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Minimizing Submodular Functions on Diamonds
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Kenjiro Takazawa?, and Shin-ichi Tanigawa?

Abstract

In this paper we show the �rst polynomial-time algorithm for the problem
of minimizing submodular functions on the product of diamonds. This submod-
ular function minimization problem is reduced to the membership problem for
an associated polyhedron, which is equivalent to the optimization problem over
the polyhedron, based on the ellipsoid method. The latter optimization prob-
lem is solved by polynomial number of solutions of subproblems, each being a
generalization of the weighted fractional matroid matching problem. We give a
combinatorial polynomial-time algorithm for this optimization problem by ex-
tending the result by Gijswijt and Pap [D. Gijswijt and G. Pap, An algorithm
for weighted fractional matroid matching, J. Combin. Theory, Ser. B 103 (2013),
509�520].

1 Introduction

A set function f : 2V → Z is submodular if f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y )
for every X, Y ⊆ V . In the submodular function minimization problem, given an
evaluation oracle for a submodular function f , we are asked to �nd a minimizer of f .
For this problem, our goal is to �nd an algorithm with running time polynomial in |V |
and log maxX⊆V {|f(X)|} that returns X ∈ argmin(f), assuming that the algorithm
has access to an oracle that for any given X outputs f(X).
It follows from the work of Grötschel, Lovász and Schrijver [8] on the equivalence

of separation and optimization that such an algorithm can be obtained by using
the ellipsoid method. Combinatorial strongly polynomial algorithms have only been
obtained much later, independently by Schrijver [25] and by Iwata, Fleischer and
Fujishige [11]. Since then, there have been several improvements in running time, e.g.
[23, 13].
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Section 1. Introduction 2

The generalization that we consider in this paper concerns submodular functions
on lattices. Given a �nite lattice L, a function f : L → Z is submodular on L
if f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) for every x, y ∈ L. For modular lattices, such
functions naturally arise when extending the Dulmage-Mendelsohn decompositions of
generic matrices to generic partitioned matrices [14], and it was posed as an open
problem in [11] to give an e�cient algorithm for minimizing submodular functions on
modular lattices.
Submodular functions on product lattices also got a lot of attention for the com-

plexity classi�cation of Max-CSP. The importance of submodular functions in this
context was �rst pointed out by Cohen et al. [3], and then the connection was fur-
ther investigated in [16, 17]. The systematic study of the complexity of Max-CSP
was further extended to �nite-valued CSP in [4], and a dichotomy theorem was �-
nally obtained in [26, 27]. A result by Thapper and �Zivný [26] in turn implies the
polynomial-time solvability of a special case of the submodular function minimization
on the direct product of �nite lattices, where the function is explicitly given as the sum
of submodular functions of constant arity, i.e., the value of each function depends only
on a constant number of lattices. Hirai [9] further introduced submodular functions
on modular semi-lattices and discussed the solvability of the minimization problem
in the constant arity case based on the result of [26]. However, as noted in most of
the above literature, it is widely open whether the submodular function minimization
problem on product lattices is tractable in the value oracle model.
As observed in [11, 25], one can reduce the problem to the standard submodular

function minimization if the underlying lattice is distributive. Krokhin and Larose [18]
showed that certain lattice operations preserve the tractability of the corresponding
minimization problem in the value oracle model, and as a corollary they showed that
the submodular function minimization on the product of the copies of the pentagon, a
smallest non-distributive lattice, can be reduced to the standard submodular function
minimization.
In this paper we shall consider the submodular function minimization problem

on the product of diamonds, which is the remaining smallest non-distributive case
and has an application to the Dulmage-Mendelsohn type decompositions of generic
partitioned matrices consisting of two-by-two blocks [12]. A diamond is a lattice
consisting of a minimal element, a maximal element, and an arbitrary �nite number
of pairwise incomparable middle elements: the meet (resp. join) of any two middle
elements is the minimal (resp. maximal) element. A submodular function on the di-
rect product of given diamonds U1, . . . , Un is simply called a submodular function

on diamonds. If the diamonds have at most two middle elements, then the lattice is
distributive, and by the observation in [11, 25] we can use the standard submodular
function minimization algorithm in this case. However, a diamond with more than
two middle elements is modular but not distributive, and hence we cannot directly
apply the standard algorithms to the minimization of submodular functions on dia-
monds. A pseudo-polynomial algorithm for the minimization of submodular functions
on diamonds was given by Kuivinen [19]. Our main result is the �rst polynomial-time
algorithm.
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Section 1. Introduction 3

Theorem 1. Let f be a submodular function on the direct product of a �nite number
of diamonds U1, . . . , Un. A minimizer of f can be computed in a polynomial number
of arithmetic steps and function evaluations in m and logM , where m =

∑n
i=1 |Ui|

and M is the maximum absolute function value.

Let U =
⋃n

i=1 Ui, and call T ⊆ U a transversal if |T ∩ Ui| = 1 for every i ∈
[n], where [n] denotes the set of integers {1, . . . , n}. We denote by T the set of
transversals and by T0 the transversal consisting of the minimal elements. There is
a natural one-to-one correspondence between transversals and elements of the direct
product lattice, which also de�nes operations ∧ and ∨ on pairs of transversals. Thus
a submodular function on diamonds can be considered as a function f : T → Z
satisfying f(T1) + f(T2) ≥ f(T1 ∧ T2) + f(T1 ∨ T2) for every T1, T2 ∈ T . Throughout
the paper we assume f(T0) = 0.
For a transversal T ∈ T , let a(T ) ∈ {0, 1, 2}n be a vector whose i-th element a(T )i is

the rank of the unique element in T∩Ui in the lattice Ui. We consider the optimization
problem:

maximize cx

subject to a(T )x ≤ f(T ) for each T ∈ T . (1)

If this can be solved in polynomial time, then by the results of Grötschel, Lovász and
Schrijver [8] the minimization of submodular functions on diamonds can be solved in
polynomial time using the ellipsoid method. Indeed, the problem of deciding whether
f is nonnegative is a special case of the separation problem corresponding to (1), and
submodularity is preserved by adding the same nonnegative integer to each function
value except f(T0), and hence the minimization problem can be solved by applying
binary search to the problem (1).
Kuivinen's pseudo-polynomial time algorithm [19] also follows the same strategy,

where he considered a distinct and larger polytope and showed that the corresponding
linear programming can be solved in pseudo-polynomial time, again, by the aid of the
ellipsoid method. On the other hand in this paper we give a combinatorial algorithm
for solving (1).

Theorem 2. Let f be a submodular function on the direct product of a �nite number
of diamonds. Then there is a combinatorial algorithm for solving (1) that runs in a
polynomial number of arithmetic steps and function evaluations in m and logM .

When f is derived from a matroid rank function, the polytope describing (1) co-
incides with the fractional matroid matching polytope introduced by Vande
Vate [28], and the corresponding optimization problem (1) is known as the weighted
fractional matroid matching problem, which was solved by Gijswijt and Pap [7].
The main restriction compared to our generalized problem is that the lattice function
corresponding to fractional matroid matching is derived from a matroid rank func-
tion, and hence it is monotone nondecreasing and has maximum value at most 2n.
Also Gijswijt and Pap [7] used the unweighted algorithm of Chang, Llewellyn, and
Vande Vate [1] as a subroutine, whereas we shall develop the corresponding theory for
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Section 2. Problem setting 4

general submodular function on diamonds from scratch. Nevertheless, our algorithm
makes use of several ideas from the Gijswijt-Pap paper.
A di�erent extension of standard submodular minimization is the minimization of

bisubmodular functions by Qi [24], Fujishige and Iwata [5], and Fujishige and Mc-
Cormick [21]. Min-max theorems (without polynomial algorithms) were also given
for the minimization of k-submodular functions, which is a common generalization of
bisubmodular functions and multimatroid rank functions, by Huber and Kolmogorov
[10], and for the more general class of transversal submodular functions by Fujishige
and Tanigawa [6]. One of the exciting open problems is whether k-submodular func-
tions can be minimized in polynomial time.
The rest of the paper is organized as follows. In Section 2 we describe the problem

setting in detail. Section 3 introduces the minimum 2-cover problem that corresponds
to the dual improvement of the optimization problem (1). Although a minimum 2-
cover can be found in polynomial time using the ellipsoid method, we also present a
combinatorial polynomial-time algorithm in Section 5, at the end of the paper, which
leads to a combinatorial polynomial-time algorithm for the optimization problem (1).
The algorithm for the optimization problem (1) is presented in Section 4, �rst in a
pseudo-polynomial version, which is then transformed into a polynomial algorithm by
a scaling technique.

2 Problem setting

As described in Section 1, we consider submodular functions on the direct product of
n diamonds U1, . . . , Un. Let V = [n]. For i ∈ V , the minimal and maximal elements
of Ui are denoted by 0i and 1i, respectively. Recall that U =

⋃
i∈V Ui. A set T ⊆ U

is called a sub-transversal if |T ∩Ui| ≤ 1 for every i ∈ V . Each sub-transversal can
be identi�ed with a transversal by extending it with 0i for every Ui disjoint from the
sub-transversal. Thus ∧ and ∨ can be de�ned over the set of sub-transversals.
Recall that T denotes the set of all transversals. The partial order in the diamond

induces a partial order on T , denoted by �. For two transversals T and T ′, we write
T ≺ T ′ if T � T ′ and T 6= T ′. Recall that T0 denotes the transversal formed by all
minimal elements. The transversal consisting of all maximal elements is denoted by
Ttop. Given transversals T1 and T2 satisfying T1 � T2, we use the notation [T1, T2] =
{T ∈ T : T1 � T � T2}. For a transversal T ∈ T and i ∈ V , recall that a(T )i ∈
{0, 1, 2} denotes the rank of T ∩ Ui, i.e., a(T )i = 0 if T ∩ U = {0i}, a(T )i = 2 if
T ∩ U = {1i}, and a(T )i = 1 otherwise.
Let f : T → Z be a submodular function on the diamonds, that is, f satis�es

f(T0) = 0 and f(T1) + f(T2) ≥ f(T1 ∨ T2) + f(T1 ∧ T2) for every T1, T2 ∈ T . We
consider the following polyhedra de�ned by f :

P (f) = {x ∈ Rn : a(T )x ≤ f(T ) ∀T ∈ T },
P=(f) = {x ∈ Rn : a(T )x ≤ f(T ) ∀T ∈ T , 2x(V ) = f(Ttop)},

where x(V ) =
∑

i∈V xi. In general, for x ∈ Rn and X ⊆ V , let x(X) =
∑

i∈X xi.
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Section 2. Problem setting 5

Let m = |U |, M = maxT∈T |f(T )|, and N = max{m, dlogMe}. Our goal is to
give a combinatorial algorithm, with running time polynomial in N , that solves the
following linear program for c ∈ Zn:

(LP≤) maximize cx
subject to x ∈ P (f).

To this end we focus on the following linear program and its dual:

(LP=) maximize cx
subject to x ∈ P=(f),

(D) minimize
∑

T∈T f(T )yT
subject to

∑
T∈T a(T )iyT = ci for each i ∈ V ,

yT ≥ 0 for each T ∈ T \ {Ttop}.

For a dual feasible solution y, the support of y is de�ned as {T ∈ T | yT >
0} ∪ {Ttop}. The following proposition implies that the linear systems describing
(LP=) and (LP≤) are half-TDI, and thus the basic solutions for (LP=) and (LP≤) are
half integral.

Proposition 3. For a nonnegative integer vector c ∈ Zn, there is a half-integral
dual optimal solution of (LP=) (and, respectively, of (LP≤)) whose support is a chain
T1 ≺ T2 ≺ · · · ≺ Tk = Ttop.

Proof. This is implicit in [7, Theorem 1].

Observe that once we have a polynomial-time algorithm for solving (LP=), then
we can solve (LP≤), e.g., by binary search. This can be seen as follows. For a real
number t with t ≤ f(Ttop), let f t be the submodular function obtained from f such
that f t(T ) = t if T = Ttop, and f t(T ) = f(T ) otherwise. De�ne g(t) by g(t) =
max{cx | x ∈ P=(f t)} for t ≤ f(Ttop). Then g(t) is concave, and maxt≤f(Ttop) g(t) is
attained by some integer since Proposition 3 implies that 2x(V ) is integer. Thus one
can compute maxt≤f(Ttop) g(t) in polynomial time, due to the following lower bound
of x(V ) for an optimal solution x for (LP≤).

Proposition 4. Suppose that c ∈ Zn is nonnegative. Then there is an optimal solution
x for (LP≤) satisfying x(V ) ≥ −2M .

Proof. Let us take an optimal solution x for (LP≤) with maximum x(V ). Note that for
any transversals T and T ′ with a(T )x = f(T ) and a(T ′)x = f(T ′) we have a(T∨T ′)x =
f(T ∨ T ′). Hence there is a transversal T such that a(T )x = f(T ) and a(T )i > 0 for
each i ∈ V , since otherwise xi can be increased without decreasing the objective value.
Let V − ⊆ V consist of the indices i for which xi < 0, and let T+ be the transversal
obtained from T by replacing the element of T ∩ Ui by 0i for every i ∈ V −. Then
x(V ) ≥ x(V −) ≥ (a(T )− a(T+))x = f(T )− a(T+)x ≥ f(T )− f(T+) ≥ −2M .

The following proposition implies that we may focus on the case when c has n
distinct values.
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Section 3. The minimum 2-cover problem 6

Proposition 5. For c ∈ Zn, de�ne c′ ∈ Zn by c′i = 2n2Mci + i for i ∈ V . If x ∈ Rn

is an optimal solution of (LP=) with the objective function c′, then x is also optimal
for (LP=) with the objective function c.

Proof. For any x ∈ P=(f) and i ∈ V , we have xi ≤ f({1i})/2 ≤ M/2 and xi =
x(V )− x(V − i) ≥ −M .
Suppose that x is not optimal for (LP=) with the objective function c. Then for

any optimal solution x′ for (LP=) with the objective function c we have c′(x− x′) =
2n2M(cx− cx′) +

∑
i∈V i(xi − x′i) ≤ −n2M +

∑
i∈V

3
2
iM < 0, which implies that x is

not optimal for (LP=) with the objective function c′, a contradiction.

Thus in the remainder of the paper we assume that c consists of n distinct values.
By this assumption, we have the following property for dual feasible solutions.

Proposition 6. Suppose that ci 6= ci′ for all distinct i and i′ in V , and let y be a
feasible solution of (D) whose support is a chain T0 = T0 ≺ T1 ≺ · · · ≺ Tk = Ttop. For
every j ∈ [k], there is at most one index i ∈ V such that a(Tj−1)i = 0 and a(Tj)i = 2.

Proof. Suppose that there are distinct such i and i′ in V . Then we have ci =∑
T a(T )iyT =

∑
T a(T )i′yT = ci′ , a contradiction.

3 The minimum 2-cover problem

In this section we shall show that �nding a dual improvement direction reduces to
a combinatorial problem, called the minimum 2-cover problem. We then show a
min-max theorem for the minimum 2-cover problem and describe its relation to the
fractional matroid matching problem. The canonical optimal solution given in the
proof will be explicitly used in our algorithm for (LP=) in Section 4.

3.1 A 2-cover and dual improvement

In this subsection, we introduce the minimum 2-cover problem, which is described by
a 2-regular hypergraph on V and �almost submodular� set functions arising from a
chain of transversals. We then show its relation to the dual improvement for (LP=).
Let T1 ≺ T2 ≺ · · · ≺ Tk(= Ttop) be a chain of transversals, denoted by C, and

let T0 = T0. De�ne a family E(C) = {Z1, . . . , Zk} of multisets of elements in V
such that Zj contains i ∈ V with multiplicity 1 if a(Tj)i = a(Tj−1)i + 1, and with
multiplicity 2 if a(Tj)i = a(Tj−1)i + 2. As we only consider multisets where each
element has multiplicity 0, 1, or 2, a multiset Z can be identi�ed with its characteristic
function χZ : V → {0, 1, 2}. Observe that (V, E(C)) is a 2-regular hypergraph, i.e.,∑

Z∈E(C) χZ(i) = 2 for every i ∈ V . For simplicity we write Y ⊆ Z if χY ≤ χZ , and

x(Z) denotes χZx for any x ∈ Rn. For u, v ∈ V , a multiset Y is called a uv̄-set if Y
contains u and avoids v.
By Proposition 6, each Zj has at most one element with multiplicity two; denote

this by v◦Zj
if it exists. For any multiset Y ⊆ Zj, let mZj

(Y ) = χY (v◦Zj
) if v◦Zj

exists,
and otherwise mZj

(Y ) = 0. We simply write m(Y ) if Zj is clear from the context. For
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3.1 A 2-cover and dual improvement 7

each Y ⊆ Zj, there is a unique transversal TY between Tj−1 and Tj that corresponds
to Y , i.e.,

TY = Tj−1 ∨
⋃
v∈Y

(Tj ∩ Uv),

unless m(Zj) = 2 and m(Y ) = 1. If m(Zj) = 2 and m(Y ) = 1, then several transver-
sals of the form

Tj−1 ∨

{u} ∪ ⋃
v∈Y,v 6=v◦Zj

(Tj ∩ Uv)


for some middle element u in the diamond corresponding to v◦Zj

may correspond to
Y ; let TY be the one for which f(TY ) is the smallest. The middle element u of TY
in the diamond corresponding to v◦Zj

is called a shade of Y . If more than one f(TY )
value is minimum, then Y has more than one shade.
For each Zj ∈ E(C), de�ne fZj

by

fZj
(Y ) = f(TY )− f(Tj−1) (Y ⊆ Zj).

Observe that if Z ∈ E(C) has no element with multiplicity two, then fZ is a standard
submodular set function on Z. In order to describe �submodularity� of fZ , for multi-
sets X, Y ⊆ Z, de�ne X ∨ Y and X ∧ Y as the multisets corresponding to χX∨Y and
χX∧Y , where for each i ∈ V

χX∨Y (i) :=


2 if i = v◦Z , m(X) = m(Y ) = 1, and

the sets of the shades of X, Y are not identical,

max{χX(i), χY (i)} otherwise,

χX∧Y (i) :=


0 if i = v◦Z , m(X) = m(Y ) = 1, and

the sets of the shades of X, Y are not identical,

min{χX(i), χY (i)} otherwise.

The following proposition establishing submodularity of fZ is now straightforward.

Proposition 7. For any X, Y ⊆ Z, fZ(X) + fZ(Y ) ≥ fZ(X ∨ Y ) + fZ(X ∧ Y ).

We are now ready to de�ne the minimum 2-cover problem. For a chain of transver-
sals C, a 2-cover of (V, E(C)) is a family of multiset pairs {(AZ , BZ) | Z ∈ E(C)} satis-
fying AZ ⊆ BZ ⊆ Z and

∑
Z∈E(C)(χAZ

(i) +χBZ
(i)) = 2 for all i ∈ V . An example of a

2-cover is {(∅, Z) | Z ∈ E(C)}, which is called a trivial 2-cover. In the minimum 2-

cover problem, given f and C, we are asked to �nd a 2-cover {(AZ , BZ) | Z ∈ E(C)}
that minimizes

∑
Z∈E(C)(fZ(AZ)+fZ(BZ)). Note that the objective value of the trivial

2-cover is f(Ttop).
The following lemma gives an explicit link between the dual improvement for (LP=)

and the minimum 2-cover problem.
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3.1 A 2-cover and dual improvement 8

Lemma 8. Let y be a feasible solution for (D) whose support is a chain C : T1 ≺ · · · ≺
Tk = Ttop. The trivial 2-cover is optimal for the minimum 2-cover problem for (f, C) if
and only if y is optimal for (D). If the objective value of 2-cover {(AZ , BZ) | Z ∈ E(C)}
is smaller than that of the trivial one, then the following yε is a feasible solution of
(D) whose objective value is better than that of y:

yε := y + ε
∑

1≤j≤k

(χTAZj
+ χTBZj

− χTj−1
− χTj

), (2)

where ε > 0 is chosen so that yεT ≥ 0 holds for every T ∈ T \ {Ttop}.

Proof. Comparing the objective value of {(AZ , BZ) | Z ∈ E(C)} with that of the
trivial 2-cover, we have that∑

Z∈E(C)

(fZ(AZ) + fZ(BZ))−
∑

Z∈E(C)

(fZ(∅) + fZ(Z))

=
k∑

j=1

(f(TAZj
)− f(Tj−1) + f(TBZj

)− f(Tj−1))−
k∑

j=1

(f(Tj)− f(Tj−1))

=
k∑

j=1

(f(TAZj
) + f(TBZj

)− f(Tj−1)− f(Tj)).

Hence, if the objective value of {(AZ , BZ) | Z ∈ E(C)} is smaller, then
∑

T f(T )yεT <∑
T f(T )yT . To show that yε is a feasible solution of (D), it su�ces to show that∑

1≤j≤k

(a(TAZj
)− a(Tj−1))v =

∑
1≤j≤k

(a(Tj)− a(TBZj
))v for each v ∈ V .

This follows from the property that {(AZ , BZ) | Z ∈ E(C)} is a 2-cover: if v is in some
AZ , then both sides are 1, and otherwise both sides are 0. Thus we can conclude that
if y is optimal for (D), then the trivial 2-cover is optimal.
For the other direction, suppose that y is not optimal for (D). We show that

the trivial 2-cover is not optimal. Since y is not optimal, the following system of
inequalities has a solution z:∑

T∈T

f(T )zT < 0, (3)∑
T∈T

a(T )vzT = 0 for each v ∈ V , (4)

zT ≥ 0 for each T ∈ T \ C. (5)

Let supp(z) = {T ∈ T \ C | zT > 0}. We claim that there is a solution z such that
supp(z) forms a chain compatible with C. This can be seen by the following standard
uncrossing argument.
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3.1 A 2-cover and dual improvement 9

• First we modify z so that each transversal in supp(z) is compatible with C.
This can be done inductively from T1 through Tk as follows. Suppose that
each transversal in supp(z) is compatible with T1, . . . , Ti−1, and a transversal
T ∈ supp(z) crosses with Ti. Then set

zT := 0, zTi
:= zTi

− zT ,
zT∨Ti

:= zT∨Ti
+ zT , zT∧Ti

:= zT∧Ti
+ zT .

Note that the resulting z satis�es (3), (4) and (5). Since T ∨ Ti and T ∧ Ti are
compatible with T1, . . . , Ti, after a �nite number of steps, we get a desired z.

• Next we modify z so that supp(z) forms a chain. If two transversals T, T ′ ∈
supp(z) are crossing, then set

zT := zT − δ, zT ′ := zT ′ − δ,
zT∨T ′ := zT∨T ′ + δ, zT∧T ′ := zT∧T ′ + δ,

where δ = min{zT , zT ′}. Note that the resulting z satis�es (3), (4) and (5), and
T ∨T ′ and T ∧T ′ are compatible with C. Consider the potential

∑
T∈T \C g(T )zT ,

where g(T ) := (
∑

i∈V a(T )i)(
∑

i∈V (2 − a(T )i)). This is nonnegative, and the
strict submodularity of g implies that supp(z) becomes a chain after modifying
z �nitely many times.

Let z be a solution for (3), (4) and (5) such that supp(z) is a chain C ′ compatible
with C. Since supp(z) is a chain C ′ compatible with C, we may further assume that
for each T ∈ supp(z) there is Y ⊆ Z ∈ E(C) such that TY = T .
Denote C∗ = C ∪ C ′ : T ∗1 ≺ · · · ≺ T ∗l (= Ttop). Recall that (V, E(C∗)) is 2-regular,

i.e., each vertex is contained in exactly two hyperedges, where a hyperedge is counted
twice if it contains the vertex with multiplicity two. Hence if we de�ne ẑ by

ẑi =
l∑

j=i

zT ∗j (i ∈ [l]),

then (4) can be written as

ẑjv + ẑj′v = 0 for each v ∈ V , (6)

where jv and j
′
v denote the indices of the hyperedges in E(C∗) that contain v.

In general, for an undirected graph (that may contain loops and parallel edges),
the vertex-edge incidence matrix has nonzero kernel if and only if the graph has a
bipartite connected component. In particular, the kernel has dimension one if and
only if the graph contains exactly one bipartite connected component.
Now (6) is written as Aẑ = 0, where A is the vertex-edge incidence matrix of a

graph G with vertex set [l]. We say that an edge of G is nonzero if ẑ-values of the
endvertices are nonzero. Then we may assume that the subgraph of G induced by the
nonzero edges is connected since otherwise (i.e., if more than one component exists)

EGRES Technical Report No. 2014-14



3.2 A min-max theorem of the minimum 2-cover problem 10

we can consider z inducing only one component among those. This implies that there
is ε > 0 such that ẑi ∈ {−ε, 0, ε} for all i ∈ [l].
Take any two consecutive transversals Ti−1 ≺ Ti in C, and consider the interval

between Ti−1 and Ti in C∗. Since C∗ is a re�nement of C, denote Ti−1 = T ∗j−1 ≺ T ∗j ≺
· · · ≺ T ∗j+s = Ti. Note that Zi ∈ E(C) is decomposed into s + 1 hyperedges in E(C∗).
Moreover, since zT > 0 for any T ∈ C∗ \ C, we have

ẑj > · · · > ẑj+s, (7)

in particular, s must be at most two, since ẑj ∈ {−ε, 0, ε} for each j ∈ [l]. That is,
Zi is decomposed into at most three hyperedges Z∗i,−ε, Z

∗
i,0, Z

∗
i,+ε, whose corresponding

ẑ-values are −ε, 0, ε, respectively (the non-existing ones are considered to be empty).
Note that Z∗i,0 may contain v◦Zi

with multiplicity two. Then let

A∗Zi
= Z∗i,+ε and B

∗
Zi

= Z∗i,+ε ∨ Z∗i,0,

for each Zi ∈ E(C). By (6) we have
∑

Zi∈E(C)(χA∗Zi
(v) + χB∗Zi

(v)) = 2 for v ∈ V , i.e.,
{(A∗Zi

, B∗Zi
) | Zi ∈ E(C)} is a 2-cover.

Suppose that A∗Zi
, B∗Zi

, Ti−1, Ti are all distinct for every i. Then by ẑj ∈ {−ε, 0, ε}
we have

zTA∗
i

= zTB∗
i

= ε, zTk
= −ε, and zTi

= −2ε for 1 ≤ i ≤ k − 1. (8)

Therefore  ∑
Zi∈E(C)

(fZi
(A∗Zi

) + fZi
(B∗Zi

))−
∑

Zi∈E(C)

(fZi
(∅) + fZi

(Zi))

 ε

=
∑
i

(f(TA∗Zi
) + f(TB∗Zi

)− f(Ti−1)− f(Ti))ε

=
∑
i

(f(TA∗Zi
)zTA∗

i
+ f(TB∗Zj

)zTB∗
i

+ f(Tj)zTi
)

=
∑
T∈T

f(T )zT < 0.

The same conclusion holds even if some of A∗Zi
, B∗Zi

, Ti−1, Ti coincide by merging the
corresponding z values given in (8). Hence the trivial 2-cover is not optimal.

3.2 A min-max theorem of the minimum 2-cover problem

Since the minimum 2-cover problem corresponds to the dual improvement problem
of (D), we now turn to solving the minimum 2-cover problem. In this subsection we
shall give an optimality characterization.
Let f be a submodular function on diamonds and C : T1 ≺ T2 ≺ · · · ≺ Tk = Ttop

be a chain of transversals. Let T0 = T0. The following polyhedron associated with f
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3.2 A min-max theorem of the minimum 2-cover problem 11

and C will play a key role in establishing a min-max theorem for the minimum 2-cover
problem:

P (f, C) = {x ∈ Rn | (a(T )− a(Tj−1))x ≤ f(T )− f(Tj−1) ∀j ∈ [k],∀T ∈ [Tj−1, Tj]}.

With the aid of the hypergraph (V, E(C)) and its associated functions fZ 's, this poly-
hedron P (f, C) is restated as

P (f, C) = {x ∈ Rn | x(Y ) ≤ fZ(Y ) ∀Y ⊆ Z, ∀Z ∈ E(C)}.

We remark that the membership problem in P (f, C) is solved in polynomial time.
Since Z has at most one element with multiplicity two, fZ can be minimized by calling
a submodular function minimization algorithm as many times as the cardinality of
the diamond corresponding to v◦Z , implying that, for a given x ∈ Rn, one can decide
whether x ∈ P (f, C) in polynomial time.
Now the following min-max formula holds for the minimum 2-cover problem and a

linear program over P (f, C).

Theorem 9. Let f be a submodular function on diamonds and C : T1 ≺ T2 ≺ · · · ≺
Tk = Ttop be a chain of transversals. Then

max{2x(V ) | x ∈ P (f, C)}

= min

 ∑
Z∈E(C)

(fZ(AZ) + fZ(BZ)) : a 2-cover {(AZ , BZ) | Z ∈ E(C)}

 .
(9)

It is not di�cult to see that, for an arbitrary x ∈ P (f, C) and a 2-cover {(AZ , BZ) |
Z ∈ E(C)}, we have that

2x(V ) =
∑

Z∈E(C)

(x(AZ) + x(BZ)) ≤
∑

Z∈E(C)

(fZ(AZ) + fZ(BZ)). (10)

A full proof of Theorem 9 is given in Section 3.3. Before the proof, let us describe its
relation to the fractional matroid matching problem.
Indeed, the left-hand side of (9) can be considered as a generalization of the frac-

tional matchoid problem. In the matchoid problem introduced by Edmonds (cf.
Jenkyns [15]), we are given an undirected graph G = (X,E) and a matroid Mv on
the set δG(v) of edges incident to v for each v ∈ X, and asked to �nd a set F ⊆ E
of maximum size such that F ∩ δG(v) is independent in Mv for each v ∈ X. The
fractional version of the matchoid problem is reduced to the maximization of x(V )
over P (f, C) as follows. Let V = E and E = {δG(v) | v ∈ X}. Note that (V, E)
forms a 2-regular hypergraph. The chain C is de�ned so that E = E(C), and f is a
submodular function on the product of diamonds, each of which corresponds to an
edge in E and has two middle elements corresponding to its endvertices, satisfying
that fZ is the rank function ofMv for each Z = δG(v) ∈ E(C).
We remark here that the matchoid problem is known to be equivalent to the matroid

matching problem (see, e.g., [20]), but this fractional version of the matchoid problem
is not equivalent to the fractional matching problem discussed in [28, 7].
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3.3 A proof of Theorem 9 and a canonical 2-cover 12

3.3 A proof of Theorem 9 and a canonical 2-cover

Theorem 9 can be proved by showing the half-integrality of a maximizer by applying
an argument in [7]. Here we shall give an alternative proof by an augmenting-walk
approach, which implies a dynamic programming algorithm for computing a minimum
2-cover based on an optimal solution x∗ of the left-hand side of (9). The obtained
minimum 2-cover is called the canonical 2-cover, and plays an important role in our
algorithm for (LP=). Note that x∗ can be found in polynomial time by the ellipsoid
method, since the membership problem in P (f, C) is solved in polynomial time. In
Section 5, we shall give a combinatorial algorithm for computing x∗ and the canonical
2-cover, which avoids the use of the ellipsoid method.
Let us begin proving Theorem 9. Let x ∈ P (f, C) and Z ∈ E ≡ E(C). A multi-

set Y ⊆ Z is called an (x, Z)-tight set (or, simply a Z-tight set if x is clear) if
x(Y ) = fZ(Y ). We remark here that, if there is a 2-cover {(AZ , BZ) | Z ∈ E(C)} such
that AZ and BZ are (x, Z)-tight, then both x and {(AZ , BZ) | Z ∈ E(C)} are optimal
in (9).
Let

SZ = {v ∈ Z : there is no (x, Z)-tight set containing v}.
The vertices in SZ are called free in Z. If there exists v ∈ SZ ∩ SZ′ with Z 6= Z ′ or
if v◦Z ∈ SZ , then we can increase x(v) maintaining x ∈ P (f, C), and hence we assume
that this is not the case. For v ∈ Z \(SZ∪{v◦Z}), let DZ(v) be the smallest Z-tight set
containing v. If there is no Z-tight set Y with m(Y ) = 2, then the smallest Z-tight
set containing v◦Z is also unique; v◦Z is called semi-free in this case, and the smallest
Z-tight set is denoted by DZ(v◦Z). Note that DZ(v) can be computed in polynomial
time for any v using a standard submodular function minimization algorithm. If v◦Z is
not semi-free, then let D◦Z be the smallest Z-tight set Y with m(Y ) = 2. This can also
be computed in polynomial time by the standard submodular function minimization.
To describe the possible modi�cations of x, we extend the idea of alternating paths

and augmenting paths. For an intuitive description of the basic idea let us assume
that there is no vertex of multiplicity two in each Z ∈ E . For each Z ∈ E , de�ne a
set EZ of directed arcs by EZ = {uv | u, v ∈ Z \ SZ , u ∈ DZ(v)}. An arc in EZ is
said to be colored in Z. Then a walk consisting of arcs in

⋃
Z∈E EZ is said to be

augmenting if

• the directions of the arcs alternate along the walk,

• consecutive arcs have di�erent colors,

• the �rst arc is a backward arc with the �rst vertex in SZ , and

• the last arc is a forward arc with the last vertex in SZ .

One can easily check that, if the value of x is alternately increased and decreased by
a small amount though an augmenting walk, then x(V ) is increased while x remains
feasible.
If there exists a vertex v◦Z of multiplicity two, we need a more careful de�nition

for arcs incident to v◦Z and augmenting walks. The arc set EZ is now de�ned to be
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3.3 A proof of Theorem 9 and a canonical 2-cover 13

the union of E0
Z , E

1
Z and E2

Z de�ned as follows. The arc set E0
Z consists of arcs not

incident to v◦Z and is de�ned by

E0
Z = {uv : u, v ∈ Z \ (SZ ∪ {v◦Z}), u ∈ DZ(v) \ {v}}.

The arc sets E1
Z and E2

Z consist of arcs incindent to v◦Z , and their de�nitions depend
on whether v◦Z is semi-free:

• If v◦Z is semi-free, let

E1
Z = {uv◦Z : u ∈ DZ(v◦Z) \ {v◦Z}} ∪ {v◦Zv : v◦Z ∈ DZ(v) \ {v}},

E2
Z = ∅.

• If v◦Z is not semi-free, let

E1
Z ={uv◦Z | u ∈ D◦Z \ {v◦Z} : ∃Z-tight v◦Z ū-set Y ′}
∪ {v◦Zv | v ∈ Z \ {v◦Z} : m(DZ(v)) = 1},

E2
Z ={uv◦Z | u ∈ D◦Z \ {v◦Z} : 6 ∃Z-tight v◦Z ū-set Y ′}
∪ {v◦Zv | v ∈ Z \ {v◦Z} : m(DZ(v)) = 2}.

As above, arcs in EZ will be referred to as arcs of color Z. Note that arcs with distinct
colors are regarded as di�erent arcs, and hence the resulting digraph on V may have
parallel arcs. An arc in E2

Z is called a special arc.
We also introduce a label with each arc in E1

Z∪E2
Z for the de�nition of augmenting

walks. This labeling will be de�ned based on the following fact.

Claim 10. If v◦Zu ∈ E1
Z, then DZ(u) has a unique shade.

If v◦Z is not semi-free and uv◦Z ∈ E1
Z, then there is a unique smallest Z-tight v◦Z ū-

set Y with m(Y ) = 1, and Y has a unique shade.

Proof. For the �rst claim, suppose that DZ(u) has more than one shade. Then there
would be a Z-tight uv̄◦Z-set that corresponds to the intersection of the two transversals
corresponding to DZ(u) and having distinct middle elements in the diamond of v◦Z .
This contradicts v◦Z ∈ DZ(u).
For the second claim, suppose there are two distinct minimal Z-tight v◦Z ū-sets X

and Y with m(X) = m(Y ) = 1. Then by the minimality the shades of X and Y are
di�erent. Hence (X∨Y )∧D◦Z is a Z-tight set smaller thanD◦Z withm((X∨Y )∧D◦Z) =
2, contradicting the minimality of D◦Z . The same argument also implies that the
minimal Z-tight v◦Z ū-set has a unique shade.

Based on this claim we shall assign a label `(e) on each arc e ∈ E1
Z as follows:

`(e) =


the shade of DZ(v) if e = v◦Zv,

the shade of DZ(v◦Z) if v◦Z is semi-free and e = vv◦Z ,

the shade of the smallest Z-tight v◦Z v̄-set if v◦Z is not semi-free and e = vv◦Z .
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Also, with each arc in E2
Z , we assign a unique label, a label di�erent from those on

other arcs.
We now give a precise de�nition of augmenting walks. Here, in a walk, each arc

may be traced more than once. A partial augmenting walk (PAW) is a walk that
consists of arcs in

⋃
Z∈E EZ with the following properties:

• the last vertex is a semi-free or free vertex in some Z,

• the directions of the arcs alternate along the walk, with the last arc being a
forward arc,

• consecutive arcs have di�erent colors if the shared vertex belongs to two distinct
hyperedges in E(C),

• consecutive arcs have di�erent labels if they belong to E1
Z and the shared vertex

is v◦Z .

Note that neither a free vertex nor a semi-free vertex can be an intermediate vertex
of a PAW. Note also that a PAW may use an arc in E2

Z twice consecutively.
A forward partial augmenting walk is a PAW whose �rst arc is forward, while

a backward partial augmenting walk is a PAW whose �rst arc is backward. For
Z ∈ E , let

QZ = {v ∈ Z : there is a forward PAW starting at v by an arc in EZ},
RZ = {v ∈ Z : there is a backward PAW starting at v by an arc in EZ}.

Note that QZ and RZ are sets, not multisets, and can be computed by dynamic
programming. By de�nition, (QZ ∪RZ) ∩ SZ = ∅.
With this de�nition for PAWs, augmenting walks are PAWs of the two types below:

• a backward PAW starting at a free vertex v ∈ SZ by an arc in EZ′ with Z
′ 6= Z;

and

• a backward PAW starting at a semi-free vertex.

An augmenting walk is de�ned to be a walk of the above types that does not have
a shortcut.
The length of an augmenting walk is bounded as follows.

Claim 11. Each vertex appears at most four times in an augmenting walk.

Proof. Suppose that a vertex v appears more than four times. Then at least six
incoming arcs or six outgoing arcs at v are used in the augmenting walk. Without
loss of generality we assume that six incoming arcs at v are used, and let uiv for
1 ≤ i ≤ 6 be those incoming arcs at v in the ordering of the walk such that u1v and
u2v, u3v and u4v, and u5v and u6v are consecutive in the walk (where ui = uj may
hold).
If u1v and u6v have di�erent colors or di�erent labels, then there is a shortcut using

u6v next to u1v. Hence they should have the same color and the same label. Similarly
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the colors and the labels of u1v and u4v should be the same. Since u3v and u4v have
di�erent colors or di�erent labels, u3v and u6v also have di�erent colors or di�erent
labels. Hence there is shortcut using u6v next to u3v, a contradiction.

Let W be an augmenting walk with the vertex sequence v1, v2, . . . , vl. The aug-
mentation of x through W by ε > 0 is to reset x by

x := x+ ε

 ∑
1≤i≤dl/2e

χv2i−1
−

∑
1≤i≤bl/2c

χv2i

 .

By the de�nition of augmenting walks, l is always odd, and thus an augmentation
increases x(V ). Moreover, the following claim implies that there does not exist an
augmenting walk if x(V ) is maximized.

Claim 12. If ε > 0 is su�ciently small, then x is still feasible for (LP=) after
augmentation.

Proof. Suppose that an augmentation is performed through an augmenting walk W .
It su�ces to prove that x(Y ) does not increase for any (x, Z)-tight set Y . Let W i

Z =
Ei

Z ∩W (i = 0, 1, 2). For every uv ∈ E0
Z with v ∈ Y , the minimality of DZ(v) implies

u ∈ Y . This means that the contribution of uv ∈ W 0
Z to the increase of x(Y ) is

nonpositive.
To prove that the total contribution of arcs in W 1

Z ∪W 2
Z to the increase of x(V ) is

nonpositive, we shall show that the contribution of two consecutive arcs of W at v◦Z
is nonpositive. Due to the de�nition of the augmentation, if the total contribution of
the two consecutive arcs ofW at v◦Z is positive, then one of the following cases occurs.
Recall that x(Y ) = χY x for Y ⊆ Z.

(i) m(Y ) = 0 and the two consecutive arcs are v◦Zu, v
◦
Zw with u ∈ Y or w ∈ Y ;

(ii) m(Y ) = 1 and the two consecutive arcs are v◦Zu, v
◦
Zw with u ∈ Y and w ∈ Y .

(iii) m(Y ) = 2 and the two consecutive arcs are uv◦Z , wv
◦
Z with u ∈ Y and w /∈ Y ;

(iv) m(Y ) = 1 and the two consecutive arcs are uv◦Z , wv
◦
Z with u /∈ Y and w /∈ Y ;

We shall show that none of the above four cases can happen.
If (i) occurs with u ∈ Y , then DZ(u) ⊆ Y . Since v◦Z /∈ Y by m(Y ) = 0, arc v◦Zu

does not exist, a contradiction.
Suppose that (ii) occurs. Since v◦Zu exists, v◦Z ∈ DZ(u). Moreover, the shade of

DZ(u) is equal to the shade of Y since otherwise DZ(u)∧ Y would be a smaller tight
set containing u. By the same reason, the shade of DZ(w) is equal to the shade of Y .
These in turn imply that v◦Zu and v◦Zw have the same label, a contradiction.
If (iii) occurs, then D◦Z ⊆ Y . Since w /∈ Y , arc wv◦Z does not exist, a contradiction.
Suppose that (iv) occurs. If uv◦Z ∈ W 2

Z or wv◦Z ∈ W 2
Z , one can reach a contradiction

as in case (iii). Hence uv◦Z ∈ W 1
Z and wv◦Z ∈ W 1

Z . Therefore, since u /∈ Y and w /∈ Y ,
the labels of uv◦Z and wv◦Z are equal to the shade of Y , contradicting that the two
consecutive arcs of W have di�erent labels.

EGRES Technical Report No. 2014-14



3.3 A proof of Theorem 9 and a canonical 2-cover 16

Now we show that if there is no augmenting walk then we can determine a 2-
cover {(AZ , BZ) : Z ∈ E(C)} from the sets QZ , RZ and SZ such that AZ and BZ are
Z-tight for each Z ∈ E(C), i.e., an optimal 2-cover {(AZ , BZ) : Z ∈ E(C)}. To this
end we need the following two claims.

Claim 13. Suppose that Z contains three distinct elements u, v, w with uv, vw ∈ EZ.
Then the following statements hold.

• uw ∈ EZ unless v = v◦Z, and uv
◦
Z and v◦Zw belong to E1

Z with the same label.
Moreover, if u = v◦Z and uv ∈ E2

Z then uw ∈ E2
Z, and if w = v◦Z and vw ∈ E2

Z

then uw ∈ E2
Z.

• If u = v◦Z and both uv and uw are in E1
Z, then they have the same label. Sim-

ilarly, if w = v◦Z and both vw and uw are in E1
Z, then they have the same

label.

Proof. First we consider the case v 6= v◦Z . If w 6= v◦Z , then v ∈ DZ(w) and any Z-tight
set containing v should contain u. Hence u ∈ DZ(w) and uw ∈ EZ . If u = v◦Z and
uv ∈ E2

Z , then u ∈ DZ(v) ⊆ DZ(w) and m(DZ(w)) = 2, which implies uw ∈ E2
Z . If

both uv and uw are in E1
Z , then DZ(v) ⊆ DZ(w) implies that uv and uw have the

same label.
If w = v◦Z , then v ∈ D◦Z , and as any Z-tight set containing v should contain u, u is

also in D◦Z , and hence uw ∈ EZ . If vw ∈ E2
Z , then there is no Z-tight v◦Z v̄-set, and

hence u ∈ DZ(v) implies that there is no Z-tight v◦Z ū-set, i.e., uw = uv◦Z ∈ E2
Z . On

the other hand, if both vw and uw are in E1
Z , then a Z-tight set containing v◦Z that

avoids u must also avoid v since u ∈ DZ(v). Therefore vw and uw have the same
label.
Finally, suppose that v = v◦Z and u /∈ DZ(w). Then m(DZ(w)) = 1 and uv ∈ E1

Z .
Hence there is a unique smallest Z-tight v◦Z ū-set Y

′ ⊆ DZ(w) with m(Y ′) = 1. Since
Y ′ has the same shade as DZ(w), uv◦Z and v◦Zw have the same label. (Recall that the
label of uv◦Z is the shade of Y ′ and the label of v◦Zw is the shade of DZ(w).)

Claim 14. If no augmenting walk exists for a feasible x, then the following statements
hold for each Z ∈ E(C), where Z ′ and Z ′′ denote hyperedges in E(C) distinct from Z.

(a) QZ ∩QZ′ = ∅, RZ ∩RZ′ = ∅, SZ ∩RZ′ = ∅.

(b) QZ ∩RZ = ∅ if v◦Z is semi-free, and QZ ∩RZ ⊆ {v◦Z} otherwise.

(c) If v◦Z ∈ QZ ∪ RZ, then the �rst arcs of partial augmenting walks starting at v◦Z
all have the same label.

(d) If vv◦Z ∈ E2
Z, then v /∈ QZ′ ∪ RZ ∪ SZ. Moreover, v◦Z ∈ QZ ∪ RZ implies

v ∈ QZ ∪RZ′.

(e) If vv◦Z ∈ E1
Z, then v ∈ QZ′ ∪ RZ implies v◦Z ∈ QZ ∪ RZ. Moreover if v◦Z is

semi-free, then v 6∈ QZ′ ∪RZ

(f) If v◦Zv ∈ E2
Z, then v /∈ QZ ∪RZ′ ∪ SZ′.
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(g) If v◦Zv ∈ E1
Z, then v ∈ QZ ∪RZ′ ∪ SZ′ implies v◦Z ∈ QZ ∪RZ.

(h) If uv ∈ E0
Z, then u ∈ RZ ∪QZ′ implies v ∈ RZ ∪QZ′′, and v ∈ QZ ∪RZ′ implies

u ∈ QZ ∪RZ′′.

Proof. If v ∈ QZ ∩ QZ′ , then there are forward PAWs from v with the initial arcs
colored in Z and Z ′, respectively. Then their concatenation is an augmenting walk,
contradicting that there is no augmenting walk. Similarly, if RZ∩RZ′ 6= ∅ or SZ∩RZ′ ,
one can �nd an augmenting walk. Thus (a) hold.
We next prove (b). If v◦Z is semi-free, then it is not in RZ since otherwise a backward

PAW starting from v◦Z would be an augmenting walk. Suppose that there is v ∈
QZ ∩ RZ such that v 6= v◦Z . Let W1 and W2 be forward/backward PAWs starting
at v. Recall that SZ ∩ (QZ ∪ RZ) = ∅ for each Z, and hence a PAW does not pass
through a free vertex. Therefore, when tracing W1 and W2 from v to the ends, there
is a vertex v′ such that the next vertices of v′ in the two walks are distinct. Note that
v′ ∈ QZ′ ∩RZ′ for some Z ′. Let v′′ be the preceding vertex of v′, and u1 and u2 be the
vertices next to v′ in the walks W1 and W2, respectively. Without loss of generality
we assume that v′′v′, u1v

′ ∈ W1 and v′v′′, v′u2 ∈ W2.
Suppose that v′ 6= v◦Z′ . Then u1u2 ∈ EZ′ by Claim 13. If neither u1 6= v◦Z′ nor

u2 6= v◦Z′ , one can �nd an augmenting walk using u1u2, a contradiction. If u1 = v◦Z′
(resp. u2 = v◦Z′), then Claim 13 implies that either u1u2 ∈ E2

Z′ or u1u2 has the same
label as u1v

′ (resp. v′u2). Hence in both cases there is an augmenting walk using u1u2,
a contradiction.
Therefore assume that v′ = v◦Z′ . If u1v

′ and v′u2 have di�erent labels, then u1u2 ∈
E0

Z′ by Claim 13 and one can �nd an augmenting walk, a contradiction. If they have
the same label, then there is a unique Z ′-tight set X containing v′ and u2 and avoiding
u1. Since u1v

′ and v′′v′ have di�erent labels as they are consecutive in W1, we have
v′′ ∈ X. This however implies that v′v′′ has the same label as that of u1v

′, which is
equal to the label of v′u2. This contradicts that v

′v′′ and v′u2 are consecutive in W2.
We next prove (c). Clearly the �rst arcs of two backward PAWs or two forward

PAWs have the same label since otherwise there would be an augmenting walk by
concatenating them. Suppose that the �rst arc uv◦Z of a backward PAW and the �rst
arc v◦Zw of a forward PAW have di�erent labels. If u 6= w, then uw ∈ E0

Z by Claim 13,
and one can �nd an augmenting walk. If u = w, then u ∈ QZ′ ∩ RZ′ with u 6= v◦Z′ ,
which contradicts (b).
For (d), if v ∈ QZ′ , then there is an augmenting walk using special arc vv◦Z con-

secutively, and hence v /∈ QZ′ . It also holds that v 6∈ SZ by the existence of special
arc vv◦Z . If v ∈ RZ , then let uv ∈ EZ be the initial arc of a backward PAW starting
at v. If u 6= v◦Z , then by Claim 13 uv◦Z ∈ E2

Z , and thus an augmenting walk exists. On
the other hand, if u = v◦Z , then v

◦
Z ∈ QZ and there is another arc v◦Zw with w ∈ RZ′

and w 6= v. By Claim 13 and vv◦Z ∈ E2
Z , vw ∈ EZ holds, and hence v ∈ QZ , which

implies v ∈ QZ ∩RZ . This contradicts (b).
Let us check the latter claim of (d). If v◦Z ∈ RZ , then v ∈ QZ by v /∈ QZ′ . On

the other hand, if v◦Z ∈ QZ , then there is v◦Zw ∈ EZ with w ∈ RZ′ . When w 6= v,
vw ∈ EZ by Claim 13 and we have that v ∈ QZ . When w = v, we get v ∈ RZ′ .
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3.3 A proof of Theorem 9 and a canonical 2-cover 18

For (e), if v ∈ QZ′ , then v
◦
Z ∈ RZ . If v ∈ RZ , then let uv ∈ EZ be the �rst arc of

a backward PAW starting at v. If u 6= v◦Z , then u ∈ QZ′ and uv
◦
Z ∈ EZ by Claim 13.

Hence v◦Z ∈ RZ holds. On the other hand, if u = v◦Z , then v
◦
Z ∈ QZ holds.

Now suppose that v◦Z is semi-free. If v ∈ QZ′ , then there is an augmenting walk
ending at v◦Z . If v ∈ RZ , then as above let uv ∈ EZ be the �rst arc of a backward
PAW starting at v. If u 6= v◦Z , then there is an augmenting walk ending at v◦Z since
uv◦Z exists. If u = v◦Z , then v◦Z is an intermediate vertex of a PAW, which is not
possible since v◦Z is semi-free.
For (f), if v ∈ RZ′ ∪ SZ′ , then there is an augmenting walk that uses a special

arc v◦Zv. If v ∈ QZ , then let vu be the initial arc of a forward PAW starting at v. If
u 6= v◦Z , then u ∈ RZ′ and v

◦
Zu ∈ E2

Z by Claim 13. Hence there is an augmenting walk
that uses v◦Zu. If u = v◦Z , then v

◦
Z ∈ RZ , and there is wv◦Z ∈ EZ with w ∈ QZ′ . Then,

by Claim 13, wv ∈ EZ and we have that v ∈ RZ ∩QZ . This contradicts (b).
Assertions (g) and (h) can be checked in the same manner as (e).

We are now ready to show that (x, Z)-tight sets AZ and BZ are obtained when no
augmenting walk exists.

Claim 15. For Z ∈ E(C), let V ◦Z = {v◦Z} (with multiplicity one) if v◦Z is semi-free
or v◦Z ∈ RZ, and V

◦
Z = ∅ otherwise. If no augmenting walk exists, then the following

multisets AZ and BZ are (x, Z)-tight:

AZ = QZ ∪ V ◦Z ∪
⋃

Z′ 6=Z

((RZ′ ∪ SZ′) ∩ Z),

BZ = Z \
⋃

Z′ 6=Z

AZ′ ,
(11)

where BZ contains v◦Z with multiplicity two if AZ does not contain v◦Z.

Proof. We �rst prove that AZ is Z-tight. Properties (a) and (b) of Claim 14 imply
that AZ ∩ AZ′ = ∅. It is also easy to see that din

E2
Z
(AZ) = 0 because of (d) and (f),

where din
Ei

Z
(AZ) denotes the number of arcs in Ei

Z incoming to AZ . It follows from (h)

that din
E0

Z
(AZ) = 0.

If v◦Z /∈ AZ , then din
E1

Z
(AZ) = 0 also holds by (g), and hence dinEZ

(AZ) = 0. This

means that DZ(v) ⊆ AZ for every v ∈ AZ , and AZ =
⋃

v∈AZ
DZ(v) is Z-tight by sub-

modularity. Similarly, if v◦Z is semi-free, din
E1

Z
(AZ) = 0 holds and AZ =

⋃
v∈AZ

DZ(v)

implies that AZ is Z-tight.
The remaining case is when v◦Z ∈ QZ ∪ RZ . Suppose that v◦Z ∈ QZ . Then there

is v◦Zv ∈ E1
Z with v ∈ RZ′ ∪ SZ′ . Since v◦Zv ∈ E1

Z , m(DZ(v)) = 1. By (c) all
partial augmenting walks starting from v◦Z start with the same label, that is, for each
u ∈ AZ \ {v◦Z} with v◦Z ∈ DZ(u), m(DZ(u)) = 1 holds and the shade of DZ(u)
is equal to the shade of DZ(v). This means that m(

⋃
u∈AZ\{v◦Z}

DZ(u)) = 1 and

AZ =
⋃

u∈AZ\{v◦Z}
DZ(u). Hence AZ is Z-tight. On the other hand suppose that

v◦Z ∈ RZ \QZ . Then there is vv◦Z ∈ E1
Z with v ∈ QZ′ , and there is a unique smallest

Z-tight v◦Z v̄-set Y with m(Y ) = 1. Note that u ∈ Y implies u ∈ QZ ⊆ AZ , and
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hence Y ⊆ AZ . Note also that if v◦Z ∈ DZ(u) for u ∈ AZ then m(DZ(u)) = 1 by
(f), and the shade of DZ(u) is equal to the shade of Y since otherwise vu ∈ EZ

by Claim 13 and thus u ∈ RZ , which contradicts u ∈ AZ by (a) and (b). Hence
m(Y ∪

⋃
u∈AZ\{v◦Z}

DZ(u)) = 1 and and AZ = Y ∪
⋃

u∈AZ\{v◦Z}
DZ(u). This completes

the proof for the Z-tightness of AZ .
The proof that BZ is Z-tight is as follows. If uv ∈ E0

Z and u ∈ AZ′ , then v ∈ RZ by
(h), which means that v ∈ AZ′′ for some Z ′′ 6= Z. Hence din

E0
Z
(BZ) = 0. If m(BZ) = 2,

then v◦Z is not semi-free and v◦Z /∈ QZ ∪ RZ . Hence uv◦Z ∈ E1
Z ∪ E2

Z implies u /∈ AZ′

by (d) and (e), and thus D◦Z ⊆ BZ . This means that BZ =
⋃

u∈BZ\{v◦Z}
DZ(u) ∪D◦Z ,

and hence BZ is Z-tight. If v◦Z is semi-free, then DZ(v◦Z) ∩ AZ′ = ∅ for any Z ′ with
Z ′ 6= Z by (e). Therefore BZ =

⋃
u∈BZ

DZ(u).
Finally, consider the case when v◦Z ∈ QZ ∪ RZ . Suppose that v◦Z ∈ QZ . Note

that, if u ∈ BZ \ AZ satis�es v◦Z ∈ DZ(u), then v◦Zu ∈ E1
Z by (c), implying that

m(DZ(u)) = 1. Moreover the shade of DZ(u) is equal to the shade of AZ , since
otherwise u ∈ RZ , contradicting u ∈ BZ . Hence BZ = AZ ∪

⋃
u∈BZ\AZ

DZ(u). On the

other hand, suppose that v◦Z ∈ RZ\QZ . Then there is vv
◦
Z ∈ E1

Z with v ∈ QZ′ . For any
u ∈ BZ \ AZ with v◦Z ∈ DZ(u), the shade of DZ(u) is equal to the label of vv◦Z , since
otherwise vu ∈ EZ by Claim 13 and u ∈ RZ follows, contradicting u ∈ BZ . Hence the
shade of DZ(u) is the shade of AZ , which means that BZ = AZ∪

⋃
u∈BZ\AZ

DZ(u).

Observe that {(AZ , BZ) | Z ∈ E(C)} de�ned by (11) forms a 2-cover. We call it the
canonical 2-cover. Now it is not di�cult to see that the canonical 2-cover attains
equality in (9).

Proof of Theorem 9. For a maximizer x in (9) and the canonical 2-cover {(AZ , BZ) |
Z ∈ E(C)}, AZ and BZ are (x, Z)-tight for each Z ∈ E(C) by Claim 15. Thus the
inequality in (10) holds with equality, and the theorem follows.

4 Algorithms for (LP=)

In this section we describe our algorithms for (LP=). In Section 4.1 we give an
algorithm whose running time is polynomial in m and M . We then apply a scaling
technique to improve the complexity to be polynomial in m and logM in Section 4.2.

4.1 A pseudo-polynomial time algorithm

Let us begin with an important property of P (f, C). A chain C∗ of transversals is said
to be a re�nement of a chain C of transversals if each element in C appears in C∗.

Lemma 16. Let C : T1 ≺ · · · ≺ Tk = Ttop be a chain of transversals. If C∗ is a
re�nement of C, then P (f, C∗) ⊆ P (f, C). In particular, P (f, C) ⊆ P (f).

Proof. It su�ces to prove P (f, C∗) ⊆ P (f, C) for a chain C∗ : T1 ≺ . . . Tj−1 ≺ T ∗ ≺
Tj ≺ · · · ≺ Tk = Ttop. Suppose that x ∈ P (f, C∗). Then (a(T ) − a(Tj−1))x ≤
f(T ) − f(Tj−1) for every T ∈ [Tj−1, T

∗], and (a(T ) − a(T ∗))x ≤ f(T ) − f(T ∗) for
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4.1 A pseudo-polynomial time algorithm 20

every T ∈ [T ∗, Tj]. We show that (a(T ) − a(Tj−1))x ≤ f(T ) − f(Tj−1) for every
T ∈ [Tj−1, Tj].
Indeed, since a(T ∗) + a(T ) = a(T ∗ ∨ T ) + a(T ∗ ∧ T ) and f(T ∗) + f(T ) ≥ f(T ∗ ∨

T ) + f(T ∗ ∧ T ), we have

(a(T )− a(Tj−1))x = (a(T ∗ ∨ T )− a(T ∗))x+ (a(T ∗ ∧ T )− a(Tj−1))x

≤ f(T ∗ ∨ T )− f(T ∗) + f(T ∗ ∧ T )− f(Tj−1) ≤ f(T )− f(Tj−1).

The algorithm �rst constructs a dual feasible solution y and tries to improve
y keeping the feasibility. The algorithm terminates if it �nds a maximizer x of
max{x(V ) | x ∈ P (f, C)} satisfying 2x(V ) = f(Ttop), where C is the support of
the current y, or �nds a direction along which the dual objective value can be made
arbitrarily small. In the former case both x and y are optimal (see Lemma 17 below),
while in the latter case we can conclude that P=(f) = ∅.

Lemma 17. Let y be a feasible solution of (D) whose support is a chain C, and let
x ∈ argmax{x(V ) | x ∈ P (f, C)}. Then, x and y are optimal solutions for (LP=) and
(D), respectively, if and only if 2x(V ) = f(Ttop).

Proof. Clearly 2x(V ) = f(Ttop) should hold if x is optimal for (LP=). Suppose that
2x(V ) = f(Ttop) holds. By Lemma 16, we have that x ∈ P (f, C) ⊆ P (f), and hence
x ∈ P=(f). Summing up (a(Tj)−a(Tj−1))x ≤ f(Tj)−f(Tj−1) for j = 1, . . . , k, we have

2x(V ) =
∑k

j=1(a(Tj) − a(Tj−1))x ≤
∑k

j=1(f(Tj) − f(Tj−1)) = f(Ttop) = 2x(V ), and
hence (a(Tj)−a(Tj−1))x = f(Tj)−f(Tj−1) for j = 1, . . . , k. Thus, a(Tj)x = f(Tj) for
j = 1, . . . , k, implying that x and y satisfy the complementary slackness condition.

Now the algorithm is described as follows.

Algorithm

Initialization: Assume c1 > c2 > · · · > cn. Let cn+1 = 0. For each j = 1, . . . , n, let
T ′j be the transversal with T

′
j ∩ Ui = {1i} for i = 1, . . . , j and T ′j ∩ Ui = {0i} for

i = j + 1, . . . , n, and let y be a feasible dual solution de�ned by

yT =

{
cj − cj+1 if T = T ′j ,

0 otherwise.

Iteration:

Step 1. Let C : T1 ≺ · · · ≺ Tk = Ttop be the support chain of y. Find
x ∈ argmax{x(V ) | x ∈ P (f, C)} and the canonical 2-cover {(AZ , BZ) |
Z ∈ E(C)}. If 2x(V ) = f(Ttop), then output x as an optimal solution.
Otherwise, go to Step 2.
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Step 2. Let ε̄ = sup{ε ∈ R+ | yεT ≥ 0 ∀T ∈ T \ {Ttop}}, where

yε := y + ε
∑

1≤j≤k

(χTAZj
+ χTBZj

− χTj−1
− χTj

).

If ε̄ = +∞, then output �P=(f) = ∅ �. Otherwise, set y ← yε̄ and go back
to Step 1.

The correctness of the algorithm follows from Theorem 9 and Lemma 8 combined
with Lemmas 18 and 19 below. Proofs of Lemmas 18 and 19 will be given in Sec-
tion 4.3.

Lemma 18. Let ȳ = yε̄ be the new dual solution in Step 2 and C̄ be the support chain
of ȳ. Then x ∈ P (f, C̄), where x is the one obtained in Step 1.

For a transversal T , let ã(T ) =
∑n

i=1 a(T )i.

Lemma 19. Let ȳ = yε̄ be the new dual solution in Step 2 and let AZ̄, BZ̄, x̄, and
C̄ : T̄1 ≺ · · · ≺ T̄k̄ be the counterparts of AZ, BZ, x, and C for ȳ, respectively. Suppose
that x(V ) = x̄(V ) and the canonical 2-cover {(AZ , BZ) | Z ∈ E(C)} with respect to x
is not trivial. Then ⋃

Z̄∈E(C̄)

AZ̄ ⊇
⋃

Z∈E(C)

AZ .

If this holds with equality, then

k̄∑
j=1

ã(T̄j−1)|AZ̄j
| −

k̄∑
j=1

ã(T̄j)|Z̄j \BZ̄j
| <

k∑
j=1

ã(Tj−1)|AZj
| −

k∑
j=1

ã(Tj)|Zj \BZj
|.

Assuming those two lemmas, we now show the correctness of our algorithm.

Lemma 20. Let f be an integer-valued submodular function on the product of n dia-
monds. Then the algorithm terminates after O(n4M) iterations and outputs an opti-
mal solution for (LP=) or veri�es that (LP=) is infeasible, where M = maxT |f(T )|.
Proof. Let y be a feasible solution for (D) obtained in the middle of iterations, and
let x ∈ argmax{x(V ) | x ∈ P (f, C)} for the support chain C of y. Note that x(V ) ≥
−4nM by Theorem 9.
If 2x(V ) = f(Ttop), then x is an optimal solution for (LP=) by Lemma 17. If

2x(V ) < f(Ttop), then y is not optimal, and by Lemma 8 the canonical 2-cover is
nontrivial; furthermore, yε is feasible for any 0 ≤ ε ≤ ε̄, and (D) is unbounded if ε̄ is
unbounded.
Assume that ε̄ is bounded. Let ȳ = yε̄, C̄ be the support chain of ȳ, and x̄ ∈

argmax{x(V ) | x ∈ P (f, C̄)}. By Lemma 18, we have x(V ) = max{x(V ) | x ∈
P (f, C)} ≤ max{x(V ) | x ∈ P (f, C̄)} = x̄(V ). Due to the half-integrality of the
linear system describing P (f, C) (that follows from Theorem 9), x̄(V ) > x(V ) implies
x̄(V ) ≥ x(V ) + 1/2. By Lemma 19, x̄(V ) > x(V ) occurs after O(n3) iterations.
Therefore after O(n4M) iterations 2x(V ) attains f(Ttop).

As we remarked in Section 3, an optimal solution of the LP over P (f, C) and the
canonical 2-cover with respect to x can be found in polynomial time. Hence the
algorithm is a pseudo-polynomial time algorithm.
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4.2 A polynomial-time algorithm: a scaling technique

The number of iterations of the algorithm described in Section 4.1 is O(n4M), and
thus it may be exponential in N = dmax{m, logM}e. In order to obtain an algorithm
with running time polynomial in N , we use a technique based on scaling the values
of f .
Instead of the original problem, we may consider the problem determined by the

modi�ed set function f (t) : T → Z de�ned by

f (t)(T ) =

⌈
f(T )

2t

⌉
− ã(T )2 (T ∈ T ). (12)

The idea is that if we know an optimal solution in P=(f (t)), then we can compute
an optimal solution in P=(f (t−1)) using a smaller number of iterations. The following
lemma establishes the properties of f (t) that are needed for this to work.

Lemma 21. For a submodular function f : T → Z,

(i) f (t) is submodular;

(ii) 2f
(t)
Z ≤ f

(t−1)
Z for any chain C of transversals and any Z ∈ E(C);

(iii) if P=(f (t)) is empty, then so is P=(f).

Proof. Proof of (i): It su�ces to show that ã(T )2 + ã(T ′)2 +2 ≤ ã(T ∨T ′)2 + ã(T ∧T ′)2

for any incomparable T and T ′. Suppose there are distinct middle elements v ∈ T
and v′ ∈ T ′ in a diamond Ui. Then

ã(T )2 = ã(T − v)2 + 2ã(T − v) + 1,

ã(T ′)2 = ã(T ′ − v′)2 + 2ã(T ′ − v′) + 1,

ã(T ∨ T ′)2 = ã((T − v) ∨ (T ′ − v′))2 + 4ã((T − v) ∨ (T ′ − v′)) + 4,

ã(T ∧ T ′)2 = ã((T − v) ∧ (T ′ − v′))2.

Due to the supermodularity and the monotonicity of ã(·)2, we get the desired relation.
If there is no such a diamond, then there are two distinct diamonds Ui and Uj on which
T and T ′ are incomparable. Then by applying the same argument one can obtain the
desired relation.
Proof of (ii): Let g(t)(T ) = df(T )/2te. Note that for any T

−1 ≤ g(t−1)(T )− 2g(t)(T ) ≤ 0. (13)

Let C : T1 ≺ T2 ≺ · · · ≺ Tk = Ttop, and let us consider f
(t)
Zj

(Y ) = f (t)(TY )−f (t)(Tj−1)

for each Y ⊆ Zj. Since 2f
(t)
Zj

(∅) = f
(t−1)
Zj

(∅) = 0, we assume Y 6= ∅. Then ã(TY )2 ≥
ã(Tj−1)2 + 1, and hence by (13) we have

f
(t−1)
Zj

(Y )− 2f
(t)
Zj

(Y )

= (g(t−1)(TY )− 2g(t)(TY ))− (g(t−1)(Tj−1)− 2g(t)(Tj−1)) + (ã(TY )2 − ã(Tj−1)2) ≥ 0.
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Proof of (iii): Suppose that x ∈ P=(f). Let r = df(Ttop)/2te − f(Ttop)/2t and let
x′ = x/2t − (2n− r/2n)1. Then

2x′(V ) =
2x(V )

2t
− (4n2 − r) =

f(Ttop)

2t
− 4n2 + r = f (t)(Ttop),

and for any T ∈ T \ {Ttop} we have

a(T )x′ =
a(T )x

2t
−
(

2n− r

2n

)
ã(T ) ≤ a(T )x

2t
− ã(T )2 ≤ f (t)(T ).

Thus x′ ∈ P=(f).

Theorem 22. Let f be an integer-valued submodular function on the product of n
diamonds, m be the sum of the sizes of all diamonds, and M = maxT |f(T )|. Then
there is an algorithm that solves (LP=) with running time O(poly(m) logM).

Proof. The following scaling algorithm has polynomial running time:

• Start with t = dlogMe. We can �nd x ∈ P=(f (t)) maximizing cx in time
polynomial in m using the algorithm of Section 4.1.

• Suppose that for some t we have found x ∈ P=(f (t)) maximizing cx by the
algorithm of Section 4.1. If P=(f (t)) = ∅, then we are done, because P=(f) = ∅
by Lemma 21 (iii). Otherwise let x̄ and ȳ be the optimal primal and dual
solutions obtained by the algorithm. Let C̄ be the support chain of ȳ. Then
note that x̄ ∈ P (f (t), C̄).

• Note that ȳ is a feasible dual solution of (D) for f (t−1) since in (D) we only
change the objective function. Thus, to �nd x ∈ P (f (t−1)) maximizing cx, we
can start the algorithm of Section 4.1 from ȳ. Since x̄ ∈ P (f (t), C̄), it holds that
2x̄ ∈ P (f (t−1), C̄) by Lemma 21 (ii). Therefore we have that

f (t−1)(Ttop)−max{2x(V ) | x ∈ P (f (t−1), C̄)} ≤ f (t−1)(Ttop)− 4x̄(V )

= f (t−1)(Ttop)− 2f (t)(Ttop) ≤ ã(Ttop)2 = 4n2,

where the last inequality follows from (13). This implies that with O(n5) itera-
tions the algorithm of Section 4.1 can solve (LP=) for f (t−1). (Recall that x(V )
increases by 1/2 after O(n3) iterations.)

• Continuing this process, we get the primal and dual optimal x̄ and ȳ for f (0), with
support C̄ such that x̄ ∈ P (f (0), C̄). Since P (f (0), C̄) ⊆ P (f, C̄), the algorithm of
Section 4.1 can solve (LP=) for f from ȳ in O(n5) iterations.

Since each iteration can be done in O(poly(m)) time, the algorithm solves (LP=) in
O(poly(m) logM) time.

We remark that it is not necessary to know N in advance: the algorithm in 4.1 is
polynomial if the di�erence between f (t)(Ttop) and the objective value of the initial
dual solution is polynomial. Thus instead of starting with t = N , we can start with
the smallest t for which this property holds.
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4.3 Proofs of Lemmas 18 and 19

In this subsection we shall give the proofs of Lemmas 18 and 19. This completes the
proof of the correctness of our algorithm.

4.3.1 Proof of Lemma 18

We �rst prove a lemma below, from which Lemma 18 straightforwardly follows. For
a chain C : T0 ≺ T1 ≺ . . . Tk = Ttop and x ∈ Rn, a transversal T ∈ [Tj−1, Tj] is said to
be (x, C)-tight if (a(T )− a(Tj−1))x = f(T )− f(Tj−1).

Lemma 23. Let C : T1 ≺ · · · ≺ Tk = Ttop be a chain of transversals. If C∗ is a
re�nement of C, x ∈ P (f, C), and every T ∗ ∈ C∗ \ C is (x, C)-tight, then x ∈ P (f, C∗),
and every (x, C∗)-tight transversal T is also (x, C)-tight.

Proof. Let T ∗ ∈ C∗ ∩ [Tj−1, Tj]. We have that x satis�es (a(T )− a(Tj−1))x ≤ f(T )−
f(Tj−1) for every T ∈ [Tj−1, Tj], and (a(T ∗)− a(Tj−1))x = f(T ∗)− f(Tj−1). Thus

(a(T )− a(T ∗))x = (a(T )− a(Tj−1))x− f(T ∗) + f(Tj−1) ≤ f(T )− f(T ∗)

holds for any T ∈ [T ∗, Tj], and equality holds if and only if (a(T ) − a(Tj−1))x =
f(T )− f(Tj−1).

Proof of Lemma 18. Let C∗ = C ∪ C̄. Note that C∗ is a chain. The (x, Z)-tightness
of AZ and BZ implies that TAZj

and TBZj
are (x, C)-tight, and hence x ∈ P (f, C∗) by

Lemma 23. As C∗ is a re�nement of C̄, x ∈ P (f, C̄) follows from Lemma 16.

4.3.2 Proof of Lemma 19

In the proof of Lemma 19 we shall use the following two lemmas on properties of
hypergraphs obtained by re�ning the underlying chain.

Lemma 24. Let C : T1 ≺ · · · ≺ Tk = Ttop and C∗ : T1 ≺ · · · ≺ Tj−1 ≺ T ∗ ≺ Tj ≺
· · · ≺ Tk be chains. If x ∈ P (f, C∗), T ∈ [Tj−1, Tj], and T is (x, C)-tight, then both
T ∗ ∧ T and T ∗ ∨ T are (x, C∗)-tight.

Proof. By submodularity, f(T ∧ T ∗) + f(T ∨ T ∗)− f(T ∗) ≤ f(T ), and thus

a(T )x− a(Tj−1)x = (a(T ∧ T ∗)− a(Tj−1))x+ (a(T ∨ T ∗)− a(T ∗))x

≤ f(T ∧ T ∗)− f(Tj−1) + f(T ∨ T ∗)− f(T ∗) ≤ f(T )− f(Tj−1) = a(T )x− a(Tj−1)x.

As equality holds throughout, we have (a(T ∧ T ∗)− a(Tj−1))x = f(T ∧ T ∗)− f(Tj−1)
and (a(T ∨ T ∗)− a(T ∗))x = f(T ∨ T ∗)− f(T ∗).

Lemma 25. Let C∗ be a re�nement of a chain C of transversals, x be a common
maximizer of max{x(V ) | x ∈ P (f, C)} and max{x(V ) | x ∈ P (f, C∗)}, and E and E∗

be the corresponding auxiliary arcs with respect to x on (V, E(C)) and on (V, E(C∗)),
respectively. Then a partial augmenting walk in E∗ is a partial augmenting walk in
E.
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Proof. It su�ces to deal with a re�nement C∗ : T1 ≺ · · · ≺ Tj−1 ≺ T ∗ ≺ Tj ≺ · · · ≺ Tk.
By Lemma 24, a free vertex in (V, E(C∗)) is also free in (V, E(C)), a semi-free vertex
in (V, E(C∗)) is also semi-free in (V, E(C)), and if uv ∈ E∗ then uv ∈ E. This implies
that the statement holds if there is no vertex of multiplicity two.
Let Z = Zj, and let Z∗1 and Z∗2 be the two hyperedges in E(C∗) that decompose Z,

in this order. If v◦Z exists, then it may belong to both Z∗1 and Z∗2 with multiplicity
one. Hence some edges in E1

Z ∪E2
Z may move to E0

Z∗i
, and we have to prove that this

does not lead to a PAW in E∗ that is not a PAW in E.
Suppose that there is a PAW W in E∗ that is not a PAW in E. According to

the rule of augmentation walks, there are two possibilities: (i) W passes through
two consecutive arcs which are of the form uv◦Z , vv

◦
Z ∈ E1

Z for some Z ∈ E(C) with
the same label; (ii) W passes through two consecutive arcs which are of the form
v◦Zv, v

◦
Zw ∈ E1

Z for some Z ∈ E(C) with the same label. We shall show that none of
these can happen.

• In case (i) we have uv◦Z ∈ E0
Z∗1

and vv◦Z ∈ E0
Z∗2
. Since uv◦Z , vv

◦
Z ∈ E1

Z with the
same label, there is a Z-tight set Y containing v◦Z but neither u nor v. If the
shade of Y is the same as the shade of Z∗1 in Z, then Y ∩Z∗1 is a Z∗1 -tight ūv

◦
Z-set

by Lemma 24, which contradicts uv◦Z ∈ E0
Z∗1
. Otherwise Y ∩ Z∗2 is a Z∗2 -tight

v̄v◦Z-set by Lemma 24, which contradicts vv◦Z ∈ E0
Z∗2
.

• For case (ii), the proof is similar to case (i). We have v◦Zv ∈ E0
Z∗1

and v◦Zw ∈ E0
Z∗2
.

Since v◦Zv, v
◦
Zw ∈ E1

Z with the same label, DZ(v) and DZ(w) have the same
shade. If this shade is the same as the shade of Z∗1 , then (DZ(w) \ {v◦Z})∩Z∗2 is
a Z∗2 -tight v

◦
Zw-set by Lemma 24, contradicting v◦Zw ∈ E0

Z∗2
. Otherwise (DZ(v)\

{v◦Z}) ∩ Z∗1 is a Z∗1 -tight v
◦
Zv-set by Lemma 24, contradicting v◦Zv ∈ E0

Z∗1
.

In the following we shall use notation as given in Lemma 19, and assume that
x(V ) = x̄(V ) (i.e., max{x(V ) | x ∈ P (f, C)} = max{x(V ) | x ∈ P (f, C̄)}) and
{(AZ , BZ) | Z ∈ E(C)} is nontrivial. By Lemma 18, we can assume that x = x̄. Let
C̄ : T̄1 ≺ · · · ≺ T̄k̄ = Ttop and C∗ = C ∪ C̄ : T ∗1 ≺ · · · ≺ T ∗k∗ = Ttop.
We shall consider three hypergraphs (V, E), (V, Ē), and (V, E∗), where E = E(C),
Ē = E(C̄), and E∗ = E(C∗). The corresponding canonical 2-covers {(AZ , BZ) | Z ∈
E}, {(AZ′ , BZ′) | Z ′ ∈ E ′}, and {(AZ∗ , BZ∗) | Z∗ ∈ E∗} are all de�ned with respect to
x. For the hyperedges corresponding to C∗ we use the following additional notation: E∗1
is the set of hyperedges corresponding to TZAj

−Tj−1 for some j, E∗2 is the set of those
corresponding to TBZj

−TAZj
, and E∗3 is the set of those corresponding to Tj−TZBj

for
some j. A hyperedge Z ∈ E is therefore decomposed into three hyperedges: AZ ∈ E∗1 ,
BZ \ AZ ∈ E∗2 , and Z \ BZ ∈ E∗3 , where some of these may be empty. It should be
noted that these hyperedges can be multisets: if m(BZ) = 2, then v◦Z has multiplicity
two in BZ \AZ . However, if v

◦
Z ∈ AZ (i.e., if v◦Z appears in a PAW or it is semi-free),

then this vertex is both in AZ and in Z \BZ with multiplicity one. If v◦Z is semi-free,
then it is free in Z \BZ , because any (Z \BZ)-tight subset containing v◦Z corresponds
to a Z-tight subset Y with m(Y ) = 2 by Lemma 23.
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Lemma 26. For Z∗ ∈ C∗, the sets AZ∗ and BZ∗ have the following properties:

(a) if Z∗ ∈ E∗1 , then AZ∗ = BZ∗ = Z∗;

(b) if Z∗ ∈ E∗2 , then AZ∗ = ∅, BZ∗ = Z∗;

(c) if Z∗ ∈ E∗3 , then AZ∗ = BZ∗ = ∅;

(d)
⋃

Z∗∈E∗ AZ∗ =
⋃

Z∈E AZ, and

k∗∑
j=1

ã(T ∗j−1)|AZ∗j
| −

k∗∑
j=1

ã(T ∗j )|Z∗j \BZ∗j
| =

k∑
j=1

ã(Tj−1)|AZj
| −

k∑
j=1

ã(Tj)|Zj \BZj
|.

Proof. We prove that the set of PAWs (w.r.t. x) does not change in (V, E) and (V, E∗).
By Lemma 25 every PAW in (V, E∗) is also a PAW in (V, E). We now show that every
PAW in (V, E) is also a PAW in (V, E∗). Let Z = Zj ∈ C, and let us consider the
hyperedges AZ ∈ E∗1 , BZ \AZ ∈ E∗2 , and Z \BZ ∈ E∗3 . It follows from Lemma 23 that
a free vertex in (V, E) remains free in (V, E∗) and a semi-free vertex v◦Z in Z in (V, E)
becomes free in Z \BZ in (V, E∗) if m(AZ) = 1.
Take any PAW W in (V, E). Suppose that uv ∈ E0

Z is a forward arc in W , i.e.,
u ∈ QZ and v ∈ RZ′∪SZ′ (here, as before, Z

′ denotes the hyperedge of E that contains
v and is not Z). Then both u and v are in AZ , and uv ∈ E0

AZ
because an AZ-tight set

separating u from v would also be Z-tight by Lemma 23. Similarly, if uv ∈ E0
Z is a

backward arc in W , then both u and v are in Z \BZ , and uv ∈ E0
Z\BZ

by Lemma 23.
The existence of these arcs implies that all forward arcs of an original PAW are in
E0

AZ
for some Z ∈ E , while all backward arcs are in E0

Z\BZ
for some Z ∈ E . As free

vertices remain free, W remains a PAW in (V, E∗) if it does not pass through v◦Z in
(V, E).
If m(BZ) = 2, then W does not pass through v◦Z , since v

◦
Z is not semi-free and it is

not in QZ ∪ RZ . If v◦Z ∈ AZ , there are three possibilities for W to pass through v◦Z
according to the direction of the arcs incident to v◦Z : (i) W ends at v◦Z ; (ii) W passes
through v◦Z by arcs uv◦Z and vv◦Z ; (iii) W passes through v◦Z by arcs v◦Zv and v◦Zw.

• In case (i), W uses uv◦Z ∈ E1
Z and v◦Z is semi-free. In this case we have that

u ∈ QZ , and hence u ∈ AZ . Furthermore, uv◦Z ∈ E0
AZ

holds because there is no
Z-tight set containing v◦Z but not u by Lemma 23. Since v◦Z is free in (V, E∗),
W is a PAW in (V, E∗).

• In case (ii), v◦Z is not semi-free, and uv◦Z , vv
◦
Z ∈ E1

Z ∪ E2
Z with u ∈ QZ and

v ∈ QZ′ . We have u ∈ AZ and v ∈ Z \BZ by de�nition of the canonical 2-cover.
Also, vv◦Z ∈ E1

Z holds by Claim 14 (d). As these two arcs have di�erent labels,
there is no Z-tight set containing v◦Z but neither u nor v. This means that
uv◦Z ∈ E0

AZ
by Lemma 23. Lemma 23 also implies vv◦Z ∈ E0

Z\BZ
, since otherwise

there would be a Z-tight set Y with mZ(Y ) = 2 that avoids v. Therefore, W
remains a PAW in (V, E∗).
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• In case (iii), v◦Z is not semi-free, and v◦Zv, v
◦
Zw ∈ E1

Z ∪ E2
Z with v ∈ RZ and

w ∈ RZ′ ∪ SZ′ . In this case, v ∈ Z \ BZ and w ∈ AZ . It also holds that
v◦Zw ∈ E1

Z by Claim 14 (f). We have v◦Zw ∈ E0
AZ

because v◦Zw does not enter a
Z-tight set. On the other hand, v◦Zv ∈ E0

Z\BZ
follows from Lemma 23 because

any Z-tight set Y with AZ∪{v} ⊆ Y must havemZ(Y ) = 2. Indeed, mZ(Y ) = 1
would imply that in (V, E) the label of v◦Zv is the same as the shade of AZ which
in turn is the same as the label of v◦Zw, contradicting the assumption that these
two arcs appear in a PAW. Therefore, W remains a PAW in (V, E∗).

We obtained that the set of PAWs does not change, which proves (a)�(c) by the
de�nition of AZ and BZ . Statement (d) easily follows from (a)�(c).

We are now ready to prove Lemma 19.

Proof of Lemma 19. By Lemma 25 every PAW in (V, E∗) is also a PAW in (V, Ē).
Combined with Lemma 26, this implies that

⋃
Z̄∈Ē AZ̄ ⊇

⋃
Z∗∈E∗ AZ∗ =

⋃
Z∈E AZ .

From now on we assume that
⋃

Z̄∈Ē AZ̄ =
⋃

Z∗∈E∗ AZ∗ . Observe that each hyperedge
of Ē is obtained by taking the union (with multiplicities) of at most three hyperedges
in E∗, at most one from each of E∗1 , E∗2 , E∗3 . Let Z̄j ∈ Ē be obtained as the union of
Z1

j , Z
2
j , Z

3
j with Zi

j ∈ E∗i (i = 1, 2, 3), where Zi
j may be empty. Denote the transversal

corresponding to Zi
j in the chain C∗ by T ∗ji . Since Lemma 26 implies AZ∗ = Z∗ for

Z∗ ∈ E∗1 , we have that Z1
j ⊆ AZ̄j

. Moreover, since
⋃

Z̄∈Ē AZ̄ =
⋃

Z∗∈E∗ AZ∗ , we actually
have

AZ̄j
= Z1

j and Z̄j \BZ̄j
= Z3

j . (14)

Let Ē ′ be the set of hyperedges of Ē that are not in E∗. Then for each Z̄j ∈ Ē ′ we
have

T̄j−1 ≺ T ∗j1−1 if Z1
j 6= ∅,

T ∗j3 ≺ T̄j if Z3
j 6= ∅.

(15)

Moreover at least one of Z1
j 6= ∅ and Z3

j 6= ∅ holds since each hyperedge Z̄j in Ē ′ is
obtained as a union of at least two hyperedges in E∗. Therefore, by (14) and (15), it
holds that

ã(T̄j−1)|AZ̄j
| − ã(T̄j)|Z̄ \BZ̄j

| < ã(T ∗j1−1)|Z1
j | − ã(T ∗j3)|Z

3
j | (16)

for each Z̄j ∈ Ē ′. Lemma 26 also implies

ã(T ∗j1−1)|Z1
j | − ã(T ∗j3)|Z

3
j | =

∑
i

{
ã(T ∗i−1)|AZ∗i

| − ã(T ∗i )|Z∗i \BZ∗i
|
}
,

where the sum is taken over all Z∗i ∈ E∗ composing Z̄j. On the other hand, for each
Z̄j ∈ Ē \ Ē ′, we have Z̄j = Zi

j for some i ∈ {1, 2, 3}, and T̄j−1 = T ∗ji−1 and T̄j = T ∗ji .
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Therefore(
k̄∑

j=1

ã(T̄j−1)|AZ̄j
| −

k̄∑
j=1

ã(T̄j)|Z̄j \BZ̄j
|

)
−

(
k∗∑
j=1

ã(T ∗j−1)|AZ∗j
| −

k∗∑
j=1

ã(T ∗j )|Z∗j \BZ∗j
|

)
=
∑
Z̄j∈Ē ′

{(
ã(T̄j−1)|AZ̄j

| − ã(T̄j)|Z̄j \BZ̄j
|
)
−
(
ã(T ∗j1−1)|Z1

j | − ã(T ∗j3)|Z
3
j |
)}

< 0,

where the last relation follows from (16) and the fact that the 2-cover {(AZ , BZ) |
Z ∈ E} is nontrivial and hence Ē ′ 6= ∅. By Lemma 26 (d), this proves the lemma.

5 Solving the minimum 2-cover problem combinato-

rially

As stated in Section 3.2, x ∈ argmax{x(V ) | x ∈ P (f, C)} is found by the ellipsoid
method, while in Section 3.3 we have discussed how to increase x(V ) for a given
x ∈ P (f, C) by using an augmenting walk. In this section we shall show that the
number of augmentations becomes O(n3) by choosing the lexicographically shortest
walk in each augmentation, which implies a combinatorial polynomial-time algorithm
for the minimum 2-cover problem.
Suppose that W is an augmenting walk with the vertex sequence v1, v2, . . . , vl, and

let d =
∑

1≤i≤dl/2e χv2i−1
−
∑

1≤i≤bl/2c χv2i . As de�ned in Section 3.3, the augmentation
of x through W by ε is to reset by x := x + εd. In the remainder of this section,
the augmentation through W means the augmentation of x through W by ε∗, where
ε∗ = max{ε ∈ R | x + εd ∈ P (f, C)}. We remark that ε∗ can be computed by the
standard submodular function minimization. Indeed, for Zj ∈ E(C) and for each
nonzero element s in Uv◦Zj

, a set function f s
Zj

: 2Zj → Z (by regarding Zj as a set)

de�ned by

f s
Zj

(Y ) =

{
f(TY )− f(Tj−1) if v◦Zj

/∈ Y ,
f(TY \{v◦Zj

} ∨ {s})− f(Tj−1) otherwise
(Y ⊆ Zj)

is submodular. Hence, when �xing Zj ∈ E(C) and s ∈ Uv◦Zj
, the computation of the

maximum ε is reduced to the line search problem in a submodular polyhedron, which
can be solved in strongly polynomial time [22]. Thus the desired ε∗ can be obtained by
picking the smallest value among the maximum ε values of the restricted line search
problems over all Z ∈ E(C) and s ∈ Uv◦Z

.
We now de�ne the lexicographical order of augmenting walks. Assume that a total

order on V is given. For a (partial) augmenting walk W , the length of the walk is
denoted by |W |. For two partial augmenting walksW1 andW2 starting from a common
vertex v, W1 is said to be lexicographically shorter than W2, denoted W1 ≺ W2, if
|W1| < |W2| or |W1| = |W2| and the list of vertices from v to the end along W1 is
lexicographically smaller than that of W2.
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Every augmenting walk W has even length, and hence has a center vertex vW . If
W1 and W2 are the two walks from vW to the two endpoints of W , then the vertex
list of W is de�ned to be (W1,W2) if W1 ≺ W2, and (W2,W1) otherwise.
For two augmenting walks W and W ′, W is said to be lexicographically smaller

than W ′, denoted W ≺ W ′, if |W | < |W ′| or |W | = |W ′| and (W1,W2) is lexicograph-
ically smaller than (W ′

1,W
′
2), where (W1,W2) and (W ′

1,W
′
2) are the vertex lists of W

and W ′, respectively.
Recall that v◦Z denotes the vertex of multiplicity two in Z ∈ E . For each Z ∈ E ,

v ∈ Z \ {v◦Z}, and x ∈ RV , let Wf(v, Z, x) and Wb(v, Z, x) be the lexicographically
shortest forward/backward PAW among those starting from v with the initial arc
in EZ in the auxiliary digraph with respect to x. On the other hand, for v◦Z , let
Wf(v

◦
Z , s, x) andWb(v◦Z , s, x) be the lexicographically shortest forward/backward PAW

among those starting from v◦Z whose initial arc is special or has label s.
Our main theorem (Theorem 35) is a direct consequence of Lemma 30 below. Before

showing Lemma 30, we �rst establish several technical lemmas.

Lemma 27. Suppose that there are forward and backward PAWs W1 and W2 starting
at a vertex v with the initial arcs both colored in Z ∈ E. Then there is an augmenting
walk W satisfying |W | < |W1| + |W2|, unless v = v◦Z and the initial arcs of W1 and
W2 are in E1

Z and have the same label.

Proof. This is implicit in the proof of Claim 14 (b).

A pair of walks in Lemma 27 can be used as a certi�cate for the existence of a
shorter augmenting walk. Lemma 27 also implies the following lemma.

Lemma 28. Let W be the lexicographically shortest augmenting walk. Then arcs of
W incident to each vertex are all incoming or all outgoing.

Proof. Suppose to the contrary that a vertex v is incident to both an incoming arc
and an outgoing arc of W . Assume for simplicity that v 6= v◦Z . Then, by splitting
W at the consecutive incoming pair at v, W can be considered as the concatenation
of Wf(v, Z, x) and Wf(v, Z

′, x). Similarly W can be considered as the concatena-
tion of Wb(v, Z, x) and Wb(v, Z ′, x). Hence |W | = |Wf(v, Z, x)| + |Wf(v, Z

′, x)| =
|Wb(v, Z, x)| + |Wb(v, Z ′, x)|. On the other hand by Lemma 27 there are augment-
ing walks W1 and W2 such that |W1| < |Wf(v, Z, x)| + |Wb(v, Z, x)| and |W2| <
|Wf(v, Z

′, x)| + |Wb(v, Z ′, x)|. Thus |W1| + |W2| < |Wf(v, Z, x)| + |Wb(v, Z, x)| +
|Wf(v, Z

′, x)| + |Wb(v, Z ′, x)| = 2|W |, contradicting that W is the lexicographically
shortest augmenting walk.
The same argument clearly works when v = v◦Z .

Let v be a vertex that belongs to distinct Z,Z ′ ∈ E . A (v, Z)-PAW is a forward
PAW starting at v with the initial arc colored in Z or a backward PAW starting at v
with the initial arc colored in Z ′.
For v◦Z and a label s, a (v◦Z , s)-PAW is a forward or backward PAW starting at

v◦Z with the initial arc labeled in s. A (v◦Z , s̄)-PAW is a forward or backward PAW
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starting at v◦Z with the initial arc not labeled in s if s is a shade of some tight set, and
otherwise a (v◦Z , s̄)-PAW just means any forward or backward PAW starting at v◦Z .
Lemma 27 further implies the following lemma.

Lemma 29. If there are a (v, Z)-PAW W1 and a (v, Z ′)-PAW W2 with Z 6= Z ′, then
there is an augmenting walk W satisfying |W | ≤ |W1|+ |W2|.
If there are a (v◦Z , s)-PAW W1 and a (v◦Z , s̄)-PAW W2, then there is an augmenting

walk W satisfying |W | ≤ |W1|+ |W2|.

For v ∈ Z with v 6= v◦Z , let W (v, Z, x) be the lexicographically shortest (v, Z)-PAW
with respect to x ∈ Rn. Note that W (v, Z, x) = min{Wf(v, Z, x),Wb(v, Z ′, x)}, where
the minimum is taken with respect to the lexicographical order. On the other hand,
let W (v◦Z , s̄, x) be the lexicographically shortest (v◦Z , s̄)-PAW.

Lemma 30. Let x ∈ P (C, f) and x′ be obtained from x by the augmentation through
the lexicographically shortest augmenting walk W . Then, for each vertex v ∈ Z \{v◦Z},

• |W (v, Z, x)| ≤ |W (v, Z, x′)|, and

• if |W (v, Z, x′)| ≤ |W |/2, then W (v, Z, x) � W (v, Z, x′).

The corresponding relation also holds for W (v◦Z , s̄, x
′) for any label s.

In order to describe our proof idea we �rst prove the case when there is no vertex
of multiplicity two.

Proof of Lemma 30 when there is no vertex of multiplicity two. Let w1 and w2 be the
endvertices of W , and E (resp. E ′) be the sets of arcs before (resp. after) the aug-
mentation. Throughout the proof DZ(u) will denote the smallest (x, Z)-tight set
containing u for each u ∈ Z. For each vertex v ∈ Z, let c(v, Z) be the number of
times that W (v, Z, x′) passes through arcs in E ′ \ E.
We shall prove the statement by induction on c(v, Z), i.e., we assume that the

statement holds for any v′ and Z ′ with c(v′, Z ′) < c(v, Z). If c(v, Z) = 0, then the
statement is trivial. Hence we may assume that there is an arc in W (v, Z, x′) which
is in E ′ \ E, and let u1u2 be the �rst such arc when tracing W (v, Z, x′) from v. We
assume that u1u2 is passed in the forward direction from v (and we omit the identical
proof for the other case, i.e., u1u2 is passed in the backward direction). Let Z∗ ∈ E
be the color of u1u2 in E ′, i.e., u1u2 ∈ E ′Z∗ . Let v2 be the last vertex of W (v, Z, x′),
W̃1 be the part of W (v, Z, x′) from v to u1, and W̃2 be the part of W (v, Z, x′) from
u2 to v2. Observe that W̃2 = Wb(u2, Z

′′, x′), where Z ′′ is the element of E containing
u2 and distinct from Z∗. By induction it holds that

|W̃2| ≥ |W (u2, Z
∗, x)|. (17)

(Note that Wb(u2, Z
′′, x′) is a (u2, Z

∗)-PAW.)
We say that an arc ab ∈ W ∩ EZ∗ is short if

(i) |Wf(a, Z
∗, x)| ≤ |W̃2|+ 1, and
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(ii) in the case |W̃2| ≤ |W |/2− 1, |Wf(a, Z
∗, x)| = |W̃2|+ 1 implies b ≺ u2.

This de�nition is motivated by the following fact.

Claim 31. Every arc ab ∈ W ∩ EZ∗ leaving DZ∗(u2) is short.

Proof. LetW1 be the �rst part ofW from the initial vertex of W until a when tracing
W so that ab is in forward direction, and let W2 be the latter part of W from b to
the end vertex of W . Since a ∈ DZ∗(u2), we have that au2 ∈ EZ if a 6= u2. Hence the
concatenation of au2 andW1 is a (u2, Z

′′)-PAW if a 6= u2, while W1 itself is a (u2, Z
′′)-

PAW if a = u2. Thus, by Lemma 29 there is an augmenting walk W ′ satisfying

|W ′| ≤

{
|W (u2, Z

∗, x)|+ |W1|+ 1 if a 6= u2,

|W (u2, Z
∗, x)|+ |W1| if a = u2.

(18)

Since W is the shortest and W is the concatenation of W1 and Wf(a, Z
∗, x), it holds

that |Wf(a, Z
∗, x)| ≤ |W (u2, Z

∗, x)|+1 ≤ |W̃2|+1 by (17) and (18), where the equality
may hold only if a 6= u2. Thus ab satis�es (i).
To see (ii) suppose that |W̃2| ≤ |W |/2 − 1 and |Wf(a, Z

∗, x)| = |W̃2| + 1. Then
a 6= u2, |W | = |W ′|, and |W1| ≥ |W |/2. Hence the two walks W and W ′ have
a common center on W1. As b 6= u2 (because u2 ∈ DZ∗(u2) while b /∈ DZ∗(u2)),
W � W ′ implies that b ≺ u2. Thus ab satis�es (ii).

Claim 32. The arc set W ∩ EZ∗ contains a short arc ab with u1 ∈ DZ∗(b).

Proof. Since u1u2 ∈ E ′ but u1u2 /∈ E, we have u1 /∈ DZ∗(u2). We shall take a maximal
(x, Z∗)-tight u1u2-set Y with the property that every arc a′b′ ∈ W ∩ EZ∗ leaving Y
is short. As DZ∗(u2) satis�es this condition by Claim 31, such a maximal tight set Y
exists. Since u1u2 ∈ E ′ but u1u2 /∈ E, the arc set W ∩EZ∗ contains an arc ab leaving
Y . Let W1 and W2 be the parts of W before and after ab, respectively, when tracing
W in the direction of ab. We shall show that u1 ∈ DZ∗(b), which proves the claim.
Suppose to the contrary that u1 /∈ DZ∗(b). Then Y ′ = Y ∪ DZ∗(b) is a Z∗-tight

u1u2-set that is larger than Y . We shall show that any arc a′b′ ∈ W ∩EZ∗ leaving Y
′

is short, contradicting the maximality of Y .
Due to the choice of Y , this is trivial if a′ ∈ Y . Assume a′ ∈ DZ∗(b). Lemma 28

implies that a′ 6= b, and hence we have a′b ∈ EZ∗ , which in turn implies that

|Wf(a
′, Z∗, x)| ≤ |W2|+ 1 = |Wf(a, Z

∗, x)| ≤ |W̃2|+ 1, (19)

where the �rst inequality follows from the fact that the concatenation of a′b and W2

is a forward PAW starting from a′ and the second inequality follows since ab is short.
Thus condition (i) holds for a′b′.
To check condition (ii), suppose |W̃2| ≤ |W |/2 − 1. Let W ′

1 and W ′
2 be the parts

of W before and after a′b′, respectively, when traversing W in the direction of a′b′.
Note that |W ′

2| + 1 = |Wf(a
′, Z∗, x)|. Therefore, if |Wf(a

′, Z∗, x)| = |W̃2| + 1, then
(19) implies |W ′

2| = |W2| = |W̃2| ≤ |W |/2 − 1. This in turn implies that a ∈ W ′
1,

a′ ∈ W1, and the center of W is between a and a′. As a′b ∈ EZ∗ , the concatenation
of W ′

1, a
′b, and W2 is an augmenting walk. Note that, by |W2| = |W ′

2|, this walk has
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Section 5. Solving the minimum 2-cover problem combinatorially 32

the same length and the same center as W . This cannot be lexicographically smaller
than W , and thus b′ � b. On the other hand, we also have b ≺ u2 since ab is short,
and |Wf(a, Z

∗, x)| = |W̃2|+ 1 holds. Thus we get b′ ≺ u2, and (ii) holds for a′b′.

Let ab be the arc guaranteed by Claim 32. We have two cases depending on whether
u1 = b or not.
If u1 6= b, then, by u1 ∈ DZ∗(b), the concatenation of W̃1, u1b,W2 is a (v, Z)-PAW

in E, denoted W ′. We have |W2| = |Wf(a, Z
∗, x)| − 1 ≤ |W̃2| by the shortness, and

thus |W (v, Z, x)| ≤ |W ′| = |W̃1|+ |W2|+ 1 ≤ |W̃1|+ |W̃2|+ 1 = |W (v, Z, x′)|.
Now suppose that |W (v, Z, x′)| ≤ |W |/2, which implies that |W̃2| ≤ |W |/2 − 1. If
|Wf(a, Z

∗, x)| ≤ |W̃2|, then the above argument gives |W (v, Z, x)| < |W (v, Z, x′)|, and
hence W (v, Z, x) ≺ W (v, Z, x′) Suppose that |Wf(a, Z

∗, x)| = |W̃2| + 1. Then b ≺ u2

since ab is short and hence W ′ ≺ W (v, Z, x′). Thus W (v, Z, x) ≺ W (v, Z, x′) and the
statement follows.
If u1 = b, then let W̃ ′

1 be the walk tracing W̃1 in the reversed order from u1 to v.
If W̃ ′

1 and W2 never split when tracing them from u1 (i.e., the vertex sequence of W̃ ′
1

coincides with an initial part of the vertex sequence of W2, because a free or semi-free
vertex cannot be an internal vertex of a PAW), then the remaining part of W2 from
v to the end is a (v, Z)-PAW. Therefore |W (v, Z, x)| ≤ |W2| = |Wf(a, Z

∗, x)| − 1 ≤
|W̃2| < |W (v, Z, x′)|. On the other hand, if W̃ ′

1 andW2 split at some vertex v′, then the
concatenation of W̃ ′

1 and W2 followed by a shortcut at v′ results in a (v, Z)-PAW (cf.
the proof of Claim 14(b)). Thus |W (v, Z, x)| ≤ |W̃1|+ |W2| = |W̃1|+ |Wf(a, Z

∗, x)| −
1 ≤ |W̃1|+ |W̃2| < |W (v, Z, x′)|, which completes the proof.

Now we shall describe how to adapt the above proof to the general case.

Proof of Lemma 30. We shall check what happens when v◦Z∗ appears in the above
proof. Let E and E ′ be the arc sets with respect to x and x′, respectively. The proof
is done by induction on c(v, Z) (and c(v◦Z , s̄) by extending the de�nition, where we
regard two arcs e ∈ E and e′ ∈ E ′ as di�erent arcs if their labels are di�erent even if
the corresponding endvertices coincide). Let W̃1 be the initial part ofW (v, Z, x′) from
v to u1 and W̃2 be the latter part from u2 to the end. (When we prove the statement
for W (v◦Z , s̄, x), replace v with v◦Z and Z with s̄ in the subsequent discussion.)
Take u1u2 ∈ E ′Z∗ \ E, as in the case when there is no vertex of multiplicity two. If

vZ∗ is semi-free, then the above proof works. Assume that vZ∗ is not semi-free.
For each arc in W incident to a vertex v, its partner (in W at v) is the arc in W

adjacent at v. The label of an arc e ∈ E1
Z∗∪E2

Z∗ is denoted by `(e). For a (x, Z∗)-tight
set Y with m(Y ) = 1, the shade of Y is denoted by sh(Y ). When u1 = v◦Z∗ , let s̃ be
the label of the last arc of W̃1 if |W̃1| ≥ 1, and let s̃ = s if |W̃1| = 0 (i.e., v = u1 = v◦Z∗).

Claim 33. Suppose that the lemma does not hold for W (v, Z, x). Then there is a
(x, Z∗)-tight set Y satisfying the following properties:

(a) u2 ∈ Y ;

(b) u1 /∈ Y if u1 6= v◦Z∗; otherwise u1 /∈ Y or the shade of Y is s̃;
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Section 5. Solving the minimum 2-cover problem combinatorially 33

(c) every ab ∈ EZ∗ ∩W leaving Y with a 6= v◦Z∗ is short, i.e., it satis�es (i) and (ii)
given above.

(d) every v◦Z∗b ∈ EZ∗ ∩W leaving Y is short, that is, the following properties hold
unless m(Y ) = 1 and the partner of v◦Z∗b at v◦Z∗ has label equal to the shade of
Y ;

• |Wf(v
◦
Z∗ , `(v

◦
Z∗b), x)| ≤ |W̃2|+ 1, and

• in the case |W̃2| ≤ |W |/2 − 1, |Wf(v
◦
Z∗ , `(v

◦
Z∗b), x)| ≤ |W̃2| + 1 implies

b ≺ u2.

Proof. We split the proof into two cases.
Case 1: u2 6= v◦Z∗ . We claim that DZ∗(u2) satis�es the properties (a)�(d). Clearly

(a) is satis�ed. If u1u2 does not exist in E, then u1 /∈ DZ∗(u2). If u1u2 exists in E,
then u1 = v◦Z∗ should hold with `(u1u2) = s̃ since otherwise the lemma follows by
induction. Then the shade of DZ∗(u2) is s̃, i.e., (b) is satis�ed. Property (c) can be
checked by directly applying the proof of Claim 31 since u2 6= v◦Z∗ . To see (d), note
that, if v◦Z∗ ∈ DZ∗(u2), v◦Z∗u2 exists in EZ∗ with `(v◦Z∗u2) = sh(DZ∗(u2)). Observe
also that one can apply the proof of Claim 31 to v◦Z∗b if the label of the partner of
v◦Z∗b is not equal to `(v

◦
Z∗u2, which is equal to DZ∗(u2). Thus (d) holds.

Case 2: u2 = v◦Z∗ . Let s′ be the label of u1u2 in E ′, and let e be the initial
arc of W (v◦Z∗ , s

′, x). If e ∈ E2
Z∗ , we claim that D◦Z∗ , the smallest Z∗-tight set with

multiplicity two, satis�es the desired properties. Note that D◦Z∗ exists since v
◦
Z∗ is not

semi-free. To see (b), suppose u1 ∈ D◦Z∗ . Then the concatenation of W̃1, u1vZ∗ , and
W (v◦Z∗ , s̄

′, x) (and then applying a shortcut if necessary) will lead to a (v, Z)-PAW
W ′. Thus the lemma follows by applying the induction hypothesis to W (v◦Z∗ , s̄

′, x).
Hence assume u1 /∈ D◦Z∗ . Then (b) follows, and since e ∈ E2

Z∗ , (c) and (d) can be
checked by applying the proof of Claim 31.
If e ∈ E1

Z∗ , then let Y be the smallest Z∗-tight set whose shade is `(e). To see (b)
for Y , suppose u1 ∈ Y . Then `(u1v

◦
Z∗) 6= sh(Y ) = `(e). Hence the concatenation of

W̃1, u1vZ∗ , and W (v◦Z∗ , s̄
′, x) (and then applying a shortcut if necessary) again leads

to a (v, Z)-PAW W ′ shorter than W (v, z, x′), certifying the lemma. Hence assume
u1 /∈ Y . Then (b) holds. For (c) and (d), note that for any a ∈ Y with a 6= v◦Z∗ we
have av◦Z∗ ∈ EZ∗ with `(av◦Z∗) 6= sh(Y ) = `(e). Hence one can apply the proof of
Claim 31.

In what follows we assume that the lemma does not hold for W (v, Z, x), and we
shall take a maximal Y satisfying the properties (a)�(d) in Claim 33.
For an arc av◦Z∗ ∈ W , let ãv◦Z∗ be the partner of av

◦
Z∗ in W at v◦Z∗ . For each arc ab,

de�ne Xab by

Xab =


DZ∗(b) if b 6= v◦Z∗ ,

the smallest Z∗-tight set containing b and avoiding ã if b = v◦Z∗ , ãv
◦
Z∗ ∈ E1

Z∗ ,

D◦Z∗ if b = v◦Z∗ , ãv
◦
Z∗ ∈ E2

Z∗ .

Claim 34. The arc set W ∩ EZ∗ contains a short arc ab leaving Y such that
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• u1 ∈ Xab, and

• if u1 = v◦Z∗ and m(Xab) = 1, then sh(Xab) 6= s̃.

Proof. Due to properties (a) and (b) for Y , there exists an arc ab in W ∩EZ∗ leaving
Y . By (c) and (d), such ab can be chosen to be short. (Note that, if m(Y ) = 1 and
all arcs in W ∩EZ∗ leaving Y are outgoing from v◦Z∗ , then there are at least two arcs
v◦Z∗b and v

◦
Z∗b
′ leaving Y , at least one of which must be short.)

We now show that Y ∪Xab satis�es (c) and (d) in Claim 33. To see this, take any
a′b′ ∈ W ∩ EZ∗ leaving Y ∪ Xab. It su�ces to consider the case when b = v◦Z∗ or
a′ = v◦Z∗ , since otherwise one can directly apply the proof of Claim 32 to see that a′b′

is short. Note that a′ 6= b by Lemma 28.
Case 1: Suppose b = v◦Z∗ . Let ãv◦Z∗ be the partner of av◦Z∗ in W . If ãv◦Z∗ ∈ E1

Z∗ ,
then ã /∈ Xab by the de�nition of Xab. Since a

′ ∈ Xab, we have that `(a
′v◦Z∗) 6= `(ãv◦Z∗)

(which also holds if ãv◦Z∗ ∈ E2
Z∗). Thus one can apply the proof of Claim 32 to see

that a′b′ is short.
Case 2: Suppose a′ = v◦Z∗ . Let v◦Z∗ b̃

′ be the partner of v◦Z∗b
′ in W . Note that, if

v◦Z∗b exists with `(v
◦
Z∗b) 6= `(v◦Z∗ b̃

′), then we have

|Wf(v
◦
Z∗ , `(v

◦
Z∗b
′), x)| = |W (v◦Z∗ , `(v

◦
Z∗ b̃
′), x)|

≤ |Wf(v
◦
Z∗ , `(v

◦
Z∗b), x)| ≤ |Wf(a, Z

∗, x)| ≤ |W̃2|+ 1

where the last inequality follows from the shortness of ab. Moreover |W (v, Z, x′)| ≤
|W |/2 and |Wf(v

◦
Z∗ , `(v

◦
Z∗b
′), x)| = |W̃2| + 1 imply b′ ≺ u2 by applying the argument

of the proof of Claim 32, i.e., v◦Z∗b
′ is short.

With this in mind, we now consider three cases to prove that v◦Z∗b
′ satis�es (d): (2-1)

v◦Z∗ /∈ Xab; (2-2) v
◦
Z∗ ∈ Xab\Y ; (2-3) v◦Z∗ ∈ Xab∩Y . Case 2-1: If v◦Z∗ /∈ Xab, then clearly

sh(Y ) = sh(Y ∪Xab), and hence (d) holds for v◦Z∗b
′ as (d) holds for Y . Case 2-2: If

v◦Z∗ ∈ Xab\Y , then sh(Xab) = sh(Xab∪Y ). When sh(Xab) = `(v◦Z∗ b̃
′), there is nothing

to prove for v◦Z∗b
′. When sh(Xab) 6= `(v◦Z∗ b̃

′), we have `(v◦Z∗b) = sh(Xab) 6= `(v◦Z∗ b̃
′),

which implies that v◦Z∗b
′ is short as shown above. Case 2-3: Suppose v◦Z∗ ∈ Xab∩Y . If

m(Y ) = 2 or sh(Y ) = sh(Xab), thenm(Y ∪Xab) = m(Y ) = 2 or sh(Y ) = sh(Xab∪Y ),
and (d) holds for vZ∗b

′ as (d) holds for Y . Otherwise m(Y ) = 1 and sh(Y ) 6= sh(Xab).
If `(v◦Z∗ b̃

′) 6= sh(Y ), then the shortness of v◦Z∗b
′ follows since Y satis�es (d). Otherwise

`(v◦Z∗ b̃
′) = sh(Y ) 6= sh(Xab) = `(v◦Z∗b), implying that v◦Z∗b

′ is short.
This completes the proof for Case 2, and thus Y ∪Xab satis�es (c) and (d). Since

Y ∪ Xab clearly satis�es (a), the maximality of Y implies that Y ∪ Xab violates (b).
This means that if u1 6= v◦Z∗ then u1 ∈ Xab while if u1 = v◦Z∗ then u1 ∈ Xab and
sh(Xab) 6= sh(Y ) = s̃. Thus the claim holds.

Now we are ready to complete the proof. Let ab be the arc guaranteed in Claim 34.
Let W2 be the latter part of W from b to the end when tracing ab in the forward
direction.
If u1 ∈ Y , then b 6= u1 and u1 = v◦Z∗ by (b). In this case, u1 ∈ Xab = DZ∗(b), and

sh(Xab) 6= s̃ by Claim 34. In other words v◦Z∗b exists in E with `(v◦Z∗b) = sh(Xab) 6= s̃.
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Hence the concatenation of W̃1, v
◦
Z∗b,W2 leads to a (v, Z)-PAW, implying the lemma

by the shortness of ab.
Hence assume u1 /∈ Y . If u1 6= v◦Z∗ and b 6= v◦Z∗ , then the concatenation of W̃1, u1b

and W2 leads to a (v, Z)-PAW (by taking a shortcut if necessary).
Suppose u1 = b = v◦Z∗ . Then the concatenation of W̃1 and W2 can be shortcut

to a (v, Z)-PAW if ãv◦Z∗ ∈ E2
Z∗ . Otherwise, i.e., if ãv◦Z∗ ∈ E1

Z∗ , we have `(ãv◦Z∗) =
sh(Xab) 6= s̃ by Claim 34. Hence again the concatenation of W̃1 and W2 can be
shortcut to a (v, Z)-PAW.
Suppose u1 = v◦Z∗ 6= b. Then `(v◦Z∗b) = sh(DZ∗(b)) = sh(Xab) 6= s̃. Hence the

concatenation of W̃1, v
◦
Z∗b and W2 leads to a (v, Z)-PAW.

Suppose u1 6= b = v◦Z∗ . Then the concatenation of W̃1, u1v
◦
Z∗ and W2 leads to a

(v, Z)-PAW if ãv◦Z∗ ∈ E2
Z∗ . Otherwise, i.e., if ãv◦Z∗ ∈ E1

Z∗ , we have u1 ∈ Xab and
ã /∈ Xab, implying `(u1v

◦
Z∗) 6= `(ãv◦Z∗). Thus the concatenation of W̃1, u1v

◦
Z∗ and W2

leads to a (v, Z)-PAW.
In every case we have found a (v, Z)-PAWwhich certi�es the lemma by the shortness

of ab. This completes the proof.

The main theorem now follows.

Theorem 35. Given x ∈ P (f, C), after O(n3) augmentations through the lexicograph-
ically shortest augmenting walks, x(V ) is maximized.

Proof. For simplicity we give a proof for the case when there is no vertex of multiplicity
two, and we omit the straightforward extension of the proof to the general case.
Let x′ ∈ P (f, C) be obtained from x by an augmentation through the lexicograph-

ically shortest augmenting walk W . Let W ′ be the lexicographically shortest aug-
menting walk after the augmentation, and denote the center of W ′ by vW ′ . Note
that W ′ is the concatenation of W (vW ′ , Z, x

′) and W (vW ′ , Z
′, x′). By Lemma 30,

|W (vW ′ , Z, x)| ≤ |W (vW ′ , Z, x
′)| and |W (vW ′ , Z

′, x)| ≤ |W (vW ′ , Z
′, x′)| hold, which

means that the auxiliary digraph with resect to x contains an augmenting walk shorter
than or equal to |W ′| by Lemma 29. This implies |W | ≤ |W ′|.
Suppose |W | = |W ′|. Let NZ(x) = {v ∈ Z | |W (v, Z, x)| ≤ |W |/2} and w(v, Z, x)

be the second vertex of W (v, Z, x). Similarly, de�ne NZ(x′) and w(v, Z, x′) for the
feasible solution x′ after the augmentation. By Lemma 30, we have that |W (v, Z, x)| ≤
|W (v, Z, x′)| for each v ∈ V , NZ(x′) ⊆ NZ(x), and w(v, Z, x) � w(v, Z, x′) for each
v ∈ NZ(x′). Moreover, since W 6= W ′, at least one of the following three holds: (i)
NZ(x′) ( NZ(x); (ii) w(v, Z, x) ≺ w(v, Z, x′) for some v ∈ NZ(x′); (iii) |W (v, Z, x)| <
|W (v, Z, x′)| for some v ∈ NZ(x′). Indeed, if (i) and (ii) do not hold, then either
W (v, Z, x) = Wf(v, Z, x) and W (v, Z, x′) = Wb(v, Z ′, x′) or W (v, Z, x) = Wb(v, Z ′, x)
andW (v, Z, x′) = Wf(v, Z, x

′) hold for some v, Z with v ∈ NZ(x′). However a forward
PAW and a backward PAW cannot have the same length, which implies (iii). Therefore
the number of augmentations is O(n3).

Combining Theorems 22 and 35, the proof of Theorem 2 is completed.
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