω � loglogN � ). Nevertheless, the reduction itself may be
of independent interest, since it requires a different technique to reduce from r-Uniform Set
Cover rather than from r-Partite Set Cover.

4.1. New reduction to Min-DNF(*). In this section we present a reduction that follows
the PCP-based inapproximability results for Set Cover [30, 17]. We will closely follow the
Lund/Yannakakis reduction, as presented by Khot [26].

An instance of Label Cover is denoted by � � � G � L1 � L2 � Π � where G � � V � W � E � is
a regular bipartite graph, L1 and L2 are sets of labels, and Π � 
 πvw  � v� w � � E denotes the



8 MINIMIZING DNF FORMULAS

constraints on each edge. For every edge � v � w � � E we have a map πvw : L1
 L2. A labelling

l : V  L1, W  L2 satisfies the constraint on an edge � v � w � if πvw � l � v ��� � l � w � . Given an
instance � , the output should be a labelling that satisfies the maximum fraction, OPT � � � ,
of edge constraints.

THEOREM 4.1. [30, 26] There is a constant c
� 1 such that it is NP-hard to solve the fol-

lowing gap version of Label Cover. The input is an instance � � � G � � V � W � E � ��� 7 � ��� 2 � ��
 πvw  � v� w � � E �
of Label Cover. The instance should be accepted if OPT � � � � 1, and the instance should be
rejected if OPT � � � is at most c.

Note that the reduction is from Max3SAT(5)(the problem of maximizing the number
of satisfied clauses in a 3CNF formula where each variable occurs in exactly five clauses).
The vertices in V correspond to the m clauses, and the vertices in W correspond to the n
variables. Using Raz’s parallel repetition theorem [36], we can amplify the gap, obtaining, for
any positive integer k, an instance � � � � G � � � V � � W � � E � � ��� 7k � ��� 2k � ��
 πv � w �  � v � � w � � � E � � , where

�V � � � �V � k and �W � � � �W � k, such that OPT � � � � 1 implies OPT � � � � � 1, and OPT � � � � c
implies OPT � � � � � 2 � γk, where γ � 0 is an absolute constant. Note that the sizes of both V �
and W � are nO � k � , where n is the number of variables in the Max3SAT(5) instance.

DEFINITION 4.2. A partition system � � m � h � t � consists of t partitions � A1 � A1 � ��������� At � At �
of �m � , with the property that no collection of h sets, with at most one set from each partition,
covers all of �m � .

LEMMA 4.3. [30] For every h and t, there is an efficiently constructible partition system
� � m � h � t � with m � O � 2hh logt � .

We now review the reduction from the Label Cover instance � � to a Set Cover instance
� � ��� � . First, the universe � is as follows. Let t � 2k, let h be a parameter to be determined
later, and let m � m � t � h � � O � 2hh logt � be the parameter specified by Lemma 4.3. For each
edge e � E � we associate a subuniverse � e � 
 � e � i � � i ���m �  . The entire universe � is the
disjoint union of these �E � � subuniverses. Associated with each edge e is a partition system

� � m � h � t � over � e, with one partition associated with each of the possible labels in L2. Thus
each label b � � t � corresponds to a partition � Ae

b � Ae
b � of � e. The size of the entire universe

is nO � k � 2O � h � . The set system � is the union of two collections of sets: S � v � a � , for each
vertex v � V � and each label a � � 7k � ; and S � w � b � , for each w � W � and each label b � � 2k � . In
particular,

S � v � a � � �
w: � v� w � � E �

A � v� w �
πvw � a � S � w � b � � �

v: � v� w � � E �
A � v� w �

b
�

The following lemma is implicit in [30, 26].

LEMMA 4.4. [30, 26] If OPT � � � � � 1 then ��� ��� � has a cover of size �V � � 	 �W � � . If
OPT � � � � � 1 � � 2h2 � then every cover of ��� ��� � has size at least h � �V � ��	 �W � � � � 16.

Choosing h � 2γk � 2 � 1 � 2, we obtain a gap of h � 16 for the Set Cover instance from the 2γk

gap of the Label Cover instance. For k � O � loglogn � sufficiently large, we have � � � � 2O � h � ,
and thus the gap is Ω � log � � � � . The size of the Set Cover instance is quasipolynomial in
n. Thus a polynomial-time, � h � 16 � -approximation algorithm for Set Cover could distinguish
between the cases OPT � � � � � 1 and OPT � � � � � 2 � γk in time 2polylog � n � , implying that NP
is contained in DT IME � 2polylog � n � � .

We now show how to reduce instances of Set Cover of the above form to Min-DNF(*)
instances. By the observations in Section 3.1 it suffices to define three sets of vectors,
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 ue � i � � e � i � � �  , 
 tv� a � v � V � � a � L1  , and 
 tw� b � w � W � � b � L2  such that the following
conditions hold: (1) ue � i � tv� a iff � e � i � � S � v � a � , for all � e � i � � � , v � V and a � L1; and (2)
ue � i � tw� b iff � e � i � � S � w � b � , for all � e � i � � � , w � W , and b � L2, Let r � O � log �V � � � be such

that � r
r � 2 � � max � �V � � � �W � � � . Our function will have variables 
 x1 ��������� xr  � 
 x �1 ��������� x �r  �


 ya � a � L1  � 
 y �b � b � L2  . Thus the number of variables is O � log �V � � 	�� L1 � 	 � L2 � � �
O � k logn 	 7k � .

We assign to each v � V � a unique set Sv � 
 1 ��������� r  of size r � 2; and similarly each
w � W � is assigned a unique set Sw � 
 1 ��������� r  of size r � 2. For each v � V � and a � L1,
we define a Boolean vector tv� a as follows. The vector tv� a has zeroes corresponding to those
variables xi such that i � Sv; and it has a zero corresponding to ya. The remaining bits of
tv� a are ones. We similarly define, for each w � W � and b � L2, a Boolean vector tw� b having
zeroes corresponding to those variables x �i such that i � Sw, and a zero corresponding to y �b,
and whose remaining bits are ones.

We now describe, for each � e � i � � � , a Boolean vector ue � i. Suppose that e � � v � w � ,
and let S � v � a1 � ��������� S � v � ak � and S � w � b1 � ��������� S � w � b ��� be all of the sets in � containing � e � i � .
Then ue � i has zeroes in the positions corresponding to the following variables: (1) Variables
xi, where i � Sv, (2) Variables x �i, where i � Sw, (3) Variables yai

, where 1 � i � k, and (4)
Variables y �bi

, where 1 � i � �
. The remaining bits of ue � i are ones.

LEMMA 4.5. For all � e � i � � � , v � V, w � W, a � L1, and b � L2, the following condi-
tions hold: ue � i � tv� a iff � e � i � � S � v � a � and ue � i � tw� b iff � e � i � � S � w � b � .

Proof. Suppose first that � e � i � � S � v � a � , where v � V � and a � L1. Then e � � v � w � for
some vertex w � W � . The zeroes of tv� a are in positions corresponding to variables xi, where
i � Sv, and in the position corresponding to ya. Since e � � v � w � , the vector ue � i has zeroes in
the positions corresponding to variables xi, where i � Sv, and since � e � i � � S � v � a � the vector
ue � i also has a zero in the position corresponding to ya. Thus ue � i � tv� a. The case where
� e � i � � S � w � b � , where w � W � and b � L2, is symmetric.

Now suppose that � e � i � 	� S � v � a � , where v � V � and a � L1. Suppose that e � � v � � w � � . If
v � 	� v then there exists an index j � Sv � Sv � ; and ue � i has a one in the position corresponding
to x j, while tv� a has a zero in the same position, and thus ue � i 	� tv� a. So assume that v � � v.
By definition of tv� a, we know that tv� a has a zero in the position corresponding to ya. But
since e � � v � w � � , ue � i has a zero in this position iff � e � i � � S � v � a � ; and as we have supposed
that � e � i � 	� S � v � a � it follows that the position in ue � i corresponding to ya is set to one. Thus
ue � i 	� tv� a. The case where � e � i � 	� S � w � b � , where w � W � and b � L2, is symmetric.

By the results of Section 3.1, the vectors ue � i, tv� a, and tw� b yield an instance of Min-

DNF(*) on O � k logn 	 7k � variables whose optimum is equal to the optimum for the instance
� � ��� � of Set Cover.

THEOREM 4.6. If NP 	� DTIME � 2polylog � n � � then there exists an absolute constant δ � 0
such that no polynomial time algorithm achieves an approximation ratio better than � logN � δ

for Min-DNF(*), where N is the size of the input truth table.

Proof. Let f be the partial function specified by our reduction. Claims 4.4 and 4.5,
together with the results of Section 3.1, imply that our Min-DNF(*) instance has the following
properties: if OPT � � � � � 1, then dnf-size � f � � �V � � 	 �W ��� ; and if OPT � � � � � 2 � γk, then
dnf-size � f � � h � �V ��� 	 �W � � � � 16, where h � Ω � 2γk � 2 � . Let us take k � loglogn, and thus
h � Ω ��� logn � γ � 2 � . Let N be the size of the truth table for f . The number of variables of f is
logN � O � k logn 	 7k � � O ��� logn � log7 � , and thus the gap is h � 16 � Ω ��� logN � γ � � 2log7 � � . The
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truth table has size 2polylogn, and can be generated in time polynomial in its size. The theorem
follows by taking δ � γ � � 2log7 � .

4.2. Approximation-preserving reduction from Min-DNF(*) to Min-DNF. We mod-
ify the reduction from Section 3.2 to make it approximation preserving. Let f be a partial
Boolean function over variables x1 ��������� xn. Let s � � f � 1 �
� � � . We construct a new total func-
tion g � such that dnf-size � g � � � s � dnf-size � f � 	 s � s � � dnf-size � f � 	 1 � . Let t � n 	 1, and let
S � 
 0 � 1  t be a collection of s vectors, each containing an odd number of 1’s. We add t new
variables z1 ��������� zt , and define

g � ���x y1y2 �z � �

����� ����
1 � if f ���x � � 1, y1 � y2 � 1, and �z � S

1 � if f ���x � � � and y1 � y2 � 1

1 � if f ���x � � � , y1 � p ���x � , and y2 � � p ���x �
0 � otherwise

LEMMA 4.7. dnf-size � g � � � s � dnf-size � f �
	 s

Proof. For binary vector �w, we use t � �w � to denote the term � � i:wi � 1 wi � � � � i:wi � 0 � wi � .

We first show that dnf-size � g � � � s � dnf-size � f � 	 s. Suppose that ϕ is a smallest DNF
consistent with f . Define a DNF ψ with terms of the following two types. First, for every
input �x � f � 1 ��� � , ψ contains the term t ���x � � y2 � p ��x � . These terms cover all inputs of the

second and third types in the definition of g � . Second, for every term T of ϕ and every vector
�z � S, ψ contains the term T � y1 � y2 � t � �z � . These terms cover all inputs of the first type
in the definition of g � . Finally, suppose that �xy1y2 �z satisfies ψ . Then one of the following
conditions holds: (1) �x � f � 1 �
� � , y1 � p ���x � , and y2 � � p ���x � , (2) �x � f � 1 �
� � , and y1 � y2 � 1,
(3) �x satisfies ϕ (and thus �x � f � 1 � 1 � � f � 1 �
� � ), y1 � y2 � 1, and �z � S. In all three cases
we have g � ���xy1y2 �z � � 1, and thus ψ is consistent with g � . The number of terms in ψ is
� f � 1 �
� � ��	 �ϕ ��� � S � � s � dnf-size � f �
	 s.

We next show that dnf-size � g � � � s � dnf-size � f � 	 s. Suppose that ψ is a smallest DNF for
g � . The same reasoning used in the proof of Lemma 3.3 shows that, for every �x � f � 1 ��� � , ψ
contains the term t ���x � � y2 � p ��x � . We now argue that for each �z � S, there exists a subformula

ψz of ψ , and a DNF ψ �z over the �x variables and consistent with f , such that ψ z � �
T � ψ ��z � T �

y1 � y2 � t � �z � � . Let �z � S, and let ψ z be the subformula of ψ consisting of those terms that
are satisfied by �x11�z for some �x � f � 1 � 1 � . Each term of ψ z contains y1 � y2 � t � �z � , since
flipping either y1 or y2, or any bit of �z, produces an input that falsifies g � . It follows that
ψz � �

T � ψ ��z � T � y1 � y2 � t � �z � � where ψ �z is a DNF. It remains to show that ψ �z is consistent

with f . For every �x � f � 1 � 1 � , there is a term of ψ that is satisfied by �x11�z, and thus there is
a corresponding term of ψ �z that is satisfied by �x. On the other hand, every �x � f � 1 � 0 � must
falsify ψ �z, as otherwise �x11�z would satisfy ψ .

It follows from the above that ψ consists of the terms t ���x � � y2 � p ��x � for each �x � f � 1 ��� � ;
and of the subformulae ψ z, for each �z � S. These components are pairwise disjoint. Since ψ �z
is consistent with f it follows that ψ z contains at least dnf-size � f � terms, and thus the size of
ψ is at least s � dnf-size � f �
	 s.

The results of Section 4.2, together with Theorem 4.6, yield the following hardness result
for Min-DNF.

THEOREM 4.8. If NP 	� DTIME � 2polylog � n � � then there exists a constant γ � 0 such that
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no polynomial time algorithm achieves an approximation ratio better than � logN � γ for Min-
DNF, where N is the size of the truth table.

4.3. An improved hardness result under additional assumptions. In this section, we
prove an Ω � � logN � hardness of approximation result for Min-DNF under the additional
assumption that a restriction of Set Cover is Ω � logn � -hard to approximate.

DEFINITION 4.9. The f -Frequency Bounded Set Cover problem is the restriction of Set
Cover to instances where each element occurs in at most f � n � sets, where n is the total size
of the instance.

It is well-known ([21]) that a factor f approximation for f -Frequency Bounded Set Cover
can be obtained in polynomial time. Thus for f � o � logn � , f -Frequency Bounded Set Cover
is not as hard to approximate as the general Set Cover problem. On the other hand, the
reduction of Lund and Yannakakis showing an Ω � logn � hardness of approximation for Set
Cover produces an instance of Ω ��� logn � c � -Frequency-Bounded-Set-Cover, for some con-
stant c, which implies an Ω � logn � hardness result for that problem. We conjecture that f -
Frequency-Bounded-Set-Cover is NP-hard to approximate within a factor better than c2 lnn,
for f � c1 lnn and some constants c1 � c2. Resolving this conjecture is an interesting ques-
tion in its own right, since it postulates a frequency threshold (within a constant factor) for
hardness. Assuming that the conjecture holds, we can prove an Ω ��� logN � hardness of ap-
proximation result for Min-DNF using a simple, randomized reduction.

THEOREM 4.10. If there exist constants c1 and c2 such that it is NP-hard to approximate
� c1 lnn � -Frequency Bounded Set Cover to within c2 lnn, then there exists a constant c3 such
that no polynomial-time algorithm for Min-DNF achieves an approximation ratio better than
c3 � logN unless NP � DTIME � 2polylog � n � � .

Proof. Assume that there exist constants c1 and c2 as in the lemma. We prove an
Ω � � logN � hardness of approximation for Min-DNF(*); the reduction from section 4.2 ex-
tends the same result to Min-DNF. Let � � ��� � be an instance of � c1 lnn � -Frequency Bounded
Set Cover of size n. The idea of the reduction is as follows. First, we will map each set
S � � to a subset f � S � � � b � , for a suitably chosen parameter b. Second, we define vectors
wS � 
 0 � 1  b for each S � � , by letting wS have zeroes in those positions contained in f � S �
and ones elsewhere. Finally, we define vectors ux � 
 0 � 1  b for each x � � having zeroes in
the positions contained in Fx, where

Fx � �
S � �

:x � S
f � S �

and ones elsewhere. If the vectors satisfy the condition ux � wS � � x � S for all x � �
and S � � , then by Lemma 3.1 we can construct an instance of Min-DNF(*) over b variables
whose optimum is equal to the optimum for � � ��� � . Notice that the definition of ux implies
that the “if” part of the condition is always satisfied. For the “only if” part to hold, it is
necessary and sufficient that for every S such that x 	� S, ux has a one in a position where
wS has a zero; that is, f � S � 	� Fx. For S � � , let f � S � be defined by choosing each i � � b �
independently with probability p. Fix an element x � � , and a set S � � such that x 	� S. We
will show that the probability that f � S � � Fx is small. For any choice of p, the probability that
f � S � � Fx is maximized when x occurs in exactly c1 lnn sets (since it cannot occur in more
than c1 lnn sets). As we wish to find an upper bound for the probability that f � S � � Fx, we
may therefore assume that x occurs in exactly c1 lnn sets. For 1 � i � b, let Xi be the indicator
variable for the event i � Fx. Then E � Xi � � 1 � � 1 � p � c1 lnn, and letting X � ∑1 � i � b Xi be the
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size of Fx, linearity of expectation implies

E � X � � b � 1 � � 1 � p � c1 lnn �� b � 1 � e � pc1 lnn �
which can be made smaller than b � 4 by choosing p � ln � 4 � 3 � � � c1 lnn � . The Xi’s are in-
dependent, and we apply the simplified Chernoff bound Pr � X � � 1 	 δ � E � X � � � 2 � δ E � X � to
obtain

Pr � X � b � 2 � � 2 � b � 4
Let us consider the case �Fx � � b � 2. Then the probability that f � S j � � Fx is

Pr
�
f � S j � � Fx ��� �Fx � � b � 2 � ��� 1 � p � b � 2

��� 1 � ln � 4 � 3 �
c1 lnn � b � 2

� e � b ln � 4 � 3 � � � 2c1 lnn �

Choosing b � 8c1 ln2 n, we have

Pr � f � S j � � Fx � � 2 � b � 4 	 e � 4ln � 4 � 3 � lnn

� e � 3lnn

� 1 � n3

Applying the union bound, the probability that there exists an element x � � and a set S � �
with x 	� S, such that f � S � � Fx, is at most 1 � n. Thus with probability at least 1 � 1 � n, we
can apply the construction of Lemma 3.1 to the vectors ux and wS, to obtain an instance of
Min-DNF(*) over b � O � log2 n � variables whose minimum DNF has the same size as the
minimum set cover for � � ��� � . The Min-DNF(*) instance has size N � 2b � O � nlog2 n � ,
and the probabilistic construction can be derandomized in quasi-polynomial time using the
method of conditional probabilities (see, e.g., [6]). It follows that there is no polynomial-
time algorithm for Min-DNF(*) which achieves an approximation ratio better than c2 lnn �
Ω � � logN � unless NP � DTIME � 2polylog � n � � .

5. A tight example for the greedy algorithm. We show that there exist instances of
Min-DNF for which the greedy Set Cover algorithm achieves an Ω � logN � approximation
ratio. Our approach is to take a standard worst-case Set Cover instance and to apply a version
of the reductions of Sections 3.1 and 4.2 to obtain first a Min-DNF(*) instance, and then a
Min-DNF instance. We then show that the greedy algorithm operates on the resulting Min-
DNF(*) instance, and on the resulting Min-DNF instance, much as it does on the original Set
Cover instance.

5.1. Tight example for greedy on Min-DNF(*). The starting point is the following
Set Cover instance, on which the greedy Set Cover algorithm has worst-case behavior. The
instance consists of m � 1 pairwise-disjoint sets S1 ��������� Sm � 1, such that � Si � � 2i; and of two
additional sets T0 and T1. For each set Si, the set T0 contains half of the elements in Si, while
T1 contains the other half. On this set collection, the greedy algorithm chooses the cover
consisting of all the sets Si, while the optimal solution consists only of T0 and T1.
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Let � be the underlying universe. We define three sets of vectors, 
 ve � e � �  , 
 si � 1 �
i � m � 1  , and 
 t0 � t1  , over 
 0 � 1  2 � m � 1 � , such that the following three conditions hold for all
e � � and all 1 � i � m � 1: (1) ve � si iff e � Si; (2) ve � t0 iff e � T0; and (3) ve � t1 iff e �
T1. The vectors 
 ve � e � �  are defined according to the set in which they occur, as follows:
each element e � Si is assigned a unique vector ve from the set 
 x10m � ix01m � i � x � 
 0 � 1  i  .
The vectors 
 si � 1 � i � m � 1  and 
 t0 � t1  are defined as follows: si � 1i10m � i1i01m � i;
t0 � 01m1m � 1, and t1 � 1m � 101m. The set T0 is defined as 
 e � � � ve � t0  , and the set T1
is defined as 
 e � � � ve � t1  . It is easily verified that the sets S1 ��������� Sm � 1 � T0 � T1 have the
required structure: namely, S1 ��������� Sm � 1 are pairwise disjoint, Si has size 2i, and T0 and T1 are
disjoint, each consisting of half of the elements from each of the sets S1 ��������� Sm � 1. Conditions
(2) and (3) hold by definition, as does the “if” direction of condition (1). For the “only if”
direction of (1), note that if e � S j for j 	� i, then either bit j 	 1 or bit � m 	 1 � 	 � i 	 1 �
witnesses the fact that ve 	� si.

The partial Boolean function f is defined as in the reduction from Section 3.1: the ones
of f are the vectors ve, for each u � � ; the stars of f are those remaining inputs �x such that
�x � si for some 1 � i � m � 1, or �x � t0, or �x � t1; and the remaining inputs are zeroes. The
following general lemma shows that the prime implicants of f , viewed as sets and considering
only the ones of f that they cover, have exactly the same structure as the original set system.

LEMMA 5.1. Let � be a set system over universe � such that no set in � contains
another set in � . Let 
 ve � e � �  and 
 wS � S � �  be sets of Boolean vectors such that
the following condition holds for all e � � and all S � � : ve � wS if and only if e � S. Let
f be the function obtained from � as in Lemma 3.1 using the given vectors. Then the set of
prime implicants of f is exactly 
 τ � wS � � S � �  .

Proof. We first show that each term τ � wS � is, indeed, a prime implicant of f . Suppose,
on the contrary, that there is an implicant τ of f that subsumes τ � wS � , for some S � � . Note
that all variables in τ are negated. Let �u be a maximal truth assignment satisfying τ . Since
f � �u � � 1, there is a set S � � � such that �u � wS � ; that is, for each index i, if wS �

i � 0 then
ui � 0. By our choice of �u we have that ui � 0 iff the literal � xi occurs in τ , and by definition
wS �

i � 0 iff the literal � xi occurs in τ � wS �
i � . Thus for each index i, if the literal � xi occurs in

τ � wS � � then it also occurs in τ . As both τ and τ � wS � � consist exclusively of negated literals,
we have τ � � τ � wS � � ; and since τ subsumes τ � wS � we have

τ � wS � � � τ � � τ � wS � �

For each e � U , e � S � � ve � wS, and ve � wS iff ve satisfies τ � wS � . Thus,

e � S � � ve � wS � � ve � wS � � � e � S �
That is, S � S � , contradicting the assumption about � .

We now show that every prime implicant of f is equal to τ � wS � , for some S � � . Let τ
be a prime implicant of f , and let �u be a maximal truth assignment satisfying τ . Then there
exists S � � such that �u � wS, and thus wS

i � 0 implies ui � 0, and by the same argument
as before we have that each literal � xi occurring in τ � wS � also occurs in τ . It follows that
τ � τ � wS � .

Lemma 5.1 implies that the prime implicants of f , viewed as sets, have exactly the same
structure with respect to the ones of f as the original set collection has with respect to � .
It follows that the greedy algorithm finds a solution of size m � 1, consisting of the terms
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τ � s1 � � ����� � τ � sm � 1 � , while the optimal solution, τ � t0 � � τ � t1 � , has size two. As the instance
has n � 2m 	 2 variables, the approximation ratio is � m � 1 � � 2 � � n � 4 � � 4.

5.2. Tight example for greedy on Min-DNF. We now extend the construction of the
previous section to give an instance of Min-DNF for which the greedy algorithm achieves an
approximation ratio of Ω � n � � Ω � logN � . The instance is obtained by applying the reduction
of Section 4.2 to the function f from Section 5.1. As in the proof of Lemma 4.7, we use t � �w �
to denote the term � � i:wi � 1 wi � � � � i:wi � 0 � wi � .

LEMMA 5.2. Let � be a set of subsets of � n � , and let f be a partial Boolean function,
such that � and f satisfy the conditions of Lemma 3.1. Let g be the total Boolean function
obtained by applying the reduction from Section 4.2 to f . Then the prime implicants of g
consist of exactly the following: τ � y1 � y2 � t � �z � , where τ is a prime implicant of f and �z � S,
and t ���x � � y2 � p ��x � where f ���x � � � .

Proof. It is easy to verify that each term in the statement of the lemma is, indeed, a prime
implicant of g, noting that every prime implicant τ of f must cover at least one vector in
f � 1 � 1 � , since each set in the original set system is non-empty.

We now argue that all prime implicants of g are of the above types. Let τ be an implicant
of g: we will show that τ is subsumed by an implicant of one of the above two types. Let
�xy1y2 �z be an assignment that satisfies τ . We first consider the case where f ���x � � 1. From the
definition of g, it is clear that τ contains t � �z � , y1, and y2, as flipping the corresponding bits of
the assignment falsifies g. Moreover, the portion τx of τ containing x-variables is an implicant
of f , and is therefore subsumed by a prime implicant τ � of f . Thus τ � � y1 � y2 � t � �z � is an
implicant of g, and subsumes τ . Now consider the case where f ���x � � � , and assume without
loss of generality that �x has even parity. Then τ must contain y2 and t ���x � , as flipping any of
these bits falsifies g, and thus τ is subsumed by t ���x � � y2.

The inputs to g are of the form �xy1y2 �z where the length of �x is n, and the length of �z is
t � n 	 1. Each prime implicant of the second type in the statement of Lemma 5.2 covers
2t � 1 ones of g and the ones covered by these prime implicants are pairwise disjoint. The
prime implicants of the first type each cover at most 2n � 1 � 2t � 1 ones of g. Thus the greedy
algorithm begins by choosing all prime implicants of the second type. At this point, the
prime implicants of the first type corresponding to different values of �z cover disjoint subsets
of the ones of g, so let us only consider a particular value of �z: the choices made by the
greedy algorithm for other vectors �z are independent of its behaviour on this vector. Now the
uncovered ones of g that are covered by a term τ � y1 � y2 � t � �z � are precisely those whose �x-
component is a one of f , as the others are already covered by prime implicants of the second
type. Thus the prime implicants of this type chosen by the greedy algorithm are exactly
the set of prime implicants of the form τ � y1 � y2 � t � �z � , where τ is a prime implicant that
would be chosen by the greedy algorithm on input f . It follows that the greedy solution has
size s � m � 1 � 	 s � sm, while the optimal solution has size 2s 	 s � 3s. As the instance has
n � 2m 	 4 	 t variables, the approximation ratio is m � 3 � � n � t � 4 � � 6 � Ω � n � .

6. Fixed Parameter Complexity. It is known that the decision problem “Given a truth
table of a Boolean function f , and a number k, does f have a DNF with at most k terms?” can
be solved in time p � N � 2k2 � , for some polynomial p, where N is the size of the truth table [20].
(This follows easily from the fact that if f is a Boolean formula that can be represented by
a k-term DNF formula, then there exist at most 2k prime implicants of f [12].) Thus, Min-
DNF is fixed parameter tractable [16]. Moreover, because the size of the input truth table
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is N � 2n, where n is the number of variables of f , it follows that Min-DNF is solvable in
polynomial time for any k � O � � n � .

It is an open question whether Min-DNF can be solved in polynomial time for k � n.
But by applying a simple padding argument, we obtain the following corollary to the NP-
completeness result for Min-DNF:

COROLLARY 6.1. If there exists some constant ε � 0 such that NP is not contained
in DTIME � 2O � nε � � , then for some constant c � 1, Min-DNF for k � nc is not solvable in
polynomial time (where n is the number of input variables of the Boolean function defined by
the Min-DNF instance).

Proof. Because Min-DNF is NP-complete, there exists a polynomial-time reduction from
problems Π in NP to Min-DNF. If the input to Π is of size n, then the input to the resulting
Min-DNF problem will be a truth table of size s � O � nb � for some constant b � 1, defining a
Boolean function on logs variables. The parameter k in the derived Min-DNF instance is no
more than s, since for any truth table, there is always a consistent DNF of size at most the size
of the truth table. Let c � 1. Let m � s

1
c . Take the Min-DNF instance and form a new Min-

DNF instance by padding the function in the truth table with m � logs new dummy variables.
Suppose Min-DNF is solvable in polynomial time when k � nc, where n is the number of
input variables of the Boolean function defined by the Min-DNF instance. Then the padded
instance of Min-DNF can be solved in time polynomial in 2m, and Π can be solved in time

2O � n b
c

�

, where n is the size of input to Π. For c � b
ε , this is less than 2O � nε � . Contradiction.

7. Min-DNF and learning. One of the major problems in learning theory is to determine
whether DNF formulas can be learned in polynomial time. There are connections between
the complexity of Min-DNF and its fixed parameter versions, and the complexity of learning
DNF formulas. This connection is strongest for “proper” learning models. In such models,
any hypotheses used in the learning algorithm must be of the same type as the formulas being
learned by the algorithm. Thus if the task is to learn DNF formulas, hypotheses must be DNF
formulas. If the task is to learn k-term DNF formulas, then hypotheses must be k-term DNF
formulas.

There has been a significant amount of research on learning k-term DNF formulas for
small values of k in both proper and improper models (see e.g. [8, 10, 28, 20, 35]). Pitt and
Valiant showed that in the PAC model, unless RP=NP you cannot learn k-term DNF formulas
in polynomial time using hypotheses that are k-term DNF formulas (for constant k) [35].
Their proof actually shows that the consistency problem for k-term DNF is hard. This problem
takes as input a partial Boolean function, specified by its 1’s and 0’s, and asks whether there
is a k-term DNF formula consistent with those entries. The work of Pitt and Valiant was
subsequently extended to obtain significantly stronger results on learning arbitrary length
DNF formulas in the PAC learning model [2, 18]. We note that our reduction to Min-DNF(*)
in fact implies that the consistency problem for k-term DNF is NP-hard for k � n, even when
the underlying function depends on only logn of the n input variables (a logn “junta”); this
in turn implies that proper PAC learning of n-term DNF formulas depending on logn of the n
input variables is hard unless RP=NP.

Pillaipakkamnatt and Raghavan [34] showed that for some ε � 1 and some c � 1, logc n-
term DNF cannot be learned in the membership and proper equivalence query model unless
NP � DTIME � 2O � nε � � . Subsequently, Hellerstein and Raghavan proved that Ω � log3 � ε n � -
term DNF formulas cannot be learned in the same model; their proof involves a structural
property of DNF formulas and the result is without any assumptions [20]. (It can be improved
to Ω � log2 � ε � .) It is open, however, whether logn-term DNF formulas can be learned in
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polynomial time in this model; � logn-term DNF can be so learned [10].
A polynomial-time algorithm for learning logn-term DNF formulas in the membership

and proper equivalence query model (i.e. with hypotheses that are logn-term DNF formulas)
would imply a polynomial-time algorithm for Min-DNF for k � n [20]. The same proof shows
that for constant c, a polynomial-time algorithm for learning logc n-term DNF formulas would
imply a polynomial-time algorithm for Min-DNF for k � nc. It follows that the result of [34]
mentioned above can also be derived from Corollary 6.1.

The relation between truth table minimization and learning with membership and equiv-
alence queries relies on the following observation: Given a truth table representing a function
f , one can simulate a membership and equivalence query algorithm for learning (a hypothe-
sis representing) f by using the truth table to answer the queries. Feldman observed that one
can also use the truth table of f to generate uniformly distributed examples of f . Combining
this observation with the hardness of approximating Min-DNF he showed hardness of proper
PAC learning of min-DNF under the uniform distribution, with membership queries. More
specifically, he showed that for some γ � 0, unless P=NP, there is no polynomial-time algo-
rithm that PAC learns DNF formulas under the uniform distribution using hypotheses that are
DNF formulas of size at most nγ larger than the function being learned, even if membership
queries are allowed [18].

8. Hardness of Min-AC0
d. In [4] it was shown that neither Min-Circuit nor Min-NC1 can

be approximated to within a factor of n1 � ε in polynomial time unless Blum Integers can be
factored efficiently. Here we strengthen that result to hold for Min-AC0 also. More precisely,
let Min-AC0

d be the problem of estimating the size of the smallest depth-d AC0 circuit for a
function, given its truth table. In this section, we show that for large enough d, Min-AC0

d

is hard to estimate, unless Blum integers can be factored in time 2nδ
, where the value of d

depends on the value of δ . We have not computed the relationship between d and δ , but we
anticipate that this yields a meaningful inapproximability result for d as small as 10.

LEMMA 8.1. For every language � in NL, and for every ε , there exists a d such that
there are AC0

d circuits of size 2nε
that recognize � .

Proof. Consider NL machines running in time m � nc. To find an accepting path, guess
� m “checkpoints” and verify that, for every 2 adjacent “checkpoints” there is a path of
length � m connecting them. This can be implemented by a depth-three AC0 circuit of size
2O ��� m logm � . If the number of checkpoints chosen is m1 � 3, then a similar strategy leads to a
depth-five circuit of size 2O � m1 � 3 logm � . That is, the top level of the depth-five circuit is an OR

over all the 2O � m1 � 3 logm � sequences of checkpoints, of the AND that each of the m1 � 3 � 1 pairs
of adjacent checkpoints is connected by a path of length m2 � 3. This latter condition can be

checked by an OR over another 2O � m1 � 3 logm � sequences of m1 � 3 checkpoints, of an AND that
each of the m1 � 3 � 1 pairs of adjacent checkpoints is connected by a path of length m1 � 3. Since
the input head can only move a distance of m1 � 3 in m1 � 3 steps, and each checkpoint specifies
the position of the input head, the condition that a given pair of checkpoints is connected by a
path of length m1 � 3 depends only on m1 � 3 input variables, namely those centered around the
two input head positions specified by the checkpoints. Thus this condition can be expressed
by a CNF formula of size exponential in m1 � 3. (The depth can be optimized somewhat, using
closure under complement and merging adjacent layers – but we ignore such issues for now.)

Iterating the above idea gives depth-d AC0 circuits of size 2nε
. This is basically a

strengthening of Nepomnjaščiı̆’s Theorem [5, 33]. (The same claim, with an identical proof,
holds for any language accepted by a nondeterministic machine running in polynomial time
and using space no � 1 � . In particular, it holds for the complexity class LogCFL.)
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DEFINITION 8.2. A 2n-bit integer is called a Blum Integer if N � PQ, where P and Q
are two primes such that P � Q � 3 mod 4. The Blum Integer Factorization problem is as
follows. Given a Blum Integer N find the primes P and Q such that 1 �

P � Q and N � PQ.

THEOREM 8.3. For every δ � 0 and ε � 0 there is a depth d such that Blum Integer
Factorization is in BPTIME � 2nε � �

, where
�

is any function that approximates Min-AC0
d to

within a factor of n1 � δ (here n is the size of the truth-table input to Min-AC0
d ).

Proof. We follow the proof given in [4]. In [32] a pseudo-random function ensemble

 fN � r � x � : 
 0 � 1  n  
 0 � 1   N � r is constructed with the following two properties:

� There is a TC0 circuit computing fN � r � x � , given a 2n bit integer N, a 4n2 	 2n-bit
string r, and an n-bit string x.

� For every probabilistic Turing machine � running in time t � n � with oracle access
to fN � r of query length n, there exists a probabilistic Turing machine � running in

time t � n � nO � 1 � such that for every 2n-bit Blum integer N � PQ, if �Pr � � fN � r � N � �
1 � � Pr � � Rn � N � � 1 � � � 1 � 2, where Rn is a uniformly distributed random function
ensemble, and the probability is taken over random r, and random bits of � , then
Pr � � � N � � � P� Q � � � 1 � 2. In other words, if � can distinguish the pseudorandom
function ensemble from a truly random function “efficiently”, then Blum Integers
can be factored “efficiently” on a probabilistic machine.

Our pseudrandom function ensemble fN � r is computable by a TC0 circuit of size nc � for
some constant c � . Let x1 � x2 ��������� x2n denote the strings in 
 0 � 1  n in lexicographic order. Let
m be a power of two of size approximately 2nε

. For all large enough n, all 2n-bit integers
N and all 4n2 	 2n-bit strings r, consider the function hN � r whose truth table is given by

fN � r � x1 � � fN � r � x2 � ��������� fN � r � xm � . This function has TC0 circuits of size polynomial in n and
hence by Lemma 8.1, there is some d (depending only on ε) such that this function has
depth-d AC0 circuits of size 2nγ

for some γ � ε .
Now consider the following oracle Turing machine � with access to oracle

�
and to

an oracle g: On input N, � queries g on the lexicographically first m inputs, x1 ��������� xm, to
get answers y1 ��������� ym; let h denote the function whose truth table is given by y1 ��������� ym. �
then submits h to the approximation algorithm

�
. If

�
says that h has AC0

d circuits of size
less than m1 � δ � 2 then M will reject; otherwise M will accept. We are assuming that

�
ap-

proximates Min-AC0
d within a factor of m1 � δ , i.e., that 1 � � � h � � Min-AC0

d � h � � m1 � δ . Now
for sufficiently large n, if the oracle g is chosen from the pseudorandom distribution 
 fN � r  N � r
then � will always reject, since as argued above, in this case h � hN � r has AC0

d circuits of

size at most 2nγ
, and 2nγ

m1 � δ �
m1 � δ � 2. On the other hand, if g is taken uniformly at ran-

dom from � n, then y1 ����� ym is a random string, and thus with extremely high probability
the function represented by y1 ����� ym requires AC0

d circuits of size m � logm � m1 � δ � 2 (since
most functions require circuits of this size), and this condition causes � to accept. Hence
�Pr � � fN � r � x � � N � � 1 � � Pr � � Rn � N � � 1 � � � 1 � 2, for sufficiently large n. Thus, � can distin-
guish the pseudorandom function ensemble from a truly random one with probability greater
than 1/2, and thus Blum Integers can be efficiently factored probabilistically.

COROLLARY 8.4. For all δ � 0 and all ε � 0 there exists a d such that Min-AC0
d

cannot be approximated to within a factor n1 � δ in BPP unless Blum Integer Factorization is
in BPTIME � 2nε � .



18 MINIMIZING DNF FORMULAS

9. Discussion. There are close connections between the hardness of function minimiza-
tion problems and related learnability results. In addition to the connections discussed above
in Section 6, we mention two others: the complexity of Min-DNF(DNF) and approximating
Min-DNF(DNF) has been shown to be related to the problem of learning DNF with proper
membership and equivalence queries [11, 20, 1], and results on learning circuits [9] yield
positive results for approximating circuit minimization (cf. [42]). At a basic level, learning a
formula or circuit involves gathering information about it, and then synthesizing or compress-
ing that information to produce a compact hypothesis. The need for compactness provides
the connection to minimization. In many learning problems one can distinguish between in-
formational complexity (the number of queries or sample size needed), and computational
complexity (the amount of computation needed to process the information). Information
about a formula or circuit typically consists just of input/output pairs. Truth table minimiza-
tion problems are relevant to the computational hardness of learning; even if you have all
input/output pairs, the question is whether you can compact that information in polynomial
time.

The NP-hardness of proper PAC learning DNF and of Min-DNF are known. On the
other hand, very strong inapproximability results are known for both proper PAC learning
and the function minimization problem for complexity classes starting at AC0. However,
these latter results rely on cryptographic assumptions, and are not known to hold under NP-
hardness assumptions. Thus an important open question is to resolve the NP-hardness of both
learnability results as well as function minimization results above for classes that are stronger
than DNF.

Another open problem is to close the approximability gap for Min-DNF.
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Appendix

Appendix A. Reduction from r-Uniform Set Cover.
The following lemma describes a modified version of the reduction given in Section 3.1.

Whereas the reduction in that section is from 3-Partite Set Cover, the reduction here is from
r-Uniform Set Cover (all sets in the input set cover instance are of size r). Because the
reduction here is not from a partite version of Set Cover, it requires different techniques than
the reduction in Section 3.1.

LEMMA A.1. There is an algorithm takes as input an r-uniform collection of subsets
� over � n � , and produces the truth table of a partial Boolean function f such that the min-
imum size of a cover of � n � with � is equal to the minimum number of terms in a DNF
consistent with f . The algorithm runs in time � n � � � � O � r � and the number of variables of f is
O � r log � n � � � ��� .

Proof. Let the r-uniform collection � over � n � be given.
As in the proof of Lemma 3.2, we produce two indexed sets of vectors V � 
 vi : i � � n � 

and W � 
 wA : A � �  of length t satisfying the property �
� � that for all A � � and i ��� n � ,
i � A if and only if vi � wA. Again, we specify V and then define W according to the rule that
for A � � , wA is the bitwise OR of 
 vi : i � A  . The construction of partial function f , given
V and W , is then the same as in the proof of Lemma 3.2, and again it follows that the size of
the minimum DNF consistent with f is equal to the size of the minimum cover of � n � by � .

We now describe the construction of V . Let P be the set of pairs � j � A � with A � � and
j � � n � � A. The desired conditions on V can be restated as specifying that for all � j � A � � P:

C � j � A � : There is a bit position α ��� t � such that v j
α � 1 and vi

α � 0 for all
i � A.

If we choose v1 ��������� vn of length t at random where each bit is 1 independently with
probability 1 � r, then for each � j � A � � P the probability that C � j � A � does not hold is � 1 �
1
r � 1 � 1

r � r � t � e � t � 3r, so the probability that v1 ��������� vr fails to meet the requirements is at
most �P � e � t � 3r � � � � ne � t � 3r. Thus if t � 3r � 1 	 ln � � � � n ��� this random choice succeeds with
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probability more than 1/2. This is enough for a randomized reduction. To make it determinis-
tic, we derandomize this construction using the method of conditional probabilities (see, e.g.,
[6]). This is routine but technical so we provide only a sketch. Let X � j � A � be the random vari-
able that is 1 if C � j � A � fails. We want to choose v1 ��������� vr so that X � ∑ � j � A � � P X � j � A � � 0.

The above argument says that under random choice Exp � X � � 1 � 2. The key point for de-
randomizing is that if we fix any subset of the bits in v1 ��������� vr then it is straightforward to
compute the conditional expectation of X given this fixing in time � � � � n � O � 1 � � . We can then
use the method of conditional probabilities to fix these bits one at a time always choosing the
value of the bit that does not increase the expectation. Once all bits are fixed we must have a
good choice for V .

Clearly V and W can be constructed in time in time � n � � � � O � 1 � with t � O � r log � n � � � ��� .
Since the truth table has size 2t , outputting it takes time � n � � � � O � r � .

Combining the above reduction with the modified reduction from Min-DNF(*) to Min-
DNF in Section 4.2 yields a reduction from r-Uniform Set Cover to Min-DNF. Setting r �
logN, where N is the truth table size, one can then apply inapproximability results for r-
Uniform Set Cover [17, 39] to show that Min-DNF cannot be approximated to within a factor
of Ω � loglogN � in polynomial time unless NP is in randomized quasipolynomial time.


