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Abstract— The effective resistance between two nodes of
a weighted graph is the electrical resistance seen between
the nodes of the corresponding resistor network with branch
conductances given by the edge weights. The effective resis-
tance comes up in many applications and fields in addition to
electrical network analysis, including, for example, Markov
chains and continuous-time averaging networks. In this paper
we study the problem of allocating edge weights on a given
graph in order to minimize the total effective resistance, i.e.,
the sum of the effective resistances between all pairs of nodes.
We show that this is a convex optimization problem which
can be solved efficiently. We show that optimal allocation of
the edge weights can reduce the total effective resistance of
the graph (compared to uniform weights) by a factor that
grows unboundedly with the size of the graph.

I. INTRODUCTION

Let N be a network with n nodes and m edges, i.e.,
an undirected graph (V,E) with |V | = n, |E| = m, and
nonnegative weights on the edges. We call the weight on
edge l its conductance, and denote it by gl. The effective
resistance between a pair of nodes i and j, denoted Rij ,
is the electrical resistance measured across nodes i and j,
when the network represents an electrical circuit with each
edge (or branch, in the terminology of electrical circuits)
a resistor with (electrical) conductance gl. In other words,
Rij is the potential difference that appears across terminals
i and j when a unit current source is applied between
them. We will give a formal, precise definition of effective
resistance later; for now we simply note that it is a measure
of how ‘close’ the nodes i and j are: Rij is small when
there are many paths between nodes i and j with high
conductance edges, and Rij is large when there are few
paths, with lower conductance, between nodes i and j.
Indeed, the resistance Rij is sometimes referred to as the
resistance distance between nodes i and j.

We define the total effective resistance, Rtot, as the
sum of the effective resistance between all distinct pairs
of nodes,

Rtot =
1

2

n
∑

i,j=1

Rij =
∑

i<j

Rij . (1)

The total effective resistance is evidently a quantitative
scalar measure of how well ‘connected’ the network is, or
how ‘large’ the network is, in terms of resistance distance.
The total effective resistance comes up in a number of
contexts. In an electrical network, Rtot is related to the
average power dissipation of the circuit, with a random
current excitation. The total effective resistance arises in
Markov chains as well: Rtot is, up to a scale factor,
the average commute time (or average hitting time) of a

Markov chain on the graph, with weights given by the
edge conductances gl. In this context, a network with small
total effective resistance corresponds to a Markov chain
with small hitting or commute times between nodes, and
a large total effective resistance corresponds to a Markov
chain with large hitting or commute times between at least
some pairs of nodes. The total effective resistance comes
up in a number of other applications as well, including
averaging networks, experiment design, and Euclidean
distance embeddings.

In this paper we address the problem of allocating a
fixed total conductance among the edges so as to minimize
the total effective resistance of the graph. We can assume
without loss of generality that the total conductance to be
allocated is one, so we have the optimization problem

minimize Rtot

subject to 1T g = 1, g ≥ 0. (2)

Here, the optimization variable is g ∈ Rm, the vector
of edge conductances, and the problem data is the graph
(topology) (V,E). The symbol 1 denotes the vector with
all entries one, and the inequality symbol ≥ between
vectors means componentwise inequality. We refer to the
problem (2) as the effective resistance minimization prob-
lem (ERMP).

We will give several interpretations of this problem. In
the context of electrical networks, the ERMP corresponds
to allocating conductance to the branches of a circuit so as
to achieve low resistance between the nodes; in a Markov
chain context, the ERMP is the problem of selecting the
weights on the edges to minimize the average commute
(or hitting) time between nodes. When Rij are interpreted
as distances, the ERMP is the problem of allocating
conductance to a graph to make the graph ‘small’, in the
sense of average distance between nodes. We denote the
optimal solution of the ERMP (which we will show always
exists, and is unique) as g?, and the corresponding optimal
total effective resistance as R?

tot.
In this paper, we will show that the problem (2) is

a convex optimization problem, which can be formulated
as a semidefinite program (SDP) [BV04]. This has sev-
eral implications, practical and theoretical. One practical
consequence is that we can solve the ERMP efficiently.
On the theoretical side, convexity of the ERMP allows
us to form necessary and sufficient optimality conditions,
and an associated dual problem (with zero duality gap).
Feasible points in the dual problem gives us lower bounds
on R?

tot; in fact, we obtain a lower bound on R?
tot given

any feasible allocation of conductances. This gives us an
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easily computable upper bound on the suboptimality, i.e.,
a duality gap, given a conductance allocation g. We use
this duality gap in a simple interior point algorithm for
solving the ERMP. We show that for the barbell graph, the
ratio of R?

tot to Rtot obtained with uniform edge weights
converges to zero as the size of the graph increases. Thus,
the total effective resistance of a graph, with optimized
edge weights, can be unboundedly better (i.e., smaller)
than the total effective resistance of a graph with uniform
allocation of weights to the edges.

This paper is organized as follows. In §II, we give
a formal definition of the effective resistance, derive a
number of formulas and expressions for Rij , Rtot, and the
first and second derivatives of Rtot, and establish several
important properties, such as convexity of Rij and Rtot

as a function of the edge conductances. In §III, we give
several interpretations of Rij , Rtot, and the ERMP. We
study the ERMP in §IV, giving the SDP formulation,
(necessary and sufficient) optimality conditions, two dual
problems, and a simple but effective custom interior point
method for solving it. In §V, we analytically solve the
ERMP for the barbell. We describe some extensions in
§VII.

A. Related problems
The ERMP is related to several other convex optimiza-

tion problems that involve choice of some weights on the
edges of a graph. One such problem (already mentioned
above) is to assign nonnegative weights, that add to one, to
the edges of a graph so as to maximize the second smallest
eigenvalue of the Laplacian:

maximize λ2(L)
subject to 1T g = 1, g ≥ 0. (3)

Here L denotes the Laplacian of the weighted graph. This
problem has been studied in different contexts. The eigen-
value λ2(L) is related to the mixing rate of the Markov
process with edge transition rates given by the edge
weights. In [SBXD], the weights g are optimized to obtain
the fastest mixing Markov process on the given graph.
The problem (3) has also been studied in the context of
algebraic connectivity [Fie73]. The algebraic connectivity
is the second smallest eigenvalue of the Laplacian matrix
L of a graph (with unit edge weights), and is a measure
of how well connected the graph is. Fiedler defines the
absolute algebraic connectivity of a graph as the maximum
value of λ2(L) over all nonnegative edge weights that add
up to m, i.e., m times the optimal value of (3). The problem
of finding the absolute algebraic connectivity of a graph is
discussed in [Fie90], [Fie93], and an analytical solution is
presented for tree graphs.

Other convex problems involving edge weights on
graphs include the problem of finding the fastest mixing
Markov chain on a given graph [BDX04], [GHW05],
[SBXD], the problem of finding the edge weights (which
can be negative) that give the fastest convergence in an
averaging network [XB04], and the problem of finding

edge weights that give the smallest least mean-square
(LMS) consensus error [XBK05]. Convex optimization can
also be used to obtain bounds on various quantities over
a family of graphs; see [GB]. For an overview of such
problems, see [Boy06].

In [BVGY01], Boyd et al consider the sizing of the
wires in the power supply network of an integrated circuit,
with unknown load currents modeled stochastically. This
turns out to be closely related to our ERMP, with the wire
segment widths proportional to the edge weights.

Some papers on various aspects of resistance distance
include [Kle02], [XG03], [Bap99], [KR93].

II. THE EFFECTIVE RESISTANCE

A. Definition
Suppose edge l connects nodes i and j. We define al ∈

Rn as (al)i = 1, (al)j = −1, and all other entries 0.
The conductance matrix (or weighted Laplacian) of the
network is defined as

G =

m
∑

l=1

glala
T
l = Adiag(g)AT ,

where diag(g) ∈ Rm is the diagonal matrix formed from
g, and A ∈ Rn×m is the incidence matrix of the graph:

A = [a1 · · · am].
Since gl ≥ 0, G is positive semidefinite, which we

write as G º 0. (The symbol º denotes denotes matrix
inequality, between symmetric matrices.) The matrix G
satisfies G1 = 0, since aTl 1 = 0 for each edge l. Thus, G
has smallest eigenvalue 0, corresponding to the eigenvector
1.

Throughout this paper we make the following assump-
tion about the edge weights:

The subgraph of edges with positive edge weights
is connected. (4)

(If this is not the case, the effective resistance between
any pair of nodes not connected by a path of edges with
positive conductance is infinite, and many of our formulas
are no longer valid.)

With this assumption, all other eigenvalues of G are
positive. We denote the eigenvalues of G as

0 < λ2 ≤ · · · ≤ λn.

The nullspace of G is one-dimensional, the line along 1;
its range has co-dimension one, and is given by 1⊥ (i.e.,
all vectors v with 1T v = 0).

Let G(k) be the submatrix obtained by deleting the kth
row and column of G. Our assumption (4) implies that
each G(k) is nonsingular (see, e.g., [DK69]). We will refer
to G(k) as the reduced conductance matrix (obtained by
grounding node k).

Now we can define the effective resistance Rij between
a pair of nodes i and j. Let v be a solution to the equation

Gv = ei − ej ,
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where ei denotes the ith unit vector, with 1 in the ith
position, and 0 elsewhere. This equation has a solution
since ei − ej is in the range of G. We define Rij as

Rij = vi − vj .

This is well defined; all solutions of Gv = ei−ej give the
same value of vi − vj . (This follows since the difference
of any two solutions has the form α1, for some α ∈ R.)
We define the effective resistance matrix R ∈ Rn×n as the
matrix with i, j entry Rij . The effective resistance matrix
is evidently symmetric, and has diagonal entries zero, since
Rii = 0.

B. Effective resistance in an electrical network
The term effective resistance (as well as several other

terms used here) comes from electrical network analysis.
We consider an electrical network, with conductance gl on
branch (or edge) l. Let v ∈ Rn denote the vector of node
potentials, and suppose a current Ji is injected into node
i. The sum of the currents injected into the network must
be zero, in order for Kirchhoff’s current law to hold, i.e.,
we must have 1TJ = 0. The injected currents and node
potentials are related by Gv = J . There are many solutions
of this equation, but all differ by a constant vector. Thus,
the potential difference between a pair of nodes is always
well defined.

One way to fix the node potentials is to assign a potential
zero to some node, say the kth node. This corresponds to
grounding the kth node. When this is done, the circuit
equations are given by G(k)v(k) = J (k), where G(k) is the
reduced conductance matrix, v(k) is the reduced potential
vector, obtained by deleting the kth entry of v (which is
zero), and J (k) is the reduced current vector, obtained by
deleting the kth entry of J . In this formulation, J (k) has no
restrictions; alternatively, we can say that Jk is implicitly
defined as Jk = −1TJ (k). From our assumption (4), G(k)

is nonsingular, so there is a unique reduced potential vector
v(k) for any vector of injected currents J (k).

Now consider the specific case when the external current
is J = ei−ej , which corresponds to a one ampere current
source connected from node j to node i. Any solution v
of Gv = ei− ej is a valid vector of node potentials; all of
these differ by a constant. The difference vi−vj is the same
for all valid node potentials, and is the voltage developed
across terminals i and j. This voltage is Rij , the effective
resistance between nodes i and j. (The effective resistance
between two nodes of a circuit is defined as the ratio of
voltage across the nodes to the current flow injected into
them.)

The effective resistance Rij is the total power dissipated
in the resistor network when J = ei−ej , i.e., a one ampere
current source is applied between nodes i and j. This can
be shown directly, or by a power conservation argument.
The voltage developed across nodes i and j is Rij (by
definition), so the power supplied by the current source,
which is current times voltage, is Rij . The power supplied
by the external current source must equal the total power

dissipated in the resistors of the network, so the latter is
also Rij .

C. Some formulas for effective resistance
In this section we derive several formulas for the ef-

fective resistance between a pair of nodes and the total
effective resistance of a general graph. Our first expressions
involve the reduced conductance matrix, which we write
here as G̃ (since the particular node that is grounded will
not matter). We form the reduced conductance matrix G̃
by removing, say, the kth row and column of G. Let ṽ,
ẽi, and ẽj be, respectively, the vectors v, ei and ej , each
with the kth component removed. If Gv = ei−ej , then we
have G̃ṽ = ẽi − ẽj . This equation has a unique solution,
ṽ = G̃−1(ẽi− ẽj). The effective resistance between nodes
i and j is given by vi − vj = ṽi − ṽj , i.e.,

Rij = (ẽi − ẽj)
T G̃−1(ẽi − ẽj). (5)

(This is independent of the choice of node grounded, i.e.,
which row and column is removed.) When neither i nor j
is k, the node that is grounded, we can write (5) as

Rij = (G̃
−1)ii + (G̃

−1)jj − 2(G̃−1)ij .

If j is k, the node that is grounded, then ẽj = 0, so (5)
becomes

Rij = (G̃
−1)ii.

We can also write the effective resistance Rij in terms
of the pseudo-inverse G† of G. We have

G†G = I − 11T /n,

which is the projection matrix onto the range of G. (Here
we use the simpler notation 11T /n to mean (1/n)11T .)
Using this it can verified that

G† = (G+ 11T /n)−1 − 11T /n. (6)

The following formula gives Rij in terms of G† (see, e.g.,
[KR93]):

Rij = (ei − ej)
TG†(ei − ej) (7)

= (G†)ii + (G
†)jj − 2(G†)ij . (8)

To see this, multiply Gv = ei − ej on the left by G† to
get (I − 11T /n)v = G†(ei − ej), so

(ei − ej)
TG†(ei − ej) = (ei − ej)

T v = vi − vj

(since ei − ej ⊥ 1). From (6), we get another formula for
the effective resistance,

Rij = (ei − ej)
T (G+ 11T /n)−1(ei − ej). (9)

We can derive several formulas for the effective resis-
tance matrix R, using (5) and (7). From (7), we see that

R = 1diag(G†)T + diag(G†)1T − 2G†, (10)

where diag(G†) ∈ Rn is the vector consisting of the
diagonal entries of G†.
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Using (6), this can be rewritten as

R = 1diag((G+ 11T /n)−1)T (11)
+ diag((G+ 11T /n)−1)1T − 2(G+ 11T /n)−1.

We can also derive a matrix expression for R in terms of
the reduced conductance matrix G̃. Suppose G̃ is formed
by removing the kth row and column from G. Form a
matrix H ∈ Rn×n from G̃−1 by adding a kth row and
column, with all entries zero. Then, using (5), R can be
written as

R = 1diag(H)T + diag(H)1T − 2H. (12)

D. Some formulas for total effective resistance

In this section we give several general formulas for the
total effective resistance,

Rtot =
∑

i<j

Rij = (1/2)1
TR1.

From (10) we get

Rtot = (1/2)1T1diag(G†)T1+ (13)
(1/2)1T diag(G†)1T1− 1TG†1

= nTrG† (14)
= nTr(G+ 11T /n)−1 − n, (15)

using G†1 = 0 to get the second line, and (6) to get the
third line. (TrZ denotes the trace of a square matrix Z.)

We can use (14) to get a formula for Rtot in terms of
the eigenvalues of G. The eigenvalues of G† are 1/λi, for
i = 2, . . . , n, and 0. So we can rewrite (14) as

Rtot = n
n
∑

i=2

1

λi
. (16)

This expression for the total effective resistance can be
found in [AF03, §3.4].

The total effective resistance can also be expressed in
terms of the reduced conductance matrix G̃. Multiplying
(12) on the left and right by 1T and 1 and dividing by 2,
we have

Rtot = nTr G̃−1 − 1T G̃−11 = nTr(I − 11T /n)G̃−1.
(17)

(Note that G̃ ∈ R(n−1)×(n−1), so the vectors denoted 1 in
this formula have dimension n− 1.)

The total effective resistance can also be written in terms
of an integral:

Rtot = nTr

∫ ∞

0

(e−tG − 11T /n) dt. (18)

This can be seen as follows. Let the eigenvectors of G
be n−1/21, v2, . . . , vn, corresponding to the eigenvalues
λ1 = 0 < λ2 ≤ · · · ≤ λn. The matrix e−tG has the same

eigenvectors, with corresponding eigenvalues 1, and e−λit,
for i = 2, . . . , n. Therefore we have

nTr

∫ ∞

0

(

e−tG − 11T /n
)

dt

= nTr

∫ ∞

0

n
∑

i=2

e−λitviv
T
i dt

= n
n
∑

i=2

∫ ∞

0

e−λit dt

= n
n
∑

i=2

1

λi
,

using Tr viv
T
i = ‖vi‖2 = 1 to get the second line.

E. Basic properties
The effective resistance Rij , and the total effective

resistance Rtot, are rational functions of g. This can be
seen from (5), since the inverse of a matrix is a rational
function of the matrix, and Rij is a linear function of G̃−1.
They are also homogeneous with degree −1: if ĝ = cg,
where c > 0, then R̂ij = Rij/c, and R̂tot = Rtot/c.

The effective resistance Rij , with i 6= j, is always
positive: the matrix G̃−1 is positive definite (since G̃ Â 0),
so from (5), Rij > 0 when i 6= j. Nonnegativity of Rij can
also be seen by noting that G̃ is an M -matrix. The inverse
of an M -matrix is elementwise nonnegative [HJ91], and
since Rij is the (i, i)th entry of (G(j))−1, it is nonnegative
as well.

The effective resistance also satisfies the triangle in-
equality (see, e.g., [KR93]):

Rik ≤ Rij +Rjk. (19)

Therefore, the effective resistance defines a metric on the
graph, called the resistance distance [KR93].

The effective resistance Rij is a monotone decreasing
function of g, i.e., if g ≤ ĝ, then Rij ≥ R̂ij . To show this,
suppose 0 ≤ g ≤ ĝ, and let G and G̃ denote the associated
conductance matrices. Evidently we have G + 11T /n ¹
Ĝ+11T /n, so (G+11T /n)−1 º (Ĝ+11T /n)−1. From
(9),

Rij = (ei − ej)
T (G+ 11T /n)−1(ei − ej)

≥ (ei − ej)
T (Ĝ+ 11T /n)−1(ei − ej)

= R̂ij .

F. Convexity of effective resistance
The effective resistance Rij is a convex function of g:

for g, ĝ ≥ 0 (both satisfying the basic assumption (4)), and
any θ ∈ [0, 1], we have

Rij(θg + (1− θ)ĝ) ≤ θRij(g) + (1− θ)Rij(ĝ).

To show this, we first observe that f(X) = cTY −1c, where
Y = Y T ∈ Rn×n and c ∈ Rn, is a convex function of Y ,
for Y Â 0 (see, e.g., [BV04, §3.1.7]). Since G + 11T /n
is an affine function of g, Rij is a convex function of g.
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It follows that Rtot is also convex, since it is a sum of
convex functions.

The total effective resistance is, in fact, a strictly convex
function of g: for g, ĝ ≥ 0 (both satisfying the basic
assumption (4)), with g 6= ĝ, and any θ ∈ (0, 1), we have

Rtot(θg + (1− θ)ĝ) < θRtot(g) + (1− θ)Rtot(ĝ).

To establish this, we first show that TrX−1 is a strictly
convex function of X , for X symmetric and positive
definite. Its second order Taylor approximation is

Tr(X +∆)−1 ≈ TrX−1 −TrX−1∆X−1

+TrX−1∆X−1∆X−1.

The second order term can be expressed as

TrX−1∆X−1∆X−1 = ‖X−1∆X−1/2‖2F ,
where ‖ · ‖F denotes the Frobenius norm. This second
order term vanishes only if ∆ = 0 (since X−1 and X−1/2

are both invertible), i.e., it is a positive definite quadratic
function of ∆. This shows that TrX−1 is a strictly convex
function of X = XT Â 0. Since the affine mapping from
g to G+ 11T /n is one-to-one, we conclude that

Rtot = nTr(G+ 11T /n)−1 − n

is a strictly convex function of g.

G. Gradient and Hessian
In this section we work out some formulas for the

gradient and Hessian of Rtot with respect to g. (A similar
approach can be used to find the derivatives of Rij with
respect to g, but we will not need these in the sequel.)
We will use the following fact. Suppose the invertible
symmetric matrix X(t) is a differentiable function of the
parameter t ∈ R. Then we have ([BV04, §A.4.1])

∂X−1

∂t
= −X−1 ∂X

∂t
X−1.

Using this formula, and Rtot = nTr(G+11T /n)−1−n,
we have
∂Rtot

∂gl
= −nTr(G+ 11T /n)−1 ∂G

∂gl
(G+ 11T /n)−1

= −nTr(G+ 11T /n)−1ala
T
l (G+ 11T /n)−1

= −n‖(G+ 11T /n)−1al‖2. (20)

We can express the gradient as

∇Rtot = −ndiag(AT (G+ 11T /n)−2A).

The gradient can also be expressed in terms of a reduced
conductance matrix:

∇Rtot = −ndiag(ÃT G̃−1(I − 11T /n)G̃−1Ã).

For future reference, we note the formula

∇RT
totg = −Rtot, (21)

which holds since Rtot is a homogeneous function of g
of degree −1. It is easily verified by taking the derivative

with respect to α of Rtot(αg) = Rtot(g)/α, evaluated at
α = 1.

We now derive the second derivative or Hessian matrix
of Rtot. From (20), we have

∂2

∂gl∂gk
Rtot = −n ∂

∂gk
‖(G+ 11T /n)−1al‖2

= 2naTl (G+ 11T /n)−2aka
T
k

·(G+ 11T /n)−1al. (22)
We can express the Hessian of Rtot as

∇2Rtot = 2n
(

AT (G+ 11T /n)−2A
)

◦
(

AT (G+ 11T /n)−1A
)

,

where ◦ denotes the Hadamard (elementwise) product. A
similar expression can be derived using reduced matrices:
∇2Rtot = 2n(Ã

T G̃−1(I − 11T /n)G̃−1Ã) ◦ (ÃT G̃−1Ã).
(23)

III. INTERPRETATIONS

A. Average commute time
The effective resistance between a pair of nodes i and

j is related to the commute time between i and j for the
Markov chain defined by the conductances g [CRR+89].
Let M be a Markov chain on the graph N , with transition
probabilities determined by the conductances:

Pij =
gij

∑

l∼(i,k) gl
,

where gij is the conductance across edge (i, j), and l ∼
(i, k) means that edge l lies between nodes i and k. This
Markov chain is reversible, with stationary distribution

πi =

∑

l∼(i,j) gl
∑m

l=1 gl
.

The hitting time Hij is the expected time taken by the
random walk to reach node j for the first time starting
from node i. The commute time Cij is the expected time
the random walk takes to return to node i for the first
time after starting from i and passing through node j. The
following well known result relates commute times and
effective resistance (see, for example, [AF03, §3.3]):

Cij = (1
T g)Rij .

That is, the effective resistance between i and j is propor-
tional to the commute time between i and j.

Therefore, the total effective resistance is proportional
to C, the commute time averaged over all pairs of nodes:

C =
2(1T g)

n(n− 1)Rtot.

Since Cij = Hij + Hji, Rtot is also proportional to H ,
the hitting time averaged over all pairs of nodes:

H =
1T g

n(n− 1)Rtot.

In the context of Markov chains, the ERMP (2) is the
problem of choosing edge weights on a graph so as to
minimize its average commute time or hitting time.
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B. Power dissipation in a resistor network
The total effective resistance is related to the average

power dissipated in a resistor network with random in-
jected currents. Suppose a random current J ∈ Rn is
injected into the network. The current must satisfy 1TJ =
0, since the total current entering the network must be zero.
We assume that

E J = 0, E JJT = I − 11T /n.

Roughly speaking, this means J is a random current vector,
with covariance matrix I on 1⊥.

The power dissipated in the resistor network with in-
jected current vector J is JTG†J . The expected dissipated
power is

E JTG†J = TrG†E JJT = TrG† =
1

n
Rtot,

where the second equality follows from G†1 = 0.
Thus, the total effective resistance is proportional to the

average power dissipated in the network when the injected
current is random, with mean 0 and covariance I−11T /n.
A network with small Rtot is one which dissipates little
power, under random current excitation; large Rtot means
the average power dissipation is large.

The ERMP (2) is the problem of allocating unit con-
ductance among the branches of a resistor network, so as
to minimize the average power dissipated under random
current excitation. (See, e.g., [BVGY01].)

We can also give an interpretation of the gradient ∇Rtot

in the context of a resistor network. With random current
excitation J , with E J = 0, E JJT = I − 11T /n, the
partial derivative ∂Rtot/∂gl is proportional to the mean
square voltage across edge l. This can be seen from (20)
as follows. The voltage vl across edge l, with current
excitation J is aTl G

†J = aTl (G + 11T /n)−1J , since
aTl 1 = 0. The expected value of the squared voltage is

E(aTl (G+ 11T /n)−1J)2

= aTl (G+ 11T /n)−1 E JJT (G+ 11T /n)−1al

= aTl (G+ 11T /n)−1(I − 11T /n)(G+ 11T /n)−1al

= aTl (G+ 11T /n)−2al,

where the last equality follows since (G+11T /n)−11 = 1,
and 1T al = 0. Comparing this with (20), we see that

∂Rtot

∂gl
= −nE v2

l . (24)

The gradient ∇Rtot is equal to −n times the vector of
mean square voltage appearing across the edges.

C. Elmore delay in an RC circuit
We consider again a resistor network, with branch

(electrical) conductances given by gl. To this network we
add a separate ground node, and a unit capacitance between
every other node and the ground node. The vector of node
voltages (with respect to the ground node) in this RC
(resistor-capacitor) circuit evolves according to v̇ = −Gv.

This has solution v(t) = e−tGv(0). Since e−tG has largest
eigenvalue 1, associated with the eigenvector 1, with other
eigenvalues e−λit, for i = 2, . . . , n, we see that v(t)
converges to the vector 11T v(0)/n. In other words, the
voltage (or equivalently, charge) equilibrates itself across
the nodes in the circuit.

Suppose we start with the initial voltage v(0) = ek, i.e.,
one volt on node k, with zero voltage on all other nodes.
It can be shown that the voltage at node k monotonically
decreases to the average value, 1/n. The Elmore delay at
node k is defined as

Tk =

∫ ∞

0

(vk(t)− 1/n) dt

(see, for example, [Elm48], [WH04]). The Elmore delay
Tk gives a measure of the speed at which charge starting
at node k equilibrates.

The average Elmore delay, over all nodes, is

1

n

n
∑

k=1

Tk =
1

n

n
∑

k=1

eTk

∫ ∞

0

(e−tG − 11T /n)ek dt

=
1

n
Tr

(
∫ ∞

0

(e−tG − 11T /n) dt

)

=
1

n2
Rtot,

where the last equality follows from (18). The total effec-
tive resistance of the network is thus equal to the sum of
the Elmore delay to each node in the RC circuit.

The ERMP (2) is the problem of allocating a total
conductance of one to the resistor branches of an RC
circuit, so as to minimize the average Elmore delay of
the nodes.

D. Total time constant of an averaging network
We can interpret Rtot in terms of the time constants in

an averaging network. We consider the dynamical system
ẋ = −Gx, where G is the conductance matrix. This sys-
tem carries out (asymptotic) averaging: e−tG is a doubly
stochastic matrix, which converges to 11T /n as t → ∞,
so x(t) = e−tGx(0) converges to 11Tx(0)/n.

The eigenvalues λ2, . . . , λn of G determine the rate
at which the averaging takes place. The eigenvectors
v2, . . . , vn are the modes of the system, and the associated
time constants are given by

Tk =
1

λk
.

(This gives the time for mode k to decay by a factor e.)
Therefore, Rtot = n

∑n
k=2 Tk is proportional to the sum

of the time constants of the averaging system.

E. A-optimal experiment design
The ERMP can be interpreted as a certain type of

optimal experiment design problem. The goal is to estimate
a parameter vector x ∈ Rn from noisy linear measurements

yi = vTi x+ wi, i = 1, . . . ,K,
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where each vi can be any of the vectors a1, . . . , am, and
wi are independent random (noise) variables with zero
mean and unit variance. Thus, each measurement consists
of measuring a difference between two components of
x, corresponding to some edge of our graph, with some
additive noise. With these measurements of differences of
components, we can only estimate x up to some additive
constant; the parameter x and x + α1, for any α ∈ R,
produce exactly the same measurements. We will therefore
assume that the parameter to be estimated satisfies 1Tx =
0.

Now suppose a total of kl measurements are made
using al, for l = 1, . . . ,m, so we have

∑m
l=1 kl = K.

The minimum variance unbiased estimate of x, given the
measurements, is

x̂ =

(

K
∑

i=1

viv
T
i

)†( K
∑

i=1

vTi yi

)

=

(

m
∑

l=1

klala
T
l

)†( m
∑

l=1

kla
T
l y

)

.

The associated estimation error e = x̂− x has zero mean
and covariance matrix

Σerr =

(

m
∑

l=1

klala
T
l

)†

.

(There is no estimation error in the direction 1, since we
have assumed that 1Tx = 0, and we always have 1T x̂ =
0.) The goal of experiment design is to choose the integers
k1, . . . , kl, subject to

∑

l kl = K, to make the estimation
error covariance matrix Σerr small. There are several ways
to define ‘small’, which yield different experiment design
problems. In A-optimal experiment design, the objective
is the trace of Σerr. This is proportional to the sum of the
squares of the semi-axis lengths of the confidence ellipsoid
associated with the estimate x̂.

We now change variables to θl = kl/K, which is
the fraction of the total number of experiments (i.e., K)
that are carried out using v = al. The variables θl are
nonnegative and add to one, and must be integer multiples
of 1/K. If K is large, we can ignore the last requirement,
and take the variables θl to be real. This yields the (relaxed)
A-optimal experiment design problem [Puk93]:

minimize (1/K)Tr(
∑m

l=1 θlala
T
l )
†

subject to
∑m

l=1 θl = 1, θl ≥ 0.
This is a convex optimization problem, with variable θ ∈
Rm. (See [BV04, §7.5] and its references for more on
experiment design problems.)

Identifying θl with gl, we see that the A-optimal ex-
periment design problem above is the same as our ERMP
(up to scale factor in the objective). Thus, we can interpret
the ERMP as follows. We have real numbers, x1, . . . , xn
at the nodes of our graph, which have zero sum. Each
edge in our graph corresponds to a possible measurement
we can make, which gives the difference in its adjacent

node values, plus a noise. We are going to make a large
number of these measurements, in order to estimate x.
The problem is to choose the fraction of the experiments
that should be devoted to each edge measurement. Using
the trace of the error covariance matrix as our measure
of estimation quality, the optimal fractions are exactly the
optimal conductances in the ERMP.

IV. MINIMIZING TOTAL EFFECTIVE RESISTANCE

In this section we study the ERMP,

minimize Rtot

subject to 1T g = 1, g ≥ 0, (25)

in detail. This is a convex optimization problem, since
the objective is a convex function of g, and the constraint
functions are linear. The problem is clearly feasible, since
g = (1/m)1, the uniform allocation of conductance to
edges, is feasible. Since the objective function is strictly
convex, the solution to (25) is unique. We denote the
unique optimal point as g?, and the associated value of
the objective as R?

tot.

A. SDP formulation
The ERMP (25) can be formulated as a semidefinite

program (SDP),

minimize nTrY

subject to 1T g = 1, g ≥ 0,
[

G+ 11T /n I
I Y

]

º 0,
(26)

where G =
∑m

l=1 glala
T
l . The variables are the conduc-

tances g ∈ Rm, and the slack symmetric matrix Y ∈
Rn×n. To see the equivalence, we note that whenever
G+ 11T /n Â 0 (which is guaranteed whenever the basic
assumption (4) holds),
[

G+ 11T /n I
I Y

]

º 0 ⇐⇒ Y º (G+ 11T /n)−1.

To minimize the SDP objective nTrY , subject to this con-
straint, with G fixed, we simply take Y = (G+11T /n)−1,
so the objective of the SDP becomes Rtot + n.

B. Optimality conditions
The optimal conductance g? satisfies

1T g = 1, g ≥ 0, ∇Rtot +Rtot1 ≥ 0, (27)

where Rtot is the total effective resistance with g. Con-
versely, if g is any vector of conductances that satis-
fies (27), then it is optimal, i.e., g = g?. The first two
conditions in (27) require that g be feasible.

These optimality conditions can be derived as follows.
Since the ERMP is a convex problem with differentiable
objective, a necessary and sufficient condition for optimal-
ity of a feasible g is

∇RT
tot(ĝ − g) ≥ 0 for all ĝ with 1T ĝ = 1, ĝ ≥ 0
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(see, e.g., [BV04, §4.2.3]). This is the same as

∇RT
tot(el − g) ≥ 0, l = 1, . . . ,m.

Since Rtot is a homogeneous function of g of degree −1,
we have ∇RT

totg = −Rtot (see (21)), so the condition
above can be written as

∂Rtot

∂gl
+Rtot ≥ 0, l = 1, . . . ,m, (28)

which is precisely the third condition in (27).
From the optimality conditions (27) we can derive a

complementary slackness condition:

gl

(

∂Rtot

∂gl
+Rtot

)

= 0, l = 1, . . . ,m. (29)

This means that for each edge, we have either gl = 0 or
∂Rtot/∂gl + Rtot = 0. To establish the complementarity
condition, we note that

gT (∇Rtot +Rtot1) = 0,

since gT∇Rtot = −Rtot and gTRtot1 = Rtot. If g
satisfies (27), then this states that the inner product of
two nonnegative vectors, g and ∇Rtot +Rtot1, is zero; it
follows that the products of the corresponding entries are
zero. This is exactly the complementarity condition above.

We can give the optimality conditions a simple inter-
pretation in the context of a circuit driven by a random
current, as described in §III-B. We suppose the circuit is
driven by a random current excitation J with zero mean
and covariance E JJT = I − 11T /n. By (24), we have
∂Rtot/∂gl = −nE v2

l , where vl is the (random) voltage
appearing across edge l. The optimality condition is that
g is feasible, and we have

E v2
l ≤ (1/n)Rtot, l = 1, . . . ,m.

Thus, the conductances are optimal when the mean square
voltage across each edge is less than or equal to (1/n)Rtot.
Using the complementarity condition (29), we can be a
bit more specific: each edge that has positive conductance
allocated to it must have a mean square voltage equal to
(1/n)Rtot; any edge with zero conductance must have a
mean square voltage no more than (1/n)Rtot.

C. The dual problem

In this section we derive the Lagrange dual problem for
the ERMP (25), as well as some interesting variations on
it. We start by writing the ERMP as

minimize nTrX−1 − n
subject to X =

∑m
l=1 glala

T
l + 11T /n,

1T g = 1, g ≥ 0,
(30)

with variables g ∈ Rm, and X = XT ∈ Rn×n. Associ-
ating dual variables Z = ZT ∈ Rn×n, ν ∈ R with the

equality constraints, and λ ∈ Rm with the nonnegativity
constraint g ≥ 0, the Lagrangian is

L(X, g, Z, ν, λ)

= nTrX−1 − n+ ν(1T g − 1)− λT g

+TrZ

(

X −
m
∑

l=1

glala
T
l − 11T /n

)

.

The dual function is

h(Z, ν, λ) = inf
Xº0, g

L(X, g, Z, ν, λ)

= inf
Xº0

Tr(nX−1 + ZX) +

inf
g

(

m
∑

l=1

gl(−aTl Zal + ν − λl)

)

− n

−ν − (1/n)1TZ1T

=







−ν − (1/n)1TZ1+ 2Tr(nZ)1/2 − n
if − aTl Zal + ν = λl, l = 1, . . . ,m, Z ¹ 0;
∞ otherwise.

To justify the last line, we note that Tr(nX−1+ZX) is
unbounded below, as a function of X , unless Z º 0; when
Z Â 0, the unique X that minimizes it is X = (Z/n)−1/2,
so it has the value

Tr(nX−1 + ZX) = Tr(n(Z/n)1/2 + Z(Z/n)−1/2)

= 2Tr(nZ)1/2.

When Z is positive semidefinite, but not positive definite,
we get the same minimal value, but it is not achieved by
any X . (This calculation is equivalent to working out the
conjugate of the function TrU−1, for U Â 0, which is
−2Tr(−V )1/2, with domain V ¹ 0; see, e.g., [BV04,
Ex.3.37].)

The Lagrange dual problem is

maximize h(Z, ν, λ)
subject to λ ≥ 0.

Using the explicit formula for g derived above, and elim-
inating λ, which serves as a slack variable, we obtain the
dual problem

maximize −ν − (1/n)1TZ1+ 2Tr(nZ)1/2 − n
subject to aTl Zal ≤ ν, l = 1, . . . ,m,

Z º 0.
(31)

This problem is another convex optimization problem, with
variables Z = ZT ∈ Rn×n and ν ∈ R. The scalar variable
ν could be eliminated, since its optimal value is evidently
ν = maxl a

T
l Zal.

Since the ERMP is convex, has only linear equality and
inequality constraints, and Slater’s condition is satisfied
(for example by g = (1/m)1), we know that the optimal
duality gap for the ERMP (30) and the dual problem (31)
is zero. In other words, the optimal value of the dual (31)
is equal to R?

tot, the optimal value of the ERMP. In fact,
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we can be very explicit: if X? is the optimal solution of
the primal ERMP (30), then

Z? = n(X?)−2, ν? = max
l

aTl Z
?al

are optimal for the dual ERMP (31). Conversely, if Z? is
optimal for the dual ERMP (31), then X? = (Z?/n)−1/2

is the optimal point for the primal ERMP (30).
We can use the dual problem (31) to derive a useful

bound on the suboptimality of any feasible conductance
vector g, by constructing a dual feasible point from g. With
G = Adiag(g)AT , we define

Z = n(G+ 11T /n)−2,

with ν = maxl a
T
l Z

?al. The pair (Z, ν) is evidently
feasible for the dual problem, so its dual objective value
gives a lower bound R on R?

tot:

R?
tot ≥ −ν − (1/n)1TZ1+ 2Tr(nZ)1/2 − n

= −max
l

n‖(G+ 11T /n)−1al‖2

+ 2nTr(G+ 11T /n)−1 − 2n
= R,

where we use (G+ 11T /n)−11 = 1 in the second line.
Let η denote the difference between this lower bound R

and the value of Rtot achieved by the conductance vector
g. This is a duality gap associated with g, i.e., an upper
bound on the suboptimality of g. Using Rtot = nTr(G+
11T /n)−1 − n, we can express this duality gap as

η = Rtot −R

= −nTr(G+ 11T /n)−1 + n

+ max
l

n‖(G+ 11T /n)−1al‖2

= −Rtot +max
l

(

−∂Rtot

∂gl

)

= −min
l

(

∂Rtot

∂gl
+Rtot

)

.

In summary, we have the following inequality: given any
feasible g, its associated total effective resistance Rtot

satisfies

Rtot −R?
tot ≤ −min

l

(

∂Rtot

∂gl
+Rtot

)

. (32)

When g = g?, the righthand side is zero, by our optimality
condition (27). This shows that the duality gap converges
to zero as g converges to g?.

A second formulation of the dual, which leads to a
tighter duality gap, can be found in a longer version of
this paper [GBS05].

D. An interior-point algorithm
The ERMP can be solved numerically using several

methods, for example via the SDP formulation (26), using
a standard solver such as SeDuMi [Stu99] or DSDP
[BY04], or by implementing a standard barrier method
[BV04, §11.3], using the gradient and Hessian formulas

given in §II-G. In this section we describe a simple custom
interior-point algorithm for the ERMP, that uses the duality
gap η̂ derived in §IV-C. This interior-point method is
substantially faster than an SDP formulation, or a more
generic method.

The logarithmic barrier for the nonnegativity constraint
g ≥ 0 is

Φ(g) = −
m
∑

l=1

log gl,

defined for g > 0. In a primal interior-point method, we
minimize tRtot + Φ, subject to 1T g = 1, using Newton’s
method, where t > 0 is a parameter; the solution of this
subproblem is guaranteed to be at most m/t suboptimal.
Our formula (32) gives us a nice bound on suboptimality,

η = −
(

min
l

∂Rtot

∂gl
+Rtot

)

,

given any feasible g. We can turn this around, and use this
bound to update the parameter t in each step of an interior-
point method, by taking t = βm/η, where β is some
constant. (If η = 0, we can stop because g is optimal.)
This yields the following algorithm.

Given relative tolerance ε ∈ (0, 1), β ≥ 1.
Set g := (1/m)1.
while η̂ > εRtot repeat

1. Set t = βm/η.
2. Compute Newton step δg for tRtot +Φ

by solving, with H = t∇2Rtot +∇2Φ,
and f = t∇Rtot +∇Φ,
[

H 1

1T 0

] [

δg
ν

]

= −
[

f
0

]

.

3. Find step length s by backtracking line search
([BV04, §9.2]).

4. Set g := g + sδg.
When the algorithm exits, we have Rtot − R?

tot ≤ η ≤
εRtot, which implies that

Rtot −R?
tot

R?
tot

≤ ε

1− ε
.

Thus, the algorithm computes a conductance vector guar-
anteed to be no more than ε/(1− ε) suboptimal.

Using β = 1 and relative tolerance ε = 0.001, we found
the algorithm to be very effective, never requiring more
than 20 or so steps to converge for the many graphs we
tried. The main computational effort is in computing the
Newton step (i.e., step 2), which requires O(m3) arithmetic
operations, if no structure in the equations is exploited. For
graphs with no more than around m = 2000 edges, the
algorithm is quite fast.

V. THE BARBELL GRAPH

Consider the barbell graph Kn−Kn on 2n nodes, which
consists of two fully connected components of size n,
joined by a single edge between nodes n and n+1, shown
in figure 1. For this graph, we will show that the ratio
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Fig. 1. A barbell graph on 8 nodes.

of Rtot with uniform weights to R?
tot grows unboundedly

with n.
Using symmetry and convexity of the ERMP, it can

be shown that the optimal g? has exactly three distinct
weights: the weights on edges neither of whose endpoints
is n or n + 1, a; the weights on edges with exactly one
endpoint n or n+1, b; and the weight on the edge between
n and n+1, c. The conductance matrix G for these weights
is

G =









αI − a11T −b1
−b1 γ −c

−c γ −b1
−b1 αI − a11T









,

where 1 ∈ Rn−1, α = a(n−1)+b, and γ = (n−1)b+2c.
The 2n eigenvalues of the conductance matrix with these

weights are shown in the longer version of this paper
[GBS05] to be

0, a(n− 1) + b with multiplicity 2n− 4,
nb, (1/2)(nb+ 2c±

(

(2c+ nb)2 − 8bc)
)1/2

.

Therefore, we have reduced the ERMP problem (which
has m = n(n− 1) + 1 variables) to the problem

minimize (2n− 4)/(a(n− 1) + b) + 1/nb
+ (nb+ 2c)/2bc

subject to (n− 1)(n− 2)a+ 2(n− 1)b+ c ≤ 1,
a, b, c ≥ 0,

(33)
which has three variables: a, b, and c.

This problem has an analytical solution: the optimal
weights are

a? =
µ

n− 1

(√
2−

√
n+ 1

n

)

, b? = µ

√
n+ 1

n
,

c? = µ

√

n

2
,

where µ is a normalizing constant,

1/µ = (n− 2)
(√

2−
√
n+ 1

n

)

+ 2(n− 1)
√
n+ 1

n
+

√

n

2
.
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Fig. 2. The optimal value R
?

tot
, and Rtot with uniform weights, as a

function of n, for the barbell graph.

Clearly, R?
tot scales as n3 for the barbell graph Kn−Kn.

For the same graph, the total effective resistance obtained
with uniform weights gl = 1/m scales as n4. We con-
clude that the suboptimality of the uniform weights grows
unboundedly with n, i.e., the optimal conductances are
unboundedly better than uniform conductances. In figure
2, the optimal R?

tot is plotted as a function of n for the
barbell graph, along with the total effective resistance with
uniform weights.

VI. EXAMPLES

In this section we show some examples of optimal con-
ductance allocations on graphs. In each example, we draw
the edges with width and color saturation proportional to
the optimal edge conductance.

Our first two examples are a path on 11 nodes, and
a tree on 25 nodes, shown in figure 3. As expected, the
conductance is larger on edges with more paths passing
through them than edges near the leaves, which have fewer
paths passing through them.

Our next example is an 8× 8 mesh, shown in figure 4.
We plot the optimal conductances for the 8× 8 mesh, and
for a graph that is formed by removing some edges from
the mesh.

In figure 5, we plot the optimal conductances for a
barbell. Finally, in figure 6, we plot the optimal conduc-
tances for a randomly generated graph with 25 nodes and
88 edges. Here too we see large conductance allocated to
edges across sparse cuts.

VII. EXTENSIONS

We conclude by listing some variations on the ERMP
that are convex optimization problems, and can be handled
using similar methods. Since each Rij is a convex function
of the conductances, we can minimize any nondecreasing
convex function of the Rij (which is convex). Some
interesting (convex) objectives, in addition to Rtot, include
the following.
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Fig. 3. Left: Optimal conductance allocation on a path on 11 nodes.
Right: Optimal conductance allocation on a tree with 25 nodes.

Fig. 4. Left: Optimal conductance allocation on an 8× 8 mesh. Right:
Optimal allocation for a modified 8× 8 mesh.

Fig. 5. Optimal conductance allocation on barbell graph with 16 nodes.

Fig. 6. Optimal conductance allocation on randomly generated graph
with 25 nodes and 88 edges.

• Minimizing effective resistance between a specific pair
of nodes. We allocate conductance to minimize the
effective resistance between a specific pair of nodes, i
and j. This problem has the following simple solution:
Allocate the conductance equally to the edges lying
on a shortest path between i and j. This conductance
allocation violates our assumption (4); the effective
resistance between any pair of nodes not on the path
is undefined.

• Minimizing sum of effective resistances to a specific
node. This problem can be formulated as an SDP, and
solved by modifications to the methods discussed in
this paper. Examples show that the optimal allocation
of weights need not be a tree.

• Minimizing maximum effective resistance. The max-
imum effective resistance over all pairs of nodes,
maxi,j Rij , is the pointwise maximum of the convex
functions Rij , and is therefore also a convex function
of the conductances g [BV04, §3.2.3]. The problem
of minimizing the maximum effective resistance is
a convex optimization problem, can be formulated
as an SDP, and solved using standard interior-point
methods.

We mention one more extension: minimizing Rtot with-
out the nonnegativity constraints on the edge conductances:

minimize Rtot

subject to 1T g = 1.
(34)

In this problem the conductances can be negative, but we
restrict the domain of the objective Rtot to {g | G +
11T /n Â 0}. This problem can be solved using Newton’s
method, using the derivatives found in §II-G. The opti-
mality conditions for this problem are simply that 1T g =
1 (feasibility), and that all components of the gradient,
∇Rtot, are equal, specifically, ∇Rtot(g) = −Rtot1.

1195



ACKNOWLEDGMENTS

We thank Ali Jadbabaie for bringing to our attention the
literature on resistance distance.

REFERENCES

[AF03] D. Aldous and J. Fill. Reversible Markov
Chains and Random Walks on Graphs.
2003. Book in preparation. Available at
stat-www.berkeley.edu/users/aldous/RWG/book.

[Bap99] R. Bapat. Resistance distance in graphs. Mathematics
Student, 68:87–98, 1999.

[BDX04] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov
chain on a graph. SIAM Review, problems and techniques
section, 46(4):667–689, 2004.

[Boy06] S. Boyd. Convex optimization of graph laplacian
eigenvalues. volume 3, 2006. Available at
www/˜boyd/cvx_opt_graph_lapl_eigs.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, 2004. Available at
www/˜boyd/cvxbook.

[BVGY01] S. Boyd, L. Vandenberghe, A. El Gamal, and S. Yun. Design
of robust global power and ground networks. In Proc.
ACM/SIGDA Int. Symposium on Physical Design (ISPD),
pages 60–65. ACM, April 2001.

[BY04] S. Benson and Y. Ye. DSDP5 user guide — software for
semidefinite programming. Technical Report ANL/MCS-
TM-277, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, IL, July 2004. Avail-
able online at: www.mcs.anl.gov/˜benson/dsdp.

[CRR+89] A. Chandra, P. Raghavan, W. Ruzzo, R. Smolensky, and
P. Tiwari. The electrical resistance of a graph captures
its commute and cover times. In Proceedings of the 21st
Annual Symposium on Foundations of Computer Science.
ACM, 1989.

[DK69] C. Desoer and E. Kuh. Basic Circuit Theory. McGraw-Hill,
Inc., 1969.

[Elm48] W. Elmore. The transient response of damped linear net-
works. Journal of Applied Physics, 19:55–63, January 1948.

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak
Mathematics Journal, 23:298–305, 1973.

[Fie90] M. Fiedler. Absolute algebraic connectivity of trees. Linear
and Multilinear Algebra, 26:85–106, 1990.

[Fie93] M. Fiedler. Some minimax problems for graphs. Discrete
Mathematics, 121:65–74, 1993.

[GB] A. Ghosh and S. Boyd. Upper bounds on algebraic connec-
tivity via convex optimization. To appear in Linear Algebra
Appl.

[GBS05] A. Ghosh, S. Boyd, and A. Saberi. Optimizing effective resis-
tance of a graph. Submitted to SIAM Review, Problems and
Techniques, 2005. Available at www/˜boyd/eff_res.
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