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Abstract
On many battery-powered mobile computing devices, the
wireless network is a significant contributor to the total en-
ergy consumption. In this paper, we investigate the in-
teraction between energy-saving protocols and TCP perfor-
mance for Web-like transfers. We show that the popular
IEEE 802.11 power-saving mode (PSM), a “static” protocol,
can harm performance by increasing fast round trip times
(RTTs) to 100 ms; and that under typical Web browsing work-
loads, current implementations will unnecessarily spend en-
ergy waking up during long idle periods.

To overcome these problems, we present the Bounded-
Slowdown (BSD) protocol, a PSM that dynamically adapts to
network activity. BSD is an optimal solution to the prob-
lem of minimizing energy consumption while guaranteeing
that a connection’s RTT does not increase by more than a
factor � over its base RTT, where � is a protocol parameter
that exposes the trade-off between minimizing energy and
reducing latency. We present several trace-driven simula-
tion results that show that, compared to a static PSM, the
Bounded-Slowdown protocol reduces average Web page re-
trieval times by 5–64%, while simultaneously reducing energy
consumption by 1–14% (and by ����� compared to no power
management).
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Architecture and Design—Wireless communication; C.2.5
[Computer-Communication Networks]: Local and Wide-
Area Networks—Internet
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1. Introduction
The capabilities of mobile computing devices are often lim-

ited by the size and lifetime of the batteries that power them.
As a result, minimizing the energy usage of every compo-
nent in a mobile system is an important design goal. Wireless
network access is a fundamental enabling feature for many
portable computers, but if not optimized for power con-
sumption, the wireless network interface can quickly drain
a device’s batteries. This paper seeks to minimize the energy
consumed by the wireless network interface for a mobile de-
vice generating request/response traffic (e.g., while brows-
ing the Web) over a reliable transport protocol such as TCP.
We investigate several interactions between energy-saving
mechanisms and network performance, and show that un-
derstanding these interactions enables better energy-saving
protocols to be designed that have provable performance-
energy trade-offs.

Many wireless network interfaces, especially wireless
LAN cards, consume a significant amount of energy not only
while sending and receiving data, but also when they are idle
with their radios powered up and able to communicate [3, 5,
7, 11, 15]. However, because wireless applications typically
use the network in bursts, wireless interfaces are designed so
they can be disabled when not in use to save energy. In this
sleep mode, the radio is turned off, and the device has no way
to determine when data is being sent to it over the wireless
network link. This breaks the “always on” abstraction con-
venient for transport protocols such as TCP, where a node
should be able to receive data from the network at any time.
Therefore, any energy-saving protocol that puts the network
interface in sleep mode must have a mechanism to handle
the resulting communication outage.

As an example, consider the popular IEEE 802.11 wireless
LAN specification, which describes a power-saving mode
(PSM) that periodically turns the network interface off to
save energy, and on to communicate [9]. In the so-called in-
frastructure mode (as opposed to the ad hoc network mode),
a mobile device communicates with a wired access point
(AP). When 802.11 PSM is enabled, the AP buffers data
destined for the device. Once every BeaconPeriod, typically
100 ms, the AP sends a beacon containing a traffic indication
map (TIM) that indicates whether or not the mobile device
has any data waiting for it. The mobile device wakes up to
listen to beacons at a fixed frequency and polls the AP to re-
ceive any buffered data. Typically, it listens to every bea-
con, but the mobile device can also be configured to skip Lis-
tenInterval beacons between listen times. Whenever the AP
sends data to the mobile device, it indicates whether or not
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there is more data outstanding, and the mobile device goes
to sleep only when it has retrieved all pending data from the
AP. When the mobile device itself has data to send, it can
wake up to send the data without waiting for a beacon.

The 802.11 PSM is an example of a static power-saving al-
gorithm, since it does not adapt the sleep and awake dura-
tions to the degree of network activity; we will refer to it
as PSM-static in this paper. We find that while PSM-static
does quite well in saving energy, it does so at significant per-
formance cost. In Section 2, we demonstrate that the round
trip time (RTT) of a TCP connection can increase substan-
tially with PSM-static, since the effect is to round up the RTT
to the nearest 100 ms. This has an especially adverse impact
on short TCP connections, whose performance is dominated
by the connection RTT. We also find that an interesting inver-
sion effect can occur, where under some conditions, the time
to transfer a file over a wireless network running PSM-static
increases when the bandwidth of the wireless link increases!
Furthermore, with PSM-static, the power consumed while
sleeping and listening for beacons dominates the total en-
ergy consumption if the network is accessed only sporadi-
cally. Section 3 shows that for Web workloads, the long (but
randomly distributed) idle periods (“think time”) end up be-
ing most important in terms of energy usage, and that PSM-
static does not handle this situation well.

A PSM protocol addresses the following fundamental
question: When should a wireless interface go to sleep, and when
should it be awake? Based on our observations of the adverse
and unexpected interactions that occur when a TCP connec-
tion is superimposed on PSM-static, we consider the prob-
lem of optimizing energy consumption under the constraint
that interactive request/response performance does not de-
grade by more than a known amount. Specifically, we ad-
dress the following problem: Find an algorithm that minimizes
energy consumption using the sleep and wake-up primitives such
that any RTT does not exceed � ��� ������� , where � is the origi-
nal RTT and � is a tunable parameter that controls the maximum
percentage slowdown.

Our solution to this problem results in the Bounded-
Slowdown (BSD) protocol, described in Section 4. The idea is to
adapt the sleep durations depending on past activity, so that
no RTT is lengthened by more than a factor � , which exposes
the performance-energy trade-off in a provable manner. This
also allows the network interface to sleep for longer periods
of time when there is no activity, thereby reducing the energy
consumed while listening to beacons. In fact, for future net-
work cards, this method could allow the network interface to
go into a deeper sleep mode and save more energy.

Section 5 presents trace-driven simulations, using power
parameters from a commercially available 802.11b card, to
evaluate the effectiveness of the BSD protocol as a function
of � and compare it to PSM-static for real-world Web traffic.
We find that BSD tightly bounds the performance slowdown
of Web retrieval times in all cases, and also often beats PSM-
static in terms of energy consumption. For example, PSM-
static reduces energy by � � � compared to no PSM, but does
this at the cost of increasing average Web page retrieval times
by 16–232% for network round trip times of 80 ms down to
10 ms. When �
	 ���  , BSD increases average Web page re-
trieval times by only 11–19% over the base performance with
no PSM, and simultaneously uses 1–14% less energy than
PSM-static (and up to � � � less than no PSM)—both its per-
formance and energy usage are always better than the 802.11

PSM. When ��	��� � , the BSD protocol essentially eliminates
the slowdown in Web page retrieval times while only using
up to 13% more energy than PSM-static.

The performance benefits of BSD over PSM-static are most
significant when the TCP connection RTT is much smaller
than 100 ms (the beacon period). We note that with the in-
creasing deployment of Web content distribution networks
(CDNs), server replication systems, Web proxies, and caches,
the RTT for Web TCP connections is often small, especially
for popular sites where CDNs and replica abound. For exam-
ple, from both MIT on the east coast of the U.S., and Berke-
ley on the west coast, RTTs to several popular sites such as
Google, Yahoo, CNN, etc. are less than 30 ms most of the
time. In another common wireless network scenario, users
often transfer or synchronize files (e.g., email) between a mo-
bile device and a local server, and the base connection RTT is
a few milliseconds. Although the performance of PSM-static
could be improved by reducing the 100 ms beacon period,
this would lead to significantly higher energy consumption
(we discuss this in Section 5.3). We therefore believe that be-
cause of the trend toward smaller connection RTTs, the BSD
protocol will be especially useful in bounding performance
slowdown while saving considerable energy.

We discuss related work in Section 6 and conclude with a
summary of our results in Section 7.

2. TCP Performance over PSM-static
TCP is the transport layer of choice for the majority of In-

ternet applications. Its performance is therefore a critical con-
sideration in the design of any network component. This sec-
tion evaluates the impact of PSM-static on TCP performance.

During the initial slow-start phase of a TCP connection,
the RTT dominates the overall transfer time for data. Since
most TCP connections on the Internet are smaller than a few
tens of kilobytes [8, 13], RTTs are a critical determinant of
Web browsing performance. In this section, we analyze the
impact that PSM-static has on the first RTT of a connection,
then investigate the impact of PSM-static on RTTs for subse-
quent packets in a TCP transfer, then present experimental
measurements of TCP transfers, and finally discuss an emer-
gent performance inversion effect caused by PSM-static.

2.1 PSM-static Impact on RTT
With PSM-static enabled, the network interface enters a

sleep state whenever it is not sending or receiving data.
When the mobile device has data to send (e.g., a TCP SYN
or ACK packet, a TCP data packet containing a Web request,
etc.), it can wake the network interface up at any time. How-
ever, the network interface will go to sleep as soon as this
data has been transmitted to the AP. When the response data
arrives from the server after some delay, it must be buffered
at the AP until the next beacon occurs. This delay increases
the observed RTT for the connection.

If the mobile device initiates a request/response transac-
tion, the observed RTT depends on when it sends the request
data relative to the beacon period. For example, with an ac-
tual RTT of 20 ms and a beacon period of 100 ms, if the mobile
device sends the request immediately after a beacon, the re-
sponse will be buffered at the AP and received after the next
beacon; thus the observed RTT will be 100 ms. If the mobile
device sends the request 79 ms after a beacon, the AP will
receive the response just before the next beacon and the ob-
served RTT will be just over 20 ms. However, if the mobile
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Figure 1: Slowdown due to PSM-static (the 802.11 PSM)
for the first RTT of a TCP connection. The upper graphs
show how the observed RTTs vary with how long after a
beacon the request is sent. The lower graphs show the RTT
slowdown (the observed RTT divided by the actual RTT).
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Figure 2: Slowdown due to PSM-static for initial RTTs of a
TCP connection (excluding the first RTT). The upper graph
shows how the observed RTTs vary with the actual RTT.
The lower graph shows the RTT slowdown.

device sends the request 81 ms after a beacon, the AP will re-
ceive the response just after the next beacon and will have
to buffer the data until the subsequent beacon; the observed
RTT will be 120 ms, a factor of 6 slowdown. Figure 1 shows
the impact of PSM-static on three example RTTs. The fig-
ure shows the observed RTTs and the slowdown compared
to the actual RTT (the observed RTT divided by the actual
RTT). The PSM-static slowdown is greatest for smaller RTTs.

PSM-static similarly affects RTTs when the mobile device
responds to a request. In this case, the observed RTT depends
on when the request arrives at the AP relative to the beacon
period.

2.2 PSM-static Impact on TCP
When TCP is run over PSM-static, the initial RTT for a con-

nection depends on when the request is sent in relation to
the beacon period as shown in Figure 1. However, since the
TCP data packets destined for the mobile device are delayed
until the beginning of a beacon period, the mobile device al-

ways responds with TCP ACK packets immediately after the
beacon and the TCP connection becomes synchronized with
the PSM-static beacon period. Thus, the observed RTTs are
rounded up to the nearest 100 ms. Figure 2 shows the esti-
mated observed RTTs and slowdowns with PSM enabled.
The slowdown is greatest when the actual RTT is signifi-
cantly less than 100 ms.

As a TCP connection over a PSM-static link evolves, each
window of data takes 100 ms to transmit until enough data
is in transit to prevent the network interface from going into
sleep mode. At the beginning of a beacon period the amount
of data buffered at the AP is equal to the TCP window size
(assuming sufficient bandwidth between the server and the
AP). As soon as the mobile device wakes up and receives the
first TCP data packet, it sends an acknowledgment prompt-
ing the server to send more data. The new data arrives from
the server approximately one RTT (the actual server RTT, not
100 ms) after the start of the beacon period, during which
time the wireless link continually transmits data at the link
rate. If the AP finishes sending the buffered window of data
to the mobile device before the new data arrives from the
server, the mobile device will enter sleep mode until the next
beacon time. However, if the buffered window of data keeps
the wireless link busy until the new window of data begins to
arrive from the server, the network interface will stay awake
continuously and the power-saving mode will no longer de-
grade performance.

Thus, assuming sufficient bandwidth between the server
and the AP, the transmission of each TCP window takes
100 ms until the window size grows to the bandwidth-delay
product (the wireless link bandwidth multiplied by the ac-
tual server RTT) and one window can keep the wireless link
busy for an entire round trip time. For this to occur, the mo-
bile device’s advertised TCP window must be sufficiently
large. Additionally, enough buffering must be available at
the AP to store the window of data; otherwise, TCP packets
will be dropped and the connection will never be able to fully
saturate the wireless link.

2.3 Measured TCP Performance
Figure 3 shows the measured evolution of a TCP connec-

tion with and without PSM enabled. For this test, the mo-
bile client1 opened a TCP connection with a server and sent a
request for 40 kBytes of data; the server responded with the
data. The network interface card (NIC) was rated at 11 Mbps,
although the maximum possible TCP data throughput was
less than this as shown in the results below. The server was
in the same building as the 802.11 access point and three net-
work hops away; the RTT was about 5 ms, and the band-
width between the server and AP was at least 10 Mbps. The
times at which data packets were sent from the server are
shown, where time zero is the time that the server saw the
initial SYN packet.

With PSM-static off, the connection quickly saturates
the available bandwidth of the network—the maximum is
around 6.4 Mbps, limited by the 802.11 wireless link. How-
ever, with PSM-static on, the initial RTTs are increased to
100 ms. With an actual RTT of 5 ms, only about 4000 bytes
of buffered data should be required to keep the 6.4 Mbps link

�

The mobile client used for all tests in this paper was a Com-
paq iPAQ H3600 series hand-held computer running Famil-
iar Linux version 0.4 with an Enterasys Networks Roam-
About 802.11 DS High Rate network interface card.
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Figure 3: Measured evolution of a
TCP connection with and without
PSM enabled.
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Figure 4: Measured data transfer size
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transactions over TCP with various
servers and PSM on and off. Both
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busy for long enough to allow the next window of data to be-
gin arriving from the server and prevent the network inter-
face from going to sleep. As shown in Figure 3, this happens
after the third 100 ms RTT when the TCP window grows to 4
packets (about 6000 bytes). Since this connection has a short
server RTT and small bandwidth-delay product, it is close to
the best-case scenario for PSM-static in terms of saturating
the link in the fewest number of 100 ms RTTs.

In another test of PSM-static, the mobile client opens a TCP
connection to a server and sends a request for some number
of bytes; the server responds by sending the requested block
of data. By doing this for power-of-two data transfer sizes
between 1 Byte and 4 MBytes, we determined the relation-
ship between data transfer size and transfer time. The client
used was the same iPAQ device. The server was run on var-
ious machines to evaluate different network characteristics.
The first server was in the same building and three network
hops away from the AP; the RTT was 5 ms, and the band-
width was at least 10 Mbps. The second server was located
around 3000 miles and 20 network hops away and had a high
bandwidth network path to the AP; the RTT was 80 ms and
the bandwidth was at least 10 Mbps. The third server was lo-
cated around 3 miles and 8 network hops away and behind
a DSL network connection; it had a 50 ms RTT and outgoing
bandwidth of 70 Kbps. Each performance test was run ten
times alternating between PSM on and PSM off (five tests
each). The results showed no significant variations between
runs, and the mean values are presented.

Figure 4 shows the total transfer time (including the re-
quest and response) as a function of data transfer size for
each server with both PSM on and PSM off. Figure 5 presents
another view of the same data; it shows the slowdown in-
curred using PSM. For small data transfer sizes the entire re-
sponse fits in one or two TCP data packets, and the total time
for the transaction is equal to two RTTs—during the first RTT
the client sends a SYN packet to the server, and the server re-
sponds with a SYN+ACK packet; during the second RTT the
client sends the request to the server and it responds with
up to two data packets. With PSM off, the transfer time is
determined by the RTT to each server; however, with PSM
on, the transfer times are 200 ms regardless of the server. The
observed slowdowns match those predicted by Figure 2.

The transfer times for the low-bandwidth (70 Kbps) server

become bandwidth-limited even before the transfer requires
more than one RTT. For the high-bandwidth servers, the
transfer times begin to take multiple RTTs as the data trans-
fer size increases and eventually become bandwidth-limited;
the maximum bandwidth achieved was about 4.9 Mbps.
With PSM on, the maximum bandwidth achieved was about
3.4 Mbps. Apparently, the maximum bandwidth is limited
by the overhead incurred by the PSM signaling; a close look
at Figure 3 reveals that the data packet spacing in steady state
is slightly higher with PSM on.

In some cases, the mobile device sends data to a remote
machine rather than vice-versa; for example, this occurs if a
mobile user is uploading a file, serving data in a peer-to-peer
application, running a Web server, etc. In this case, PSM-
static causes the TCP ACKs to be delayed instead of the data
packets. We ran the same performance test with the mobile
device configured as the server, and a machine on the 5 ms,
10 Mbps network configured as the client. The results were
essentially identical to those obtained when the mobile de-
vice was the client.

The main finding from these measurements is that the
100 ms sleep interval used in PSM-static is too coarse-grained
to maintain good performance, especially for short TCP data
transfers that are dominated by RTTs.

2.4 Performance Inversion
Somewhat paradoxically, TCP may achieve higher through-

put over a lower bandwidth PSM-static link, resulting in per-
formance inversion! As discussed in Section 2.2 and shown
in Figure 3, PSM-static causes the transmission of each TCP
window to take 100 ms until the window size grows to the
product of the wireless link bandwidth and the network RTT
delay between the mobile device and the server. Therefore,
a lower bandwidth PSM-static link will become saturated
sooner and prevent the network interface from entering sleep
mode. Figure 6 shows simulation data that demonstrates this
behavior.2 The figure shows the transfer times versus the
wireless link bandwidth for various server RTTs, both with
and without PSM and for data transfers of 10 KBytes and
1 MByte. The AP to server bandwidth was set to 100 Mbps.

Figure 6 shows that a 1 Mbps wireless link is faster than
�

The simulation methodology is described in Section 5.1.
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Figure 6: TCP request/response transfer times versus wire-
less link bandwidth for various server RTTs. The left
graphs represent a 10 KB data transfer, and the right graphs
represent a 1 MB data transfer. The upper graphs show
transfers with PSM off, and the lower graphs show trans-
fers with PSM on. Paradoxically, in some cases the transfer
times are shorter with a lower bandwidth PSM-static link.

higher bandwidth links for a 10 KB data transfer. With a
10 ms server RTT, the connection has a bandwidth-delay
product of 1,250 bytes (10,000 bits). Therefore, it becomes
saturated during the initial TCP round trips, and the PSM
stops putting the network interface into sleep mode; the re-
quest/response transaction takes just over 3 round trip times
(300 ms). For wireless link bandwidths greater than 3 Mbps,
or for server RTTs greater than 20 ms, the TCP window never
grows to the bandwidth-delay product (or does so only on
the last round-trip), and the request/response transaction al-
ways takes about 5 round trip times (500 ms).

The 1 MByte transfer size demonstrates an interesting in-
teraction between TCP and PSM-static. Whenever the re-
ceiver’s advertised maximum TCP window size is not large
enough to keep the wireless link busy for an entire RTT, the
throughput is limited to one maximum TCP window per
beacon period. For the simulations, the mobile device’s ad-
vertised window is 20 TCP packets (1,500 bytes each), or
about 240 kbits, and one maximum window per 100 ms bea-
con period is equivalent to 2.4 Mbps. The bandwidth-delay
product for a 20 ms server RTT crosses the 240 kbits threshold
when the wireless link bandwidth increases from 11 Mbps
to 12 Mbps, and for a 40 ms server RTT when the wireless
link bandwidth increases from 5 Mbps to 6 Mbps. Once they
cross this threshold, the transfer times increase sharply to
4.1 s, an average throughput of 2.05 Mbps. This shows an
unexpected, emergent interaction between TCP and PSM-
static. With long server RTTs, the receiver’s advertised TCP
window limits performance even with PSM off (e.g., the
throughput saturates at about 2.5 Mbps for an 80 ms server
RTT), but it does not lead to the performance inversion.

These results also demonstrate that, if PSM-static is used,
absolute performance may degrade if the wireless link band-
width increases (e.g., with 802.11a).

3. Client Network Usage Characteristics
In optimizing a network access protocol to minimize

power consumption, it is important to consider how clients
use the network. Since there is a trade-off between the extent
to which power consumption is minimized in sleep mode
and how long it takes to wake up (and also how much en-
ergy the transition takes) [1, 14], the sleep duration deter-
mines how low the power consumption can be. In addition,
waking up to listen to beacons consumes energy; the listen
interval determines the significance of this overhead.

To evaluate the characteristics of client network usage, we
analyzed client Web traffic from the UC Berkeley Home IP di-
alup service traces [8]. The network activity for these traces
is dominated by long transfer times over the slow modem
links, but certain aspects are relevant to general client usage
patterns. In particular, the time that clients spend idle (pre-
sumably due to user “think time”) or waiting for responses
from servers present opportunities for the network interface
to enter a sleep mode, and these times are probably not crit-
ically dependent on the bandwidth of the client’s network
link.

In analyzing the traces, we tracked each client’s state as
one of:

wait-for-server: the client has one or more out-
standing requests, but is not receiving any
responses

receive-response: the client is receiving one or
more responses

inactive: the client has no outstanding requests
and is not receiving any responses (this in-
cludes both user “think time” and browser
processing time)

Figure 7 shows the cumulative distribution function (CDF)
for the client wait-for-server times. The solid line shows the
percentage of wait-for-server events that last for less than a
given elapsed time. The dashed line shows the percentage
of the total wait-for-server time that is spent in these events.
For example, 88% of all wait-for-server events take less than
1 s, and these events account for 19% of the total time spent
in all wait-for-server events.

Figure 8 shows the CDF for the client inactive times. The
solid and dashed lines are as in Figure 7. However, in the
traces many clients have no activity over a period of several
days; if this data is included these inactive times completely
dominate the total inactive time (as shown by the dotted line
which is barely visible above the x-axis). Therefore, inactive
events longer than 1000 s (around 2% of all inactive events)
were excluded from the total inactive time represented by
the dashed line. The figure indicates that 26% of all inactive
events take less than 1 s, and these events account for 0.5% of
the total inactive time. If only inactive events less than 100 s
are included (versus 1000 s as shown in Figure 8), the inactive
events less than 1 s account for 1.1% of the total; and if only
inactive events less than 10 s are included, the inactive events
less than 1 s account for 6.8% of the total.

For completeness, Figure 9 shows the CDF for the client
receive-response times. Since the clients use slow modem
links, long transfer times are the norm. The prevalence of
receive-response times less than 0.1 s is presumably due to
responses that fit in one TCP packet.

The important point about these results is that although
most wait-for-server and inactive events are of short dura-
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tion, long latency events account for most of the total wait-
for-server and inactive times. For example, over 80% of the
total wait-for-server time and virtually all of the total inac-
tive time is spent in events longer than 1 s. This holds true
even when inactive times longer than 100 s or even 10 s are
excluded. Since the energy spent by a network interface in its
power-saving sleep mode is directly proportional to the sleep
duration, this finding indicates that wait-for-server and inac-
tive periods longer than 1 s account for most of the network
interface sleep energy. Thus, considering that it requires the
network interface to perform the energy-consuming oper-
ation of waking up to receive a beacon every 100 ms, the
802.11 PSM seems too fine-grained to minimize energy con-
sumption effectively.

4. Bounded-Slowdown (BSD) Protocol
Section 2 demonstrated that a static PSM protocol such

as that used by 802.11 can be too coarse-grained to give
good Web performance, while Section 3 demonstrated that
the same protocol can be too fine-grained to minimize en-
ergy. This section presents the BSD protocol that employs an
adaptive algorithm to maintain performance while minimiz-
ing the energy consumed by a wireless network interface.

In the context of request/response network traffic, a static
PSM protocol guarantees that RTTs are not delayed by more
than one beacon period. We claim that this guarantee is in-
adequate both in terms of performance and energy consump-
tion. Our basic assumption is that, for request/response net-
work traffic, the percentage increase in round trip times is
more important than the absolute increase from the perspec-
tive of higher-layer protocols and human users. For exam-
ple, PSM-static might increase a 40 ms RTT to 100 ms and a
9,940 ms RTT to 10,000 ms; the first situation is far worse than
the second. Although, one might think that keeping round
trip times under 100 ms is good enough for human percep-
tion, the important point is that request/response transac-
tions involve multiple additive RTTs. For example, in Section
5.2 we show that by increasing a 40 ms RTT to 100 ms, PSM-
static more than doubles the time to retrieve many Web pages
that originally had download times as long as one second.
In terms of energy, PSM-static will wake up to listen to 100
beacons during a 10 s idle period, in the end ensuring that
a 10 s RTT is not increased by more than 1%. If a 10% slow-
down is acceptable, the energy spent listening to beacons can
be reduced by an order of magnitude.

Motivated by these observations, we seek a protocol that

consumes the minimum possible energy while guaranteeing
that round trip times do not increase by more than a given
percentage. In contrast to a static protocol, our algorithm
must dynamically adapt to network activity. To avoid delay-
ing very fast RTTs, the network interface can stay awake for a
short period of time after the link is active. Then, to consume
less energy listening to beacons, it can back off and listen to
fewer beacons when there is no network activity.

A constraint on our power-saving protocol is that it must
operate completely at the link layer with no higher-layer
knowledge. Since it does not know whether particular blocks
of data actually comprise a request or response, it should
conservatively assume that any data sent from the mobile de-
vice is a request and it should not assume a correspondence
between any particular blocks of send and receive data. A
result of designing a low-level protocol is that its guarantees
are valid even when different connections share the same
network interface; e.g., RTT slowdowns will be bounded
even when the mobile device has multiple TCP connections
to different servers with different network delays.

Formally, if the base RTT in the absence of PSM is � , then
the goal is to minimize energy while limiting the observed
RTT to � � � ��� � � ; for a specified parameter � �  , this limits
the RTT increase to � � ��� percent. We present an optimal
algorithm that meets this goal. We start with an observation
about sleep durations:

LEMMA 1. If, after sending a request at time ���������	��
�� , the
mobile device has received no response at time ������������	� , then
the network interface can go to sleep for a duration up to
��� ��	�������	��� � ����������
�� � � � while bounding the RTT slowdown
to � � � � � .
This is true because for the greatest slowdown, the actual
RTT, ������������ 	 ��� �������������� � ����������
�� � , and the observed RTT,
����� 
��������! 	 � ���������� � � ���������� � � ; therefore ����� 
��������� #"
� � � ��� � ������������ .

To minimize energy, an optimal algorithm must clearly al-
ways put the network interface into the sleep state as soon as
possible and for as long as possible. However, to bound the
slowdown, the mobile device must periodically check with
the AP for buffered data as governed by Lemma 1. Therefore,
if (for the moment) we neglect synchronization constraints
between the wireless network interface and the AP, we can
state the following theorem:

THEOREM 1. To minimize energy while bounding RTT slow-
down to a factor � � � ��� , a network interface should go to sleep
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Figure 11: Schematic representation of PSM-static (the 802.11 PSM) and various Bounded-Slowdown alternatives (labeled
as �   � � percent). The arrow indicates a request sent by the mobile device, the initial shaded area indicates when BSD stays
awake for a set time � ��� ��� � after the request, and the shaded bars indicate when the network interface wakes up to listen to
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Figure 10: The BSD Algorithm. After the mobile device
sends any data, the network interface initially stays awake
for � ��� ����� . Then it sleeps for � ��� ����� � � before waking up
to check for and receive any buffered data. It repeats this
pattern, each time sleeping for the duration since the re-
quest was sent multiplied by � . The algorithm is not af-
fected by data being received, but it restarts whenever the
mobile device sends any data (e.g., a TCP ack for data re-
ceived). Note that ������������	� continuously changes to reflect
the current time.

an infinitesimally short period of time after it sends any request
data, and only wake up to check for response data as governed by
Lemma 1.

The Bounded-Slowdown algorithm is summarized in Fig-
ure 10. For the ideal case with no synchronization con-
straints, � ��� ����� is an infinitesimally small positive value. The
algorithm restarts whenever the mobile device sends new
data; this can never cause Lemma 1 to be violated for a previ-
ous request because BSD will check for data more frequently
than if it did not restart.

Although the ideal algorithm minimizes energy, it results
in sleep and wake intervals that are of arbitrary length and
infinitesimally small. To use the protocol in a realistic im-
plementation, we assume the mobile device and AP are syn-
chronized with a fixed beacon period � ��� , as in 802.11 PSM.

Then, � 
�� ��� � must always be rounded down to a multiple of
� ��� . Under these constraints, the mobile device might delay
an RTT by up to � ��� the first time it goes to sleep. There-
fore, � ��� ����� 	�� ���
	 � , so that the mobile device initially stays
awake for ��	 � beacon periods; if the response arrives during
this time it will be delivered without delay.

Figure 11 shows the behavior of PSM-static and the BSD
protocol for various values of � (these are labeled as � � � �
percent). To allow direct comparisons with the 802.11 PSM,
we set � ��� to 100 ms. Additionally, in our implementation
the BSD protocol sets the maximum sleep duration to 0.9 s to
avoid TCP timeouts.3 Considering one example in Figure 11,
when � 	  � � (20%), � ��� ����� 	�� ���	 � 	�� ����� , so the net-
work interface stays awake for half a second after the mobile
device sends a request. Then, it begins sleeping and waking
up to listen to every beacon while � 
�� ��� � is rounded down to
100 ms. After a second has elapsed since the request, � 
�� ��� �
is 200 ms, so it sleeps for two beacon periods, and so on.

We note that this algorithm is slightly conservative in its
assumption that an RTT might be delayed by � ��� the first
time the mobile device goes to sleep. The maximum de-
lay will actually be less than this if the mobile device goes
to sleep in the middle of a beacon period, but it would be
difficult for a practical implementation to calculate the exact
relationship between ���������	��
�� and the beacon period. There-
fore, our algorithm conservatively assumes that � �������	��
�� oc-
curs just after a beacon and always stays awake for a set pe-
riod of time. This assumption does not alter the correctness
(in terms of the RTT bound) of the algorithm since it never
violates Lemma 1.

Updating the existing 802.11 MAC to support the BSD pro-
tocol should be fairly straightforward. One difference is that
instead of going to sleep immediately after sending data to
�
Increasing the maximum sleep duration would only serve

to further reduce the energy spent listening to beacons. How-
ever, as shown in Section 5.1, this would not lead to worth-
while overall energy reduction with current 802.11 network
cards since the sleep energy dominates the listen energy for
a 0.9 s sleep interval.

7



the AP, the mobile device stays awake for a set period of time.
To ensure that the AP forwards data to the mobile device
without delay, it could be informed of this time period. Or, it
could always notify the device as soon as data arrives from
the network instead of waiting for the next beacon; in this
case the device could retrieve the data if awake. The other
difference under the BSD protocol is that the mobile device
does not listen to beacons at a set interval. The 802.11 speci-
fication already allows for a ListenInterval which is different
than the BeaconPeriod; the only enhancement is to enable the
ListenInterval to change more dynamically. A potential con-
cern is that the amount of buffering required at the AP is now
larger, since the mobile device listens to fewer beacons; how-
ever, since the mobile device stays awake after sending data,
it will usually receive responses immediately and thereby re-
duce the AP’s overall buffering load. The reduced frequency
of listening to beacons typically occurs when there is little
networks activity to the mobile device.

In summary, with the BSD protocol, fast response times
are not delayed, while longer ones are increased by up to a
parametrized maximum factor, � � � . Compared to PSM-
static, the active energy is increased since the transition to
sleep mode is delayed, but the energy spent listening to bea-
cons is decreased due to the longer sleep intervals. We note
that the BSD protocol is designed for a mobile device that
initiates request/response network traffic. As such, it is not
appropriate for real-time communication, or for a mobile de-
vice that acts as a server and responds to external requests.

5. Evaluation
To analyze the performance and energy impact of PSM-

static, and to evaluate the proposed PSM enhancements, we
simulated a mobile client browsing the Web over a wireless
network link.

5.1 Simulation Methodology
Using the network simulator ns-2 [17], we modeled a mo-

bile client communicating with an access point over a wire-
less link with PSM. Since we were not concerned with many
details that 802.11 accounts for—such as signal strength,
channel contention, node movement, and multicast—we
chose not to model the detailed MAC protocol, but instead
made some simple modifications to the basic link object in
ns-2. Sleep mode is simulated by deactivating the queue el-
ements of a link so that they do not forward any packets, and
waking up simply entails activating the queues. The mobile
device wakes up whenever it has data to send to the AP. After
sending the data it stays awake for the duration determined
by the BSD algorithm (this time is restarted if the mobile de-
vice sends more data in the interim), and then goes to sleep.
The beaconing is implemented using a timer that expires ev-
ery 100 ms. We determine whether the mobile device wakes
up to listen to each beacon based on the BSD protocol. If it
does, it receives any data buffered at the AP and then goes
back to sleep. Based on the experiments described in Section
2, we modeled the AP-to-mobile-device and mobile-device-
to-AP links as 5 Mbps with a latency of 100 � s.

To model a client browsing the Web, we used the trace-
based HTTP traffic generator in the ns-2 distribution (in
ns-2.1b8a/tcl/http/). In the model, the retrieval of a
Web page begins with a client opening a TCP connection
with the server and sending a request. The original model
uses one-way TCP connections, but we updated it to use
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Figure 12: CDFs for randomized parameters used in HTTP
traffic simulations.

FullTcp connections. After some delay, the server sends a
response, and then the client retrieves some number of em-
bedded images. To get these, the client opens up to four par-
allel TCP connections with the server. Then, the client waits
for some amount of think time between Web page retrievals.
The various parameters in this model are randomly chosen
based on empirical data [13]. As in Section 3, we limited
the user think time to 1000 seconds because otherwise think
times as long as an entire day would completely dominate
the total think time. We also added a server response time
that delays the start of an HTTP response; it does not affect
the subsequent RTTs for the TCP connection. We based this
on the wait-for-server data in Figure 7, but subtracted 100 ms
from these times since they include the network delay (so,
45% of the time the server responds with no delay).

To evaluate PSM-static and BSD, we modeled a network
consisting of a mobile client, an access point, and a server.
For each of various PSM settings, we simulated a client re-
trieving 10,000 Web pages; these comprised a total of 38,428
HTTP request/response transactions, and around 541,000
seconds of client Web browsing time. Figure 12 shows the
CDFs for the actual randomized parameters used in the sim-
ulations. Admittedly, using a single server with a set band-
width and RTT is a simplification and significantly affects the
performance impact of the PSM. We always set the AP to
server bandwidth to 10 Mbps, but we show results for var-
ious server RTTs to show the variation.

To simulate the power consumption of the 802.11 network
interface card, we used a simple model inspired by vari-
ous reported measurements [3, 5, 7, 15] and our own power
measurements of the Enterasys Networks RoamAbout NIC
shown in Figure 13 (the methodology used to make the mea-
surements was similar to that in [3]). We modeled the power
usage as 750 mW while awake (sending data, receiving data,
or idle), and 50 mW while asleep. In reality, 802.11 cards con-
sume somewhat more power while sending and receiving
data than while idle; however, as demonstrated below, the
additional energy used for actually transmitting data while
Web browsing tends to be insignificant. After analyzing Fig-
ure 13(c), we modeled the energy consumed in waking up
and listening to a beacon as 1.5 mJ, based on an approxima-
tion of 750 mW being consumed for 2 ms.
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Figure 14: Per-page slowdown for three PSM alternatives based on a server RTT of 40 ms. Each marker represents a single
Web page; the x-coordinate is the retrieval time with PSM off, and the y-coordinate is the slowdown when PSM is on. The
horizontal line in each graph shows the mean slowdown (1.69 for PSM-static, 1.14 for BSD-100%, and 1.01 for BSD-10%).

5.2 Web Page Retrieval Times and Energy
Figure 14 compares the performance of PSM-static with

two BSD alternatives based on a server RTT of 40 ms.4 Each
marker on Figure 14 represents the retrieval of a single Web
page; the x-coordinate is the retrieval time with PSM off, and
the y-coordinate is the slowdown when PSM is on (that is, the
retrieval time with PSM on divided by the retrieval time with
PSM off). The figure shows that PSM-static has the greatest
negative impact on pages with fast retrieval times. These are
slowed down by up to about ��� � � which is the penalty for
extending a 40 ms RTT to 100 ms. BSD-100% shows a large
improvement, and does bound the worst-case slowdown to
be smaller than � � . In fact, all of the slowdowns are far less
than this bound because the protocol keeps the network in-
terface awake for 100 ms after the mobile device sends data,
so fast RTTs are not slowed down at all. BSD-10% further
improves performance and shows almost no slowdown.

Figure 15 compares the mean per-page energy and re-
trieval time of various PSM alternatives. To show the sen-
sitivity to the server RTT, each has results for RTTs of 10 ms,

�
Throughout this section, note that even with a fixed server

RTT, the actual RTT for request/response transactions may
be longer due to the server response time shown in Figure 12.

20 ms, 40 ms, and 80 ms. The energy values were obtained
by dividing the total energy by the number of pages, while
the slowdown values were obtained by taking the mean of
the slowdown for each individual page (rather than dividing
the total retrieval time by the number of pages). In this way,
each page is given equal weight independent of its retrieval
time; this is shown graphically by the horizontal lines in Fig-
ure 14. The first set of bars in Figure 15 shows a link with
PSM off, and the second set shows PSM-static. The next four
sets show instances of the BSD protocol with the maximum
slowdown � set to 100%, 50%, 20%, and 10%.

Enabling PSM-static reduces energy by about a factor of 11,
but suffers from a slowdown of 16–232% depending on the
server RTT. Based on the estimates, the energy spent while
awake is negligible since the network interface is in sleep
mode for around 1000 times longer than it is awake. Wak-
ing to listen to beacons accounts for 23% of the total power
consumption; a direct result of the energy cost of listening to
a beacon (which takes 2 ms) compared to the energy cost of
sleeping for 98 ms:

��� �����
��� �����	��
���� 
� ������� 	 � � � .

In all cases, the BSD protocol results in faster average page
retrieval times than PSM-static; even BSD-100% never in-
creases the average retrieval time by more than 19% com-
pared to a link with no PSM. BSD successively improves re-
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trieval times as the slowdown parameter is decreased, and
eventually it almost completely eliminates the slowdown.

To improve performance as the slowdown parameter is de-
creased, BSD successively increases the awake energy since
it stays awake for longer after the mobile device sends data.
The awake energy also increases with slower server RTTs
since BSD typically remains awake for entire TCP data trans-
fers, and these become longer. However, BSD also reduces
the energy spent listening to beacons since it adaptively in-
creases the listen interval when there is no activity. The lis-
ten energy is reduced by ��� ��� with BSD-10% and � � � � with
BSD-100%, close to the maximum reduction of ��� that would
be achieved by listening every 900 ms (the maximum listen
interval we allow) instead of every 100 ms. Combining these
two energy effects, BSD uses even less energy overall than
PSM-static in many cases, and even in the worst case it only
increases the energy by 26%. Figure 16 shows the trade-off
between page retrieval time and energy consumption based
on a 40 ms server RTT. Clearly the parameterized BSD pro-
tocol reduces communication latency at the cost of increased
energy consumption, and vice-versa.
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Figure 17: Mean per-page energy and slowdown compar-
isons for various beacon periods. The graphs on the left
show results for BSD-100%, and those on the right for BSD-
10%. In all graphs, each set of bars show results for server
RTTs of 10 ms, 20 ms, 40 ms, and 80 ms. The “sleep” energy
has been eliminated for clarity.

5.3 Further Energy Reduction
The results show that the energy remaining after PSM is

enabled is mostly dominated by the power consumed while
the network interface is sleeping. There is no fundamental
limit that prevents this power from being reduced further,
but doing this can result in additional energy and delay over-
head when the network interface awakens. For example,
Simunic et al. report that the NIC can be turned off so that
it consumes no power, but the transition to the off state takes
around 62 ms and the transition back takes around 34 ms
[15]. Clearly this mode cannot be used when the network
interface must wake up every 100 ms to listen to a beacon,
but as Simunic finds, turning off the network interface dur-
ing long idle periods can save considerable energy. Thus,
by extending the sleep intervals BSD has the potential to use
deeper sleep modes to significantly reduce the sleep energy.

Assuming that hardware advances can reduce the sleep
energy toward zero, the overall energy consumption for BSD
will become dominated by the awake energy. Most of this
energy is consumed after the link is active and the network
interface stays awake for a short period of time; this behavior
is demonstrated in Figure 11.

To minimize the awake energy while still preserving the
bounded slowdown guarantee, we can decrease the beacon
period. Doing so allows the network interface to go to sleep
sooner after the link is active because, � ��� ����� 	 � ���
	 � ; this
brings the protocol closer to the ideal algorithm described
by Theorem 1. Figure 17 shows the effect of reducing the
beacon period on BSD-100% and BSD-10%. As expected,
the awake energy is reduced with shorter beacon periods.
For example reducing the beacon period by a factor of 8 re-
duces the awake energy by 56–80% for BSD-100% and 44–
75% for BSD-10%. However, at the same time, the energy
spent listening to beacons increases since the sleep/listen cy-
cle starts sooner. Additionally, performance degrades if the
link does not stay awake for as long as the minimum round
trip times. For example, with BSD-100%, the network inter-
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face stays awake for one beacon period before going to sleep;
hence, with an 80 ms RTT, the average slowdown increases
substantially when the beacon period is reduced from 100 ms
to 50 ms, while with a 40 ms RTT, the average slowdown in-
creases substantially when the beacon period is reduced from
50 ms to 25 ms. BSD-10% stays awake for 10 beacon periods
initially, so even reducing the beacon period to 12.5 ms barely
harms its performance.

Even if we do not assume zero sleep energy, reducing the
beacon period can be an important energy saving technique
for the BSD protocol. For BSD-10%, reducing the beacon pe-
riod to 12.5 ms results in it using between 12% less to 2%
more energy than PSM-static depending on the server RTT.
Thus, it essentially eliminates the page retrieval slowdown
while simultaneously reducing energy in almost all cases.
Although the page retrieval times with PSM-static could also
be improved by reducing the beacon period to 12.5 ms, this
would increase the energy spent listening to beacons by a
factor of 8, and increase the overall energy by a factor of 2.6.

6. Related Work
This paper has two main contributions: First, it presents a

detailed analysis of the effect that fine-grained intermittent
connectivity, such as that of the 802.11 power-saving mode,
has on TCP throughput and latencies. We believe that this
is the first work to explore this issue in depth. Second, it
presents the BSD protocol to minimize energy consumption
while providing a guaranteed bound on RTT slowdown for
request/response network traffic.

A survey of energy efficient network protocols for wireless
networks is provided in [10]. Although many researchers
have explored power management strategies, we believe that
ours is the first work that also focuses on provably bounding
the performance slowdown.

6.1 Reducing Idle Energy in Infrastructure
Networks

The BSD protocol operates solely at the MAC layer and
does not require any higher-layer information. Other pro-
posals have advocated power management at the system-
level [15], the application-level [2], or a hybrid of the two [11].
Our view is that, in many cases, this unnecessarily increases
overall system complexity. Higher-layer protocols may have
difficulties when multiple applications share the same net-
work interface, but BSD has no problems with such a situa-
tion since it is agnostic to applications. We have shown that
a low-level protocol can provide performance guarantees for
request/response network traffic, thus covering an interest-
ing and broad (although not comprehensive) class of net-
work applications, while flexibly and dynamically adapting
to network activity in order to eliminate energy during long
idle periods. An appropriate system-level or application-
level decision could be to choose the BSD protocol for re-
quest/response network access (along with an appropriate
value for � , the slowdown parameter), and to choose a dif-
ferent PSM mechanism (e.g., PSM-static) for other kinds of
network applications.

Simunic et al. describe system-level power management
strategies that turn the network interface off completely dur-
ing idle periods to reduce its power consumption by about
� � compared to 802.11 without power management [15].5

�
The wireless card used in [15] consumes 1.65 W while send-

However, the policy cannot guarantee a bound on the perfor-
mance slowdown. BSD is a simpler algorithm than the pro-
posed time-indexed semi-Markov decision process model
(TISMDP); and, even while providing guaranteed bounds on
the slowdown by taking network performance (RTTs) into
account, it can achieve additional energy savings on top of
the � � � energy reduction of the 802.11 PSM-static protocol.
Although not evaluated in our paper, BSD could save even
more energy by (like TISMDP) transitioning from sleep to off
when the listen interval becomes sufficiently long. Further-
more, BSD is designed to operate at a finer granularity than
TISMDP and they could potentially be used in conjunction.

Chandra investigates an application-specific protocol for
reducing the network interface power consumption for
streaming media applications [2]. The proposal uses a
history-based strategy to set the sleep interval (analogous to
the listen interval). The protocol is only applicable for reg-
ular access patterns, in contrast to BSD which dynamically
responds to network activity.

Kravets and Krishnan investigate the energy and delay im-
pact of a power-aware transport protocol [11]. Ideally, ap-
plications inform the protocol when the network interface
should be turned off; the paper also discusses using a time-
out period (analogous to the initial stay awake time in BSD),
but does not evaluate this parameter’s energy and delay im-
pact. The paper investigates the sleep duration (analogous
to the listen interval), and finds that a 500 ms sleep duration
achieves most of the possible energy savings; it reduces Web
browsing energy by 30–80% compared to no power manage-
ment, at the cost of increasing delay by 300–700 ms. Kravets
and Krishnan also present an adaptive implementation of
their algorithm in which they set the sleep duration to 250 ms
when there is network activity, and adaptively back off to
5 minutes by doubling when there is no activity; they find
that this can improve both energy and delay. Ultimately, the
power-saving mechanisms are similar to those used by BSD,
but the proposed protocol does not use them to guarantee a
bound on the performance degradation.

6.2 Other Energy Reduction Techniques
Chen et al. evaluate the energy consumption of various

access protocols for wireless infrastructure networks [4]. In
contrast to our work, their study focuses on the active energy
consumption and the impact of contention for the wireless
channel. These factors are certainly important for some envi-
ronments, but with sporadic network activity the idle energy
consumption dominates the active energy.

There have been many studies on the performance and en-
ergy consumption of ad hoc wireless networks (e.g. [3, 7, 16,
18]). Infrastructure networks have fundamentally different
requirements than ad hoc networks because the access point
is a centralized controller and is not constrained by power
consumption. However, the basic concepts behind the BSD
protocol could still potentially improve the performance and
energy consumption of ad hoc networks.

Another area of related work is power management of
hard disks [6, 12]. Like the network interface, hard disks
can be disabled to save energy. Adaptively varying the disk
spin-down threshold [6] shares similarities with adaptively

ing, 1.4 W while receiving, and 0.045 W while sleeping, but
the average power consumed during a Web browsing trace
is 1.41 W; therefore, we conclude that the card is either con-
stantly receiving data or not using its sleep mode while idle.
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increasing the network interface listen interval. However,
hard disks use mechanical components and require orders
of magnitude more time and energy to transition into sleep
modes. Another fundamental difference with the network
interface is that the information for determining when to re-
activate the component may not be local to the mobile device;
a packet can arrive from the network (external to the device),
and the device must wake up to receive it.

7. Conclusion
We investigated the performance effects of superimpos-

ing a TCP connection on a static PSM protocol (PSM-static)
modeled after the popular IEEE 802.11 wireless LAN power-
saving mode. Using a combination of analysis, measure-
ment, and simulation, we found that while this protocol re-
duces the energy consumed during Web access by � � � com-
pared to no PSM, the RTTs of a TCP connection get rounded
up to the nearest 100 ms until the TCP window size grows
to the network bandwidth-delay product. This has an espe-
cially adverse impact on the short TCP connections typical
for Web workloads, whose performance is dominated by the
RTT; for a client-side Web trace, we found that the average
Web page retrieval time increases by 16–232%. We also dis-
cussed an emergent interaction between TCP and PSM-static
that leads to performance inversion in which TCP achieves
higher throughput over a lower bandwidth PSM-static link.
Furthermore, for Web workloads characterized by bursts of
activity interspersed with long idle periods, PSM-static con-
sumes most of its energy sleeping and unnecessarily waking
up to listen to beacons during the idle periods.

To overcome these problems, we presented the BSD proto-
col that dynamically adapts to network activity. We proved
that BSD uses the minimum possible energy necessary to
guarantee that connection round-trip times do not increase
by more than a given factor � compared to the RTT in the
absence of any PSM, where � is a protocol parameter that ex-
poses the trade-off between minimizing energy and reduc-
ing delay. To accomplish this, BSD stays awake for a short
period of time after a request is sent, and adaptively lis-
tens to fewer beacons when the link remains idle. Staying
awake reduces communication delay but increases energy
consumption, while listening to fewer beacons saves energy
but can increase delay. We evaluated BSD using trace-driven
Web traffic simulations and parameters from a commercially
available 802.11b wireless LAN card, and found that, com-
pared to PSM-static, BSD reduces average Web page retrieval
times by 5–64%, while simultaneously reducing energy con-
sumption by 1–14% (and by up to ����� compared to no power
management).
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