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Abstract

The discretization of the boundary in Boundary Element Method (BEM)
requires several decisions that affect the accuracy of the BEM solution. These deci-
sions include: the order of polynomial in each element, the continuity requirement
at the element end, the location of the nodes inside the element, the size of the ele-
ment, the location of the element end nodes, and the location of collocation points
where the boundary conditions are imposed. The errors that are generated from
these decisions are referred to as the mesh errors in this paper.

In Ammons and Vable* the errors from continuity and collocation were dis-
cussed in detail and will not be considered here. But how to numerically determine
an interpolation functions of a given order to satisfy a given continuity requirement
will be discussed. The presentation will briefly describe three algorithms that mini-
mize the LI norm of the mesh error from the remaining sources. These algorithms
are applicable two-dimensional problems of Poisson's equation, Plate-Bending,
Elastostatic, and Fracture mechanics formulated using direct or indirect BEM.
Numerical examples will be presented showing the validity of these algorithms.

1 Introduction

In Boundary Element Method (BEM) a quantity of interest (temperature, dis-
placement, stresses, etc.) is represented by an integral over the boundary. The inte-
grands in the integral are products of influence functions and density functions.
The boundary is sub-divided into elements over which the density functions are
approximated by polynomials. The continuity requirement on the density function
depends upon the order of singularity in the influence function. If the order of sin-
gularity is n, then the density function should be Ĉ ~̂  continuous at a regular
boundary points to ensure that the quantities of interest are bounded at all points
including the element ends. In a previous paper by the authors* the effect of satis-
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450 Boundary Element Technology

fying or violating the continuity conditions at the element ends were discussed. In
this paper we address the issue of generating optimum interpolation functions of
different orders to meet different continuity requirements at the element end and
hr-method of mesh refinement which address the mesh errors that are generated
by the user's decisions in creating the mesh.

Computer codes for BEM usually have an element library where each element
type has a program segment in which analytical expressions for the interpolation
functions are written. An element is classified by the order of the approximating
polynomial and the degree of continuity that must be ensured at each element end.
In addition, the base points in the interpolation functions are either uniform^ or
located to facilitate hierarchical elementŝ . In this paper an alternative is pre-
sented.

The interpolation functions for one-dimension will be numerically generated
to satisfy user specified polynomial order and continuity requirement at each ele-
ment end. The continuity requirement at each element end can be different. To
develop the algorithm to generate the interpolation functions, each interpolation
function is written as a power series and the coefficients in the power series are
determined to satisfy the interpolation function property that the interpolation
function value is one at the associated nodal value and zero at the other nodes. The
algorithm should help produce compact computer programs providing greater flex-
ibility in the choice of elements to the user. The one dimensional interpolation
functions can be used to generate two and three dimensional interpolation func-
tions by tensor productŝ . But this extension is limited to rectangular master ele-
ments in two dimension and cubical master elements in three dimension.

The base point location can be uniform, or correspond to hierarchical ele-
ments, or chosen as per an algorithm described in this paper to minimize the error
in an element as measured by the L% norm. The reduction in error per element
should result in faster convergence in mesh refinement and non-linear applications
that solve problems iteratively.

An hr-mesh refinement^ scheme minimizes the LI norm to obtain the optimum
number, location and size of elements. Numerical examples are reported that vali-
date the algorithms.

2 Numerical Generation of Interpolation Functions

We develop the interpolation function for an element of unit length in natural
coordinate and then scale it to obtain interpolation functions for elements of differ-
ent lengths. The approximating polynomial p(x) can be written as

(I)

i = 0

where, k is the order of polynomial, Fj are the nodal values of p(x) and its deriva-
tives, and fj the associated interpolation functions (shape functions).
Figure 1 shows the relationship between F; and the nodal value of the ith derivative

of p(x) represented by p^\ NQ and Nj are the number of degrees of freedom which
are shared with adjacent elements at x=0 and x=l, respectively. These correspond
to continuity of the function, slope, and higher order derivatives. For example,
NO = 0 indicates the function is discontinuous at x=0, and Nj = 2 indicates the
function and slope are continuous at x=l. NM represent the number of additional

                                                             Transactions on Modelling and Simulation vol 22, © 1999 WIT Press, www.witpress.com, ISSN 1743-355X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



Boundary Element Technology 451

degrees of freedom within the element. This represents additional points within the
element at which the value of the function is defined. X; represent the location of
the NM base points within the element. The location of these points can either be
uniformly spaced, located to facilitate hierarchical elements, or selected using an
algorithm to minimize the Lj norm as described in the next section. The polyno-

mial order k can be written as k = N~ + N + N* - 1

Fo=p(0)

Figure 1: Example of Nodal Values for Interpolating Polynomial.

The objective is to generate the interpolation functions fj(x) that meet the user
specified order of polynomial k and the specified continuity at the end (NQ and Nj).

The key ideas in the derivation are briefly outlined below.

/„(*) = (2)

where, C^ is a matrix corresponding to the jth coefficient of the nth interpolation
polynomial. To find the coefficients we use the properties of the interpolation func-
tion: it is equal to one for its own nodal value, and equal to zero for all other nodal
values. This leeds to the following equation:

IC][X] = [/] (3)

The matrix [C] contains the unknown coefficients of the interpolation func-
tions that are to be determined. The matrix [I] is the identity matrix. The coefficient
of matrix [X] are zero except for the elements shown below:

i!X.. =

*/. -

0 < i < N -

where, i! represents the factorial of i. Equation (3) can be solved to obtain the coef-
ficient of matrix [C]. The matrix [X] depends upon NQ, Nj, N̂  and Xj. The num-
bers NQ, Nj, NM define a type of element for a given continuity at element end and
a given order of polynomial. The base points are so far arbitrary and could be uni-
formly located, or be at positions to define hierarchical elements, or chosen to min-
imize the error of approximation as described in next section. Thus, the matrix [C]
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452 Boundary Element Technology

and the associated interpolation functions are that of a master element. In other
words, if only a single type of element is used in the mesh then the coefficients of
matrix [C] need to be determined only once in the program. The derivatives of the
density function are tangential derivatives and hence by scaling the column of
matrix [C] by h* corresponding to the ith derivative the interpolation functions for
each element can be obtained.

1.2
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0.6

0.4

0.2

0.0

-0.2

-0.40.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Interpolation Functions for Ng=2, N̂ =2, and Nj=l.

Consider an element for which a fourth order polynomial is needed with func-
tion and slope continuity required at x=0 and function continuity required at x=l.
Thus No=2, NI=! and k=4 is specified by the user. Using the algorithm described in
next section, the base points were selected at x<)=0.4538 and X;=0.7498. Figure 2
shows the interpolation functions generated using the algorithm described as
above, with f i scaled for an element of length of 3 for visibility.

We see that at x=0, fg equals one, and all other interpolation functions are zero.
Likewise, at x=0 the slope of f i equals three (due to scaling), and the slopes of all
other functions are zero. At the other base points, the corresponding interpolation
function equals one and all others equal zero.

3 Minimizing error inside an element

Let u(x) represent the density function being approximated by the polynomial
p(x). The error function e(x)=u(x)-p(x) can be written^ as

..(& +U/C \ k*~t~I • •
(x-c.) (5)

where, u+)(^) is the k+1 derivative of u(x) evaluated at some unknown point ^
within the element. Point q are collocation points where e(q) = 0. We shall assume
that the collocation points and base points are the same i.e., q = Xj. The derivation
is presented for the case in which the approximating function can be discontinuous
at the ends i.e., NQ = 0 and N% = 0. The derivation can be extended to include the
case in which continuity of the function and/or its derivative must be met at the ele-
ment end.
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Boundary Element Technology 453

i

1
The LI norm on the element ||i|| = f \e(x)\dx can be written as:

max

(6+1)! n (6)

Within an element the first term in Equation (6) is independent of the location
of the base points Xj. Minimizing the contribution of the first term towards the error
is briefly discussed in Section 4. Letting P(x) represent the product in the second

f 1 -\ r,
term we seek to minimize E = \P(x)\dx with respect to x%, i.e., ̂— = 0. Not-

n
ing that the function P(x) changes signs at each base point, we obtain:

NM-*
, v"< r^;+i / , fl NM

R(x)dx + V (-l)'tf (x)dx+\ (-1) "R(x)dx
" * " ** "

= 0 (7)

= ̂ —P(x) - - rj (x - jc.) . The following notation is intro-
i = 1

where,

duced for ease of explanation. The function Û (x) is the integral of the function
Rn(x), and Aj is the absolute value of the area under the curve R̂ (x) for the jth
interval, as shown in Figure 3.

(8)

It should be noted that R̂ (x) changes signs at every base point except for x^,
which has been removed from the product term. Thus the area under the curve of
Rq changes signs for each interval except for the intervals adjacent to x%, as shown

in Figure 3. The term (-1̂  in Equation (7) changes sign in every interval. Thus, all
of the terms to the left of x% in Equation (7) have one sign, and all the terms to the
right of x,, have the opposite sign. Based on this observation, we can interpret
Equation (7) as: The optimum location ofx̂  is such that the sum of the areas to the
left ofXn is equal to the sum of the areas to the right ofx̂ . In the example shown in
Figure 3, this implies that the optimum location of Xg will result in AQ -f A| + A2 =
Ag -f A^

We intent to find the NM base points iteratively. For a given iteration, the dif-
ference between the sum of the areas on left of x% and the sum of areas on right of
Xn will not be zero. Let this difference be equal to A^ Equation may thus be writ-
ten in the following form.
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454 Boundary Element Technology

n-l

(9)
j = 0 j = n

Figure 3: for k=3 and No=Nj=0

The objective of the algorithm is to find the set of x^ points such that all \=0

for 1 < n < NM It should be noted that A2+Ag in Figure 3 is independent of the

location of Xg. In other words, the following equation does not change with varia-
tion of location of x^when the other base points are fixed

&-1 +& = consist (10)

We could add (Â /2) to A%_i and subtract from A^ and still satisfy Equations
(9) and (10). We want to change the location of x̂  such that the new area between
x,, and Xjj.i is (Â .j-f Â /2). This may be stated as:

= 0 (11)

where, x^ is the new location of x^ Thus x^, represents the root of the function given
by the left hand side of Equation (11) and it can be found by number of methods.
Newton Raphson method is used by the authors, since both Û (x) and its derivative
RU(X) are known.

Other cases for which N<, > 1 and /or N* > 1 result in a different expressions for
P(x) and will be presented at the talk. But in all cases the optimum location of base
points is determined by finding the roots of Equation (11).

4 Minimizing Error On the Boundary

Briefly described here are the basic ideas of the authors paper̂  for minimizing
the error on the boundary for completeness. The L j norm of the error on the bound-
ary can be obtained by adding the error given by Equation (6) for all elements on
the boundary. To minimize this total error on the boundary, the density function
was mapped using a grading function. A grading function** is a monotonic func-
tion with G(SO) = 0 and G(s%) = 1 that maps the density function u(s,) such that
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Boundary Element Technology 455

G(j\) = —, where, N are the number of element on the boundary and s, is the arc

length coordinate of the starting point of the ith element. The algorithm found the
location Sj and N in the grading function such that the user specified value of the
error on the boundary was minimized. The hr-algorithm of the paper is indepen-
dent of the boundary element formulation and can be used for Direct and Indirect
BEM applied to elastostatics, fracture mechanics, Poisson's equation and plate
bending problems.

5 Numerical Results

Example 1

This example is a test for validation of algorithm described in Section 3. The opti-
mum location for collocation points for discontinuous elements (N<j=0 and Nj=0)

correspond to the roots of the Chebyshev polynomial of the second kind^, which
can be calculated using Equation 12 given below.

t. = I 1 -cos)—-—-7C|l/2
' L V^A/f +1 /J

\<i<NM (12)

The base points were initialized with uniformly spaced points. Results for
optimum location as obtained from the algorithm described in Section 3 were com-
pared to the roots of the Chebyshev polynomial given in Equation 12 for different
orders of polynomials. Table 1 list the number of mid points N^, the number of
iterations needed for convergence, and the difference between location obtained
from Equation 12 to that obtained from the algorithm in Section 3. Table 1 show
that even for 16 degrees of freedom the algorithm converges very rapidly to the
analytical solution of Equation 12. Similar rapid convergence was obtained for 32
degrees of freedom when the coordinate range was changed to -1 < x < 1 . It
should be emphasized that the optimum location algorithm is invoked once per
master element which may be only once in the program if a single type of element
is used in the mesh.

Table 1: Comparison to Chebyshev Roots for Discontinuous Elements.

NM

2

4

8

16

# Iterations

1

4

5

7

Condition Number

7.00

320x10+3

410x10+6

586x10+9

Max. Difference

111x10**

333 x 10-*s

llxlO'12

65 x 10-9

Example 2

As a first step a 100 x 100 square subjected to a unit value of uniform uniaxial ten-
sion was taken. Each side of the square was modeled by 12 linear elements and
the problem solved by the indirect BEM with force discontinuity. Stresses in the
central region of 2x2 square were computed and no error was seen up to six places
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456 Boundary Element Technology

of decimals. Thus the square represented an infinite plate subjected to a unit value
of uniform uniaxial tension. The hole boundary was represented by 6 elements and
integration was performed using the semi-analytical integration scheme in which
the integration path is dynamically created̂ . Lagrange polynomials of different
order were considered as shown in Table 2 . Then Hermite polynomials with differ-
ent order of continuity (Ĉ ) at each element end were considered. For each case
the stress concentration factor was computed and compared with the analytical
value of three and the percentage error is shown in column four of Table 2 . Also
reported is the matrix conditioning number.

Table 2: Results of Example 2

Polynomial

Type Order C(n)

Number of
Unknowns
on Hole
Boundary

%error in
Stress

Concentration
Factor

Matrix
Condition
Number

Lagrange _

Hermite

1

2

3

4

6

8

3

5

7

0

0

0

0

0

0

1

2

3

6

12

18

24

36

48

12

18

24

-10.367

0.933

0.193

0.150

0.153

-1.1

0.057

0.068

0.077

4553

5026

5353

5480

5701

1.0x10

3143

6548

2.4x10

10

6

Though the primary purpose of this example is to demonstrate the validity of
the algorithms in Sections 2 and 3, results show some interesting observations. Ini-
tially the accuracy improves as the order of Lagrange polynomial increases, but
after the 4th order it starts decreasing even though there is no significant change in
condition number from 4th order to 6th order. Another observation is that for the
same number of unknowns the Hermite Polynomials give an order of magnitude
better accuracy than the Lagrange polynomials. It should be emphasized that
Lagrange polynomials meet the continuity requirements on the density functions as
the highest order of singularity in the influence function associated with force dis-
continuity is one. The high condition numbers for 8th order Lagrange polynomial
is surprising, as outside BEM the algorithm of Sections 2 and 3 showed these type
of condition number around the 16th order of polynomials (see Table 1 ). The most
likely cause is the size of circle boundary in comparison to the square boundary. To
check this a circular hole in infinite body (no 100x100 square) under uniform pres-
sure was solved and with six elements and eighth order Lagrange polynomial. The
matrix condition number was found to be only 3.03. Similarly when a seventh
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Boundary Element Technology 457

order Hermite polynomial with C* ̂  continuity was used the matrix condition num-
ber was found to be 15,769. Thus, the large matrix conditioning number that arises
when using the algorithms of Sections 2 and 3 with high order polynomial is
dependent upon the dimensions of the boundary relative to dimensions of the outer
most boundary. Though the above observations merit further study it needs to be
emphasized that these observations may be uniquely tied to this particular problem.

Example 3

Once more a 100x100 square under uniaxial tension in the y-direction was mod-
eled using 12 linear elements per side. Using the Direct BEM stresses in the central
region of 2x2 square was checked and no error was found up to six decimal places.
A crack of 2 unit length was introduced and modeled using the displacement dis-
continuity. Boundary conditions on integrated tractions were imposed*. The dis-
placement discontinuity density function was modeled using linear, quadratic, and
cubic Lagrange polynomials and the hr-method described in Section 4 was used for
refining the mesh for three iterations for each polynomial. In authors previous
paperŝ '*, high accuracies were obtained for stress intensity factors using few
unknowns—a consequence that stresses away from the crack tip can be used in the
calculation of the factor. In this paper we report the stresses in front of the crack,
and the percentage difference in Gyy with the analytical series expression^ of Cyy
given below was computed and plotted as shown in Figure 4.

+ (13)

where, r is the radial distance from the crack tip and a is the half-crack length.

-0.50
0.00 0.05 0.10

r/a
0.15 0.20

Figure 4: G in front of the crack

Figure 4 shows that stress values for all polynomial approximation rapidly
converge towards each other away from the crack tip. But at a distance of less than
0.025a, only the cubic interpolation gives good results. This accuracy issue can be
critical if one was trying to determine the plastic zone in front of a crack. The num-
ber of unknowns used in modeling the crack for linear, quadratic and cubic
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458 Boundary Element Technology

Lagrange interpolation were 442, 136, and 112, respectively. The results highlight
that a faster convergence will be achieved by using a higher order of polynomial
for modeling the displacement discontinuity density function, which is not surpris-
ing as the density function on the crack is a smooth function. But it is possible that
further increases in the order of polynomial order may not give better accuracy as
in previous example. The only way to resolve the appropriate order of polynomial
approximation is to design a full hrp-mesh refinement algorithm.

6 Conclusions

The paper briefly described three algorithms for minimizing the mesh error.
The first algorithm is used for generating interpolation functions to satisfy user
specified polynomial order and continuity requirements. The second algorithm
found optimum location of collocation points. The third algorithm is an hr-method
of mesh refinement that finds the optimum number, location, and size of elements.
Numerical results validate these algorithms but also point the need to develop a full
hip-mesh refinement scheme.
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