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Minimizing Scanning Errors in Piezoelectric
Stack-Actuated Nanopositioning Platforms

Sumeet S. Aphale, Bharath Bhikkaji, and S. O. Reza Moheimani, Senior Member, IEEE

Abstract—Piezoelectric stack-actuated parallel-kinematic
nanopositioning platforms are widely used in nanopositioning
applications. These platforms have a dominant first resonant mode
at relatively low frequencies, typically in the hundreds of hertz.
Furthermore, piezoelectric stacks used for actuation have inherent
nonlinearities such as hysteresis and creep. These problems result
in a typically low-grade positioning performance. Closed-loop
control algorithms have shown the potential to eliminate these
problems and achieve robust, repeatable nanopositioning. Using
closed-loop noise profile as a performance criterion, three com-
monly used damping controllers, positive position feedback,
polynomial-based pole placement, and resonant control are com-
pared for their suitability in nanopositioning applications. The
polynomial-based pole placement controller is chosen as the most
suitable of the three. Consequently, the polynomial-based control
design to damp the resonant mode of the platform is combined
with an integrator to produce raster scans of large areas. A scan-
ning resolution of approximately 8 nm, over a 100 m 100 m
area is achieved.

Index Terms—Feedback control, nanopositioning, resonance
damping, tracking.

I. INTRODUCTION

A
S WE ENTER the age of miniaturization, the performance

of nanomachinery is of ever-increasing importance.

Nanopositioning is a key technology that impacts a range of

important fields, including nanomachining, scanning probe

microscopy, microlithography, and nanometrology [1]–[5].

There is an ever-present demand for nanopositioning systems

that operate with higher resolution, greater accuracy, higher

scanning speeds, and a larger range of motion. Although

piezoelectric tube scanners continue to be widely used in

such applications [6], [7], they are now being overtaken by

piezoelectric stack-actuated nanopositioning platforms, due to

their larger range of motion, greater mechanical robustness, and

lower cross coupling between the axes. These platforms can

also be easily integrated with existing scanning microscopes

and these qualities have generated significant research aimed at

improving their overall performance.

Resonant modes due to the mechanical construction and non-

linearities inherent to piezoelectric stack actuators, are the two

Manuscript received June 26, 2007; revised September 20, 2007. This work
was supported by the Australian Research Council’s Center of Excellence for
Complex Dynamic Systems and Control. The review of this paper was arranged
by Associate Editor L. Dong.

The authors are with the School of Electrical Engineering and Computer
Science, University of Newcastle, Callaghan NSW 2308, Australia (e-mail:
Sumeet.Aphale@newcastle.edu.au; Bharath.Bhikkaji@newcastle.edu.au;
Reza.Moheimani@newcastle.edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNANO.2007.910333

main factors limiting the performance of these nanopositioning

platforms. Techniques to damp the resonant modes of highly

resonant systems such as piezoelectric tube nanopositioners

have been proposed and documented by researchers in the

past [8]. These techniques can also be applied to damp the

resonance of platform nanopositioners. Damping techniques

can be classified into two broad classes: active and passive.

Passive techniques such as shunt damping have been reported

by earlier researchers [9]. Although, such techniques can de-

liver acceptable performance, they may need frequent tuning

[10]. For this reason active closed-loop control techniques are

preferable. Model-based control techniques have been reported

earlier [11]–[13]. Resonant control has been applied to damp

resonant systems [14]. These controllers have attractive robust-

ness properties. However, they also have a high-pass profile

and may worsen the measurement noise, a main consideration

in precise nanopositioning applications. Polynomial-based pole

placement control [15], and positive position feedback (PPF)

control [16], are other popular techniques that have shown the

ability to damp the resonant modes. Polynomial-based pole

placement has been applied to damp the resonant modes of

nanopositioning systems such as the piezoelectric tube nanopo-

sitioners [17]. PPF control has been successfully used to damp

the resonant modes of a cantilever beam [18]. These controllers

provide robust damping performance under variations in reso-

nance frequencies. Also, they roll off at high frequencies and

thus do not excite high-frequency dynamics or worsen the noise

profile.

Hysteresis and creep are the main nonlinearities associated

with piezoelectric materials. In nanopositioning platforms actu-

ated by piezoelectric stacks, these nonlinearities result in a de-

graded trace of the reference input. Charge actuation of a piezo-

electric element has shown to reduce hysteresis by about 89%.

As per the authors’ knowledge, charge sources capable of sup-

plying highly capacitive loads (to the tune of 10 f, roughly the

capacitance of the piezoelectric stacks) are not commercially

available at present. Thus, closed-loop compensation of hys-

teresis with voltage actuation is desirable. To model hysteresis

and alleviate the problems introduced due to it, many computa-

tionally intensive approaches have been formulated [19], [20].

Simple tracking controllers such as an integrator can result in

eliminating errors due to hysteresis and creep [21].

Lower resolution due to fed-through noise is the main factor

deeming the implementation of closed-loop nanopositioning

schemes less common than the open-loop architectures [22].

Open-loop compensation for the vibration as well as nonlin-

earities in piezoelectric actuators has been proposed earlier

[23]. Researchers have also proposed feedforward techniques

to address hysteresis as well as simple filter based com-
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pensation techniques to deal with creep in piezoelectrically

actuated scanning devices [24]–[26]. A point to note is that

most high-resolution open-loop scans are either obtained for

very small scan ranges 10 m or at low speeds 1 Hz .

In this article, we propose a simple yet well-performing

closed-loop nanopositioning scheme that results is large scans

(100 m 100 m) at high speeds (4 Hz) and with a high

resolution (8 nm).

A. Objectives

The main objective of this work is to obtain high-resolution

closed-loop raster scans using a piezoelectric stack-actuated

nanopositioning platform. The paper is organized as follows.

Section II describes the experimental setup used in this work.

Section III gives the details of the system identification and

the design algorithms for the PPF, polynomial-based pole

placement and resonant controllers. Detrimental impact of the

measurement noise is the chief factor governing the implemen-

tation of closed-loop control in nanopositioning applications.

Based on the noise analysis given in Section IV, it is decided

that the polynomial-based pole placement control design is

most suitable for this specific application. Section V presents

the experimentally implemented polynomial-based pole place-

ment controllers, the obtained minimization in hysteresis and

creep as well as the closed-loop raster scans. Section VI con-

cludes the paper.

II. EXPERIMENTAL SETUP

The PI-734 nanopositioning platform, used in this work, is

a two axis piezoelectric stack-actuated platform based on a par-

allel-kinematic design. This design provides mounting indepen-

dent orthogonality and reduced cross coupling between the two

axes. The platform has a flexure guidance system which elim-

inates friction and stiction. To increase the range of motion

while maintaining the subnanometer accuracy of the platform,

it is equipped with a built-in integrated lever motion amplifier

(ILMA). Each axis of the nanopositioning platform is fitted with

a two-plate capacitive sensor that provides a direct position mea-

surement. Simplified diagrams of the nanopositioning platform,

its components, and the ILMA are given in Fig. 1. The platform

piezoelectric stack actuators take voltage input in the range of

0 V–100 V for each axis. The resultant motion produced by the

platform is within 0 m–100 m. This motion is detected by

the two-plate capacitive sensors and fed to an electronic sensor

output module. The output of this module is within 0 V–6.7 V.

A dSPACE-1005 rapid prototyping system equipped with

16-bit ADC(DS2001)/DAC(DS2102) cards is used to imple-

ment the proposed control strategy. The sampling frequency

of this system is 20 kHz. Fig. 21 shows the block diagram

depicting the various gains associated with the system.

III. SYSTEM IDENTIFICATION AND CONTROL

The nanopositioning platform is treated as a two-input two-

output system. The inputs being voltage signals applied to the

piezoelectric stacks in the and directions ( in volts), and

the outputs are the respective displacements ( in m) obtained

1The notation given in this figure will be used throughout this paper for sim-
plicity in understanding and consistency

Fig. 1. (a) Working principle of the monolithic XY piezoelectric-stack actuated
nanopositioning platform. (b) Basic parallelogram flexure guiding system with
motion amplification. The amplification r (transmission ratio) is given by r =
(a+ b=a) [27].

by scaling the measured capacitive sensor voltages by the pro-

portional scaling factor (0.063 V m).

To identify the linear model within the bandwidth of interest

and to minimize or eliminate the effects of nonlinearities such

as hysteresis or creep, the plant was identified using a band-lim-

ited random noise input from an HP signal analyzer, of ampli-

tude 1 Vpk within the frequency range of 10 Hz–810 Hz. This

corresponds to 1 m, or 1% of the total range of the platform.

This small motion ensures that the nonlinear effects do not man-

ifest in a dominant fashion. As the lowest frequency of interest

at which the identification began was 10 Hz, the effect of creep

was eliminated due to the absence of any low-frequency com-

ponents.

A Laplace domain representation of this linear system is

given by

(1)

where and are the Laplace transforms of the capac-

itive sensor outputs and the input signals

respectively, and

(2)

is a 2 2 matrix of transfer functions.
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Fig. 2. Gains associated with the experimental setup; r is the reference input in volts, generated in dSPACE. a is the input to the amplifier in volts and u is the
amplifier output in volts, used as the driving input for the nanopositioning platform; d is the actual displacement of the nanopositioning platform in �m and y is
the proportionally scaled capacitive sensor output in volts. To get the overall output to input gain to be unity, an equalizing gain is introduced through the dSPACE.

Fig. 3. Frequency response of the measured (� � �) and modeled ( ) two-input two-output nanopositioning platform from displacement output d to
platform voltage input u, as mentioned in Fig. 2. Note that only the direct transfer functions G and G are modeled.

Determining the frequency response functions (FRFs)

and boils down to applying an input

of the form , and computing the ratios

and . Here,

and denote the Fourier transforms of

, and respectively. All the four FRFs, and

obtained by applying an input , as well as

and obtained by applying an input ,

where and are random white noise signals generated

using a spectrum analyzer, are plotted in Fig. 3. It must be

mentioned here that the plots presented in Fig. 3 are averaged

over several realizations of the input. The dominant first reso-

nant modes for and occur at 410 and 415 Hz

respectively. It is evident from Fig. 3 that the magnitude of the

cross-coupling terms and , at any , are

less than the direct terms and , respectively,

by about 40 dB.2 In other words the inputs and have

negligible effect on the outputs and respectively. Hence,

the system is assumed to be decoupled. Therefore, , (2),

is approximated by

(3)

2The two resonant modes seen in each of the cross-coupling FRFs are due to
the mechanical resonant peaks of each individual axis. Therefore, they occur at
exactly the same frequencies, i.e., at 410 and 415 Hz, in both the G and G .

As both and , each have only one resonant

mode in the bandwidth of interest, second-order models given

by

(4)

and

(5)

accurately capture the dynamics of the measured FRFs for the

measured frequency range. The parameters of these models are

tabulated in Table I. As the models are of second order their es-

timation is not difficult, and the details on parameter estimation

are omitted.3

A. Control Design

As the system is considered decoupled with the input

having negligible effect on the output and vice versa, con-

trol systems can be designed independently for each axis. Here,

a control system design of the form shown in Fig. 4 is presented

for the actuation along the axis. Control system design for ac-

tuation along the axis is identical and therefore, is omitted for

the sake of brevity.

3The E-509 sensor conditioning unit introduces a small but significant delay
(in the tune of 100 �s) into the measured system. Subspace-based modeling
techniques [28]used to procure the system models introduce non-minimum
phase zeros to account for this effect.
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TABLE I
PARAMETER VALUES OF THE FRFS G (s), G (s), G (s) AND G (s)

Fig. 4. Closed-loop block diagram with the sensor noise modeled as an output
disturbance. Two of the proposed controllers are implemented in positive feed-
back, while the third in negative feedback. Hence, the � sign in the internal
loop.

In the control design presented in Fig. 4, controller is

aimed at damping the resonant mode of , while is

the integral controller incorporated to track the reference signal.

In the following, three different control techniques, i) polyno-

mial-based pole placement control (will be referred to as poly-

nomial-based control, from now on); ii) PPF control; and iii)

resonant control, will be used for deriving . The three con-

trollers, one from each technique, will be derived such that they

damp the resonant peak (magnitude of at the resonance

frequency) by approximately the same level. In Section IV, one

of the three will be chosen based on their response to sensor

noise , see Fig. 4.

1) Polynomial-Based Controller: In the current context, a

polynomial-based controller is defined by the second-order

transfer function

(6)

where , , and are the design parameters. Since the

feedback is positive, the transfer-function connecting the output

and the input is given by

(7)

It can be checked that poles of the closed-loop transfer function

, (7), are the roots of the polynomial

(8)

For the closed-loop system to be well damped, it is desirable to

have the roots of the polynomial well inside the left half

plane. Assume that are the desired pole positions of the

closed-loop system and

(9)

is the corresponding polynomial with roots . Matching

the coefficients of and would give

(10)

(11)

(12)

and

(13)

Note that (10)–(13) are linear in , , and , and can

be solved for them to obtain the controller . However,

for the controller to be stable, or even meaningful,

the quantities and , have to be positive. Therefore, the

desired polynomial coefficients , , , and have to be

such that (10)–(13) yield positive solutions for and . For

one axis, the polynomial-based controller design is described

below. Note that poles of , computed from (4), are

(14)

Here, the desired closed-loop poles are set to

(15)

which amounts to placing the closed-loop poles of the system

further into the left half plane by 1000 units. It can be checked

that the polynomial coefficients corresponding to the desired

poles (15) are , ,

, and .

Solving for the controller parameters , , , and from

(10)–(13), gives the controller

(16)

that would render a closed-loop system having poles at ,

, , and . This controller damps the resonant mode

of the axis by 23 dB as shown in Fig. 5(a).

2) PPF Controller: A PPF controller is defined by the

second-order transfer function

(17)

It is similar to polynomial-based controller, (6), but does not

have the velocity term . Since the feedback is positive, the

transfer-function connecting the output and the input is

given by

(18)

Authorized licensed use limited to: University of Newcastle. Downloaded on October 9, 2008 at 22:37 from IEEE Xplore.  Restrictions apply.



APHALE et al.: MINIMIZING SCANNING ERRORS IN PIEZOELECTRIC STACK-ACTUATED NANOPOSITIONING PLATFORMS 83

Fig. 5. Open-loop (� � �) and closed-loop ( ) frequency response of one axis of the nanopositioning platform damped using: (a) polynomial-based
controller, (b) PPF controller, and (c) resonant controller.

It can be checked that the denominator polynomial of (18) is

equal to

(19)

Assuming that the desired closed-loop polynomial is as in (9),

and matching the coefficients of (19) and (9) gives

(20)

(21)

(22)

(23)

Note that (20)–(23) can be written in the matrix form

(24)

where is a 4 3 matrix with known elements,

is a vector of control parameters, that need

to determined, and . If

does not lie in the column space of , i.e., Col , then

a solution for (24) will not exist. In which case, the vector

will be projected into Col , and the parameter vector will

have to be solved by replacing with in (24). However, not

all projections of will lead to stable

closed loops. In other words, the closed-loop polynomial

(25)

may not have all its roots in the left half plane. For the projected

vector to have stable polynomial coefficients, its components

must have to satisfy the following constraints:

(26)

(27)

(28)

(29)

and

(30)

Inequality (30) is obtained using the standard routh criterion.

Since , , , and are obtained by projecting onto the

column space of , it is easy to see that , where

denotes the th row of . Therefore, the inequalities (26)–(29)

can be expressed as linear inequalities in the controller pa-

rameters. And by the same argument (30) can be expressed as

a non-linear inequality in the controller parameters. Hence, a

formal treatment of determining would involve minimizing

, under three liner constraints and one non-linear

constraint. Solving this optimization problem is not simple as

(30) is nonconvex.

Here, we aspire for a PPF controller , which gives

the same level of damping as the controller , (16), de-

signed earlier. The structures of the PPF and polynomial-based

controllers differ only by an extra parameter . Since, in
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(16) , the effect of is negligible near the low

frequency regions. Thus, a PPF controller with set zero in

(16) would behave the same way as (16) near the low frequency

regions. Therefore, here is set to zero and the resulting PPF

controller

(31)

is tested to determine if it gives the same level of damping as

(16), and also renders the closed-loop system stable. In Fig. 5(b)

frequency response of the closed-loop system, obtained using

the , (31), is plotted along with the open-loop system’s

frequency response. It can be noted by comparing Fig. 5(a) and

(b), that both the polynomial-based and the PPF controllers give

the same level of damping.

3) Resonant Controller: Resonant controllers approximate

a differentiator over a narrow bandwidth, around the resonance

frequencies of the structure to be damped. Damping is achieved

by shifting the closed-loop poles of the system deeper into

the left-half plane (LHP). In the current context, resonant

controllers can be parametrized as

(32)

where , , , and are the design parameters and is the

number of modes that need to be controlled [14]. The parametric

form of the transfer function clearly shows the high-pass nature

of the resonant controller. This will intuitively have an adverse

effect on the closed-loop sensor noise to output characteristics

as shown Section IV.

As only the dominant first resonant mode needs to be damped,

is set to 1, which implies

(33)

As is targeted to damp first resonant mode of the

nanopositioning platform, the values of is set to the first

resonance frequency of the platform. The values of and are

chosen using an approach similar to the one explained in [14].

The aim was to push the closed-loop poles of the system such

that resonance of the nanopositioning platform is damped by

approximately the same amount as that achieved by the PPF

and the polynomial-based controllers. The transfer function of

the resulting resonant controller can be written as

(34)

Note that both PPF and polynomial-based controllers are im-

plemented in positive feedback while the resonant controller is

implemented in negative feedback. The three controllers dis-

cussed above were designed to damp the dominant resonant

mode of the nano-positioning platform by 23 dB. It is seen from

Fig. 5, that the PPF controller also increases the overall gain of

the closed-loop system more than the polynomial-based con-

troller or the resonant controller.

In Section IV, measurement noise is statistically analyzed.

Using this analysis as a measure of accurate closed-loop

Fig. 6. Noise contribution due to the sensor conditioning electronics module
E-509.

nanopositioning, the effect of the three controllers presented

earlier is evaluated and the controller best suited for nanoposi-

tioning applications is identified.

IV. MEASUREMENT NOISE

Measurement noise is a major consideration in precision mo-

tion at nanometer scales. Though the two-plate capacitive sen-

sors are capable of accurately sensing motion as small as 1 nm,

the accompanying conditioning electronics adds noise to the

measured position output and reduces the achievable resolution.

Also, as this noise gets fed-back into the closed-loop system,

it adversely affects the achievable resolution further. With this

motivation, a detailed analysis of the measurement noise is per-

formed in this section.

A metal plate was designed such that it rigidly bolts the

moving nanopositioning platform to its stationary base (refer

to Fig. 1). This results in the two plates of the capacitive

sensor being exactly stationary with respect to each other. In

this configuration the signal measured at the sensor output

terminal of the E-509 is totally due to the noise contribution

of the conditioning electronics in the module. Fig. 6 shows the

recorded signal converted to m. The sensor noise as well as

the quantization noise are clearly visible in Fig. 6. In our setup,

quantization error is not a major consideration as it is lower

1 nm than the actual sensor noise 9 nm . A detailed

statistical analysis of this sensor noise follows in Section IV-A.

The transfer function relating the actual system output to the

sensor noise is calculated for the three controllers designed

in Section III-A. Fig. 7 shows the FRF for the three con-

trollers. It can be seen that the PPF controller has the fastest

roll-off characteristic and attenuates noise at all other frequen-

cies except those near the resonance. At frequencies close to

resonance, the input is amplified and is clearly seen in Fig. 7(b).

Thus, this controller is not suitable for this specific applica-

tion. The resonant controller has a high-pass characteristic and

thus it propagates the input noise to the output with minimal at-

tenuation, see Fig. 7(c). The polynomial-based controller does

not amplify the noise at any frequency and its quick roll-off,
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Fig. 7. Transfer functions relating the actual system output y to the sensor noise n. (a) Polynomial-based controller. (b) PPF controller. (c) Resonant controller.

at frequencies greater than the resonance, makes it ideal for

closed-loop nanopositioning applications, see Fig. 7(a).

A. Noise Characterization

It can be verified that for the system illustrated in Fig. 4, the

Laplace transform of the plant output is equal to

(35)

where denotes the plant dynamics, , and de-

note the polynomial-based controller and the integral controller

respectively, while and are Laplace transforms of

the reference signal and noise respectively. When op-

erating in open loop, where , the sensor noise

does not disturb the actuation of the plant. However, in closed

loop, the sensor noise is fed back into the system, leading to

an additional term , which is referred to as the noise re-

sponse. In an ideal scenario, when the sensor noise ,

the noise response would also be zero. Under normal cir-

cumstances, however, the noise response is the price to be paid

for having a feedback loop, which is needed to deal with the ad-

verse effects of creep, hysteresis, and vibration. As the sensor

noise is treated as a random variable, the system response

, which is the inverse Laplace transform of , is also a

random variable. In the following, the empirical means of

and and the empirical variance of will be determined.

A scheme for determining the empirical variance of will

also be presented. This scheme will be used in Section V.

In Fig. 8, a realization of , sampled at a rate ,

is plotted as an histogram. It can be noted from this figure that

m, and the histogram closely resembles a normal

density function. Here, the sensor noise is assumed to be

both stationary and ergodic, [29]. Therefore, its mean, variance

and covariances can be approximated by

(36)

m (37)

and

(38)

where , and , for a large . Note that

.

Since the mean of is approximately zero, due to linearity,

the mean of the noise response (the inverse Laplace

transform of ) must also be close to zero, [29]. In order to

determine the variance of , the following relationship can

be used:

(39)
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Fig. 8. Histogram plot of the noise process n(t) for a realization.

where and are the spectral densities of and

respectively and

(40)

see also (35). The spectral density of a random variable

is the Fourier transform of its covariance function ,

[29]. Assuming that covariance of is band limited

with the bandwidth being less than , the spectral density

of can be well approximated by

(41)

where

(42)

and is as defined in (38). Using the relationship (39) an

approximation

(43)

of the spectral density can be computed. Note that

the inverse Fourier transform of will give the

covariance sequence , from which the variance

, of can be determined.

V. EXPERIMENTAL RESULTS USING THE

POLYNOMIAL-BASED CONTROLLER

The polynomial-based controllers for the and axes are

given by

(44)

and

(45)

Fig. 9. Open-loop (���) and closed-loop with polynomial-based controller
( ) frequency responses of the two-input two-output nanopositioning plat-
form from displacement output d to platform voltage input u, as denoted in
Fig. 2.

respectively.

The effectiveness of the polynomial-based controller in

damping the resonance of is evaluated both numerically

and experimentally. Evaluating numerically refers to using the

expressions obtained for , , , and in the closed-loop

model (7) and determining the damping introduced by the

controller. Evaluating experimentally refers to applying an

input , with being a random white noise signal, and

determining the FRF and the

damping introduced by it. This is done to illustrate that the

numerical predictions match the experimental results. Fig. 9

shows the experimentally measured frequency responses of

the undamped and damped nanopositioning platform4. The

plots presented in Fig. 9 have been averaged over several input

realizations.

The nanopositioning platform has a relatively large range

of motion (100 m along each axis, and ). Piezoelectric

stack-actuated platforms are prone to errors due to nonlinear-

ities when moving about such large distances. To eliminate

the problems associated with these nonlinearities, a suitable

tracking controller is necessary [30]. An integral controller

is a simple yet effective tracking controller and can easily be

combined with the polynomial-based damping controller to

result in a well-damped accurately tracking nanopositioning

platform. The inner feedback loop (with the polynomial-based

controller), imparts additional damping to the system and thus

enables us to utilize a higher gain integral controller, which

in turn delivers better tracking performance. Fig. 4 shows the

complete control strategy implemented on one axis. The same

is also duplicated on the other axis of the nanopositioning

platform. A gain of 400 was deemed suitable for the integral

control and this resulted in a stable closed-loop system with

4The cross-coupling FRFsG andG also show substantial damping at the
resonances. Due to the low signal-to-noise ratio, good data at low frequencies
could not be obtained for the cross-coupling FRFs
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Fig. 10. Open-loop (� � �) and closed-loop ( ) polynomial-based controller+integral control frequency responses of the (a) X and (b) Y axes of the
nanopositioning platform.

Fig. 11. Simulated system response y(t), (35), and measured system response
with the reference r(t) being set to zero.

adequate gain and phase margins for both axes. Fig. 10 plots

the experimentally measured open- and closed-loop polyno-

mial-based controller+integral controller frequency responses

for both the axes of the nanopositioning platform.

As mentioned in Section IV-A, due to the feedback of the

sensor noise, the system output , (35), is not deterministic

but random. Having fixed and for both the axis, the

variance of the respective outputs can be empirically determined

using the scheme presented in Section IV-A. Avoiding the de-

tails involved in calculating , , and ,

the empirical values of the variances along the and axes are

directly presented. The variances are

m (46)

and

m (47)

along the and axis respectively. The details involved in com-

puting these variances are straightforward but tedious.

For illustration purposes, in Fig. 11, a simulated system re-

sponse , along the axis, and its projected measurement

are plotted. Here, , (35), is computed using Matlab

with the reference and being the noise realization

plotted in Fig. 8, and . It is apparent form

the plot that is less noisier than . Thus, validating the

fact that the actual system output is less noisy than the observed

output, which is also evident from the values calculated for the

variances , (37), and , (46).

Though this paper concentrates on large scan sizes

(100 m 100 m), there is significant interest in tech-

niques that provide high-resolution images for small scan-sizes

[31]. The technique presented here can easily be modified to

deliver high-resolution small scans with minimal changes. The

main constraint in this control scheme is the quantization noise

introduced by the ADC/DAC boards. Very low noise, high

gain preamplifiers can be used to amplify the sensor outputs

so that the full range of the ADC /DAC boards can be utilized

for small sensor outputs (corresponding to small scan sizes).

32-bit ADC/DAC systems that give subnanometer resolutions

have already been used in nanopositioning applications [22].

Research on improved data acquisition systems for high-speed

atomic force microscopy is also being carried out and will

help greatly in enhancing the performance of existing control

strategies [32].

It is apparent from (35) that by suppressing , i.e., sup-

pressing the magnitude of in (40), the noise response

can be improved. However, the transfer-functions related to

and are directly linked and they do not add up to

one. Therefore, they cannot be treated as standard sensitivity

and complementary sensitivity functions. Here, we just state

that having a feedback controller comes at a cost, which is the

noise response .

A. Open- and Closed-Loop Hysteresis and Creep Evaluation

To test that the tracking action imparted by the integral con-

troller does indeed eliminate nonlinear effects due to hysteresis,

the system was excited by a 4 Hz 80 V sine wave. The plat-

form input plotted against the measured displacement output

(as denoted in Fig. 2) gives the total deviation from the de-

sired trajectory; the hysteresis loop of the system. Fig. 12(a)

shows the open-loop hysteresis plot. For the closed-loop system,

the integral control forces the system to follow the input com-

mand, as shown in Fig. 12(b). It is clear that the closed-loop
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Fig. 12. (a) Open-loop and (b) closed-loop hysteresis plots for the nanoposi-
tioning platform. Using the notation given in Fig. 2, u is a 80 V, 4 Hz sine wave
and d is the platform displacement in �m.

control scheme eliminates the nonlinear hysteresis effects al-

most totally. Thus, this control scheme effectively eliminates

the two main problems associated with piezo-driven nanoposi-

tioning platforms: resonance and hysteresis.

An abrupt change in applied voltage does not produce an

instantaneous and accurate change in the dimension of the

piezoelectric stack actuator. This effect is known as creep and

is the other main nonlinearity associated with piezoelectric

elements. The effect creep has on scanning performance is

that at two different scan speeds, it produces scans of different

magnifications. An open-loop solution is to apply a voltage in

the other direction that counteracts creep. Due to the tracking

provided by the integral control, the effect of creep can be elim-

inated in closed loop. To test the performance of the open-loop

and closed-loop system for creep, the system is commanded to

move instantaneously by 20 m from its zero initial position at

s. Fig. 13 shows the output displacement response of the

open-loop and closed-loop nanopositioning platform from 0 s

to 100 s. The gains for the open-loop and the polynomial-based

controller-damped closed-loop match the gains shown by their

respective magnitude plots shown in Figs. 3 and 9. As seen

clearly, the integrator has eliminated creep for all practical

purposes.

B. Raster Scan Results

A synchronized 4 Hz triangle wave and a staircase waveform

were generated to produce the desired raster scan. This 4 Hz

triangle wave, see Fig. 14(a), is used as input for one axis. It

is seen that this input is capable of exciting the resonant mode

of the respective axis which in turn introduces high-frequency

harmonic distortion at the output, see Fig. 14(b). Also, as the

Fig. 13. Open-loop (���), polynomial-based controller-damped closed-loop
(� � �) and polynomial-based controller+integrator closed-loop ( ) plat-
form displacement d, where u is a 20 V step command at t = 10 s. The nota-
tions u and d are consistent with those given in Fig. 2.

Fig. 14. (a) Reference 4 Hz 80�m triangle scan. (b) Harmonic distortion due to
excitation of resonant mode in open-loop. (c) Complete open-loop scan showing
the nonlinear trace due to hysteresis. (d) Closed-loop triangle scan free from
errors due to resonance and nonlinearities.

scan is over a sufficiently large range (80 m), the deviation

from linear of the obtained scan, due to hysteresis present in the

stack actuator is also evident, see Fig. 14(c). The polynomial-

based controller damps the resonant mode and the integrator

effectively tracks the 4 Hz input triangle to result in a perfect

triangle trace given in Fig. 14(d).

The second axis is given a staircase input. Fig. 15 shows

the reference input, open-loop output and closed-loop output

staircase traces. The open-loop nanopositioning platform does

not follow the staircase input effectively as seen in Fig. 15(b).

With the integral control forcing the nanopositioning platform

to track the staircase input, the closed-loop trace is improved

greatly as can be seen in Fig. 15(c). The superimposed sensor

noise is clearly visible in these plots.

The plots presented in Figs. 14 and 15 are essentially

measurements of the output , (35), along the and axes

respectively. Plots in Fig. 14 are measurements of with
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Fig. 15. (a) Reference staircase. (b) Staircase traced in open-loop. (c) Staircase
traced in closed-loop.

Fig. 16. Measured scan lines (faint) and scan lines obtained using the Kalman
estimate (dark) at 62.5 nm from each other.

the reference being a triangular waveform, while plots in

Fig. 15 are measurements of with being a staircase. It

is worth noting that is a random variable. Moreover, as the

plots are sensor measurements, they are essentially a realization

of the random variable . The presence of noise,

though not apparent in the plots of Fig. 14 due to its larger scale,

is fairly evident in the plots presented in Fig. 15. The measured

scan lines of the traced raster pattern are presented in Fig. 16.

The lines are 62.5 nm apart. It is apparent that the measured

scan lines are noisy. The noise being both due to feedback and

measurement. The empirical variances given in (46) and (47),

imply that the standard deviations and are about 4

nm along both the and axes. This suggests that the adjacent

scan lines in the raster pattern have to be at least 8 nm apart,

which is twice the standard deviation. Otherwise, the chances

of two adjacent scan lines overlapping becomes large, leading

to poor image quality and reproducibility. With this resolution

of 8 nm, 12500 scan lines can be produced in a 100 m scan.

In Fig. 16, the scan lines are 62.5 nm apart, which is about 15

times the standard deviation. A Kalman estimate of the output

is also plotted. It is apparent that the Kalman estimate of

the scan is close to the desired scan.

VI. CONCLUSIONS

After comparing the closed-loop noise profiles of three

damping controller designs (PPF, polynomial-based controller,

and resonant controller), the polynomial-based controller was

identified as the most suitable option for nanopositioning. The

implemented polynomial-based controller damps the domi-

nant first resonant mode of the nanopositioning platform by

23 dB. It was further shown that by combining this damping

technique with an integral controller, nonlinear effects due

to hysteresis and creep are minimized and superior tracking

performance is achieved. This was demonstrated by tracing a

4 Hz 80 m 80 m raster scan with a resolution of 62.5 nm.

Noise analysis suggests a resolution of 8 nm is achievable.
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