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Minimizing the Age of Information in Broadcast Wireless Networks

Igor Kadota, Elif Uysal-Biyikoglu, Rahul Singh and Eytan Modiano

Abstract— We consider a wireless broadcast network with
a base station sending time-sensitive information to a number
of clients. The Age of Information (AoI), namely the amount
of time that elapsed since the most recently delivered packet
was generated, captures the freshness of the information. We
formulate a discrete-time decision problem to find a scheduling
policy that minimizes the expected weighted sum AoI of the
clients in the network. To the best of our knowledge, this is the
first work to provide a scheduling policy that optimizes AoI in
a wireless network with unreliable channels.

The results are twofold: first, we show that a Greedy Policy,
which transmits the packet with highest current age, is optimal
for the case of symmetric networks. Then, for the general
network case, we establish that the problem is indexable and
obtain the Whittle Index in closed-form. Numerical results are
presented to demonstrate the performance of the policies.

I. INTRODUCTION

Age of Information (AoI) has been receiving increasing
attention in the literature [1]–[6], particularly for applications
that generate time-sensitive data such as position, command
and control, or sensor data. An interesting feature of this
performance metric is that it captures the freshness of
the information from the perspective of the destination, in
contrast to the long-established packet delay, that represents
the freshness of the information with respect to individual
packets. In particular, AoI measures the time elapsed since
the generation of the packet that was most recently delivered
to the destination, while packet delay measures the time
elapsed from the generation of a packet to its delivery.

The two parameters that influence AoI are packet delay
and packet interdelivery time. In general, controlling only
one is insufficient for achieving good AoI performance. For
example, consider an M/M/1 queue with a low arrival rate
and a high service rate. In this setting, the queue is often
empty, resulting in low packet delay. Nonetheless, the AoI
may still be high, since infrequent packet arrivals may result
in outdated information at the destination. Table I provides
a numerical example of an M/M/1 queue with fixed service
rate µ = 1 and a variable arrival rate λ . The first and third
rows represent a queue in which high values of expected
interdelivery time and expcted packet delay, respectively,
induce a high average AoI. The second row shows the system
at the point of minimum average AoI [1].

A good AoI performance is achieved when packets with
low delay are delivered regularly. It is important to empha-
size the difference between delivering packets regularly and
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providing a minimum throughput. Fig. 1 illustrates the case
of two sequences of packet deliveries that have the same
throughput but different delivery regularity. In general, a
minimum throughput requirement can be fulfilled even if
long periods with no delivery occur, as long as those are
balanced by periods of consecutive deliveries.

Minimizing the AoI is particularly challenging in wireless
networks with unreliable channels due to transmission errors
that result in packet losses. In this work, we consider the
problem of optimizing link scheduling decisions to minimize
the expected weighted sum AoI of the clients in the network.
To the best of our knowledge, this is the first work to provide
a transmission scheduling policy that optimizes AoI in a
wireless network with unreliable channels.

The problem of optimizing scheduling decisions in broad-
cast wireless networks with respect to throughput and de-
livery times has been studied extensively in the literature.
Throughput maximization of traffic with strict packet delay
constraints has been addressed in [7]–[10]. Interdelivery time
is considered in [11], [12] as a measure of service regularity.
Age of Information has been considered recently in [6].

In recent works, the problem of minimizing the AoI has
been explored using different approaches. Queueing Theory
is used in [1]–[3] for finding the optimal server utilization
with respect to AoI. The authors in [4], [5] consider the prob-
lem of optimizing the times in which packets are generated
at the source. Link scheduling optimization is considered in
[6], where the complexity of the problem is established and
insights into the structure of the problem are provided. In
contrast, our work focuses on characterizing the scheduling
policy that optimizes the AoI.

The remainder of this paper is outlined as follows. In the
next section, the network model is presented. In Sec. III, we
find the optimal scheduling policy for the case of symmetric
networks. In Sec. IV, we consider the general network
case and obtain a closed-form expression for the Whittle
Index. In Sec. V, the scheduling policies are evaluated using
simulations. The paper is concluded in Sec. VI.

TABLE I
EXPECTED DELAY, EXPECTED INTERDELIVERY TIME AND AVERAGE AOI

OF A M/M/1 QUEUE WITH µ = 1 AND VARIABLE λ .

λ E[delay] E[interdelivery] Average AoI
(pkt/sec) (sec) (sec) (sec)

0.01 1.01 100.00 101.00
0.53 2.13 1.89 3.48
0.99 100.00 1.01 100.02



II. SYSTEM MODEL

Consider a wireless single-hop network with a base station
(BS) sending time-sensitive information to M clients. Let
the time be slotted, with T consecutive slots forming a
frame. At the beginning of every frame, the BS generates
one packet per client i ∈ {1,2, · · · ,M}. Those new packets
replace any undelivered packets from the previous frame.
Denote the frame index by the positive integer k. Each packet
is associated with a single frame and client, thus, it can be
unequivocally identified by the tuple (k, i).

Let n∈ {1, · · · ,T} be the index of the slot within a frame.
A slot is identified by the tuple (k,n). In a slot, the BS
transmits a packet to a selected client i over the wireless
channel. The packet is successfully delivered to client i with
probability pi ∈ (0,1] and a transmission error occurs with
probability 1− pi. The probability of successful transmission
pi is fixed in time, but may differ across clients. The client
sends a feedback signal to the BS after every transmission.
The ACK/NACK reaches the BS instantaneously and without
errors.

The scheduling policies considered in this paper are non-
anticipative, i.e. policies that do not use future knowledge
in selecting clients. Let Π be the class of non-anticipative
policies and π ∈Π be an arbitrary admissible policy. In each
slot, policy π can either idle or schedule the transmission
of an undelivered packet to client i. Our goal is to charac-
terize the scheduling policy π∗ that minimizes the expected
weighted sum AoI of the clients in the network. Next, we
discuss this performance metric.

A. Age of Information Formulation

Prior to introducing the expected weighted sum AoI, we
characterize the AoI in the context of our system model. Let
AoIi be the positive real number that represents the Age of
Information of client i. The AoIi increases linearly in time
when there is no delivery of packets to client i. At the end
of the frame in which a delivery occurs, the AoIi is updated
to T . In Fig. 2, the evolution of AoIi is illustrated for a given
sample sequence of deliveries to client i.

In Fig. 3, the AoIi is shown in detail. Let ŝk denote the
set of clients that successfully received packets during frame
k and let the positive integer hk,i represent the number of
frames since the last delivery to client i. At the beginning of

Fig. 1. Two sample sequences of packet deliveries are represented by the
green arrows. Both sequences have the same throughput, namely 3 packets
over the interval, but different delivery regularity.

frame k+1, the value of hk,i is updated as follows:

hk+1,i =

{
hk,i +1 , if i /∈ ŝk ;

1 , if i ∈ ŝk . (1)

As can be seen in Fig. 3, during frame k the area under
the AoIi curve can be divided into a triangle of area T 2/2
and a parallelogram of area hk,iT 2. This area, averaged over
time, captures the average Age of Information of client i.
A network-wide metric for measuring the freshness of the
information is the Expected Weighted Sum AoI:

EWSAoI =
1
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}
, (2)

where αi is the positive real value that denotes the client’s
weight and the vector ~h1 = [h1,1, · · · ,h1,M]T represents the
initial values of the AoI in (1). For notational simplicity, we
assume that h1,i = 1,∀i, and omit ~h1 hereafter. Manipulating
the expression for EWSAoI gives us the objective function
Jπ∗

K :

Jπ∗
K = min

π∈Π
E

{
K

∑
k=1

M

∑
i=1

αi hk,i

}
, (3)

where (3) is obtained by subtracting the constant terms from
(2) and multiplying the result by K/T . With the definitions
of Age of Information1 and objective function presented, in
the following sections we discuss the scheduling policy that
minimizes (3).

III. SYMMETRIC NETWORK

Consider a Greedy Policy that, in each slot (k,n), sched-
ules a transmission to the client with an undelivered packet
and highest value of hk,i, with ties being broken in favor of

Fig. 2. On the top, five frames of a sample sequence of deliveries to
client i. The upward arrows represent the times of packet deliveries. On the
bottom, the evolution of the AoIi.

1For ease of exposition, in this paper, the value of AoIi is updated at
the beginning of the frame that follows a successful transmission to client
i, rather than immediately after the successful transmission. This update
mechanism simplifies the problem while maintaining the features of interest.
The solution to the more general problem will be provided in an extended
version of this paper.



the client with lowest index i. Denote this policy as G. Notice
that G is non-anticipative and work-conserving. Theorem 1
shows that this Greedy Policy minimizes the EWSAoI when
the network is symmetric.

Theorem 1: (Optimality of Greedy for Symmetric Net-
works) Consider a network with all clients having equal
channel reliability pi = p∈ (0,1] and weight αi = α . Among
the class of admissible policies Π, the Greedy Policy attains
the minimum time average sum AoI.

Proof: To show that the Greedy Policy minimizes the
EWSAoI in (2), we utilize a stochastic dominance argument
[13] to compare the evolution of ~hk when G is employed to
that when an arbitrary policy π is employed. For the sake
of simplicity and without loss of optimality, in this proof we
assume that π is work-conserving. Notice that for every non
work-conserving policy, there is at least one work-conserving
policy that is strictly dominant.

Let SHπ
k be the random variable that represents the sum of

the elements of ~hk when π is employed. Using this notation
and the symmetry assumptions of Theorem 1, the objective
function in (3) becomes

Jπ∗
K = α min

π∈Π
E

{
K

∑
k=1

M

∑
i=1

hk,i

}
=

= α min
π∈Π

E

{
K

∑
k=1

SHπ
k

}
. (4)

For introducing the concept of stochastic dominance,
denote the stochastic process associated with the sequence
{SHπ

k }K
k=1 as SHπ and its sample path as shπ . Let D be

the space of all sample paths shπ . Define by F the set of
measurable functions f : D→R+ such that f (shG)≤ f (shπ)
for every shG,shπ ∈ D which satisfy shG

k ≤ shπ
k ,∀k.

Definition 2: (Stochastic Dominance) We say that SHG is
stochastically smaller than SHπ and write SHG ≤st SHπ if
P{ f (SHG)> z} ≤ P{ f (SHπ)> z},∀z ∈ R,∀ f ∈F .

Since f (SHπ) is positive valued, SHG ≤st SHπ implies2

E[ f (SHG)] ≤ E[ f (SHπ)],∀ f ∈F . Knowing that one func-
tion that satisfies the conditions in F is f (SHπ)=∑

K
k=1 SHπ

k ,
it follows that if SHG≤st SHπ ,∀π ∈Π, then E{∑K

k=1 SHG
k }≤

E{∑K
k=1 SHπ

k },∀π ∈Π, which is our target expression in (4).
Therefore, it follows that for establishing the optimality of G,

Fig. 3. Area under AoIi during any frame k in terms of hk,i and T .

2Recall that for any positive valued X , it follows that E[X ] =
∫

∞

x=0(1−
P{X ≤ x})dx =

∫
∞

x=0 P{X > x}dx.

it is sufficient to confirm that SHG is stochastically smaller
than SHπ ,∀π ∈Π.

Stochastic dominance can be demonstrated using its defini-
tion directly. However, this is often complex for it involves
comparing the probability distributions of SHG and SHπ .
Instead, we use the following result from [13], which is
also used in works such as [7], [10], [14]: for verifying that
SHG ≤st SHπ , it is sufficient to show that there exist two
stochastic processes S̃H

G
and S̃H

π

such that
(i) SHπ and S̃H

π

have the same probability distribution;
(ii) S̃H

G
and S̃H

π

are on a common probability space;
(iii) SHG and S̃H

G
have the same probability distribution;

(iv) S̃H
G
k ≤ S̃H

π

k , with probability 1, ∀k.
This result allows us to establish stochastic dominance
between SHG and SHπ by properly designing the auxiliary
processes S̃H

G
and S̃H

π

. This design is achieved by utilizing
Stochastic Coupling.

Prior to discussing stochastic coupling, we introduce the
channel state. Let Ei(k,n)∼ Ber(p) be the random variable
that represents the channel state of client i during slot (k,n)

Ei(k,n) =
{

1, w.p. p [Channel ON] ;
0, w.p. 1− p [Channel OFF] . (5)

The channel state of each client is independent of the channel
state of other clients and of scheduling decisions. Notice that
the BS has no knowledge of the channel state of the clients
before transmissions.

Stochastic coupling is a method utilized for comparing
stochastic processes by imposing a common underlying
probability space. We use stochastic coupling to construct
S̃H

π

and S̃H
G

based on SHπ and SHG, respectively.
Let the process S̃H

π

be identical to SHπ . Their (common)
probability space is associated with the outcome of the
transmission in each slot, i.e. it only depends on scheduling
decisions and channel states. Now, let us construct S̃H

G
on

the same probability space as S̃H
π

. For that, we couple
S̃H

G
to S̃H

π

by dynamically connecting the channel state
of policy G to the channel state of π as follows. Suppose
that in slot (k,n), policy π schedules client j while G
schedules client i, then, for the duration of that slot, we
assign Ei(k,n)← E j(k,n). This iterative assignment imposes
that, at every slot, the channel state of G is identical to the
channel state of π . For example, if the channel associated
with the client selected by policy π during slot (k,n) is
ON, then, the channel state of G is also ON, regardless of
the client selected by policy G. Notice that the assignment
Ei(k,n)← E j(k,n) is only possible because the channel state
Ei(k,n) is independent and identically distributed for all
clients, which is the same reason for S̃H

G
and SHG having

the same probability distribution.
Returning to our four conditions, it follows from the

coupling method described above that (i), (ii) and (iii) are
satisfied. Thus, the only condition that remains to be shown
is

(iv) S̃H
G
k ≤ S̃H

π

k ,with probability 1, ∀k. (6)



This condition is established by characterizing the evolution
of S̃H

G
k and S̃H

π

k with k. The details are omitted due to length
constraints, but the intuition behind (iv) is straightforward.
Fig. 4 shows a numerical example of the evolution of S̃H

G
k

and S̃H
π

k . Consider a network with M = 3 clients, T = 1 slots
in a frame, K = 5 frames, initialization vector ~h1 = [4,3,1]T

and channel reliability p∈ (0,1]. For the sequence of coupled
channel states given in Fig. 4, the evolution of ~hk when
policies π and G are employed is displayed. Recall from
(1) that the quantity hk+1,i is updated to 1 after a successful
delivery to client i during frame k and is updated to hk,i +1,
otherwise.

As can be seen, during slots in which the channel is OFF,
all policies yield the same result, namely hk+1,i is updated to
hk,i +1 for all clients i. However, during slots in which the
channel is ON, the Greedy Policy achieves the lowest sum
of the elements of ~hk by selecting the client with highest
value of hk,i, i.e. by reducing the highest hk,i to 1. Therefore,
it follows that employing the Greedy Policy in every slot
yields the minimum value of S̃H

G
k for all k. With the last

condition established, the proof is complete.
We showed the optimality of Greedy for symmetric net-

works. For general networks, with clients possibly having
different channel reliability pi and weights αi, scheduling
decisions based exclusively on~hk may not be optimal. In the
next section, we obtain the Whittle Index Policy associated
with the general case of the AoI minimization problem in
(3). As expected, the index of client i is a function of hk,i,
pi and αi.

IV. GENERAL NETWORK

One possible approach for finding a policy that minimizes
the EWSAoI is to optimize the objective function in (3)
using Dynamic Programming [15]. A negative aspect of this

Fig. 4. Evolution of S̃H
π

k and S̃H
G
k for a network with M = 3, T = 1,

K = 5, ~h1 = [4,3,1]T and unreliable channels. Recall that channels are ON
when Ei(k,n) = 1 and OFF when Ei(k,n) = 0. Successful deliveries are
represented in green and failed transmissions in red. On the top, channel
states associated with the scheduling decisions of the arbitrary policy π .
Notice that, due to coupling, policy G has the same channel states. On the
middle, the evolution of ~hk when policy π is employed. On the bottom,
the evolution of ~hk when policy G is employed. Comparing the sum of ~hk

over time for both policies, we have S̃H
π

= {8;11;10;13;12} and S̃H
G
=

{8;11;9;12;9}, and we see that S̃H
G
k ≤ S̃H

π

k ,∀k.

approach is that evaluating the optimal policy for each state
of the network can be computationally demanding, especially
for networks with a large number of clients. To overcome this
problem, known as the curse of dimensionality, we propose
a simple Index Policy [16], also known as Whittle Index
Policy.

For designing the Index Policy, the AoI minimization
problem is transformed into a relaxed Restless Multi-Armed
Bandit (RMAB) problem. First, we note that each client in
the AoI problem can be seen as a restless bandit and thus
the AoI problem can be posed as a RMAB problem. Then,
we consider the relaxed version of the RMAB problem,
called the Decoupled Model, in which clients are examined
separately. The Decoupled Model associated with any client
i adheres to the network model with M = 1, except for the
addition of a service charge. The service charge is a fixed
cost per transmission C > 0 that is incurred by the network
every time the BS transmits a packet. Since the Decoupled
Model considers only a single client, hereafter in this section,
we omit the client index i.

The solution to the Decoupled Model lays the foundation
for the design of the Index Policy. The Index Policy is a
low-complexity heuristic that has been extensively used in
the literature [10], [12], [17] and is known to have a strong
performance in a range of applications [18], [19]. The chal-
lenge associated with this approach is that the Index Policy
is only defined for problems that are indexable, a condition
that is often difficult to establish. The Decoupled Model is
formulated and solved next. Indexability and the Index Policy
are discussed in Sec. IV-C. A detailed introduction to the
Whittle Index Policy can be found in [16], [20].

A. Decoupled Model

In this section, the Decoupled Model is formulated as
a Dynamic Program (DP). For presenting the cost-to-go
function, which is central to the DP, we first introduce
the state, control, transition and objective of the model.
Then, using the expression of the cost-to-go, we establish
in Proposition 3 a key property of the Decoupled Model
which is used in the characterization of its optimal scheduling
policy.

Consider the network model from Sec. II with a single
client. Recall that at the beginning of every frame, the BS
replaces any undelivered packet from the previous frame
with a new packet. Let the set sk,n represent the delivery
status of this new packet at the beginning of slot (k,n). If
the packet has been successfully delivered to the client by
the beginning of slot (k,n), then sk,n = 1, and if the packet
is still undelivered, sk,n = /0. The tuple (sk,n,hk) depicts the
system state, for it provides a complete characterization of
the network at slot (k,n).

Denote by uk,n the scheduling decision (or control) in time
slot (k,n). This quantity is equal to 1 if the BS transmits the
packet in slot (k,n), and uk,n = 0 otherwise. The BS can only
transmit undelivered packets, i.e. if sk,n = 1, then uk,n = 0.

State transitions are different at frame boundaries and
within frames. At the boundary between frames k− 1 and



k, namely, in the transition from slot (k−1,T ) to slot (k,1),
each component of the system state (sk,n,hk) evolves in a
distinct way. Since the BS generates a new packet at the
beginning of slot (k,1), we have that sk,1 = /0. The evolution
of hk is divided into two cases: i) when the BS transmits the
packet during slot (k−1,T ), i.e. uk−1,T = 1, the value of hk
depends on the feedback signal, as follows

P(hk = hk−1 +1|hk−1) = 1− p ; [NACK received] (7)
P(hk = 1|hk−1) = p ; [ACK received] (8)

and ii) when the BS idles, i.e. uk−1,T = 0, the transition is
deterministic

P(hk = 1|hk−1) = 1 , if sk−1,T = 1 ; (9)
P(hk = hk−1 +1|hk−1) = 1 , if sk−1,T = /0 . (10)

For state transitions that do not occur at frame bound-
aries, the quantity hk remains fixed and the set sk,n evolves
according to the scheduling decisions and feedback signals.
If the BS idles during slot (k,n− 1), the delivery status of
the packet does not change, thus

P(sk,n = sk,n−1|sk,n−1) = 1 . (11)

If the BS transmits during slot (k,n−1), the set sk,n depends
upon the outcome of the transmission, as given by

P(sk,n = /0|sk,n−1) = 1− p ; [NACK received] (12)
P(sk,n = 1|sk,n−1) = p . [ACK received] (13)

The last concept to be discussed prior to the cost-to-
go function is the objective. The objective function of the
Decoupled Model, J̃π∗

K , is analogous to (3), except that it
introduces the service charge C and evolves in slot incre-
ments (instead of frame increments). The expression for J̃π∗

K
is given by

J̃π∗
K = min

π∈Π
E

{
K

∑
k=1

T

∑
n=1

(
α hk +C I{uk,n=1}

)}
, (14)

where I{uk,n=1} is an indicator function that takes the value
1 if {uk,n = 1} is true and takes the value 0, otherwise.

The cost-to-go function Jk,n(sk,n,hk) associated with the
optimization problem in (14) has two forms. For the last
slot of any frame k, namely slot (k,T ), the cost-to-go is
expressed as

Jk,T (sk,T ,hk) = αhk +min
uk,T

{
C I{uk,T=1}+E[Jk+1,1( /0,hk+1)]

}
(15)

and for slots other than the last

Jk,n(sk,n,hk)=αhk+min
uk,n

{
C I{uk,n=1}+E[Jk,n+1(sk,n+1,hk)]

}
(16)

Given a network setup (K,T, p,α,h1,C), it is possible
to use backward induction on (15) and (16) to compute
the optimal scheduling policy π∗ for the Decoupled Model.
However, for the purpose of designing the Index Policy, it
is not sufficient to provide an algorithm that computes π∗.
The Index Policy is based on a complete characterization

of π∗. Proposition 3 provides a key feature of the optimal
scheduling policy which is used in its characterization.

Proposition 3: Consider the Decoupled Model and its op-
timal scheduling policy π∗. During any frame k, the optimal
policy either: (i) idles in every slot; or (ii) transmits until the
packet is delivered or the frame ends.

Proof: The proof follows from the analysis of the
backward induction algorithm on (15) and (16). For this
proof, we assume that the algorithm has been running and
that the values of Jk+1,1(sk+1,1,hk+1) for all possible system
states are known. The proof is centered around the backward
induction during frame k and for a fixed value of hk.

First, we analyze the (trivial) case in which the packet has
already been delivered. Consider any slot (k,n) with sk,n = 1.
In this case, the optimal scheduling policy always idles.

For the case of an undelivered packet, we start by analyz-
ing the last slot of the frame, namely slot (k,T ). It follows
from the cost-to-go in (15) that the optimal scheduling
decision u∗k,T depends only on the expression

C− p
[
Jk+1,1( /0,hk +1)− Jk+1,1( /0,1)

]
. (17)

The optimal policy idles in slot (k,T ) if (17) is non-negative
and transmits if (17) is negative.

By analyzing the cost-to-go function in (16), which is
associated with the optimal scheduling decisions in the
remaining slots of frame k, it is possible use mathematical
induction to establish that:
• if it is optimal to transmit in slot (k,n+ 1), then it is

also optimal to transmit in slot (k,n); and
• if it is optimal to idle in slot (k,n+ 1), then it is also

optimal to idle in slot (k,n).
We conclude that if (17) is non-negative, the optimal

policy idles in every slot of frame k, and if (17) is negative,
the optimal policy transmits until the packet is delivered or
until frame k ends.

Let Γ ⊂ Π be the subclass of all scheduling policies that
satisfy the conditions in Proposition 3. Since π∗ ∈ Γ, we
can reduce the scope of the Decoupled Model to policies
in Γ without loss of generality. In the following section, we
redefine the Decoupled Model so that scheduling decisions
are made only once per frame, rather than once per slot. This
new model is denoted Frame-Based Decoupled Model.

B. Frame-Based Decoupled Model

Denote by uk the scheduling decision at the beginning of
frame k. We let uk = 0 if the BS idles in every slot of frame
k and uk = 1 if the BS transmits repeatedly until the packet
is delivered or the frame ends.

Since this discrete-time decision problem evolves in
frames, we can fully represent its state by hk. State transitions
follow the evolution of hk in (1) and can be divided into two
cases: i) when the BS idles during frame k−1, i.e. uk−1 = 0,
then

P(hk = hk−1 +1|hk−1) = 1 , (18)

and ii) when the BS transmits, i.e. uk−1 = 1, the transition
depends on whether the packet was delivered or discarded



during frame k−1, as follows

P(hk = hk−1 +1|hk−1) = (1− p)T ; [discarded] (19)
P(hk = 1|hk−1) = 1− (1− p)T ; [delivered] (20)

The objective function of the Frame-Based Decoupled
Model, Ĵπ∗

K , is given by

Ĵπ∗
K = min

π∈Γ
E

{
K

∑
k=1

(
T α hk +Ĉ I{uk=1}

)}
, (21)

where Ĉ = C(1− (1− p)T )/p is the expected value of the
service charge incurred during a frame in which uk = 1.

Notice that the Frame-Based Decoupled Model is equiv-
alent to the Decoupled Model when the optimization is
carried over the policies in Γ. Both models have the same
optimal scheduling policy π∗. Next, we characterize π∗ for
the network in steady-state.

For analyzing the system in steady-state, we consider the
problem over an infinite horizon, namely K→ ∞. The state
and control of the system in steady-state are denoted h and u,
respectively. Then, Bellman equations are given by S(1) = 0
and

S(h)+λ = min
{

T αh+S(h+1);
Ĉ+T αh+(1− p)T S(h+1)

}
, (22)

for all h∈ {1,2, · · ·}, where λ is the optimal average cost and
S(h) is the differential cost-to-go. Notice that the upper part
of the minimization is associated with idling in every slot, i.e.
u = 0, and the lower part with transmitting until the packet
is delivered or the frame ends, i.e. u = 1, with ties being
broken in favor to idling. The stationary scheduling policy
that solves Bellman equations3 is given in Proposition 4.

Proposition 4: (Threshold Policy) Consider the Frame-
Based Decoupled Model over an infinite horizon. The sta-
tionary scheduling policy π∗ that solves Bellman equations
(22) is a threshold policy in which the BS transmits when
the frame has a state h≥H and idles when 1≤ h<H, where
the threshold H is given by

H =

⌊
1−A+

√
A2 +

2C
pT α

⌋
, (23)

and the value of A is

A =
1
2
+

(1− p)T

(1− (1− p)T )
.

Proof: The expression of the objective function in
(21) outlines a trade-off between the cost of transmitting
in a frame (expected service charge Ĉ) and the cost of not
transmitting (increasing value of h). Naturally, we expect
that the optimal scheduling decision is to idle during frames
in which h is low (avoiding the service charge) and to

3In general, Expected Average Cost problems over an infinite horizon
and with infinite state space are challenging to address. For the Frame-Based
Decoupled Model, it can be shown that [15, Proposition 5.6.1] is satisfied
under some additional conditions on Γ. The results in [15, Proposition 5.6.1]
and Proposition 4 are sufficient to establish the optimality of the stationary
scheduling policy π∗.

transmit when h is high (attempting to reduce the value of
h). The proof consists of three parts: i) assume that π∗ is a
threshold policy on h, ii) solve Bellman equations under this
assumption, and iii) show that the solution is consistent. The
details of the proof are omitted due to length constraints.

The complete characterization of the policy π∗ that opti-
mizes the Decoupled Model and the Frame-Based Decoupled
Model gives us the background to establish indexability and
to obtain the Index Policy for the AoI minimization problem.

C. Indexability and Index Policy

Consider the Decoupled Model and its optimal scheduling
policy π∗. Let P(C) be the set of system states for which it
is optimal to idle when the service charge is C, i.e. P(C) =
{h ∈ N|h < H}. Recall from (23) that the threshold H is a
function of C. The definition of indexability is given next.

Definition 5: (Indexability) The Decoupled Model asso-
ciated with client i is indexable if P(C) increases mono-
tonically from /0 to the entire state space, namely N, as C
increases from 0 to +∞. The AoI minimization problem is
indexable if the Decoupled Model is indexable for all clients
i.

The indexability of the Decoupled Model follows directly
from the expression of H in (23). Substituting C = 0 yields
H = 1, what implies P(C) = /0, and the limit C→+∞ gives
H → +∞ and, consequently, P(C) = N. Since this is true
for the Decoupled Model associated with every client i, we
conclude that the AoI minimization problem is indexable.
Prior to introducing the Index Policy, we define the Index.

Definition 6: (Index) Consider the Decoupled Model and
denote by C(h) the Index in state h. Given indexability, C(h)
is the infimum service charge C that makes both scheduling
decisions (idle, transmit) equally desirable in state h.

The closed-form expression for the Index C(h) yields from
the observation that if both scheduling decisions are equally
desirable in state h, it follows from the definition of threshold
that H = h+1 and H is integer-valued. Thus, by substituting
H = h+1 into (23) and isolating C, we have

C(h) =
T α

2
ph
[

h+
1+(1− p)T

1− (1− p)T

]
. (24)

Returning to our original problem, consider the AoI mini-
mization problem with M clients and no service charge. Let
Ci(hk,i) be the Index associated with client i during frame
k. The Index Policy is as follows: in each slot (k,n), the
BS transmits to the client with an undelivered packet and
highest value of Ci(hk,i), with ties being broken in favor of
the client with lowest index i. An important feature of the
Index Policy is that it requires low computational resources
even for networks with a large number of clients.

The performance of this heuristic policy is evaluated in
the next section. However, it is possible to anticipate that the
Index Policy is optimal for symmetric networks. Notice that
when αi = α and pi = p, prioritizing according to Ci(hk,i)
is identical to prioritizing according to hk,i, i.e. the Index
Policy is equivalent to the Greedy Policy. Thus, from the
result in Theorem 1 (Optimality of Greedy), we conclude



that the Index Policy is the optimal scheduling policy for
symmetric networks.

V. SIMULATION RESULTS

The metric of interest for evaluating the performance of
the scheduling policies is the normalized EWSAoI, namely
EWSAoI/M. Using this metric, we compare three scheduling
policies: i) Greedy Policy; ii) Index Policy; and iii) Dynamic
Program. The numerical results associated with the Greedy
and Index Policies are simulations of the policies presented in
Secs. III and IV, respectively. On the other hand, the results
from the Dynamic Program are computations of the metric.
The quantity EWSAoI/M is computed by applying Value
Iteration to (3). By definition, the Dynamic Program yields
the optimal performance.

Figs. 5 and 6 evaluate the scheduling policies in a variety
of network settings. In Fig. 5, we consider a two-user
symmetric network with T = 5, K = 150 and both clients
having the same αi = 1 and pi = p ∈ {1/15, · · · ,14/15}.
In Fig. 6, we consider a two-user general network with
K = 200, p1 = 2/3, p2 = 1/10, T ∈ {1, · · · ,10} and both
clients having αi = 1. Recall that the service charge C is
used only for the purpose of deriving the Index Policy. The
service charge is not part of the AoI minimization problem
and is not considered in the numerical results presented in
this section.

Our results show that the performance of the Index Policy
is comparable to the performance of the optimal policy
(DP) in every network setting considered in Figs. 5 and 6.
Moreover, the results in Fig. 5 support the optimality of the
Index Policy for symmetric networks established in Sec. IV-
C. Fig. 6 suggests that, in the asymmetric case, the Index
Policy outperforms the Greedy Policy for all values of T .

VI. CONCLUDING REMARKS

This paper considered a wireless broadcast network with
a BS sending time-sensitive information to multiple clients
over unreliable channels. We studied the problem of opti-
mizing scheduling decisions with respect to the expected
weighted sum AoI of the clients in the network. Our main

Fig. 5. Numerical results of the normalized EWSAoI for a two-user
symmetric network with T = 5,K = 150,αi = 1, pi = p, ∀i. The simulation
result for each policy and for each value of p is an average over 1.000 runs.

contributions include showing that the Greedy Policy is
optimal for the case of symmetric networks; establishing
indexability of the general network case; and obtaining the
Whittle Index in closed-form. Numerical results demonstrate
the performance of the Index Policy. Interesting extensions
include consideration of stochastic arrivals, time-varying
channels and multi-hop networks.
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