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Abstract
The goal of clinical trial research is to deliver safe and efficacious new treatments to patients in need in a timely and cost-effective
manner. There is precedent in using historical control data to reduce the number of concurrent control subjects required in
developing medicines for rare diseases and other areas of unmet need. The purpose of this paper is to provide a review for a
regulatory and industry audience of the current state of relevant statistical methods, and of the uptake of these approaches and
the opportunities for broader use of historical data in confirmatory clinical trials. General principles to consider when incor-
porating historical control data in a new trial are presented. Bayesian and frequentist approaches are outlined including how the
operating characteristics for such a trial can be obtained. Finally, examples of approved new treatments that incorporated his-
torical controls in their confirmatory trials are presented.
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Introduction

In 2004, the United States (US) Food and Drug Administration

(FDA) launched the Critical Path Initiative, which sought to

determine the root causes for the latency between laboratory

discoveries and their translation into clinical therapies deliv-

ered to patients.1 This initiative acknowledged that a signifi-

cant opportunity to speed the delivery of new therapies exists

and that “[drug] developers have no choice but to use the tools

and concepts of the last century to assess this century’s

candidates.”1 Meanwhile, in this century, the availability of

standardized data and the evolution of statistical methods gives

us the ability to assess safety and efficacy more efficiently and

with reduced patient burden.

Regulators have demonstrated willingness to accept the use

of historical controls in rare disease, where subjects are scarce.

However, significant challenges also exist in more common

disease areas, for example, Alzheimer disease (AD). Recruiting

subjects for AD clinical trials is increasingly difficult because

of logistical and patient burden issues, resulting in increased

clinical trial timelines. Hurdles to getting potential subjects to

participate include the request to provide cerebrospinal fluid

(CSF) via an uncomfortable spinal tap, injections of tracking

agents to support imaging, and a need for a study partner to

provide assessments regarding daily functioning.2

There is an opportunity to leverage the considerable invest-

ments made in high-quality, curated, and trusted clinical data
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collected over the last 20 years to speed the delivery of med-

icines in areas of unmet medical need. Statistical methods—

discussed in detail in this paper—provide us with confidence

that a sound scientific basis exists for the use of historical data

to inform clinical research. The broad application of these

methods could have a profound impact in reducing patient

burden and accelerating clinical research timelines. For exam-

ple, between 2000 and 2015, there were 267 AD clinical trials

that, in aggregate, enrolled over 150,000 subjects.3 If we

assume that one-third of those subjects were in control arms,

and that by using historical control data we could conserva-

tively reduce that number by 25%, we might have saved over

12,000 subjects from painful procedures that reproduced infor-

mation that already existed while also accelerating clinical trial

decision timelines.

Therefore, it is proposed that, with the proper understanding

and matching of study design and demographic parameters,

historical data can be used in a supplementary manner to reduce

the number of concurrent control subjects required during late-

phase clinical development. The use of historical data in con-

firmatory trials is a large and complex topic, and the criteria for

deciding whether historical controls are appropriate for a

particular trial and for selecting the historical controls to ensure

they are comparable with those in the current trial is a topic that

needs further exploration. Use of appropriate statistical meth-

ods for implementing historical control trial designs can help to

reduce the risk of selection bias. The specific focus of this

paper is a review of statistical methods for historical borrowing

in drug development, with the aim of highlighting how the

various approaches can help to balance the potential benefits

and risks of including historical data in confirmatory trial.

Principles for the Use of Historical Controls
in a New Clinical Trial

This section describes general principles to be considered when

incorporating historical control data in a new trial. Suggested

steps are outlined in Figure 1.

One can consider a continuum of approaches for incorporat-

ing historical controls into a clinical trial based on the severity

of need and/or rarity of available subjects, ranging from single-

arm studies where the only controls are obtained from historical

trials for disease areas of very high unmet need through supple-

mentation (but not complete replacement) of concurrent

Step 1: Assess whether the new trial might be an appropriate candidate for complete or partial 
replacement of concurrent controls with historical controls.

Step 2: Prospectively establish a systematic search plan for selecting a set of historical trials,4

considering consistency of trial design & conduct, as well as trends over time in standard of
care (SOC) and placebo response. Pocock describes conditions that a historical trial must meet
before it can be used in this manner.5 These criteria are stringent; for areas of high unmet need,
consideration should be given to whether they can be relaxed.

Step 3: If subject-level historical control data are available, consider refinement of the
historical control set based on pertinent criteria (e.g., intended inclusion/exclusion criteria or
geographical location).

Step 4: Pre-specify analysis method to incorporate the historical controls, which may include
down-weighting the historical controls versus concurrent controls in case of discordance, or
selecting a subset of controls (e.g., using propensity scores) to match the population eventually
recruited in the ongoing trial (see Review of Bayesian Approaches and Review of Frequentist
Propensity Score Approaches sections for further information). Give consideration to the
handling of missing data if subject-level historical control data are available. Also, it is
self-evident that historical control data from completed randomized clinical trials (RCTs) are
no longer considered to be RCT data, but are considered non-randomized, high-quality
observational data once they are removed from their original context and used in the
concurrent trial.

Step 5: Consider inclusion of an interim analysis, which may allow possible adaptation of the
ongoing trial (e.g., changing sample size or randomization allocation, depending on the
consistency of historical and concurrent controls; see Review of Bayesian Approaches section).

Step 6: Assess operating characteristics of the current trial design including impact of
historical information. Simulations will probably be required (see Review of Methods section).

Figure 1. High-level steps for designing a study incorporating historical control data.
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controls in disease areas where controls are easier to recruit and

an acceptable standard of care (SOC) is available. Eichler et al

proposed using historical control data to set a threshold as a

benchmark for the primary analysis of a single-arm trial.6 If the

success threshold is crossed, the treatment is determined to be

effective. If the futility threshold is crossed, the treatment is

determined to be ineffective. If there is an intermediate out-

come, then a further trial is performed; this would either be a

randomized control trial (RCT) if practical or another single-

arm trial if not. This approach could be applied broadly, par-

ticularly for disease areas where control arms are not feasible.

When concurrent controls are not precluded by ethical or prac-

tical concerns, supplementation of concurrent controls with

historical controls is preferable to complete replacement of

concurrent controls because it allows assessment of the com-

parability of the historical data to the concurrent controls.

Key considerations when using historical data for confirma-

tory (eg, phase 3) trials:

� Inflation of type I error rate: A nonrandomized compar-

ison may introduce bias and as a result potentially

increase the type I error rate. Inflation of type I error

rate in earlier-phase studies that are not used for regis-

tration is a risk to both the sponsor and study subjects.

For example, the sponsor may continue a development

program that should be terminated and expose study

subjects to a non-effective treatment in future trials.

Of greater concern, inflation of type I error rate in

confirmatory studies could lead to increased risk of

approving medicines that aren’t effective. (Conversely,

the bias may lead to a loss of power and a deflation of

type I error rate, which could result in a failed trial.)

Since the amount of bias can’t be known, simulations

should be conducted to examine “long-run” estimates of

type I error rates in plausible scenarios (see Review of

Methods section).

� Interaction with regulatory agencies: Discussions with

regulatory agencies about the acceptability of this

approach and the selection of historical controls should

occur as early as possible and well in advance of a con-

firmatory trial,with a reviewof theproposedapplicationof

the historical data within the product development plan.

Table 1 lists key regulatory references relevant to the use of

historical data in clinical trials. A survey carried out by the

Drug Information Association (DIA) Bayesian Scientific

Working Group of industry statisticians in 2012 identified “a

lack of clarity of the regulatory position and/or lack of

guidance” as one of the 4 main barriers to the implementation

of Bayesian methodology.7 In 2016, representatives from

FDA’s Centers for Drug Evaluation and Research (CDER),

Biologic Evaluation and Research (CBER), and Devices and

Radiological Health (CDRH) participated in a workshop

“Substantial Evidence in 21st Century Regulatory Science:

Borrowing Strength from Accumulating Data” that focused

on methods to incorporate historical information.8 This

Table 1. Key Regulatory References.

Reference Document Key Message(s)

ICH E4: Dose Response Information to Support Drug Registration9 “Agencies should also be open to the use of various statistical and
pharmacometric techniques such as Bayesian and population methods,
modeling, and pharmacokinetic-pharmacodynamic approaches.”

ICH E9: Statistical Principles for Clinical Trials10 “The use of Bayesian and other approaches may be considered when the
reasons for their use are clear and when the resulting conclusions are
sufficiently robust.”

ICH E10: Choice of Control Group and Related Issues in Clinical
Trials11

Guideline expresses a major concern about only using historical controls
(ie, the inability to control bias), but also describes the usefulness of
such controls under certain scenarios. Guideline describes situations
where appropriately and carefully chosen historical controls are more
persuasive and potentially less biased.

FDA: The Use of Bayesian Statistics in Medical Device Clinical
Trials12

Guidance states that in some circumstances “the prior information for a
device may be a justification for a smaller-sized or shorter-duration
pivotal trial.”

EMA: Concept Paper on Extrapolation of Efficacy and Safety in
Medicine Development13

Paper proposes a framework to establish a systematic approach for
extrapolation of efficacy and safety data from a source population to a
target population.

EMA: Guideline on Clinical Trials in Small Populations14 A Bayesian methodology with an informative prior built on historical data
may be suitable.

Recommends sensitivity analyses for the choice of prior.
“Under exceptional circumstances,” historical controls with no
concurrent control may be acceptable.

European Commission: Ethical Considerations for Clinical Trials on
Medicinal Products Conducted with the Paediatric Population15

“Adaptive, Bayesian, or other designs may be used to minimize the size of
the trial.”
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indicates a growing acceptance by regulators of using historical

controls for late-stage drug development.

Review of Bayesian Approaches
in Confirmatory Clinical Trials With
Historical Controls

Introduction to Bayesian Approaches

The Bayesian approach to evaluating new medicines is “the

explicit quantitative use of external evidence in the design,

monitoring, analysis, interpretation and reporting of a health-

care evaluation.”16 Prior distributions can be used to summar-

ize information available from completed RCTs, registries,

real-world evidence (see Bayesian Methodology section), and

expert opinion. Even seemingly “objective” data-based priors

will involve some element of subjectivity reflecting choices

that were made about how to design the systematic review or

otherwise specify the selection criteria which identified the

historical data and choices about how to weigh them.17

Since Bayesian methods are now widely used in the early

stages of drug development, the case for using a Bayesian

modeling approach to draw strength from historical controls

when both designing and analyzing any clinical trial is compel-

ling. The Bayesian paradigm of formally quantifying current

knowledge and then updating that knowledge in the light of

new data fits perfectly with the idea that there is useful infor-

mation contained within historical data available prior to a

clinical trial. Lee and Chu identified 121 publications reporting

a Bayesian analysis of a clinical trial; 54 of these publications

described use of an informative prior,18 leading us to speculate

that many of these used historical data.

Guidelines exist for the reporting of a Bayesian analysis. For

example, Spiegelhalter et al and Sung et al both provide helpful

guidelines with a great deal of overlap.19,20 When using priors

that incorporate historical data, details of the historical data

sources, the method used to identify these sources, and the

weight assigned to each historical dataset need to be reported

to ensure the reproducibility of the Bayesian analysis.

One of the advantages of working with subject-level his-

torical control data (as opposed to aggregate-level data) is that

they enable the analyst to characterize the prognostic effects

of baseline covariates. This information can be used to for-

mulate priors for prognostic effects in models used to analyze

the proposed trial. Alternatively (as discussed in the Bayesian

Methodology section), quantifying differences between the

distributions of baseline covariates for historical and concur-

rent controls and estimating the covariate-response relation-

ship can be used to inform our understanding of how these 2

subject groups may differ in terms of their underlying

response rate, for example. This applies when covariates can

be assumed to completely explain between-group differences

(see Method 2 of Table 2), and, more generally, when they

cannot, this information may still be used to inform the spe-

cification of a prior for the bias inherent in the existing data

(see Method 4 in Table 2).

One may want to be assured that the results of a Bayesian

analysis incorporating historical controls are relatively insensi-

tive to the range of assumptions that are credible, or at least that

any sensitivity to assumptions is well understood so that

Table 2. Options for Specifying a Prior Based on Historical Data.

Assumed Relationship
Between pH & p Details

1. Equal Assumes differences between observed historical & concurrent control response rates are solely attributable to
sampling variation.

Equivalent to pooling historical & concurrent controls.
2. Functional Dependence Assumes differences between historical and concurrent control response rates can be explained by known

covariates.
Requires estimate of covariate-response relationship (eg, from historical data) which can be used to construct a
predicted prior distribution for p based on historical control response rate and observed covariates for historical
and concurrent controls.

3. Equal but Discounted Assumes pH ¼ p as in option 1, but discounts the historical information by inflating the variance of the historical
prior (eg, using power prior).21

Can also be thought of as reducing the effective sample size of the historical controls on which the prior is based.
Amount of discounting is subjective and has no operational interpretation.

4. Biased Assumes concurrent control response is a biased (shifted or rescaled) version of the historical response (ie, p¼ pH
þ d or p ¼ pH � d).

Similar to functional dependence (option 2), except that the precise form of dependence is unknown. Therefore,
the dependence is captured by a generic bias term d.

Prior for p is constructed by combining the historical prior for pH with a prior for dwhich is typically chosen to reflect
judgments about the relevance and quality of the historical study to the current setting.22

5. Exchangeable Assumes pH and p are “similar” (ie, assumes a distribution across studies with parameter s2 that reflects
heterogeneity between historical and concurrent control response rates).

Equivalent to a random effects meta-analysis of the historical and current trials.
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decisions can be made with this knowledge. The Bayesian

approach to incorporating historical controls, via an explicitly

defined model that quantifies the relationship between these

data and the data from the new clinical trial, is a transparent

way to show the effects of the assumptions.

One may be cautious of Bayesian approaches for incorpor-

ating historical controls into confirmatory trials. In this case,

reassurance could be provided by examples of compounds that

have demonstrated efficacy and safety in phase 2 based on a

Bayesian incorporation of historical controls into those clinical

trials and subsequently go on to confirm these results in con-

ventional phase 3 trials and receive marketing approval. That

is, it may be necessary to show that the failure rate in a con-

ventional phase 3 setting following a predominantly Bayesian

phase 2 development plan is, at a minimum, no worse than

when following a conventional development plan throughout.

To generate this evidence, we need to encourage even greater

use of Bayesian methods utilizing informative priors in phase

2. Over the long run, this could show that the Bayesian

approach does not lead to unacceptable bias or inflation of

frequentist error rates. Those sponsors who take the plunge

should reap the reward of faster and cheaper routes to phase

3, with the secondary aim of generating the evidence that will

allow wider exploitation of these savings in future phase

3 trials.

Bayesian Methodology

To illustrate the Bayesian paradigm for the inclusion of histor-

ical information, consider a clinical trial with a primary end-

point defined in terms of a dichotomous outcome (eg,

responder vs non-responder), and focus on estimation of the

true control response rate p. A Bayesian analysis requires spe-

cification of a prior probability distribution for p reflecting that

which is currently known about the plausible values of p. The

prior distribution for p is combined with information about the

control response rate observed in the current trial to form an

updated (posterior) distribution for p. This posterior is a

weighted average of the information in the prior and the infor-

mation in the current data, weighted by their relative precisions

or sample sizes. Thus, a natural way of including historical

controls in the analysis of a current trial is by using historical

control data to construct a prior distribution for p. When a

single historical study is available, the most direct way to do

this is to use the sampling distribution of the response rate in

the historical trial as the prior for p in the current trial. This

turns out to be equivalent to pooling the historical and current

trial data. The approach can be extended to multiple historical

studies by pooling the historical studies and treating them as a

single large historical trial. However, pooling historical and

concurrent controls only seems justifiable under very specific

and tightly controlled situations where it is reasonable to

assume that the true underlying control rate in the population

is the same in both historical and current settings.

Several other options are also available for specifying a

prior based on historical data. These options reflect a range

of different, and less stringent, assumptions about the relevance

of the historical data and the relationship between the true

control response rates, pH and p, in the populations represented

by the historical and current trials, respectively. These are

summarized in Table 2, based on the structure proposed by

Spiegelhalter et al.16

Options 2 through 5 in Table 2 are ways of discounting

historical prior information. They are all mathematically related,

but differ conceptually and in terms of the quantities that require

subjective specification.23 It is important to note that some

degree of expert judgment is necessary for all these options.

Indeed, it can also be argued that ignoring historical control

information completely represents a very strong subjective judg-

ment that the historical data are irrelevant and provide no useful

information about the current setting. By requiring explicit spe-

cification of the assumed relationship between the historical and

concurrent controls, the above approaches provide a valuable

mechanism for formalizing the assumptions being made and

provide a useful framework for sensitivity analyses to assess the

impact of varying these assumptions.

For confirmatory trials, the choice of discounting method

and the specification of subjective “tuning” parameters (eg,

bias parameter for option 4 or the down-weighting factor for

option 3) may also need to be guided by examination of fre-

quentist operating characteristics (see later).

In an effort to introduce greater objectivity into the amount

of discounting applied to the historical data, various “dynamic

borrowing” methods have been proposed for constructing a

prior based on historical data. Such methods allow the amount

of historical information borrowed to depend on the agree-

ment between the concurrent and historical control data. Of

course, it is entirely possible that an observed divergence

between historical control response rates and a single contem-

porary trial’s control response rate is caused by simple ran-

dom variability alone – and a “pure Bayesian” would say that

it is not an issue at all. Nevertheless, the clinical trial practi-

tioner operates in a world where the inclusion of historical

information is likely to be viewed as suspect, and a world,

moreover, that gives greatest weight to the most recent events.

Therefore, some method of down-weighting the impact of

historical data on the basis of observed divergence can be

desirable. Table 3 summarizes the main approaches for

dynamic borrowing within a Bayesian framework.

An attractive design option when using any of the dynamic

borrowing methods is to plan for adaptive adjustment of the

concurrent control sample size (Figure 1, step 5).24,29,32 The

target control sample size, Nc, is prespecified, and an interim

analysis is carried out after nc (<Nc) concurrent controls have

been recruited. An interim posterior distribution for the control

response rate is calculated by combining the historical and

concurrent controls using one of the dynamic borrowing meth-

ods discussed above, and the amount of information contribu-

ted by the historical controls is then quantified in terms of an

550 Therapeutic Innovation & Regulatory Science 52(5)



effective historical sample size, ESSh. As divergence between

the historical and concurrent interim controls increases, the

contribution of the former to the interim posterior will be

down-weighted and hence ESSh will be reduced; in contrast,

close agreement between historical and concurrent interim con-

trols will result in more historical borrowing and hence larger

ESSh. ESSh is then used to determine how many more controls

will be randomized post interim analysis so that the final effec-

tive control sample size (historical þ concurrent controls) is at

least Nc. Because such an interim analysis would require

unblinded data, appropriate steps would be needed (eg, analysis

done by an Independent Data Monitoring Committee) to main-

tain the integrity of the trial.

Viele et al review several (mainly Bayesian) methods for

incorporating historical controls into a current trial, including a

dynamic borrowing method, and provide a comparison of their

frequentist operating characteristics via a simulation study.33

Their example study provides a useful illustration of the poten-

tial advantages and disadvantages of these methods and clearly

demonstrates the trade-off between precision and type I error

that is a feature of all historical borrowing designs. They divide

the range of possible values for the true concurrent control

response rate, p, into 3 regions: a “sweet spot” corresponding

to values for p that are similar to the observed historical control

response rate, and regions on either side of this where p is either

somewhat smaller or somewhat larger than the observed his-

torical control response rate. When p falls into the sweet spot,

historical borrowing leads to increased power and precision

with negligible inflation of the type I error rate and bias com-

pared to an analysis of the current trial data alone. The regions

outside of the sweet spot correspond to reduced power (when

the true concurrent control response rate p corresponds to

“worse” outcomes than the observed historical response rate)

and type I error rate inflation (when p corresponds to “better”

outcomes than historical).

Similar comparative simulation studies have been reported

by several other authors,29,34 while Wadsworth et al provides a

comprehensive review of Bayesian and frequentist methods used

to include historical information in pediatric trials.35 While the

latter review focuses on extrapolation of historical efficacy data

Table 3. Dynamic Borrowing Approaches Within a Bayesian Framework.

Dynamic Borrowing Method Details

Hierarchical meta analytic
models16,23,24

Option 5 in Table 2; amount of borrowing depends on between-trial heterogeneity s2, which may be estimated
from the data.

Large differences between the concurrent and historical controls ) large s2 ) little borrowing of historical
information, and vice versa.

When only a few historical studies are available, s2 can be difficult to estimate. In this case, a weakly informative
prior distribution for s2 is recommended (see Rhodes et al and Turner et al for derivation of evidence-based
priors for s2 or Friede et al for priors reflecting judgments about degree of similarity of historical and
concurrent controls).22,25,26

The model can be defined in 2 stages: (1) define prior for p at design stage based on meta-analysis of historical
controls (MAP prior); (2) at end of current trial, combine MAP prior with concurrent control data in
standard Bayesian analysis.

Commensurate priors27 Alternative type of hierarchical model that assumes historical response rate pH is a nonsystematically biased
version of the current response rate p, rather than assuming that pH and p are exchangeable (ie, drawn from
the same distribution).

Prior for p has mean ¼ pH and variance ¼ t2, which is estimated from the data.
Small t2 ) little bias) high “commensurability” between historical and concurrent control response rates)
strong borrowing from historical data and vice versa.

Power priors with estimated
power parameter28

Extension of conditional power prior (Option 3 in Table 2), where power parameter is assigned a prior
distribution rather than fixed in advance.

Aim is to learn about amount of downweighting from the observed difference between historical and
concurrent controls, but the method tends to heavily discount historical data unless a very informative prior
is used for the power parameter.

Some recent alternative methods to estimate power parameter allow greater borrowing when historical and
concurrent controls are similar.29,30

Robust MAP priors24 Reflects hybrid of assumptions in Options 3 and 5 in Table 2. Historical control response rates are assumed to
be exchangeable with concurrent control response rates, but are discounted.

Prior for p is a weighted mixture of a historical MAP prior and a comparatively vague prior.
Weights on each mixture component are updated based on relative likelihood of the concurrent control data
under the historical MAP prior vs vague prior. Large divergence between concurrent & historical controls
)reduced weight on historical MAP component and little influence on posterior distribution for p, and vice
versa.

“Discounting” (weight on vague component) has operational interpretation as the probability that the
historical data is not relevant (Cromwell’s rule).31
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(usually from adult studies) rather than historical control infor-

mation, many of the methods used are similar. No single method

has yet emerged as consistently superior. For a confirmatory

trial, it may be necessary to conduct a simulation tailored to the

specific trial and available historical data to optimize the choice

of method and specification of fixed values or priors for any

“tuning” parameters (eg, heterogeneity variance, power para-

meter, mixture weights) in terms of the size of the sweet spot

region and the trade-off between type I error rate/bias inflation

and gain in power/precision, taking into consideration the like-

lihood of the true control response rate actually falling into each

of the 3 regions (sweet spot, reduced power, or type I error rate

inflation). Wadsworth et al35 also refers to points that should be

agreed between the regulator and the sponsor.

Review of Frequentist Propensity Score
Approaches in Confirmatory Clinical Trials
With Historical Controls

This section reviews frequentist methods for utilizing patient-

level historical control data in combination with concurrent con-

trol data in clinical trials. It covers the situation when there are

no concurrent controls as a special case. A potential risk of using

data from nonrandomized sources such as historical control data

is the influence of subject characteristics, both observed and

unobserved. The propensity score method36-38 plays a very

important role in eliminating or reducing the potential bias in

estimated effects obtained from nonrandomized comparative

studies. Two examples from medical device studies illustrate the

use of propensity scores in incorporating historical controls.39,40

In both examples, because of lack of randomization, important

differences between comparison groups at baseline were

observed and the propensity score-matching method was imple-

mented to control such bias. The propensity score is defined as

the conditional probability of assignment to a particular treat-

ment given a vector of observed covariates, and adjustment for

the scalar propensity score is sufficient to remove bias due to all

observed covariates. Traditional propensity score analysis com-

pares one treatment group to one control group where the two are

not from an RCT. The procedure starts with propensity score

estimation. Then, the estimated propensity scores are used to

balance the 2 treatment groups. Stuart and Rubin extend the

propensity score method to compare a treatment group to mul-

tiple control groups in broader contexts than clinical trials.41 A

particularly important implementation of this extension is an

RCT with a reduced concurrent control plus a historical control.

This section discusses the traditional situation with historical

controls only and the extended situation with both historical and

concurrent controls.

Traditional Propensity Score Method (Historical Controls
Only)

Logistic regression or probit models are often used to estimate

propensity scores, where the propensity to treatment, a

dichotomous criterion variable, is estimated from a set of base-

line covariate measures. Depending on the sample size, the

researcher may include all available baseline covariates in the

analysis or start with either a forward or backward stepwise

regression when sample size might not support the inclusion of

all variables. Overfitting is not a concern in estimating a pro-

pensity score, and a large number of covariates do not intro-

duce bias in treatment comparison.42 Once the propensity score

(ie, the estimated probability of being in the treated group) is

obtained, it is important to assess balance in propensity score

analyses. Methods for assessing the comparability of treated

and control subjects in a propensity score–matched sample

have been discussed elsewhere.43,44

The derived propensity score can be used for treatment

comparison and related inference; some common methods

include matching, stratification, inverse probability of treat-

ment weights (IPTW), and covariate adjustment on propensity

score (CAPS).44-47 Pair matching requires the number of con-

trol subjects to be larger than the number of treated subjects;

hence, it will not perform well when the treatment group is

larger than or about the same in size as the control group.

However, except for this limitation, matching seems to be pre-

ferable to the other 3 methods to achieve balance in the baseline

covariates.44 Given the context of this paper—that rich, high-

quality historical control data exists—matching is therefore the

method of focus.

Matching aims to form matched sets of treated and control

subjects who share similar propensity scores to allow for com-

parability. The treatment effect on outcomes is then estimated

in the matched sample consisting of all matched sets. The most

common implementation of propensity score matching is one-

to-one or pair matching without replacement. An important

concept in matching is caliper width, which is a maximum

allowable difference between propensity scores if 2 subjects

are allowed to be matched. Choice of the caliper is a trade-

off between variance and bias. Narrower calipers lead to better-

matched subjects that correspond to less bias; however, it also

leads to fewer matched subjects, resulting in higher variance. A

caliper width equal to 0.2 of the standard deviation of the logit

of the propensity score when estimating the difference in

means (for continuous outcomes) and risk difference (for

binary outcomes) has been suggested.48

Extended Propensity Score Method (Historical
and Concurrent Controls)

Stuart and Rubin developed a method to compare a treatment

group to multiple control groups while accounting for the dif-

ference between control groups in addition to adjusting for

differences between treatment and control groups in the

observed covariates.41 Although the method was developed

mainly outside of a clinical setting, the paper mentioned sup-

plementing an RCT with historical control data as a potential

application. The method may discard some concurrent control

subjects, which can be difficult to justify in the context of a
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confirmatory clinical trial. To adapt this method for clinical

trials, we propose finding matches from the treatment arm for

all the concurrent control subjects. This would be the case of

infinite caliper.41 Bias is not a concern because the treatment

arm and the concurrent control arm are both from the same

RCT. To estimate the propensity score, the concurrent control

and historical control groups are pooled together as if from a

large control group.

Denote the i th subject’s outcome with Yið1Þ had he/she been
on treatment, and Yið0Þ had he or she been on control. The goal
is estimating the average treatment effect in the full treatment

group. That is, we want to estimate the following quantity:

t ¼ 1

Nt

X
i2T

½Yið1Þ � Yið0Þ


where T is the set of all subjects in the treated group.

Of course, we never observe Yið0Þ in the treated group, so it

will be imputed by observation from the control group subject

matched to the treated subject on all covariates (ie, the subjects

have similar propensity scores).

Assume in the confirmatory trial that there are Nt treated

subjects with outcome Yti with i ¼ 1; � � � ;Nt and Nc concurrent

control subjects with outcome Ycj with j ¼ 1; � � � ;Nc,

and Nt > Nc.

Stuart and Rubin provided an algorithm to compare 1 treat-

ment group and 2 control groups assuming the outcome vari-

able is normally distributed.41 The adaptation in the

confirmatory clinical trial setting follows all steps of that algo-

rithm but with revisions in the first step so that every primary

control unit (ie, concurrent control subject) is matched with a

treated unit (ie, active treatment subject) in contrast to the

original method in which some primary control units may be

discarded (Figure 2).

Discussion of Propensity Scores

Analyses utilizing propensity score methods can only account

for measured baseline covariates and are still susceptible to

bias due to unmeasured confounding covariates. To address

this, sensitivity analyses allow one to assess how strongly an

unmeasured confounder would have to be associated with treat-

ment selection in order for a previously statistically significant

treatment effect to become statistically nonsignificant if the

unmeasured confounder had been considered.36

The propensity score method, both traditional and extended,

applies to studies with one treatment arm. In practice, some

confirmatory studies have more than one treatment arm (eg, 2

dose levels). For these situations especially, control of the Type

1 error rate needs to be considered. The propensity score esti-

mation can be performed by either combining treatment arms

as a single treatment arm or the procedure being repeated for

each treatment arm. The latter may be preferred when matching

is used because of its theoretical requirement of unlimited size

for the historical control group.

There are some regulatory issues regarding application of

the propensity score method in clinical trials.52-55 The bias and

confounding common in nonrandomized comparison trials

include subject selection bias coming from physician judgment

or subject preference, temporal bias caused by evolution of

medical practice or technology, heterogeneity in subject pop-

ulation, differences in definition and adjudication of clinical

outcomes, confounding by important baseline covariates, dif-

ferent lengths of follow-up, etc.

The propensity score method has seen increased use in

recent years. However, the focus of the research work so far

has generally been data analysis; there is a need for more

research in study design work, as has been done for Bayesian

approaches.

Review of Methods for Determining the
Sample Size and Operating Characteristics
of Comparative Clinical Trials That Include
Historical Controls

The determination of sample size and operating characteristics

(OC) is an important element in the planning of any clinical

trial, especially any trial including historical controls. There are

multiple approaches based on developing analytical approxi-

mations and using simulation. For example, there are approx-

imate methods for determining the sample size for trials with a

historical control group, assuming that the observed response

rate of the historical control group is the true control response

rate.56,57 A uniform power method can be used to control the

expected power, accounting for uncertainty in the historical

control response rate,58 and similar solutions can be used for

continuous outcomes.59 Other approaches are based on exact

unconditional estimation,60 a maximization approach,61 and a

flexible sample size formula for survival outcomes that con-

trols arbitrary percentiles of the conditional power and type I

error rate, conditional on the historical control response rate.62

The approach with the greatest flexibility for determining the

sample size is based on simulation.63 In many cases (particu-

larly many Bayesian applications), it is the only approach.

FDA guidelines on the use of Bayesian methods and adap-

tive designs in clinical trials of medical devices, drugs, and

biologics have stressed the importance of investigating and

reporting the OC of the chosen design or analysis.12,64,65 Each

guideline emphasizes the importance of demonstrating control

of type I error rate with subtle differences. For example, the

CDRH Bayesian guideline states that they “strive for reasonable

control of the type I error,”12 but the CDER/CBER adaptive

design guideline states that the “primary statistical concern of

an adequate and well-controlled trial study is to control the

overall studywide type I error rate for all involved

hypotheses.”64 The distinction is between approaches which are

“well-calibrated” and those that are “perfectly calibrated.”66

The context in which Bayesian methods are used to incor-

porate historical data is important. The motivation to use his-

torical data is strongest in small orphan or rare disease
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populations, pediatric populations, and cases of high unmet

medical need. In these cases, there is often a willingness of

regulators to implicitly relax the level of type I error rate con-

trol. We can formally account for the relative consequences of

type I and type II error rates,67 potentially leading to larger type

I error rates, or accept well-calibrated as sufficient.

It is important in planning clinical trial simulations to adhere

to good practices.68-71 Most of these practices stress the impor-

tance of a simulation plan and recommend its content include

recording the randomization seed to facilitate replication, the

choice of which may be controversial.66,72 The simulations

should cover a wide range of scenarios, and it may be advisable

to consider formal experimental design methods in planning

and analyzing the simulations.66 The number of simulation

replications should be adequate for the purpose of the investi-

gation and should be justified.

Examples of Successful Use of Historical
Controls Resulting in Regulatory Approval
of New Treatments

There are several successful examples of drug approvals using

historical control data in rare diseases, oncology, and other life-

threatening and debilitating diseases (Table 4). These examples

* If there are ties, then pick the one corresponding to the smallest index i, and then the smallest  j, if necessary.
An alternative with less computational burden is to pick one of the ties randomly.
Abbreviations: AT = active treatment; CC = concurrent controls; HC = historical controls.

(1) CC:AT
Group

• Calculate difference in propensity score, Δi, j, for all pairs between AT and CC.
• Match and remove Y�1 and Ycj1 corresponding to smallest Δi1, j1.*
• For the remaining Y�s and Ycjs, repeat the above steps un�l all Ycs are matched.
• Call this the CC:AT matched group.

• To impute missing Y(0) values for the treated subjects, draw (assuming normality)
s2~Inv-χ2(nC-(p+2), ớ2), d~N(ή,(XTX)-1s2), where ớ2 and ή are the es�mate of σ2 and η, and p 
is the number of covariates.

• For each matched control subject, indexed by k,
Ŷk(0)=Yk(0) if subject k is from CC (found in Step 1), and
Ŷk(0)=Yk(0)-d if subject k is from HC (found in Step 3).

• Create a data set with all treated subjects’ Y(1) values.
• Control outcomes given by Ŷk(0) from Step 6.
• Es�mate the average effect of the treatment on the treated with Y(1)s and Ŷ k(0)s.

• Repeat Steps (5) through (7) mul�ple �mes to represent uncertainty in es�ma�on of η. 
• Use the mul�ple imputa�on combining rules to obtain an es�mate of the average 

treatment effect and its variance.49, 50, 51

(2) CC:HC
Group

(3) HC:AT 
Group

• For the subjects in the CC, find matches for them from HC.
• Apply similar algorithm as done for the CC:AT matched group.
• Call this the CC:HC matched group.

• For AT subjects without a matching CC subject (found in Step 1), find a match for them
from HC. 

• Apply similar algorithm as for the CC:AT matched group.
• This is called the HC:AT matched group.

(4) Es�mate 
Bias

• Es�mate bias between two control groups in the CC:HC matched group using a linear 
model Y(0)~N(βX+ηD,σ2I), where X consists of the observed covariates and D is the 
indicator of which control group.

(5) Random
Sampling

(6) Impute 
Y(0)

(7) Average 
Effect

(8) Mul�ple 
Itera�ons 

Figure 2. Algorithm to compare active treatment vs concurrent controls and historical controls.
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Table 4. Historical Control Groups in Confirmatory Clinical Trials Leading to Regulatory Approval of New Treatments.

Disease Description and/or Indication
Subject Population

1. Historical Control Group
2. Primary Efficacy Endpoint
3. Method

Drug (Approval Year)
Clinical Impact of Drug

Acute hyperammonemia and associated
encephalopathy

Subjects with severe urea cycle disorders
(UCDs) due to enzyme deficiencies

1. Untreated UCD subjects followed between
1975 and 1995

2. Overall survival
3. Survival rates were compared*

AMMONUL (sodium phenylacetate and
sodium benzoate) (2005)73-75

Adjunctive therapy

Pompe Disease, also known as acid alpha-
glucosidase deficiency

Subjects with infantile-onset disease

1. Untreated subjects diagnosed by age 6 mo,
born between 1982 and 2002, were identified
by a retrospective review of medical charts.

2. Ventilator-free survival at 18 mo of age
3. Proportions (95% confidence intervals [95%

CIs]) of active-treated subjects who died or
needed invasive ventilator support were
compared with the mortality experience of
the historical control group with similar age
and disease severity.*

MYOZYME (alglucosidase alfa) (2006)76-79

First treatment approved for any of >40
neuromuscular diseases covered by the
Muscular Dystrophy Association

Toxic plasma methotrexate concentrations
caused by delayed methotrexate
clearance due to impaired renal function

Mainly subjects with cancers such as
osteosarcoma, leukemia, or lymphoma

1. Extensive data (>40 y of clinical trials) with
well-characterized methotrexate excretion
curves

2. Rapid (�15 min) and sustained (�8 d)
clinically important reduction (CIR) in plasma
methotrexate concentration

3. Point estimate and 95% CIs for the CIR rate
(number [%] of subjects with a CIR)*

VORAXAZE (glucarpidase) (2012)80-82

Reduction of toxic plasma methotrexate (a
chemotherapeutic drug) concentrations

Relapsed or refractory acute lymphoblastic
leukemia (ALL)

Subjects with Philadelphia chromosome-
negative relapsed or refractory B-cell
precursor ALL

1. Historical data pooled from European
national study groups and large individual
sites across Europe and the United States

2. Complete remission (CR) rate, proportion of
subjects with minimal residual disease (MRD)
with partial hematological recovery, duration
of response

3. Two analytical approaches:
a. A weighted analysis with outcomes from

the historical data set were weighted
according to the frequency distribution
of predetermined prognostic baseline
factors in the blinatumomab clinical trial
population

b. Propensity score analysis balancing the
populations with respect to important
baseline factors and enabling
quantification of differences in outcomes
between the two groups. This was
performed in response to regulatory
feedback in 2015.

BLINCYTO (blinatumomab) (2014)83-85

A second-line treatment

Hypophosphatasia (HPP), a rare genetic
progressive metabolic disorder

Subjects with perinatal/infantile- and
juvenile-onset disease

1. Untreated subjects with similar clinical
characteristics as the STRENSIQ-treated
subjects

2a. Survival and ventilator-free survival in
perinatal/ infantile-onset HPP

2b. Growth and bone health in juvenile-onset
HPP subjects

3a. Proportions, hazard ratio (95% CIs), and
Kaplan-Meier estimates

3b. Height and weight z-scores; proportion of
responders*

STRENSIQ™ (asfotase alfa) (2015)86-88

First approved treatment for HPP

(continued)
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for the most part did not use conventional hypothesis testing

to compare the results between historical controls and treat-

ment arms in the current trial. The use of historical controls

is beginning to gain momentum, both for supplementing as

well as replacing control arms in confirmatory trials. How-

ever, there is some way to go in gaining broader acceptance

of historical data in confirmatory trials, as so far the exam-

ples are only in less common disease areas. Furthermore,

only one of the examples in Table 4 used a propensity score

method to adjust for selection bias in the historical controls,

and none used any of the Bayesian approaches reviewed in

this paper. There are, however, several illustrative examples

in the recent literature of how the types of historical bor-

rowing methodologies discussed here could be applied in a

late phase development for a broader range of disease areas.

For example, Wandel and Roychoudhary discuss how Baye-

sian meta-analytic priors could be used to reduce the sample

size requirements for a new phase 3 study in schizophrenia

using historical data from two phase 2 studies and one pre-

vious phase 3 study92; Dejardin et al compare several of the

dynamic borrowing methods summarized in Table 3 for

including historical controls in the design of a phase 3

non-inferiority trial of a novel antibacterial agent.93 In the

near future, we expect and hope to see more examples of

successful regulatory approvals in larger disease areas

and/or larger trials, based on the approaches discussed in

the Review of Bayesian Approaches and Review of Fre-

quentist Propensity Score Approaches sections of this paper.

Conclusion

All the forces in the world are not so powerful as an idea whose

time has come.

—Victor Hugo94

There continues to be a sense of urgency in developing

medicines for patients in need. Patients, academics, drug devel-

opment companies, and regulators are all incentivized to accel-

erate our ability to test new interventions for efficacy and safety

while minimizing subject exposure. Regulators have a record

of accepting historical control data for interventions for med-

ical devices and/or indications with small populations.

The methods covered in this paper give us the tools to use

fewer subjects in late-phase confirmatory clinical trials. It is

our opinion that this is an idea whose time has come. The

industry and regulatory science has matured to the point

where high-quality data exists to support these approaches;

the statistical methods have evolved to provide a robust

understanding of risk; and our evolution to a patient-centric

model demands that we leverage these methods more broadly.

We encourage regulators, industry, and academia to develop a

Table 4. (continued)

Disease Description and/or Indication
Subject Population

1. Historical Control Group
2. Primary Efficacy Endpoint
3. Method

Drug (Approval Year)
Clinical Impact of Drug

Lysosomal Acid Lipase (LAL) deficiency, a
rare genetic metabolic disorder known as
Wolman disease

Subjects with rapidly progressive LAL
deficiency presenting within the first 6 mo
of life

1. Untreated subjects with a similar age at
disease presentation and clinical
characteristics as the KANUMA-treated
subjects

2. Survival at 12 mo of age
3. Proportions, median age of survival*

KANUMA (sebelipase alfa) (2015)89,90

First approved treatment for LAL
deficiency

Neuronal ceroid lipofuscinosis type 2
(CLN2 disease)

Subjects �3 y of age with symptomatic
CLN2 disease

1. Independent historical control group with
similar but not identical baseline
characteristics as the active-treated subjects
in the single-arm, open-label clinical trial

2. Clinician-reported outcome (ClinRo), the
CLN2 rating scale (motor domain): Motor
function (walking or crawling ability) was
assessed using the motor domain of the
CLN2 clinical rating scale, which could range
from a score of 3 (normal) to a score of zero
(profoundly impaired).

3. Efficacy conclusions were based on multiple
analyses of the best-matched subjects in the
two cohorts; the analyses accounted for
several confounding factors (age, genotype,
screening motor score).

BRINEURA (cerliponase alfa) (2017)91

First approved treatment for CLN2
disease

First enzyme replacement therapy (ERT)
to use intracerebroventricular
administration

*These examples, for the most part, did not use the conventional approach of hypothesis testing to compare the results between historical controls and the
treatment arm in the current trial.
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framework for implementing these approaches more broadly

in clinical research.
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