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ABSTRACT

Minimizing fuel consumption in space travels is becoming increasingly impor-
tant for spatial development. In the present paper, the fuel consumption in orbit
transfers (without gravitational assistance) is minimized, where a spacecraft per-
forms a change from an orbit around the Earth to another one around a different
celestial body. Two methods are presented: one of immediate transfer and another
with wait time. Minimizing is done by solving a nonlinear system, obtained by
applying Lagrange multipliers to the equation modelling the keplerian system, and
using the seeds coming from the particle swarm algorithm to execute the New-
ton’s method. Numerical simulations with real values were made to compare these
methods with the Hohmann transfer and data from the specialized literature.

RESUMEN

La minimización del gasto de combustible en los viajes espaciales es cada d́ıa
más importante para el desarrollo espacial. En el presente trabajo se minimiza
el gasto de combustible en transferencias de órbita (sin asistencia gravitacional),
donde se ejecuta un cambio de órbita de una nave alrededor de la Tierra a una órbita
alrededor de otro cuerpo celeste. Se presentan dos métodos, uno de transferencia
inmediata y otro con tiempo de espera. La minimización se hace resolviendo un
sistema no lineal que aparece después de aplicar multiplicadores de Lagrange a
las ecuaciones que modelan el sistema kepleriano, usando las semillas que vienen
del algoritmo de enjambres de part́ıculas para ejecutar el método de Newton. Se
hicieron simulaciones numéricas con valores reales para comparar estos métodos con
la transferencia de Hohmann y los datos que aparecen en la literatura especializada.

Key Words: celestial mechanics — methods: numerical — planets and satellites:
fundamental parameters — space vehicles

1. INTRODUCTION

Recently, authors such as (Gang et al. 2014; Shan
et al. 2014; Zotes et al. 2012) have given important
contributions to the study of spatial trajectory op-
timization. The latter have considered a geometric
method with results far from those presented in this
article, by having a large flight time with a ∆v sim-
ilar to ours.

Thus, to minimize fuel consumption in the accel-
eration ∆v [as in (Sharaf & Saad 2016)], the present
article considers the methods proposed in Leeghim

1School of Exact Sciences and Engineering, Sergio Ar-
boleda University, Bogotá, Colombia.

2Department of Mathematics, University of the Andes, Bo-
gotá, Colombia.

3Institute of Mathematics and Statistics, Federal Univer-
sity of Goiás, Goiania, Brazil.

(2013), which are variations of the Lambert problem,
with neither direction of motion in a plane nor the
time t of the transfer at the beginning given; both
are calculated. Another difference of our approach
is the obtainment of the wait time t1 (Vallado 1997),
where the interceptor does not leave its initial orbit
until the relative positions of the bodies are conve-
nient. This is presented in § 2.

The problem becomes a constrained optimization
system. Its direct solution leads to several systems of
nonlinear equations (9 equations as in § 3, 11 equa-
tions as in § 4). The solution method, presented in
§ 5 (Newton’s method) needs an appropriate start-
ing point (seed). This seed is usually found from an
exhaustive model that takes a long time to locate a
suitable value (grids). Therefore, an heuristic tech-
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178 ECHEVERRY & VILLANUEVA

nique, the particle swarm optimization presented in
§ 5.1, is used to approximate the seed in a reason-
able time. Such methods were applied to trips with
real data in the solar system and are presented in
§ 6. The results of the first case (immediate transfer)
were compared with information released from mis-
sions of several space agencies in Villanueva (2013)
and here the two problems are compared with the
data shown in Kemble (2006), who deals with the
Lambert problem directly from a geometric point of
view.

2. PRELIMINARIES

The two-body problem (Keplerian) described in
Bate (1971) was considered. The equation

~̈r(t) = − µ

|~r(t)|3~r(t) (1)

models the dynamic of the system, with µ = GM .
The position of the particle on an ellipse is ~r(t) =
[x1(t), x2(t)], such that

x1(t) = a(cosE(t)−ǫ), x2(t) = a
√

1− ǫ2 sinE(t),

where a is the semi-major axis, ǫ the eccentricity, E
the eccentric anomaly. Using the fact that the norm
of the angular momentum of the particle is constant
we get

Ė =

√
µ

a3/2(1− ǫ cosE)
,

and therefore Kepler’s equation is obtained:

E(t)− ǫ sinE(t) =

√
µ

a3/2
(t− t0) = M, (2)

where M is the mean anomaly (Bate 1971). To find
a solution E for Kepler’s equation (2) at any time
normally Newton’s method is used, but it does not
converge or converges too slowly when ǫ ≈ 1 (Elipe
et al. 2017). From Danby (1962, p. 168) we use
Taylor’s expansion in (2) to derive the equations of
the dynamics related to the problem for any type of
trajectory (classical curves). Then

√
µ(t−t0)= a3/2

[

E − ǫ
(

E − E3

3! + E5

5! − E7

7! + · · ·
)]

= (a3/2(1− ǫ)E) + ǫ
(

(
√
aE)3

3! − 1
a
(
√
aE)5

5!

+ 1
a2

(
√
aE)7

7! − · · ·
)

.

With x =
√
aE, we obtain

Fig. 1. Description of the first problem.

√
µ(t−t0)=(a(1−ǫ)x)+ǫ

(

x3

3!
− 1

a

x5

5!
+

1

a2
x7

7!
− · · ·

)

.

This equation accepts any value of ǫ and a 6= 0.
Therefore, using the fact r = a(1 − ǫ cosE), (Bate
1971, p. 187), and with the expression of Ė, an

universal variable, x ∈ R is defined as ẋ :=
√
µ

r .
So, the following expressions are obtained for t

and r (Bate 1971) using equation (1), integrating
the universal variable as

√
µdt = rdx:

√
µt= a

(

x−√
a sin

(

x√
a

))

+ 〈~r0,~v0〉√
µ a

(

1− cos
(

x√
a

))

+r0
√
a sin

(

x√
a

)

, (3)

r=a+a

[ 〈~r0, ~v0〉√
µa

sin

(

x√
a

)

+
(r0

a
− 1

)

cos

(

x√
a

)]

.

Since the initial position and velocity vectors ~r0
and ~v0 are linearly independent, and having ~r, and
~̇r = ~v in the same plane, the vectors of position and
velocity are expressed in terms of the initial vectors
and the universal variable (Bate 1971):

~r(t) = f~r0 + g~v0, ~v(t) = ḟ~r0 + ġ~v0. (4)

3. PROBLEM STATEMENT

The target travels in its own orbit, and the in-
terceptor orbits around the Earth. To calculate
the orbit to be taken by the interceptor to fly by
the target the initial position and initial velocity of
the interceptor ~r0, ~v0 and the target ~R0, ~V0 are re-
quired. We look for the minimum change of velocity
∆~v0, ~vtransfer = ~v0 +∆~v0, allowing overflight to be
achieved. See Figure 1.
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MINIMIZING FUEL CONSUMPTION IN ORBIT TRANSFERS 179

Fig. 2. Description of the second problem.

Using equation (3), let A and X be the semi-
major axis and the universal variable, respectively,
associated with ~R, and a and x the semi-major axis
and the universal variable, respectively, associated
with ~r (in the orbit transfer). The following func-
tions modelling the movement of the two bodies in
the solar system are defined:

η1=A
(

X−
√
A sin

(

X√
A

))

+ 〈~R0,~V0〉√
µ A

(

1− cos
(

X√
A

))

+R0

√
A sin

(

X√
A

)

−√
µt,

η2=a
(

x−√
a sin

(

x√
a

))

+ 〈~r0,~v0+∆~v0〉√
µ a

(

1− cos
(

x√
a

))

+r0
√
a sin

(

x√
a

)

−√
µt.

We call ~ηs := (η1, η2). Let ~R and ~r be the
positions of the target and the interceptor, respec-
tively, shown in equation (4) and let the functional
J = 1

2∆~vT0 ∆~v0. Then we have the following opti-
mization problem:

• Minimize J(∆~v0).

• Restricted to ~ηs(X,x, t,∆~v0) = 0 and

(~R− ~r)(X,x, t,∆~v0) = 0.

To solve the problem, Lagrange multipliers are
used in the following functional:

Hs = J(∆~v0) + ~λT ~ηs + ~φT (~R− ~r),

where ~λ ∈ R
2 and ~φ ∈ R

3.

After setting ∇Hs = 0 as Leeghim (2013), we
obtain the following system of nonlinear equations:

~fs =



















































~ηs = (η1, η2) = 0,

~R− ~r = 0,

~φT
[(

∂ ~R
∂X − ∂~r

∂x

)

+ r√
µ

(

∂ ~R
∂t − ∂~r

∂t

)]

= 0,

∂J
∂∆~v0

+ 1
r
~φT ∂~r

∂x
∂η2

∂∆~v0

− ~φT ∂~r
∂∆~v0

= 0.

(5)

4. WAIT TIME

From Vallado (1997, p. 318) the wait time for
planar and circular orbits is given by

t1 =
θ − θi + 2kπ

W − w
,

where θi and θ are the initial and final angles (after

t1) between ~R and ~r, and w and W are the angular
speeds of the interceptor and the target, respectively.
In this paper we calculate t1 (the wait time), which is
one of the results of the problem to be minimized for
any kind of transfer orbit (in space) and maintains
the same functional to be minimized. See Figure 2.

Let ~ηc = (η1, η2, η3) such that:

η1=A
(

X−
√
A sin

(

X√
A

))

+ 〈~R0,~V0〉√
µ A

(

1− cos
(

X√
A

))

+R0

√
A sin

(

X√
A

)

−√
µt,

η2=a0

(

x1−
√
a0 sin

(

x1√
a0

))

+ 〈~r0,~v0〉√
µ a0

(

1−cos
(

x1√
a0

))

+r0
√
a0 sin

(

x1√
a0

)

−√
µt1,

η3=a
(

x−√
a sin

(

x√
a

))

+ 〈~r1,~v1+∆~v1〉√
µ a

(

1−cos
(

x√
a

))

+r1
√
a sin

(

x√
a

)

−√
µ(t− t1),

where η1 is the equation of motion of the target,
η2 the equation of motion for the interceptor in its
initial orbit during the wait time, and η3 is the equa-
tion of motion of the interceptor after the wait time.
Then we have a problem similar to the previous one:

• Minimize J(∆~v1).

• Restricted to ~ηc(X,x1, x, t, t1,∆~v1) = 0 and

(~R− ~r)(X,x1, x, t, t1,∆~v1) = 0.
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180 ECHEVERRY & VILLANUEVA

Where J = 1
2∆~vT1 ∆~v1. Therefore, the new func-

tional is:

Hc = J(∆~v1) + ~λT ~ηc + ~φT (~R− ~r),

where ~λ, ~φ ∈ R
3.

The system we obtain after setting ∇Hc = 0 as
Leeghim (2013) is:

~fc =







































































~ηc = 0,

~R− ~r = 0,

~φT
[(

∂ ~R
∂X − ∂~r

∂x

)

+ r√
µ

(

∂ ~R
∂t − ∂~r

∂t

)]

= 0,

∂J
∂∆~v1

+ 1
r
~φT ∂~r

∂x
∂η3

∂∆~v1

− ~φT ∂~r
∂∆~v1

= 0,

~φT
[

1
r

(√
mu
r1

∂η3

∂x1

+ ∂η3

∂t1

)

∂~r
∂x−

(√
mu
r1

∂~r
∂x1

+ ∂~r
∂t1

)]

=0.

(6)

5. SOLUTION METHOD

To find the roots of the systems (5) and (6) we use
Newton’s multivariate method (Bate 1971; Leeghim

2013). That is, we want to calculate ~f(x) = 0 using

~yn = ~yn−1 − (J~f (yn−1))
−1 ~f(yn−1),

where J~f is the Jacobian matrix of ~f .
The variables of the first problem are
~ys = (X,x, t,∆~v0, ~φ) ∈ R

9 and the second one

has ~yc = (X,x1, x, t1, t,∆~v1, ~φ) ∈ R
11.

For each case presented in § 6, it was necessary to
find a seed (an initial value for Newton’s method).
However, this seed must be very close to the solu-
tion for the method to converge (Local Convergence
Theorem). Given the importance of calculating the
seed, we used the following heuristic method to ap-
proximate the solutions, which gave us very good
results.

5.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) can be
found in Kennedy et al. (1995); Clerc (2002); Par-
sopoulos & Vrahatis (2002); Conway (2010); Hvass
(2010); Geetha et al. (2013). Let J : D ⊆ R

m → R

be the function to be optimized, then:

• N particles are randomly selected ~xi =
(xi1 , . . . , xim) ∈ D and also their initial veloci-
ties ~vi = (vi1 , . . . , vim) ∈ [0, 1]m, i = 1, . . . , N .

Fig. 3. Particle Swarm Optimization.

Then, for each iteration k:

1. We find the minimum of {J(~xj
i )}j≤k (the min-

imum in the history of the specific parti-
cle) and it is set as ~pki = ~xk

imin
for each

i = 1, . . . , N . Then we look for the minimum
of {J(~xm

i )}m≤k, i = 1, . . . , N (the minimum in
the history of the entire set of particles) and
after ~gk = ~xm

imin
.

2. The velocity vector is updated:

~vk+1
i = c1r1~v

k
i + c2r2[~p

k
i − ~xk

i ] + c3r3[~g
k − ~xk

i ],

where c1, c2, c3 ∈ (0, 2] are adjustment parame-
ters and r1, r2, r3 ∈ [0, 1] are random numbers.

3. The particles are moved to their new position:

~xk+1
i = ~xk

i + ~vk+1
i .

To solve (3) or (4) we minimized Je = ||~f || with
the PSO, looking for different points ~xpso in R

9 or
R

11. If Je ≈ 0, then we have a small region where the
solution of ~f(~x) = 0 is expected to be found. The re-
gion is defined by constructing an hyper-cube around
the point found by the PSO, and then a grid of the
region is made until Newton’s method converges to
~xnw for any of those seeds. Thus the desired solution
is obtained.

Table 1 shows the efficiency of the PSO in the
search for critical points in large regions (such as
R

11). Simulations were made using C and fig-
ures were obtained using Inkscape and MatLab,
with a computer Lenovo ThinkCentre E73z i5-4430s,
2.7 GHz, with Windows 7.

6. RESULTS

The methods were applied to the following prob-
lem, proposed in Vallado (1997, p. 352), which deals
with orbit transfers near Earth (Low Earth Orbit,
LEO).
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MINIMIZING FUEL CONSUMPTION IN ORBIT TRANSFERS 181

TABLE 1

RESULTS OF PSO

Processing Methods

Case Computing Time (s) Je(~xpso) # Iter (pso) Je(~xnw) # Iter (nw) ||~xpso − ~xnw||
LEO 25,94 10−4 5538 10−12 3641 1.61e−5

Mercury 2,62 0,3 241 10−12 60 2,28

Venus 1,05 0,1 313 10−12 95 0,38

Mars 0,67 0,5 72 10−12 61 0,47

Jupiter 2,63 0,5 321 10−12 36 0,71

Saturn 12,92 0,5 1804 10−12 26 0,27

Fig. 4. Transfers between Hubble (blue) - Shuttle
(black). The color figure can be viewed online.

The Hubble telescope will be released from the
space shuttle, which is in a circular orbit at 590 km
from the Earth’s surface. The relative ejection speed
(viewed from the shuttle) is [−0, 1 −0, 4 −0, 2]T m/s.
After 4 minutes, the Hubble needs to meet the shut-
tle. The change of RSW to IJK coordinates is shown
in Vallado (1997, p. 367).

After applying the algorithm, the optimal orbit
transfer without wait time has the parameters of the
first row of Table 2 (for LEO), and has universal
variables X = 136.206 and x = 136.207. With a wait
time (shown by an asterisk in Table 2), X = 651.694,
x1 = 265.476 and x = 386.215 are obtained. The
orbits are shown in Figure 4.

The Hohmann transfer gives the optimal change
of velocity in planar and circular orbits. Leeghim’s
method deals with more general orbits: elliptic and
hyperbolic; this method gives a smaller flight time.

It is also seen in Table 2 that for LEO orbits the
time of flight of the transfer with wait time decreases
32.1% with respect to the one of Hohmann. In addi-
tion, Hohmann’s change in velocity is 33.3% higher

Fig. 5. Transfers between Earth (blue) - Mercury (black).
The color figure can be viewed online.

than that with wait time, the latter evidencing sig-
nificant fuel savings.

The following examples are the orbit transfers
from Earth to the other planets of the solar system
with a launch date on January 1st, 2014.

Figure 5 shows the current positions of Earth and
Mercury for the assumed launch date, and the subse-
quent flight times. The resulting wait time is 3 days;
with this, the change of velocity is reduced by one
third and the flight time is reduced by 3 days with
respect to the calculation without wait time.

These results are better than the values obtained
in Kemble (2006, p. 50), where different launch dates
for the optimization were assumed.

Computations were done without taking into ac-
count technical constraints. For example, the fastest
space probe that NASA has launched is New Hori-

zons with a |∆~v| of 16.26 km/s relative to Earth, so
the first |∆~v| obtained without wait time is not fea-
sible for such a mission, even though the flight time
is the shortest.
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182 ECHEVERRY & VILLANUEVA

TABLE 2

APPLICATIONS

Change of Velocity

LEO t (min) |∆~v| (m/s) ∆~vî ∆~vĵ ∆~vk̂ Ignition

Leeghim 25.06 0.34 0.2 −0.27 −0.05 0

Leeghim* 71.04 0.15 0.0023 0.15 −0.01 48 min

Hohmann 48.24 0.2 · · · · · · · · · 48 min

Mercury t (d) |∆~v| (km/s) ∆~vî ∆~vĵ ∆~vk̂ Ignition

Leeghim 102 6.99 6.49 2.06 −1.61 01-01-2014

Leeghim* 99 6.96 6.53 1.8 −1.61 04-01-2014

Kemble 158 9.37 · · · · · · · · · 11-05-2012

Venus t (d) |∆~v| (km/s) ∆~vî ∆~vĵ ∆~vk̂ Ignition

Leeghim 85 20.33 20.24 −1.87 −0.05 01-01-2014

Leeghim* 142 2,42 −2.41 0.1 0.05 08-06-2014

Kemble 158 2.77 · · · · · · · · · 02-11-2013

Mars t (d) |∆~v| (km/s) ∆~vî ∆~vĵ ∆~vk̂ Ignition

Leeghim 200 3.15 −2.63 −1.13 1.25 01-01-2014

Leeghim* 207 2.99 −2.68 −0.63 −1.15 10-01-2014

Kemble 207 3.82 · · · · · · · · · 18-01-2014

Jupiter t (y) |∆~v| (km/s) ∆~vî ∆~vĵ ∆~vk̂ Ignition

Leeghim 7.19 9.69 −9.46 −1.28 0.99 01-01-2014

Leeghim* 2.22 9.39 −6.67 6.05 2.68 15-11-2016

Kemble 2.13 9.23 · · · · · · · · · 30-04-2009

Saturn t (y) |∆~v| (km/s) ∆~vî ∆~vĵ ∆~vk̂ Ignition

Leeghim 2.73 70.4 70.07 −6.34 −2.13 01-01-2014

Leeghim* 6.21 10.25 −9.33 −4.23 −0.02 13-01-2014

Kemble 9.2 10.49 · · · · · · · · · 22-12-2009

Sometimes the direction of the Earth’s velocity
(

[−29.61 − 6.41 0]T for January 1st, 2014) and the
initial positions of the planets are not suitable for
orbit transfers. This means that, in some cases, a
very large change of velocity (which translates to a
large fuel consumption) is required, as presented in
the first row of Table 2 (for Venus). See Figure 6.

Adding the wait time (167 days) results in a
much lower change of velocity (12% of the first one,
which requires less fuel), and the flight time increases
by 57%, improving the results presented in Kemble
(2006, p. 51) for comparable parameters.

The transfer of Earth-Mars orbit was calculated
with wait time and without wait time. The difference

lies in the fact that, with a wait time, the change of
velocity was better and the flight time increased by
a week. The results obtained are better than those
of Kemble (2006, p. 53). See Figure 7.

The system proposed in § 5.1 can have different
solutions (local maximums of the index of perfor-
mance J). The algorithm used to solve it finds many
of them; here the optimal are shown.

For the example Earth-Jupiter, Figure 8, the
three changes in velocity without a wait time, with
wait time and as found in Kemble (2006, p. 55) are
very similar, but the time of flight with wait time is
smaller than the one without, and it is very close to
the values obtained in Kemble (2006, p. 55). In this
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Fig. 6. Transfers between Earth (blue) - Venus (black).
The color figure can be viewed online.

Fig. 7. Transfers between Earth (blue) - Mars (black).
The color figure can be viewed online.

case, the eccentricity of the orbit transfers found is
greater than the one of the previous cases (e = 0.75).

The solution without a wait time for the system
Earth-Saturn, Figure 9, is on a parabola (with eccen-
tricity equal to 1, an uncommon result) and |∆~v| is
extremely large. The transfer with wait time has an
eccentricity of 0.82, giving a better change of veloc-
ity than the one presented in Kemble (2006, p. 56)
and the flight time is 3 years shorter.

7. CONCLUSIONS

The two techniques presented here make it pos-
sible to optimize the fuel consumption. However, its
use is purely theoretical, leaving aside the technical
constraints, but considering only constraints of the
trajectory to make a more general model. For New-
ton’s multivariate method, the search of the starting
point was performed with the help of the PSO with
excellent results. It perfectly bounds the search re-
gion of the starting point. The PSO is an heuristic
method that needs no derivatives and has a rapid
convergence. As future work we propose to use this

Fig. 8. Transfers between Earth (blue) - Jupiter (black).
The color figure can be viewed online.

Fig. 9. Transfers between Earth (blue) - Saturn (black).
The color figure can be viewed online.

method it in other situations and to perform the con-
vergence analysis (local and semi-local) of the meth-
ods.

The authors are grateful with the young re-
searcher fellowship of the Sergio Arboleda University
from which this paper is one of its results.

REFERENCES

Bate, R. R., Mueller, D. D., & White, J. E. 1971, Fun-
damentals of Astrodynamics (New York: Dover Pub-
lications)

Clerc, M. & Kennedy, J. 2002, ITEVC, 6(1), 58
Conway, B. 2010, Spacecraft Trajectory Optimization

(Cambridge, MA: CUP)
Danby, J. M. A. 1992, Fundamentals of Celestial Me-

chanics, (New York, NY: Macmillan)
Elipe, A., Montijano, J. I., Rández, L., & Calvo, M. 2017,

CeMDA, 129, 415
Gang, Z., Xiangyu, Z., & Xibin, C. 2014, ChJA, 27(3),

577
Geetha, T., Sowmiya, B., JayaKumar, L., & Sarang

Sukumar, A. 2013, IJETAE, 3(4), 672



©
 C

o
p

y
ri

g
h

t 
2

0
1

9
: 
In

st
it
u

to
 d

e
 A

st
ro

n
o

m
ía

, 
U

n
iv

e
rs

id
a

d
 N

a
c

io
n

a
l A

u
tó

n
o

m
a

 d
e

 M
é

x
ic

o
D

O
I:
 h

tt
p

s:
//

d
o

i.o
rg

/1
0

.2
2

2
0

1
/i

a
.0

1
8

5
1

1
0

1
p

.2
0

1
9

.5
5

.0
2

.0
5

184 ECHEVERRY & VILLANUEVA

Hvass, M. 2010, Tuning And Simplifying Heuristical
Optimization [Thesis], (Southampton: University of
Southampton)

Kemble, S. 2006, Interplanetary Missions Analysis and
Design, (Berlin: Springer-Verlag Berlin Heidelberg)

Kennedy, J. & Eberhart, R. 1995, Particle Swarm Opti-
mization, (Perth, WA: IEEEP)

Leeghim, H. 2013, CeMDA, 115, 1
Parsopoulos, K. & Vrahatis, M. 2002, In Frontiers in Ar-

tificial Intelligence and Applications, ed. P. Sinkad et
al. (Amsterdam: IOS Press), 76, 214

L. M. Echeverry and Y. Villanueva: School of Exact Sciences and Engineering, Sergio Arboleda University,
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