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In this paper, we consider antireflective properties of textured surfaces for all texture size-to-wavelength ratios.
Existence and location of the global reflection minimum with respect to geometrical parameters of the texture is a
subject of our study. We also investigate asymptotic behavior of the reflection with the change of the texture
geometry for the long and short wavelength limits. As a particular example, we consider silicon-textured surfaces
used in solar cells technology. Most of our results are obtained with the help of the finite-difference time-domain
(FDTD) method. We also use effective medium theory and geometric optics approximation for the limiting cases.
The FDTD results for these limits are in agreement with the corresponding approximations. © 2011 Optical
Society of America
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1. INTRODUCTION

Elimination of undesired reflection from optical surfaces is

important for many technologies, such as solar cell, light-

sensitive detectors, lenses, displays, etc. To reduce reflection,

one can use single-layer quarter-wave coatings [1], but their

applications are limited by a small range of wavelengths

and incidence angles. To extend this range, multilayer or gra-

dient index coatings [2] can be used, however, their manufac-

turing encounters problems with thermal mismatch, adhesion,

and stability of thin-film stacks [3].

An alternative method for the reflection reduction consists

of texturing the surface with three-dimensional pyramids or

two-dimensional grooves (gratings; Fig. 1) [4,5]. Many reports

on successful fabrication of the antireflective textured sur-

faces have been published [3,6–9]. Their use in solar technol-

ogy leads to significant enhancement of solar cell efficiency

by reducing reflection from the surface of the cell by 1 or 2

orders of magnitude.

In the limiting cases of long and short wavelengths, this

reduction in reflection can be explained theoretically with

the help of effective medium and geometric optics approxima-

tions. According to the first approximation, if the wavelength

is greater than the texture size, the texture behaves like a

gradient index film with reduced reflection [10,11]. In the

short wavelength limiting case, reflection reduction can be

illustrated geometrically: rays should be reflected many times

until being reverted back [12]. At the same time, transmitted

rays deviate from the incident direction that leads to the light

trapping effect used in solar cells [13]. It was also shown

numerically that using texture reduces reflection for wave-

lengths comparable with its size. In particular, reflection

decreases when texture is made higher and dielectric contrast

between the texture and incident medium is lower [14,15].

In our previous work, we studied antireflective properties

of dielectric textured surfaces at the whole wavelength range,

including long and short wavelength limits [16]. We found

optimal parameters for the period of the texture and the

pyramids’ height. It was found that the key factor influencing

the optimal pyramid size is the character of substrate tiling by

the pyramid bases.

The present paper extends our previous work with new

details and results. We closely analyze the limiting cases

due to their importance for finding global reflection minimum

at the whole wavelength range. It is demonstrated that the

conclusions of this work are applicable to real silicon-

textured surfaces used in solar cell technology. In order to

check the relevance of our calculations, we make a compar-

ison with the experimental data.

As a main numerical tool, we use the finite-difference time-

domain (FDTD) method [17]. This method implements direct

numerical solution of Maxwell’s equations, so it is valid for all

texture size-to-wavelength ratios, including long and short

wavelength limits. For accurate reflection calculation, it is

important to reduce undesired numerical reflection from

the artificial absorbing perfectly matched layer [17]. For this

purpose, we use the additional backing absorbing layers tech-

nique that we described in [18]. We apply effective medium

theory and ray tracing techniques for long and short wave-

length limits as well. All calculations are performed using

the free electromagnetic simulation package Electromagnetic

Template Library [19]. It incorporates all three simulation

methods (FDTD, effective medium theory, and ray tracing)

and allows one to use them for the same geometry of the

studied structure.

In the following, we consider surfaces coated by a periodic

pyramid-type texture with height d. Pyramids bases have the

shape of triangles, squares, hexagons, and circles (in the last

case, the pyramid is, in fact, a cone) with the distance between

the base side and its center L (Fig. 1). The pyramids are clo-

sely packed on the substrate in the triangular or square lattice
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with the period Λ. In the following, we specially distinguish

two cases (Fig. 1): complete tiling case when pyramids bases

touch each other at every point of their perimeters (this corre-

sponds to the polygon base pyramids in our study) and incom-

plete tiling case when there are gaps between bases (this

corresponds to cones). Most of the results presented here

are calculated for the normal light incidence case. However,

as shown below, generalization to oblique incidence is

possible.

The remaining paper is organized as follows. In Sections 2

and 3, we estimate asymptotic behavior of the reflection with

the increasing height-to-base size ratio for the pyramids for

long and short wavelength limits. In Section 4, we consider

antireflective properties of the textured surfaces at the whole

range of their sizes and find the location of the global reflec-

tion minimum with respect to pyramid geometrical param-

eters. In these three sections, we study the nondispersive case

considering glass-textured surfaces (the refractive index

n ¼ 1:5). In Section 5, we present results for silicon-textured

surfaces used in solar cell technology. In Section 6, we sum-

marize our results.

2. LONG WAVELENGTH LIMIT

In the long wavelength limit Λ ≪ λ, electromagnetic waves

propagate in a heterogeneous structure as in an anisotropic

medium of some effective (or homogenized) dielectric permit-

tivity. Its value is determined by the shapes and the relative

fractions of the structure components [20]. In our case, tex-

tured surface can be treated as a layer with gradually changing

dielectric permittivity tensor ε̂ðzÞ [11]. Here, the z direction is

aligned along the pyramid axis (see Fig. 2), with z ¼ 0 at the

pyramid tops and z ¼ d at the pyramid bases. The z compo-

nent of ε̂ðzÞ is the average [11]

εzðzÞ ¼ f ðzÞεs þ ð1 − f ðzÞÞεi; ð1Þ

where εs is the pyramid’s permittivity, εi is the incident

medium permittivity, and f ðzÞ is the filling fraction occupied

by the pyramid at z, which is equal to the ratio between the

cross-sectional area of the pyramid and the area of the unit

cell of the lattice. Other components of ε̂ðzÞ depend on the

pyramid base shape. For example, εxðzÞ ¼ εyðzÞ for some

symmetrical cases.

For a circle base, the Maxwell–Garnett [20,21] expression

can be used:

εx ¼ εy ¼ εi þ 2f εi
εs − εi

εs þ εi − f ðεs − εiÞ
: ð2Þ

For a square shape, Brauer and Bryngdahl [22] proposed the

following empirical expression:

εx ¼ εy ¼ ð½�nþ 2n̂þ 2n
✓�=5Þ2; ð3Þ

where

�n ¼ ð1 − f Þε1=2i þ f ε
1=2
s ; ð4Þ

n̂2 ¼ ð1 − f 1=2Þεi þ f 1=2
�

f 1=2

εs
þ 1 − f 1=2

εi

�

−1

; ð5Þ

1=n
✓2

¼ ð1 − f 1=2Þ
εi

þ f 1=2

f 1=2εs þ ð1 − f 1=2Þεi
: ð6Þ

As was shown previously, an increase in the pyramid height d

and a decrease in the optical contrast between the incident

medium and the texture reduces the reflection [10,11]. Some

special profiles f ðzÞ were proposed to reduce the reflection

as well [10]. In this section, we first estimate the asymptotic

behavior of the reflection coefficient with the increasing d and

show how it depends on the tiling of the pyramid bases.

In the case of complete tiling, the filling fraction at the top

of the pyramid is f ð0Þ ¼ 0 and f ðdÞ ¼ 1 at the base of the

pyramid; therefore, εð0Þ ¼ εi and εðdÞ ¼ εs. For the normal

incidence case, if the reflectivity ρ is low, the expression

derived by Franceschetti is applicable [23]:

ρ ¼ −

Z

d

0

1

2 ~n

d ~n

dz
exp

�

−i
4π

λ

Z

z

0

~nðz0Þdz0
�

dz; ð7Þ

where ~nðzÞ ¼ ε1=2ðzÞ ¼ Fðεi; εs; f ðzÞÞ is the effective refrac-

tive index, F is the function defined by the pyramid base shape

and the incident wave polarization [e.g., see Eqs. (2) and (3)].

If εxðzÞ ¼ εyðzÞ, F does not depend on the incident wave

polarization.

Fig. 1. (Color online) Antireflective textured surface: front and
side view.

Fig. 2. In a long wavelength limit, textured surface can be treated as
a layer with gradually changing dielectric permittivity tensor ε̂ðzÞ.
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Let us introduce a new integration variable g ¼ 4π
R

z
0
~nðz0Þdz0. Under the assumption of infinite differentiability

of the function ~n and correspondingly h ¼ 1

2 ~n
d ~n
dz

dz
dg
, we can in-

tegrate Eq. (7) by parts:

ρ ¼ −

Z

gðdÞ

0

he−ig=λdg ¼
X

k¼1

ð−iÞkλkhðk−1Þe−ig=λ
�

�

�

�

gðdÞ

0

: ð8Þ

One can see from Eq. (8) that the polynomial degree of the

dependence of the reflectance R ¼ jρj2 on λ is determined by

the index k0 of the first nonzero item in Eq. (8) as R ∼ λ2k
0
. Note

that, for the effective medium limit, the only scaling parameter

of the system is d=λ, so R ∼ ðd=λÞ−2k0 at different d and λ. For

the linear profile case, f ðzÞ ¼ z=d, the first term in Eq. (8) is

nonzero due to h ∼ d ~n
dz

∼
df
dz

≠ 0; therefore, R ∼ ðd=λÞ−2.
One can influence the rate of the reflectance reduction with

the growth of d=λ using a special profile f ðzÞ. For example,

f ðzÞ can be chosen as polynomial of the degree of ð2k0 − 1Þ
and f ðiÞð0Þ ¼ f ðiÞðdÞ ¼ 0 for i < k0, where f ðiÞ is the i derivative
of f . This leads to hðiÞð0Þ ¼ hðiÞðdÞ ¼ 0 for i < k0 − 1; therefore,

the first k0 − 1 items in Eq. (8) are zero and R ∼ ðd=λÞ−2k0 .
In particular for the profiles proposed by Southwell [10],

f ðzÞ ¼ 3z2 − 2z3 and f ðzÞ ¼ 10z3 − 15z4 þ 6z5 (in these

expressions, d ¼ 1), we obtain R ∼ ðd=λÞ−4 and R ∼ ðd=λÞ−6
correspondingly.

Let us find a profile characterized by zero derivatives of all

orders at the points 0 and d : f ðiÞð0Þ ¼ f ðiÞðdÞ ¼ 0, ∀i > 0.

Without any restriction, assume that d ¼ 1. Consider first

the infinitely differentiable function e−z
−1ð1−zÞ−1 , which is zero

with all its derivatives at z ¼ 0 and z ¼ 1. After its integration,

we get a monotone function increasing from 0 to 1 f ðzÞ ¼
C
R

z
o e−ζ

−1ð1−ζÞ−1dζ, where the value of C is chosen to ensure

f ð1Þ ¼ 1. Using this “integral” profile leads to the exponential

decrease of the reflectance with the growth of d=λ due to

f ðiÞð0Þ ¼ f ðiÞðdÞ ¼ 0, ∀i > 0. The shapes of the discussed pro-

files are presented in Fig. 3.

We calculated dependence of the reflectance on d=λ for

gradient index layers corresponding to closely packed square

pyramids with flat-sided (f ðzÞ ¼ z2, k0 ¼ 1 because, for flat-

sided pyramids, the width depends linearly on the height

and the filling fraction is proportional to the width squared),

cubic (f ðzÞ ¼ 3z2 − 2z3, k0 ¼ 2), and quintic (f ðzÞ ¼ 10z3−

15z4 þ 6z5, k0 ¼ 3) profiles. We used Eq. (3) for the effective

refractive index of square pyramids. Calculations were

performed using the 2 × 2 matrix technique described in [1].

We obtained R ∼ ðd=λÞ−2, R ∼ ðd=λÞ−4, and R ∼ ðd=λÞ−6 for

the cases considered here (Fig. 4, left).

We calculated the reflectance for the gradient index film

corresponding to a single periodic grating with the integral

profile. One can see that using this profile leads to an expo-

nential decrease of the reflection with the growth of d=λ

(Fig. 4, right).

At the incomplete tiling case, there are gaps between

pyramid bases: 0 < f ðdÞ < 1 (see cones in Fig. 1), causing a

discontinuity of the permittivity εðzÞ at the pyramid bases

z ¼ d : εðdÞ ≠ εi. Because of this fact, by increasing d=λ, the

reflectance tends to a constant value equal to the reflectance

between the media with εðdÞ and εi. To demonstrate this, we

calculated the reflectance for the gradient index film corre-

sponding to cones closely packed in the triangular lattice

(Fig. 4, right). We used the Maxwell–Garnett expression

[Eq. (2)] for the effective refractive index of cones.

We performed FDTD calculations for pyramidally textured

surfaces corresponding to the gradient index films considered

here at a wavelength larger than the pyramid base size:

4 < λ < ∞, Λ ¼ 1, d ¼ 16 (FDTD mesh step δx ¼ 0:01). Calcu-

lations were performed using the subpixel smoothing method

[24,25], which allowed us to increase the accuracy compared

to the usual staircase model of the pyramids. One can see from

Fig. 4 that the FDTD results for pyramids and the results for

a layer with gradually changing refractive index are in good

agreement. However, a deviation of the FDTD results from

the effective medium theory is still seen at large d=λ for

pyramids with quintic profiles (k0 ¼ 3) and gratings with

the integral profile. It may be explained by the insufficient

mesh resolution to represent the pointed pyramid tips, char-

acterizing the selected profiles.

3. SHORT WAVELENGTH LIMIT

In the short wavelength limit Λ ≫ λ, the optical properties of

textured surfaces do not depend on the wavelength λ and are

defined by geometry only. The ray tracing technique (e.g., see

[14]) is widely used for their numerical modeling.

We calculated the reflection for closely packed triangular,

hexagonal, and square pyramids (complete tiling) and cones

(incomplete tiling) for different values of d=Λ using this

technique (Fig. 5). We obtained exponential decrease of the

Fig. 3. (Color online) Profiles f ðzÞ ¼ z, f ðzÞ ¼ 3z2 − 2z3, f ðzÞ ¼
10z3 − 15z4 þ 6z5, and f ðzÞ ¼ C

R

z
o e−ζ

−1ð1−ζÞ−1dζ.

Fig. 4. (Color online) Curves are the reflectance from a graded index
film with the optical properties corresponding to square pyramids
with flat-sided, cubic, and quintic profiles closely packed in the
square lattice (left side); grating with the integral profile f ðzÞ ¼
C
R

z
o e−ζ

−1ðd−ζÞ−1dζ, f ðdÞ ¼ 1, TE case; cones closely packed in the
triangular lattice (right side). For the effective dielectric permittivity
of square pyramids and cones, Eqs. (2) and (3) were used. The FDTD
calculations (points) were performed for the corresponding pyramids
with Λ ¼ 1, d ¼ 16, and 4 < λ < ∞ (FDTD mesh step δx ¼ 0:01).
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reflection with the growth d=Λ for the complete tiling case.

For the incomplete tiling case, the reflection tends to a con-

stant value passing a local minimum while d=Λ increases. In

the following, we give our explanation of these results.

According to [26], we introduce the following ray classifi-

cation: (a) incident rays; (b) reflected rays formed by incident

rays after their reflection from the texture, which revert back

into the incident medium after some numberM of consecutive

reflections; (c) refracted rays formed by incident or reflected

rays after they get into the texture; and (d) secondary rays

formed by refracted rays if they leave the texture (Fig. 6). Only

reflected and secondary rays make contributions to the total

reflection R ¼ Rrefl þ Rsec. Here, the partial reflections are de-

fined as the total reflected intensity of the corresponding ray

type divided by the incident light intensity. Consider these par-

tial contributions for the complete tiling case. Each incident

ray consists of two subrays with parallel or perpendicular

polarization relative to the plane of incidence (this plane is

defined by the ray and the normal to the pyramid side at

the point the ray moves onto it).

At the complete tiling case, bases touch each other at every

point of their perimeters. Therefore, the incidence plane does

not change, while a ray consecutively reflects between neigh-

bouring sides [Fig. 7(a)]. Thus, the total reflection is Rrefl ¼
ðRrefl;∥ þ Rrefl;⊥Þ=2. We assume that the rays with parallel

and perpendicular polarizations make equal contributions

to the total incident light intensity (which is achieved in case

of uniform illumination).

Let us estimate Rrefl;⊥. As was shown in [26], during each

mth reflection, the ray comes onto the pyramid side at the

angle jπ=2 − ð2m − 1Þβj, where β is half of the angle between

sides of the neighboring pyramids (Fig. 1). Therefore, after m

reflections, the ray intensity is multiplied by R⊥ðjπ=2−
ð2m − 1ÞβjÞ, where R⊥ðϕÞ is Fresnel reflection coefficient

for the incidence angle ϕ and perpendicular polarization.

According to [26], the number of reflections required for

the ray to finally revert back into the incident medium is equal

to M or M þ 1, where

M ≤ π=ð2βÞ ≤ M þ 1: ð9Þ

Therefore,

Rrefl;⊥ ≈
Y

M

m¼1

R⊥ðjπ=2 − ð2m − 1ÞβjÞ: ð10Þ

Taking the logarithm of this expression and assuming that β is

small and M is large, we obtain

lnRrefl;⊥ ≈
X

M

m¼1

lnR⊥ðjπ=2 − ð2m − 1ÞβjÞ ≈

≈
2M

π

Z

π=2

0

lnR⊥ðϕÞdϕ ≈
1

β

Z

π=2

0

lnR⊥ðϕÞdϕ

¼ −Cβ−1; ð11Þ

where C > 0 since R⊥ðϕÞ ≤ 1 and lnR⊥ðϕÞ ≤ 0. Since β is

small, β ¼ arctan L
d
≈ L

d
, where L is the distance between the

base side and its center (Fig. 1). As a result, we obtain

Rrefl;⊥ ≈ exp

�

−C
d

L

�

: ð12Þ

R∥ðϕÞ ≤ R⊥ðϕÞ for any ϕ, therefore, Rrefl;∥ ≤ Rrefl;⊥ (for some

values of β, Rrefl;⊥ can be zero since, after some mth

reflection, a ray can move onto the pyramid side under the

Brewster’s angle). Therefore,

Rrefl ≈ exp

�

−C
d

L

�

: ð13Þ

According to our calculations, secondary rays make a small

contribution to the reflection Rsec ≈ Rrefl, which can be

explained by the following considerations. First, pyramids

deflect secondary rays downward since ns > ni, preventing

them from reverting back to the incident medium [Fig. 7(b)].

Fig. 5. (Color online) Curves are reflectance from different closely
packed structures in the geometric optics limit. FDTD calculations
(points) are performed for Λ=λ ¼ 15.

Fig. 6. (Color online) Rays propagated in the texture (the ray tracing
simulation). Gray color intensity corresponds to the intensity of
the rays.

Fig. 7. (Color online) Rays propagated in the texture.
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Second, refracted rays can transmit to the substrate directly

[Fig. 7(c)] or move onto the inner pyramid side under the total

internal reflection angle [Fig. 7(d)]. This prevents them from

forming secondary rays. Therefore,

R ≈ exp

�

−C
d

L

�

; ð14Þ

in agreement with the numerical results in Fig. 5, since L

depends linearly on Λ (Fig. 1).

Note that results for hexagonal and square pyramids are

almost identical since their L is equal at fixed Λ (Fig. 1).

The curve tangent for square and triangular pyramids in Fig. 5

is approximately different by a factor of
ffiffiffi

3
p

. This is because L

for a triangular pyramid is
ffiffiffi

3
p

times smaller than for a square

pyramid at fixed Λ (Fig. 1).

In the case of incomplete tiling (cones), the reflectance

tends to the constant value with the growth of d=Λ passing

over a local minimum. It can be explained by the following

considerations. While d=Λ→ ∞, normal rays remain almost

parallel to the scatterer surface after the first reflection and

some of them go to the gap between the bases not reaching

the neighboring scatterer. Afterward, they are directly re-

flected back into the incident medium [Fig. 7(e)]. For the

cones case, almost all incident rays behave in this way; there-

fore, while d=Λ→ ∞, the reflectance tends to the substrate

reflectance value.

We performed FDTD calculations for the structures dis-

cussed here at Λ=λ ¼ 15. Since the FDTD mesh step should

be at least 10 times smaller than the wavelength, calculations

required large FDTD mesh sizes and were performed on a

parallel computer (i.e., calculations with the mesh 150 × 150 ×

300 were performed using 160 processing cores). FDTD and

ray tracing results are in good agreement with each other

(Fig. 5). The difference between them appearing by increasing

d=Λ is due to the fact that the value of Λ=λ used in FDTD

becomes insufficiently large for light diffraction effects to

be neglected.

4. FDTD RESULTS FOR ALL TEXTURE
SIZE-TO-WAVELENGTH RATIOS

In this section, we perform a numerical parameter sweep in

order to find the global reflection minimum with respect to

texture geometrical parameters. We perform calculations

using the FDTD method, which is valid for all texture size-

to-wavelength ratios, including effective medium and geo-

metric optics limits.

We use a standard scheme of the FDTD calculation in

which propagation of a plane wave impulse through the struc-

ture is modeled. During the numerical experiment, the ampli-

tude of the reflected wave is recorded, and then it is

transformed to the frequency representation and normalized

by the incident spectrum. Finally, we obtain the reflection at

some wavelength range corresponding to the simulated tem-

poral width of the incident impulse w.

We perform calculations for a fixed texture period value

Λ ¼ 1 and a set of height values 0 < d < 5. We perform three

numerical experiments with different temporal widths of the

incident impulse w ¼ 0:01; 0:1; 1 for each geometry, which

allows us to cover a large total wavelength span because

different values ofw cover different wavelength ranges. Since,

in our nondispersive case, Maxwell’s equations are scaling

invariant, we rescale the results for the corresponding d=Λ

and frequency as if they were obtained at variable Λ=λ.

Consider first the complete tiling case using the results for

square pyramids (Fig. 8). Let us fix some value d=Λ and follow

the reflectance R behavior while Λ=λ increases (see corre-

sponding black curves at Fig. 8). By the increase of Λ=λ from

0 to 1, the reflectance decreases, achieving local minimum at

Λ=λ ∼ 1. This can be explained by the fact that the effective

dielectric permittivity does not depend on the Λ=λ at zeroth

approximation and the reflectance of corresponding gradient

index film decreases while d=λ ¼ ðd=ΛÞðΛ=λÞ increases. At

Λ=λ ≥ 1, the reflection decreases further passing local minima

corresponding to the values of Λ=λ at which the next diffrac-

tion orders appear. However, these reflectance oscillations

become smaller at greater Λ=λ while the curve approaches

the geometric optics limit.

Note that by greater fixed d=Λ the curve reaches this limit

at greaterΛ since there are more reflections required for a ray

to leave the texture according to Eq. (9). Most of these reflec-

tions are near pyramid bases and the path covered by a ray

between consecutive reflections becomes small. If Λ=λ is

insufficiently large, then this path is of the order of the

wavelength. This makes the geometric optics approximation

invalid and increases the effective Λ values for which diffrac-

tion effects are still important. In the case of incomplete tiling,

the minimal reflectance is achieved at Λ of the order of the

Fig. 8. Reflectance from closely packed pyramids with square bases
as a function of Λ=λ and d=Λ (FDTD results).

Fig. 9. Reflectance from cones closely packed in the triangular
lattice as a function of Λ=λ and d=Λ (FDTD results).
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wavelength (see results for cones closely packed in the

triangular lattice in Fig. 9).

We come to a conclusion that the optimal texture size is

determined by the character of the pyramid tiling. In the com-

plete tiling case, the lowest reflection is reached by Λ=λ → ∞

for a fixed ratio d=Λ. This is in agreement with the fact that the

rate of the reflection reduction with increasing d and fixed Λ

and λ is exponential in the geometrical optics limit and is thus

higher than the polynomial rate in the effective medium limit.

At the same time, small reflectance can be achieved at Λ of

the order of the wavelength. In the incomplete tiling case, the

optimal value Λ is of the wavelength order. This is also in

agreement with the limiting approximations considered

above.

Note that high-precision fabrication of completely tiled

mactotextured surfaces is a complicated technological task.

Fabrication of textured surfaces with periodicity of the order

of some hundred nanometers by lithographic technique or

etching [7] seems to be more advantageous. A possibility of

achieving very small reflection values for texture sizes of

the wavelength order is the evidence of this texture efficiency

for the visible range.

5. OPTIMIZATION OF ANTIREFLECTIVE
SURFACE OF SOLAR CELLS

In this section, we consider silicon antireflective textured sur-

faces used for solar cell efficiency enhancement. As follows

from Section 4, at the incomplete tiling case, the optimal scat-

terer size should be of the order of the wavelength to ensure

the minimal reflectance for pure dielectrics. In this section, we

demonstrate the validity of this conclusion numerically for

silicon-textured surfaces, also taking into account the disper-

sion in the dielectric permittivity of silicon.

Experimental data on the silicon dielectric permittivity εðωÞ
were taken from [27]. Usually the frequency dependence of

the dielectric permittivity can be assigned in FDTD by consid-

ering a Drude–Lorentz approximation. We find an approxima-

tion of the silicon permittivity by three Lorentz terms:

εðωÞ ¼ ε∞ þ
X

3

p¼1

Δεpω
2
p

ω2
p − 2iωγp − ω2

; ð15Þ

with the following parameter values (ωp and γp are in 1=μm):

ε∞ ¼ 1, Δε1 ¼ 8, Δε2 ¼ 2:85, Δε3 ¼ −0:107, ω1 ¼ 3:64, ω2 ¼
2:76, ω3 ¼ 1:73, γ1 ¼ 0, γ2 ¼ 0:063, and γ3 ¼ 2:5. There is ex-

cellent agreement between tabular frequency dependence and

our approximation in the visible range (Fig. 10).

We have simulated the behavior of a silicon surface covered

by coneswith diameterΛ and height d. To check the relevance

of this geometry to describe experimental structures, the

experimental data taken from [3] (Λ ¼ 0:15 μm, d ¼ 0:35 μm,

triangular lattice) and [6] (Λ ¼ 0:2 μm, d ¼ 0:52 μm, square

lattice) were comparedwith the results calculated numerically

using FDTD. In these two works, the fabrication of gratings

formed by cone-shaped nanoscale silicon pillars is considered

(see images inFigs. 11and12)and their reflectivity ismeasured.

In both works, the filling fraction at the base of the cones f ðdÞ,
defining the gap between them, is not specified and should be

implied from the images. We calculated the reflectance of the

corresponding structures with different filling fraction values

and the best agreement with the experimental data was found

to be f ðdÞ ¼ 0:9 for the first structure and f ðdÞ ¼ 0:55 for the

second one (Figs. 11 and 12). The FDTD results presented here

as well as all FDTD results in this section were obtained using

mesh steps δx ¼ 10nm (using smaller mesh steps does not

influence the FDTD results).

Now we switch to the numerical results obtained for cones

with different values of height d and diameter Λ. We assume

that the cone bases are closely packed in the triangular lattice

(filling fraction is f ðdÞ ¼ π=ð2
ffiffiffi

3
p

Þ).

Fig. 10. (Color online) Real and imaginary components of the silicon
dielectric permittivity: comparison of the experimental data (dots)
with approximation by three Lorentz terms (curves).

Fig. 11. (Color online) Image of the textured surface investigated in
[3] (left). Comparison of the corresponding experimental data with
FDTD calculations (right).

Fig. 12. (Color online) Image of the textured surface investigated in
[6] (left). Comparison of the corresponding experimental data with
FDTD calculations (right).

Fig. 13. (Color online) Reflectance for cones with diameter Λ ¼
0:3 μm for different heights d (left). Reflectance for cones with height
d ¼ 0:5 μm for different diametersΛ (right). Cones are arranged in the
closely packed triangular lattice. One can see that the wavelength
range in which the reflection reaches a minimum is shifted to the left
with decreasing Λ. The results are obtained by FDTD.
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We found that the reflectance R decreases with the growth

of the cone height d (see the FDTD results for cones of diam-

eter Λ ¼ 0:3 μm in Fig. 13). We also found that the minimal

reflectance at fixed d is achieved at diameter Λ of the order

of the average wavelength between the free space and silicon

(Fig. 13). The wavelength in silicon is by a factor n ¼ Reð ffiffiffi

ε
p Þ

less than the wavelength in free space (one can see from

Fig. 10 that this ratio is 4 for the visible range). Therefore,

the optimal size Λ for the visible range (380–760nm) is about

several hundred nanometers.

Finally, the minimal reflectance R is achievable at the diam-

eter size of the order of the wavelength and when the height

is made as large as possible. At the same time, d ≈ 0:5 μm is

already sufficient for the low reflectance value (∼1%).

This conclusion remains valid for the oblique incidence

case as well (Fig. 14). In this case, the reflectance increases

with the growth of the incidence angle θ. When a p-polarized

wave is incident at an angle close to the Brewster angle, the

reflection of the substrate appears lower than of the textured

surfaces. It can be explained by the fact that, in the latter case,

the wave ceases to be p-polarized with respect to the side

cone surface. However, the reflection coefficient integrated

over all angles is still smaller for the textured surface than

the one of the substrate.

6. CONCLUSION

In this paper, we consider antireflective properties of textured

surfaces at the whole range of their size relative to the wave-

length including long and short wavelength limits. We use the

FDTD method for direct numerical solution of Maxwell’s

equations. Also, we apply effective medium and geometric op-

tics approximations for the long and short wavelength limits

correspondingly.

We found asymptotic behavior of the reflectance with the

change of geometric parameters of scatterers composing the

texture for both limiting cases. We established that key factor

influencing the optimal scatterer size is the character of the

tiling substrate of the scatterers. In particular, we showed that

the textured surfaces with the periodicity of the order of

several hundred nanometers are highly efficient for the visible

range. In future work, we plan to extend our study to the

oblique light incidence with the help of the iterative FDTD

technique [28].
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