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Abstract —In a heterogeneous computing (HC) environment consisting of different types of machines, an application program is
decomposed into subtasks, each of which is computationally homogeneous. The goal is to execute subtasks on the machines in
such a way that the total program execution time is minimized. A mathematical framework is presented that models the matching of
subtasks to machines, scheduling of subtasks’ computation, scheduling of intermachine communication steps, and selection of
sources of shared data items for intermachine communication (data relocation). The goal of this work is to generate a provably
optimal scheme for communicating shared data among subtasks as an enhancement to any given matching and scheduling.
Initially, it is assumed that at any instant in time, only one machine is being used for program execution and only one subtask is
being executed. Based on this assumption, a polynomial algorithm is introduced to optimize scheduling and data relocation with
respect to any given matching of subtasks to machines. The data relocation scheme is then extended to reduce intermachine data
communication time in an HC environment with a given matching and scheduling of subtasks’ computation where: 1) multiple
subtasks’ computations can be performed concurrently on different machines; 2) subtask computation stteps can be overlapped with
other subtasks’ communication steps for intermachine data transfers; and 3) machines in the HC suite are interconnected by a
shared-bus type of network.

Index Terms —Data distribution, data relocation, data-reuse, distributed computing, heterogeneous computing, multiple data-copies,
optimization, scheduling.

——————————   ✦   ——————————

1 INTRODUCTION

single application program often requires many dif-
ferent types of computation that result in different

needs for machine capabilities. Heterogeneous computing
(HC) is the effective use of the diverse hardware and soft-
ware components in a heterogeneous suite of machines
connected by a high-speed network to meet the varied
computational requirements of a given application [5], [9],
[12], [16], [17], [24]. The results of this research may be ap-
plied to target HC platforms that may include high-
performance parallel and vector machines as well as a
cluster of different (or similar) types of workstations.

The goal of HC is to decompose an application program
into subtasks, each of which is computationally homogene-
ous. Then, each subtask is assigned to the machine where it
is best suited for execution. In general, each subtask is as-
signed to one of the machines in the heterogeneous suite in

a way that minimizes the total execution time (consisting of
both subtasks’ computation times and intermachine com-
munication times) of the application program. The subtask
assignment problem is referred to as matching in HC

There are a variety of mathematical formulations for
matching, collectively called selection theory, that have
been proposed to choose the appropriate machine for each
subtask of an application program (e.g., [4], [8], [15], [22]).
A collection of algorithms, called graph-based algorithms in
this paper (e.g. [2], [15], [19], [21]), have been developed to
solve matching-related problems based on a subtask flow
graph that describes the data dependencies among subtasks
of an application program. As shown in Fig. 1a, each vertex
of the subtask flow graph represents a subtask. Let S[k] de-
note the kth subtask. Let a data item be a block of informa-
tion that can be transferred between subtasks. There is an
edge from S[k] to S[j] labeled with the name of the data
item that S[k] transfers to S[j] during execution. An extra
vertex labeled Source denotes the locations where the initial
data elements of the program are stored. The purpose of
selection theory formulations and graph-based algorithms
is to find the matching scheme that minimizes the total exe-
cution time of the application program. For this paper, it is
assumed that matching (i.e., assignment of subtasks to ma-
chines) is static and has already been done.
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Fig. 1. Data-distribution situations in HC: (a) subtask flow graph, (b)
data-reuse, (c) the multiple data-copies situation.

A data item can be an integer, an array of characters, or a
large file, such as a multispectral image. Based on static
(compile time) analysis, a given subtask may need as input
one or more data items generated (or modified) by one or
more other subtasks. Using information from the subtask
flow graph, a data item is denoted by the ordered pair (s, d),
where s ≥ 0 is the number of the subtask that generates the
needed value of d upon completion of execution of that
subtask. For example, (3, x) represents the value of variable
x generated by subtask S[3] upon completion of its execu-
tion. In the notation (s, d), s = -1 if the needed value of d is
an initial input to the program. Two data items are the
same if and only if they are both associated with the same
variable name in an application program and the corre-
sponding value of the data is generated by the same
subtask (which implies that the two data items have the
same value).

In general, most of the graph-based algorithms for
matching-related problems assume that the pattern of data
transfers among subtasks is known a priori and can be il-
lustrated using some type of graph (e.g., [2], [14], [15], [19],
[21]). Thus, no matter which machine is used for executing
each subtask of a specific application program, the locations
(subtasks) from which each subtask obtains its corre-
sponding input-data items are determined by the subtask
flow graph and independent of any particular matching
scheme between machines and subtasks.

The above traditional formulation is refined in this paper
by considering two data-distribution situations called data-
reuse and multiple data-copies. It is assumed that each
subtask S[i] keeps copies of all its input and output-data
items on the machine to which S[i] is assigned by the
matching scheme. The issues on how to free the memory
space for storing the copies of data items after they are for-
warded to other subtasks are discussed in Section 3. Data-
reuse arises when two subtasks, S[i] and S[j], need the same
data item from S[k] (as in the example subtask flow graph
in Fig. 1a). For any data item e = (k, d), e represents the
value of the associated data and |e| (or |d|) represents the
size of the associated data. As shown in Fig. 1b, suppose the
particular matching scheme is the one that assigns S[k] to
machine A, and both S[i] and S[j] to machine B. Further-
more, assume, for this example, that the subtasks are exe-
cuted in the order k, i, then j. In this case, there is no need to
transfer data item e from S[k] to S[j], as shown by the

dashed line in Fig. 1b, because e is already on machine B
due to the data transfer of e from S[k] to S[i] completed ear-
lier (solid line in Fig. 1b). If a traditional graph-based for-
mulation were used to compute intersubtask communica-
tion cost, then the impact of data-reuse is ignored. The
techniques derived in this paper account for (and take ad-
vantage of) the data-reuse situation.

The multiple data-copies situation arises when two
subtasks, S[i] and S[j], need the same data item e = (k, d)
from S[k], where S[i], S[j], and S[k] are assigned to three
different machines in the HC system. In the example in
Fig. 1c, the matching scheme assigns S[k] to machine A, S[i]
to machine B, and S[j] to machine C. Therefore, S[j] can ob-
tain data item e from either machine A or machine B
(shown by the two dashed lines). The choice that results in
the shortest time should be selected. Retrieving the needed
data item from the selected source is referred to as data
relocation. In general, when using information only from
the subtask flow graph, the possibility of multiple sources
of a needed data item due to a specific matching scheme is
not considered; however, the techniques developed in this
paper do optimize with respect to data relocation options.

When a subset of subtasks can be executed in any order,
and the multiple data-copies situation is considered, vary-
ing the order of the execution of these subtasks (while
maintaining the data dependencies among all subtasks) can
impact the execution time of the application program. De-
termining the order for executing the subtasks is referred to
as scheduling in this paper. Thus, matching determines on
which machine each subtask should be executed, while
scheduling determines when to execute a subtask on the
machine to which it is assigned [16].

The intermachine communication time between subtasks
can be substantial in an HC system. Thus, this intermachine
communication time can be a major factor in degrading the
performance of an HC system. Taking the effects produced
by data-reuse and multiple data-copies into account can
potentially decrease this time and, hence, the total execu-
tion time of the application program. This paper focuses on
methods for minimizing the communication time of an ap-
plication program for a given matching scheme. In par-
ticular, the impact of scheduling and data relocation
schemes on the communication time of the subtasks are
examined.

In Section 2, a mathematical model for matching, sched-
uling, and data relocation in HC is presented. Section 3 in-
troduces an extension to the usual scheduling methodol-
ogy, in which temporally interleaved execution of the
atomic input operations of different subtasks (TIE) is de-
scribed. When considering multiple data-copies, this exten-
sion to scheduling can decrease the execution time of an
application program.

Issues related to scheduling and data relocation for HC
systems are presented in Section 4. It is assumed that at any
instant in time during the execution of a specific application
program, only one machine is being used for program exe-
cution and only one subtask is being executed. In practice,
concurrent execution of multiple subtasks is possible. How-
ever, the simplifying assumption of the subtasks and com-
munication steps being totally ordered in time (i.e., no two
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subtasks’ computation or intermachine communication can
be executed concurrently with respect to one another) is
used in Section 4 as a step toward solving the more general
problem. (Note that each individual subtask can be exe-
cuted on a parallel machine and exploit the parallelism
available.) This simplifying assumption is used by many
other researchers as well (e.g., [2], [5], [19], [21]).

Section 4 presents a procedure for representing the data
relocation scheme by using a directed acyclic graph associ-
ated with the application program. A minimum spanning
tree based algorithm (referred to as the TIE algorithm) is
described. For a given matching, the TIE algorithm finds
the optimal scheduling scheme for the execution of
subtasks and the optimal data relocation scheme for each
subtask. Both data-reuse and multiple data-copies are con-
sidered in the TIE algorithm. The correctness of the TIE
algorithm is proved mathematically and an example is also
provided.

Based on this TIE algorithm, a refinement procedure for
the data relocation scheme and the scheduling of interma-
chine data transfer steps is introduced in Section 5 for HC
systems where multiple subtasks’ computation and a single
intermachine communication are performed simultane-
ously whenever possible. Such a situation may occur in
practice if the machines in the suite share a single commu-
nication bus.

The contributions of this paper can be summarized as
follows. In order to use an HC system, a scheme to match
subtasks to machines must be determined (where the gen-
eration of such a matching may involve consideration of
subtask scheduling and the movement of data items shared
by subtasks). Because the matching problem is, in general,
NP-complete [7], heuristics are used to matching solutions.
It is not the goal of our paper to provide a heuristic for
matching and scheduling subtask computation and com-
pare its performance with other heuristics in the literature
(e.g., [1], [18]). A survey of matching and scheduling related
heuristics is provided in [16]. Instead, the goal of this work
is to reduce the communication time (and, hence, the exe-
cution time) of an application program on an HC system by
varying data relocation and scheduling of intermachine
data transfers, using a given matching. If the totally ordered
model used in Section 4 is assumed, then a provably optimal
new scheduling (for both computation and communication)
and data relocation scheme is derived for the given matching.
If the concurrent computation model introduced in Section 5
is applicable, then the technique presented in Section 4 can be
employed to enhance the scheduling of intermachine com-
munication and data relocation for the given matching and
scheduling of subtask computation.

Although both the totally ordered model used in Section 4
and the concurrent computation model used in Section 5
have certain limitations, practical HC applications do exist
that use the above HC models. In [13], an HC application
involving the simulation of mixing in turbulent convection
in three dimensions was developed on an HC system con-
sisting of Thinking Machines’ CM-200 and CM-5, a CRAY 2,
and a Silicon Graphics VGX workstation. The required cal-
culations for the simulation were divided into three
subtasks and totally ordered in time (i.e., follows the model

in Section 4). All three subtasks were parallel programs and
were executed on the CM-5, the CRAY 2, and the CM-200.
The final results are displayed on the Silicon Graphics VGX
workstations. An example of the concurrent computation
HC model in Section 5 is a cluster of heterogeneous work-
stations connected by Ethernet, a perceivably popular and
economical HC system [5], [24].

The focus of this paper is to demonstrate the effect of
data relocation and the scheduling of communication steps
on decreasing the intermachine communication time for an
HC application executed on certain chosen classes of HC
systems. Furthermore, often research on problems using
restricted models can later be built upon to find techniques
for solving problems associated with more general models.

2 A MATHEMATICAL MODEL

A mathematical model for matching, scheduling, and data
relocation in HC is formalized in this section. This model
can describe an HC system constructed by a suite of high-
performance machines and/or a cluster of workstations.
This mathematical model assumes that all machines in the
HC suite are under the control of these matching, schedul-
ing, and data relocation schemes. While the model is de-
scribed in terms of a single application program, that appli-
cation program could actually be a collection of unrelated
programs, each decomposed into subtasks. It is assumed
that the matching, scheduling, and data relocation are done
statically (e.g., at compile time) for a production job that
will make repeated use of the HC suite. That is, the time for
determining matching, scheduling, and data relocation
does not impact the response time for program execution,
and it is worthwhile to invest resources in attempting to
optimize the use of the HC suite by this application pro-
gram because it will be executed frequently. The model
serves as the mathematical basis for the TIE algorithm pre-
sented in Section 4. All notation developed in the remaining
sections is summarized in the glossary of notation at the
end this paper.

1) An application program P is composed of a set of
subtasks S = {S[0], S[1], ..., S[n - 1]}, where n is the
number of subtasks in P.

2) Suppose that NI[i] is the number of input-data items
required by S[i] and NG[i] is the number of output-
data items generated by S[i]. There are two sets of
data items associated with each S[i]. One is the input-
data set I[i] = {Id[i, 0], Id[i, 1], ..., Id[i, NI[i] - 1]}, the
other is the generated output-data set G[i] = {Gd[i, 0],
Gd[i, 1], ..., Gd[i, NG[i] - 1]}. Each Id[i, j] and Gd[i, j] is
a data item (i.e., a two-tuple as defined in Section 1).
The program structure of P is specified by a subtask
flow graph.

In this paper, the subtask flow graph of any application
program P is assumed to be acyclic. A cycle in a graph rep-
resents a loop containing one or more subtasks. If the num-
ber of iterations is known, the loop can be unrolled. If the
number of iterations is data dependent (i.e., nondeterminis-
tic), the loop can be unrolled using a statistical approach
(such as that presented in [21]). While the concept presented
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here can be applied as a heuristic without unrolling loops,
the optimality proofs presented in Section 4 require the
acyclic property.

3) An HC system consists of a heterogeneous suite of
machines M = {M[0], M[1], ..., M[m - 1]}, where m is
the number of machines in the system.

4) Each S[i] of the application program P can be exe-
cuted by any of the machines M[j] in the HC system.
There is a computation matrix C = {C[i, j]} associated
with S and M, where C[i, j] denotes the computation
time of S[i] on machine M[j] [10], [23]. The computa-
tion matrix C is assumed to be known. It can be com-
puted from empirical information or by applying two
characterization techniques in HC, namely task pro-
filing and analytical benchmarking (see [16] for a sur-
vey of these techniques).

5) Suppose that a set of initial data elements {d0, d1, ..., dQ-1}
are required for executing the application program P,
where Q is the number of initial data elements for P.
An initial-data matrix H = {H[k, j]} is defined, where
H[k, j] (0 £ k < Q and 0 £ j < m) represents the smallest
communication time for machine M[j] to obtain the
initial data element dk from one of the devices where
dk is stored before the execution of P. Initial data ele-
ment dk is also denoted as data item (-1, dk).

6) The communication function matrix D(|e|) = {D[s, r]
(|e|)}, for 0 £ s, r < m, where D[s, r](|e|) denotes the
communication time for transferring data item e (of
size |e|) from machine M[s] to machine M[r] [10],
[11]. D[s, r](|e|) includes all the various hardware
and software related components of the intermachine
communication process, e.g., network latency and the
time for data format conversion between M[s] and
M[r] when necessary. Having s = -1 indicates that e =
(-1, d), and d is one of the initial data elements of P,
and there exists k (0 £ k < Q) such that d = dk and D[s, r]
(|e|) = H[k, r].

7) The matching associated with the application pro-
gram P is defined by an assignment function Af, such
that Af : S Æ M. If Af(i) = j, then S[i] is assigned to be
executed on machine M[j]. The assignment function
Af corresponds to the matching problem discussed in
Section 1. NS[j] is defined as the number of subtasks
assigned to be executed on machine M[j]. Thus,

NS j n
j

m

=

-

Â =
0

1

.

8) A scheduling function Sf is associated with the appli-
cation program P. Sf indicates the order for perform-
ing a subtask’s computation with respect to the other
subtasks’ computation of the entire application pro-
gram. For the material presented in Section 4, where
the subtasks’ computation and communication for the
application program P are assumed to be totally or-
dered in time, Sf(i) = k means that S[i] is the kth (0 £ k
< n) subtask of the entire application program whose
computation is performed. The scheduling function Sf
corresponds to the scheduling problem discussed in
Section 1.

9) The set of data-source functions is DS = {DS[0], DS[1],
..., DS[n - 1]}, where DS[i](j) = k (0 £ i, k < n) means
that S[i] obtains the input-data item Id[i, j] from S[k].
If DS[i](j) = -1, then Id[i, j] = (-1, dx) and S[i] obtains
the associated data from the “closest” device where dx
is initially stored. The set of data-source functions DS
corresponds to the data relocation problem discussed
in Section 1. For different scheduling functions (as
well as assignment functions), with consideration of
the data-reuse and multiple data-copies situations,
there are different sets of choices for the data-source
functions. Thus, the communication time of an appli-
cation program P depends on both Sf and DS.

3 IMPACT OF MULTIPLE DATA-COPIES AND
TEMPORALLY INTERLEAVED INPUT OPERATIONS

In this section, both the data-reuse and multiple data-copies
situations are considered. Furthermore, data-reuse is
viewed as a special case of having multiple data-copies.

It can be shown that, when data-reuse is considered and
the multiple data-copies situation is not, the communica-
tion time of any application program P depends only on the
assignment function Af when the subtasks’ computation
and communication are assumed to be totally ordered in
time [20]. But when one considers the multiple data-copies
situation, the communication time of P, in general, also de-
pends on the scheduling function Sf and the set of data-
source functions DS. Each scheduling function Sf defines a
set of possible choices for DS.

Recall from Section 1 that the size of a data item e = (k, d)
is denoted by |e| (or |d|). To show the effect of utilizing
the multiple data-copies, consider an HC system with four
machines connected by the network illustrated in Fig. 2
(vertices denote machines and edges denote communica-
tion links). The number in a box with each link represents
the communication cost for obtaining the corresponding
data item. The order for executing the data transfers is indi-
cated by the numbers in the circles. An initial data element
d0 is stored on machine M[0], and is the required input-data
item for both S[0] and S[1]. Assume that Af(0) = 1 and Af(1)
= 2. If S[0]’s computation is performed before S[1]’s com-
putation, with respect to the data transfers illustrated by the
arrows in Case 1 of Fig. 2, the total communication time for
transferring d0 is 205. If S[0]’s computation is performed
after S[1]’s computation, with respect to the data transfers
illustrated by the arrows in Case 2 of Fig. 2, the total com-
munication time for transferring d0 is 305. Hence, depend-
ing on which scheduling function (and, in general, which
set of data-source functions) is chosen, the communication
time of an application program P may be different.

It is assumed, without loss of generality, that all input-
data items are received for a subtask prior to that subtask’s
computation. For an arbitrary S[i], there are NI[i] necessary
operations for obtaining the input-data items in I[i]. These
operations are defined as the atomic input operations of
S[i]. The scheduling function Sf only represents the order
for performing the subtasks’ computation, not the order for
performing the atomic input operations. Most of the exist-
ing algorithms for matching and scheduling for HC only



TAN ET AL.:  MINIMIZING THE APPLICATION EXECUTION TIME THROUGH SCHEDULING OF SUBTASKS AND COMMUNICATION TRAFFIC 861

allow consecutive ordering of the atomic input operations
of each subtask. This means that if subtask S[i1]’s computa-
tion is performed before S[i2]’s computation according to
the scheduling scheme, then all atomic input operations of
S[i1] must be performed before the atomic input operations
of S[i2] are done. The temporally interleaved execution of
atomic input operations for different subtasks (TIE) allows
some of the atomic input operations of S[i1] to be performed
after some atomic input operations of S[i2] are executed
even if Sf(i1) < Sf(i2). The effective use of TIE can result in a
smaller execution time than that associated with consider-
ing all NI[i] atomic input operations of S[i] to be indivisible.
This is true because TIE gives more options for choosing the
set of data-source functions for S[i].

As an example, for the same HC system and the same
assignment function Af described in Fig. 2, assume now
that two input-data items (-1, d0) and (-1, d1) are required
input-data items of both S[0] and S[1]. As shown in Fig. 3,
these data items are initially stored on M[0] and M[3], and
it is assumed that |d0| = |d1|. If S[0]’s computation is per-
formed before S[1]’s computation, the total communication
time for transferring d0 and d1 is 505 based on the data
transfers illustrated by the arrows in Case 1 of Fig. 3. If
S[0]’s computation is performed after S[1]’s computation,
the total communication time for transferring d0 and d1 is
also 505 based on the data transfers illustrated by the arrows
in Case 2 of Fig. 3. But, if TIE is allowed, suppose the atomic
input operation for S[0] to obtain d0 is performed first, then
the atomic input operation for S[1] to obtain d1 is performed
second, followed by the atomic input operation for S[0] to
obtain d1 and the atomic input operation for S[1] to obtain
d0. In this case, the total communication time for transfer-
ring d0 and d1 to both S[0] and S[1] is 410.

A set of ordering functions Order = {Order[i]|0 £ i < n} is
associated with the application program P. Order[i] defines
the order for performing the atomic input operations of
subtask S[i] with respect to all of the atomic input operations
for the entire program. If Order[i](j) = k, where 0 £ j < NI[i]

and

0
0

1

£ <
=

-

Âk NI i
i

n

,

then the jth atomic input operation of S[i] (to obtain the
input-data item Id[i, j]) is the kth atomic input operation to
be performed during the execution of P. Depending upon
the network topology and the machine features of the HC
system, it is possible in the general case for certain ma-
chines in the HC suite to fetch multiple data items from
different sources in an overlapping fashion. In such a case,
the values of Order[i] are based on the increasing order of
the starting times of the atomic input operations of all the
subtasks. In contrast with the scheduling function Sf, the set
of ordering functions Order schedules the atomic input op-
erations for all subtasks rather than scheduling subtasks’
computation. Order and Sf together specify the order of the
execution steps (i.e., both the communication and compu-
tation steps) of the application program P on an HC system.

The usual definition of scheduling implicitly assumes
that the atomic input operations (corresponding to com-
munication) and computation of S[i] are performed indi-
visiblely. However, interleaved communication (i.e., the
atomic input operations of subtasks) may result in smaller
total communication time. Thus, extending the standard
definition of scheduling to include TIE generally allows for
enhanced performance of the HC system. The set of ordering

Fig. 2. Network of four machines with the initial data element d0 on
M[0].

Fig. 3. Network of four machines with initial data elements on M[0] and
M[3].
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functions, Order, defines the interleaving of the execution of
atomic input operations for the subtasks in a program and
is used in conjunction with the regular scheduling function
Sf. As stated in Section 1, it is assumed that each subtask
S[i] can keep a copy of each of its individual input-data
items and output-data items for forwarding to other
subtasks. Based on Order and DS, it can be determined
when a subtask no longer needs to retain a copy of a given
data item, so it can be deleted from storage.

4 TOTALLY ORDERED SUBTASKS AND
COMMUNICATION STEPS

4.1 Generation of Spanning Trees
For the type of HC systems presented in this section, the
subtasks’ computation and communication of P are as-
sumed to be totally ordered in time. For a given computa-
tion matrix C and communication function matrix D(|e|),
the total execution time of the application program P asso-
ciated with an assignment function Af, a valid scheduling
function Sf, and a set of data-source functions DS is defined
by the following formula:

Execution_ time

Computation_ time

Communication_ time

P

P

P

Af Sf DS

Af Sf DS

Af Sf DS

, ,

, ,

, , .

b g
b g

b g

=

+

such that,

Computation_ time

Computation_ time

P
i

n

P

Af Sf DS C i Af i

Af

, , ,b g a f

b g

=

=
=

-

Â
0

1

and

Communication_ timeP

j

NI i

i

n

Af Sf DS

D Af DS i j Af i Id i j

, ,

, , .

b g

b gd i a f e j

=

=

-

=

-

ÂÂ
0

1

0

1

This shows that Computation_timeP is actually independ-
ent of Sf and DS. Although the dependence of Communi-
cation_timeP on Sf is not explicitly shown in the above
equation, the possible sets of data-source functions DS de-
pend on Sf (see Definition 9 in Section 2). Thus, Communi-
cation_timeP does indeed depend on Sf.

When using TIE, the concept of a valid set of data-source
functions DS for the atomic input operations of the applica-
tion program P can be defined according to the properties of
a constructed graph, defined below as Gr[Af, DS]. There may
be many such valid sets, each corresponding to a unique
graph, and each resulting in a Communication_timeP that
may be different from the others. An invalid DS would corre-
spond to a set of data-source functions that does not result in
an operational program (e.g., in Fig. 3, the case where S[0]
receives d0 from S[1], S[1] receives d0 from S[0], and neither
receives d0 from M[0] is not valid). A procedure for generat-
ing a graph, denoted as Gr[Af, DS], corresponding to a par-
ticular DS and assignment function Af is described below.
Based on the properties of this graph, the validity of a set of
data-source functions DS can be determined.

Generation of Gr[Af, DS]

Step 1: A Source vertex is generated that represents the lo-
cations for all the initial data elements (which may be on
different devices/machines).

Step 2: For each S[i], NI[i] + 1 vertices, one for each of the
NI[i] atomic input operations and one for all of the gen-
erated output-data items of S[i], are created. These are
the set of input-data vertices, labeled V[i, j] (0 £ j < NI[i])
and the output-data vertex Vg[i]. V is a set that contains
all the above vertices associated with the application
program P in Steps 1 and 2.

Step 3: Let W denote the maximum communication time
necessary to transfer any data item from an initial source
or machine in the heterogeneous suite to any other ma-
chine (this can be determined from H and D defined in
Section 2).

Step 4: For each input-data vertex V[i1, j1], let DS[i1](j1) = i2,
where -1 £ i2 < n.

Case A: S[i1] obtains its required input-data item Id[i1, j1]
by copying it from the Source vertex if Id[i1, j1] = (-1, dk)
and dk is one of the initial data elements.

In this case, i2 = -1 and there exists k (0 £ k < Q) such that
Id[i1, j1] = (-1, dk). Add a directed edge with weight H[k,
Af(i1)] from the Source vertex to V[i1, j1].

Case B: S[i1] obtains its required input-data item Id[i1, j1]
by copying it from the subtask that generates Id[i1, j1].

In this case, 0 £ i2 < n and there exists j2 such that Id[i1, j1]
= Gd[i2, j2]. Add a directed edge with weight D[Af(i2),
Af(i1)](|Id[i1, j1]|) from Vg[i2] to V[i1, j1].

Case C: S[i1] obtains its required input-data item Id[i1, j1]
by copying it from one of the other subtasks that have
obtained that input-data item already.

In this case, 0 £ i2 < n and there exists j2 such that Id[i1, j1]
= Id[i2, j2]. Add a directed edge with weight D[Af(i2),
Af(i1)](|Id[i1, j1]|) from V[i2, j2] to V[i1, j1].

Step 5: For every 0 £ i < n, a directed edge with weight W + 1
(i.e., a weight greater than any possible communication
time) is added from V[i, 0] to Vg[i]. Thus, Vg[i] also has
exactly one parent vertex, i.e., V[i, 0].

For any input-data vertex V[i1, j1] (0 £ i1 < n and 0 £ j1 <
NI[i1]), exactly one case above (A, B, or C) can occur. Thus,
any vertex V[i1, j1] has exactly one parent vertex. Also, the
weight of the edge to V[i1, j1] from its unique parent vertex
is the communication time for S[i1] to obtain Id[i1, j1] with
respect to a given Af and DS.

As an example, suppose that a specific application pro-
gram P is illustrated by the subtask flow graph shown in
Fig. 4 with corresponding parameters listed in Table 1,
when d0 and d1 are the names of initial data elements of P;
X0, X1, Y, Z0, and Z1 are the names of generated data items
of P; and a is an arbitrary constant. Note that initial data
elements are named with lower case letters and generated
data items with upper case letters.
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Fig. 4. Subtask flow graph for the example application program

Consider, for ease of presentation, an HC system with
four machines connected by the very simple linear array
network illustrated in Fig. 5c. Here, D[s, r](|d|) = |s -
r||d|L, where 0 £ s, r < 4 and L is the length of the physical
link between the neighboring machines in the linear array
network. This model for D is an oversimplified example;
any appropriate equation that represents the communica-
tion costs of the network in the HC system can be used. The
result of applying the set of data-source functions defined
by the subtask flow graph in Fig. 4 is shown in Figs. 5a and
5b. The solid lines in Fig. 5a show the directed edges added
by applying Steps 4 and 5. The assignment function Af for
this current example is shown in Fig. 5c: Af(0) = 1, Af(1) = 2,
Af(2) = 2, Af(3) = 1, Af(4) = 3, and Af(5) = 0. W is 24aL ac-
cording to Step 3.

If Gr[Af, DS] generated above by Steps 1 to 5 with re-
spect to any given Af, DS, and P is a tree (denoted as
Tree[Af, DS]) with the Source vertex being the root of the
tree, then the corresponding DS is defined as a valid set of
data-source functions for atomic input operations of the

application program P. Any DS that is not such a tree is
invalid. The DS defined in Fig. 5b is a valid set of data-
source functions (i.e., the solid edges in Fig. 5a form a tree).

The reason for this definition is that, for a valid set of
data-source functions DS, Gr[Af, DS] must be an acyclic
graph. Otherwise deadlock arises in the application pro-
gram P, which makes P unschedulable (recall the earlier
example of an invalid DS). Because a Gr[Af, DS] generated
with respect to a valid DS is acyclic and each vertex (except
the Source vertex) of Gr[Af, DS] has exactly one parent ver-
tex, from basic graph theory [3], Gr[Af, DS] is a tree with
the Source vertex as the root of the tree. Thus, the validity of
the corresponding DS can be determined according to
whether the Gr[Af, DS] generated by above Steps 1 to 5 is a
tree. Furthermore, with an arbitrary assignment function Af
and a valid set of data-source functions DS, the weight of
the edge to V[i1, j1] (0 £ i1 < n and 0 £ j1 < NI[i1]) from its
unique parent vertex is the communication time for S[i1] to
obtain Id[i1, j1] with respect to the given Af and DS. Thus,
the communication time for the application program P is
only a function of Af and DS (DS must be valid) and

Communication_ time

Weight

P Af DS

Tree Af DS n W

,

, ,

b g
d i a f

=

- + 1

where Weight(x) is the sum of the weights on all edges of
tree x. For the application program P specified by Fig. 4,
with respect to the given assignment function Af and the
given valid data-source functions DS as defined in Fig. 5b,
Communication_timeP(Af, DS) = 67aL.

To determine a set of ordering functions, Order, corre-
sponding to a valid DS for executing the atomic input op-
erations of different subtasks, a directed edge with weight
zero from V[i1, j1] to Vg[i1] is added to the Tree[Af, DS] for
every i1 and j1 except j1 = 0 (i.e., 0 £ i1 < n and 1 £ j1 < NI[i1]).
These directed edges are illustrated by the dashed lines
shown in Fig. 5a for the example application program P.

TABLE 1
PARAMETERS FOR THE SUBTASK FLOW GRAPH SHOWN IN FIG. 4
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After adding these zero-weight edges, the tree becomes a
directed acyclic graph (DAG). One possible set of ordering
functions Order corresponding to DS can be determined by
applying a topological sort algorithm [6] to this generated
DAG. For the example application program P, the numbers
in the circles in Fig. 5a indicate one ordering for the execu-
tion of the corresponding atomic input operations and
subtask execution of P as determined by one particular
topological sort.

It is stated at the beginning of this section that Commu-
nication_timeP is a function of Af, Sf, and DS. If TIE is al-
lowed, because Order is a generalization of Sf, Communica-
tion_timeP depends on Af, Order, and a valid DS. Order
must be one of the sets of ordering functions, generated by
the topological sort described above, corresponding to a
valid DS. Otherwise, the scheduling scheme and the data
relocation scheme are incompatible with one another (i.e.,
Order and DS collectively cannot result in an operational
program). If Order1 and Order2 are two sets of ordering
functions, then, because Communication_timeP(Af, DS) =
Weight(Tree[Af, DS]) - n(W + 1), Communication_timeP(Af,
Order1, DS) = Communication_timeP(Af, Order2, DS). Thus,
if TIE is allowed and the corresponding DS is a valid set of
data source functions for the atomic input operations of the
application program P, Communication_timeP is a function
of Af and DS only (assuming a valid Order is used, based on
a topological sort of the generated DAG). Because the com-

putation time for P is a function of only Af, the total execu-
tion time for P is a function of Af and DS. The objective of
matching, scheduling, and data relocation for HC in Sub-
section 4.2 is to find an assignment function Af* and a valid
set of data-source functions DS*, such that

Execution_ time

Execution_ time

P

Af DS P

Af DS

Af DS

*, *

min , .
,

b g
b gn s

=

4.2 Finding the Optimal Set of Data-Source
Functions

4.2.1 Description of the Algorithm
For a given assignment function Af, a minimum spanning
tree based algorithm is presented for finding a corresponding
optimal valid set of data-source functions DS*, such that for
any other valid set of data-source functions DS,

Execution_ time Execution_ timeP PAf DS Af DS, * ,b g b g£ .

A directed graph Dg (see Fig. 6) corresponding to a spe-
cific assignment function Af can be generated by connecting
the vertices in V as follows (recall that V is a set that contains
all the vertices generated for any specific application pro-
gram P according to Steps 1 and 2 described in Subsection
4.1). Fig. 6, which is based on the example program shown in
Fig. 4, uses the same machine and assignment function as in
Fig. 5c, and has all the same vertices as in Fig. 5a.

Fig. 5. Generating a spanning tree with respect to the set of data-cource functions associated with the subtask flow graph: (a) the spanning tree
(solid lines), (b) the set of data-source functions, (c) the linear array network and the matching scheme.
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1) For every i1, j1, i2, and j2, where 0 £ i1, i2 < n, 0 £ j1 <
NI[i1], 0 £ j2 < NI[i2], and i1 π i2, such that Id[i1, j1] =
Id[i2, j2] = e, a directed edge from V[i1, j1] to V[i2, j2]
with weight D[Af(i1), Af(i2)](|e|) and a directed edge
from V[i2, j2] to V[i1, j1] with weight D[Af(i2),
Af(i1)](|e|) are added.

2) For every i1, j1, i2, and j2, where 0 £ i1, i2 < n, 0 £ j1 <
NG[i1], and 0 £ j2 < NI[i2], such that Gd[i1, j1] = Id[i2, j2]
= e, a directed edge from Vg[i1] to V[i2, j2] with weight
D[Af(i1), Af(i2)](|e|) is added.

3) For every i, j, and k, such that Id[i, j] = (-1, dk), where 0
£ i < n, 0 £ j < NI[i], and 0 £ k < Q, a directed edge
from the Source vertex to V[i, j] with weight H[k, Af(i)]
is added.

All the edges generated in 1), 2), and 3) are called fetch
edges. For the example application program P illustrated by
the subtask flow graph in Fig. 4, with the linear network of
four machines as the heterogeneous suite and the assign-
ment function defined in Fig. 5c, the edges (both solid lines
and dashed lines) of Dg in Fig. 6 (except the ones with
weight W + 1) are fetch edges.

4) For every 0 £ i < n, a directed edge from V[i, 0] to Vg[i]
with weight W + 1 is added.

All the edges generated in 4) are called activate edges.
There are a total of n activate edges with total weight n(W + 1).
Notice that the weight of an activate edge is larger than the
weight of any fetch edge because of the definition of W. The
edges of Dg shown in Fig. 6 with weight W + 1 are activate
edges.

For given system parameters D and H, the directed
graph Dg can be generated by knowing only P and Af. After
generating Dg corresponding to a specific Af, a modified
version of Prim’s algorithm [6], referred to as the TIE algo-
rithm in this paper, is applied to find a minimum spanning
tree MST[Af] of Dg. The Source vertex is the root of the

minimum spanning tree. Suppose A is a set that contains
the vertices that have been added to the tree, and T is the
partial tree generated during the execution of the TIE algo-
rithm. The order of execution for the atomic input operation
that corresponds to any vertex V[i, j] (0 £ i < n and 0 £ j <
NI[i]) in V is Order*[i](j). The TIE algorithm is described as
follows.

Step 1: Let A = {Source}, T = {Source}, and Counter = 0.

Step 2: Case A: If the set of cut edge(s) between A and V - A
(a cut edge is an edge that connects a vertex in A and a
vertex in V - A) contains fetch edge(s), then find a cut
edge that has the smallest weight (there might be sev-
eral, in which case an arbitrary minimum weight edge is
chosen). Include that edge in T and move the corre-
sponding vertex V[i, j] that is currently in V - A into A
and T. Increment Counter by 1 and set Order*[i](j) =
Counter. Because the set of cut edges between A and V - A
contains fetch edges and the weight of an activate edge
is greater than the weight of any fetch edge, no activate
edge can be chosen.

Case B: If the set of cut edges between A and V - A con-
tains only activate edges, these edges will connect to a
subset of the Vg vertices. Let this subset be denoted as
{Vg[i0], Vg[i1], ..., Vg[ij], ..., Vg[iu-1]}, where 1 £ u £ n, 0 £ j < u,
0 £ ij < n, and u is the number of activate edges in that set.
It can be shown that there will exist at least one j (0 £ j < u)
such that all V[ij, k] (0 £ k < NI[ij]) are already contained in
A by previous iterations of the TIE algorithm. Any such
Vg[ij] is defined as a ready-to-execute vertex. Given that
the application program is valid and that the set of cut
edge(s) between A and V - A only contains activate edges,
there is at least one subtask S[ij] such that all of its input-
data vertices V[ij, k] are already in A. Otherwise, P is not a
valid program because it would allow deadlock. Include a
ready-to-execute vertex Vg[ij] in A and T (if there are sev-

Fig. 6. Generating a minimum spanning tree for the example application program and its corresponding valid data-source functions.
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eral, an arbitrary one of the ready-to-execute vertices is
chosen), and its corresponding activate edge (i.e., the edge
from V[ij, 0] to Vg[ij]) in T. Because all Vg[i] (0 £ i < n) are
included in the MST[Af] after they become ready-to-
execute vertices, S[i] generates all of its output-data items
after it obtains all of its input-data items. Unlike Prim’s al-
gorithm, the TIE algorithm uses two classes of edges and
places a ready-to-execute vertex into T and A. In all other
respects, the algorithms are the same. Because each acti-
vate edge is the only edge entering a computation vertex
(i.e., Vg vertex), all activate edges will eventually become
part of the minimum spanning tree. Hence, this modifica-
tion to Prim’s algorithm to create the TIE algorithm still
generates a minimum spanning tree.

Step 3: If A = V, terminate the algorithm, otherwise, execute
Step 2 again.

For the application program P illustrated by the subtask
flow graph in Fig. 4, with the linear network of four ma-
chines as the heterogeneous suite and the same assignment
functions defined in Fig. 5c, the solid lines in Fig. 6 show the
MST[Af] corresponding to Af after applying the TIE algo-
rithm to Dg. This MST[Af] was generated by knowing only
Af, I[i], and G[i] (for given system parameters D and H).

The optimal valid set of data-source functions DS* for
atomic input operations of the application program P that
corresponds to the minimum spanning tree MST[Af] gener-
ated above can be determined as follows:

1) If, in MST[Af], the parent vertex of V[i1, j1] is V[i2, j2],
then DS*[i1](j1) = i2.

2) If, in MST[Af], the parent vertex of V[i1, j1] is Vg[i2],
then DS*[i1](j1) = i2.

3) If, in MST[Af], the parent vertex of V[i1, j1] is the
Source vertex, then DS*[i1](j1) = -1.

Because MST[Af] is a tree, every vertex except the Source
vertex has exactly one parent vertex, and the value of
DS*[i1](j1) for each 0 £ i1 < n and 0 £ j1 < NI[i1] is unique.
The numbers in the circles in Fig. 6 indicate the order in
which vertices were added to the minimum spanning tree,
which is the order for executing their corresponding atomic
input operations and subtask computation. The set of or-
dering functions, Order*[i](j), generated by the TIE algo-
rithm corresponds to this order except that the computation
vertices (i.e., Vgs) are not included.

For the complexity analysis of the TIE algorithm, sup-
pose that |E| is the number of edges in Dg and |V| is the
number of vertices in Dg. If a Fibonacci heap is used to im-
plement the priority queue in the TIE algorithm, as was
done in Prim’s algorithm [6], the worst case asymptotic
complexity of the algorithm for finding DS* is O(|E| +
|V|lg|V|). For Dg,
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Each vertex V[i, j] is connected to at most n other vertices in
Dg. This corresponds to the case where S[i] can obtain its
required input-data item Id[i, j] from all the other subtasks
in P and from the source where the initial data elements are
stored. Each vertex Vg[i] is connected only to V[i, 0]. Thus,
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be the number of edges in the subtask flow graph. Then
|V| = e + n + 1 and |E| £ ne + n. The worst case asymptotic
complexity of the TIE algorithm in terms of e and n is O[ne +
(n + e)lg(n + e)], where n is the number of subtasks in P.

4.2.2 Proof of Correctness of the Algorithm
It is shown in Subsection 4.1 that with an arbitrary assign-
ment function Af, any valid set of data-source functions DS
for atomic input operations of the application program P
corresponds to a spanning tree of Dg (denoted as TreeP[Af,
DS]). The weight of TreeP[Af, DS] (denoted as
Weight(TreeP[Af, DS])) is Communication_timeP(Af, DS) +
n(W + 1).

Thus,
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it is true that

Execution_ time Execution_ timeP PAf DS Af DS, * ,b g b g£ .

For the application program P illustrated by the subtask
flow graph in Fig. 4, if the set of data-source functions DS is
determined directly from the subtask flow graph provided,
then Execution_timeP is C[0, 1] + C[1, 2] + C[2, 2] + C[3, 1] +
C[4, 3] + C[5, 0] + 67aL. After applying the algorithm pre-
sented in Subsection 4.2.1 and using DS*, then Execu-
tion_timeP is C[0, 1] + C[1, 2] + C[2, 2] + C[3, 1] + C[4, 3] +
C[5, 0] + 47aL.

5 AN EXTENSION TO THE APPLICATION OF THE TIE
ALGORITHM

In this section, the TIE algorithm is extended for use in a
more general computing paradigm than that of Section 4.
Here, the computation of multiple subtasks can occur con-
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currently on different machines and the subtask computa-
tion steps can be overlapped with other subtasks’ commu-
nication steps for intermachine data transfers. It is assumed
that the heterogeneous suite of machines are connected by a
single shared bus, such as an Ethernet. Because all ma-
chines in the suite use a single shared bus, the communica-
tion steps of the entire application program can be modeled
as totally ordered in time [5]. Thus, only one atomic input
operation can be executed at any instant in time during the
execution of a specific application program P. Furthermore,
as discussed in Section 1, research using this restricted HC
model may help toward solving similar problems with a
more general HC model.

Recall that in Section 4.2, a total ordering among both
the computation and communication steps of subtasks was
assumed. In contrast, in this section, it is assumed that
multiple subtasks’ computation and a single intermachine
communication can be performed concurrently. An exten-
sion to the application of the TIE algorithm is presented in
this section to generate a new set of data-source functions,
DS¢, and a new set of ordering functions, Order¢, when Af
and Sf are specified (and fixed), and the initial DS and Or-
der functions are provided. The total execution time is gen-
erally decreased when the new DS¢ and Order¢ functions are
applied. Thus, the TIE algorithm is used as a polynomial
time heuristic to improve the initially given data relocation
and ordering schemes for intermachine communication,
with the given known matching and scheduling of subtask
computation.

As defined in 6) of Section 2, D[s, r](|e|) includes all the
various hardware and software related components of the
intermachine communication process for transferring data
item e, e.g., network latency and the time for data format
conversion between M[s] and M[r] when necessary. With
the shared bus based network model, the times for transfer-
ring the same data item between different pairs of source
and destination machines can differ based on an individual
machine’s network interface hardware features (e.g., data
transfer rate for its I/O port and time for data format con-
version between two different machines). Thus, the ration-
ale for varying data relocation and scheduling intermachine
communication to decrease data transfer times of applica-
tion programs still applies in this shared-bus environment.

Given Af, Sf, DS, and Order, with known values of C, D,
and H defined in Section 2, the starting time ST(v) and the
finishing time FT(v) of each atomic input operation
(associated with an input-data vertex v Œ V) and computa-
tion step (associated with an output-data vertex v Œ V) of P
can be determined by topological-sort based algorithms.
The basic idea is to improve the data relocation schemes for
all subtasks, which are computed in the order specified by
the initial Sf. The extension of the application of the TIE
algorithm can be described by following steps:

Step 1: The Source[0] vertex represents the locations of all
the initial data elements (which may be on different de-
vices/machines). Define

t ST V i
i n g0 0

=
£ <

min e j{ } ,

which is the starting time of the earliest subtask whose

computation is performed. Then, define the set of in-
put-data vertices V[0] = {V[i, j]|FT(V[i, j]) £ t0}. By ap-
plying steps 1 and 3 (not 2, because there is no gener-
ated data items before t0) described at the beginning of
Subsection 4.2.1, a directed graph dg[0] consisting of
vertices V[0] » {Source[0]} can be generated by knowing
only P and Af. The TIE algorithm described in Subsec-
tion 4.2.1 can be used to generate a minimum spanning
tree of dg[0]. The corresponding modified DS¢ and Order¢
can be derived for the atomic input operations specified by
the vertices in V[0] in the same way that DS* and Order*
were derived in Subsection 4.2.1.

Step 2: Iterate the general procedure described in Step 1 n - 1
times, where n is the number of subtasks in P. For the
wth (1 £ w < n) iteration, S[jw] denotes the wth subtask to
be computed (according to ST(Vg[i]), 0 £ i < n). The
Source[w] vertex represents the locations for all the initial
data elements, all the input-data items, and all the gen-
erated data items of all subtasks S[k] (k = jq, where 0 £ q <
w) whose computation has been performed up to this
step. Let tw = ST(Vg[jw]) be the starting time of S[jw]’s
computation. Then, define the set of input-data vertices
V[w] = {V[i, j]|tw-1 < FT(V[i, j]) £ tw}. By applying steps 1
and 3 (recall that the locations of all previously generated
data items up to wth iteration are specified by Source[w])
described at the beginning of the Subsection 4.2.1, a di-
rected graph dg[w] can be generated by knowing only P
and Af. The TIE algorithm described in Subsection 4.2.1
can be used to generate a minimum spanning tree of
dg[w]. The corresponding DS¢ and Order¢ can be derived
for the atomic input operations specified by the vertices
in V[w] in the same way that DS* and Order* were de-
rived in Subsection 4.2.1.
Because of the proved optimality of the TIE algorithm

shown in Subsection 4.2.2, after the wth iteration of above
Step 2, the starting time of subtask S[jw] (0 £ w < n) using
DS¢ and Order¢ can be no later than that associated with the
initial values for these functions. Thus, the total execution
time is decreased (or the same) for P with respect to the
given Af, Sf, DS, and Order.

Consider an example for illustrating the functionality of
the above steps for improving the data relocation and its
corresponding ordering scheme. Assume an HC applica-
tion, illustrated by the subtask flow graph in Fig. 7 with
four subtasks (d0 and d1 are the names of initial data ele-
ments and X0 is the name of a generated data item of S[0]).
Assume that four subtasks are assigned to three machines,
let Af(0) = 1, Af(1) = 2, Af(2) = 2, and Af(3) = 1, and C[0, 1] =
3, C[1, 2] = 10, C[2, 2] = 4, and C[3, 1] = 24. The relevant
values of H and D are as follows: H[0, 1] = 2, H[0, 2] = 4,
H[1, 2] = 6; and D[1, 2](|d0|) = D[2, 1](|d0|) = 2, D[1,
2](|X0|) = 8, and D[2, 2](|X0|) = 0.

Fig. 8a shows the Gantt chart of the application program
illustrated by Fig. 7 with the data relocation using the inter-
subtask data transfer patterns illustrated by the subtask
flow graph. In this example, S[0]’s computation is assumed
to be performed before S[3]’s computation on M[1] and
S[1]’s computation is assumed to be performed before
S[2]’s computation on M[2] according to the known Sf. The
corresponding ordering scheme for the communication
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steps is illustrated by the bars on the right side of Fig. 8a.
The total execution time is 34. By applying Steps 1 and 2
described above, an improved data relocation scheme is
determined (i.e., DS¢[0](0) = -1, DS¢[1](0) = 0, DS¢[1](1) = 0,
DS¢[2](0) = 1, DS¢[2](1) = -1, DS¢[3](0) = 0) and its corre-
sponding ordering scheme Order¢ (shown by the bars on the
right side of Fig. 8(b)). The total execution time is decreased
to 29 using DS¢ and Order¢. The corresponding Gantt chart
is shown by Fig. 8b. Note that the movement of d0 from the
Source to S[0] on M[1] also provides d0 to S[3] (on M[1]).
Similarly, the movement of X0 from S[0] on M[1] to S[1] on
M[2] also provides X0 to S[2] (on M[2]).

To the best of the authors’ knowledge, there is no other
work presented in the open literature that utilizes the data
relocation and the scheduling of the communication steps
to decrease the intermachine communication time of HC
applications with a given known matching and scheduling
of the subtask computation. Thus, there is no related work
with which to make a direct comparison of the approach
presented in this section.

Recall that, in this paper, no complete new matching and
scheduling subtask computation is generated. Techniques
are provided for enhancing the results generated by any
given matching and scheduling heuristics, and the opti-
mality of these enhancement techniques are proven
mathematically. There is no matching and scheduling heu-
ristic for HC that is widely accepted by the research com-
munity as a benchmark to use with the new enhancements
as a basis.

Furthermore, even if such a benchmark heuristic existed,
there is no generally accepted set of HC benchmark appli-
cation programs for evaluating heuristics (and enhanced
heuristics). It is not clear what characteristics a “typical”
HC application would exhibit. Determining a representa-
tive set of HC application program benchmarks remains an
unsolved challenge for the scientific community in the re-
search field of HC and is outside the scope of this paper.

Due to the above problems, it is difficult to use experi-
mentation to demonstrate the effectiveness of the TIE algo-
rithm from Section 4 and its extension from Section 5. Thus,

Fig. 7. Subtask flow graph for the example in Section 5.

Fig. 8. An example for the extension to the application of the TIE algorithm: (a) Gantt chart with respect to the initial DS and Order, (b) Gantt chart
with respect to DS¢ and Order¢.
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in this paper, a theoretical approach is adopted to show the
soundness of the TIE algorithm and its extension analyti-
cally (versus experimentally). For the totally ordered model
used in Section 4, the TIE algorithm is proven to be optimal.
For the concurrent computation model used in Section 5,
the refinement procedure based on the TIE algorithm is also
proven to decrease the total execution time of an HC appli-
cation. (In pathological worst cases, the TIE algorithm may
not be able to improve a particular matching and schedul-
ing, but it will never increase the total execution time.) The
exact amount of improvement for a given HC application
achieved by varying data relocation and the scheduling of
subtasks’ communication steps depends on the subtask
flow graph of the particular application program, the par-
ticular underlying HC system used, and the particular
given matching and scheduling of subtasks’ computation
generated by some other existent heuristic.

6 SUMMARY

In an HC system, the subtasks of an application program P
must be assigned to a suite of heterogeneous machines to
utilize computational resources effectively (the matching
problem). The execution time of P is impacted by the order of
execution of subtasks’ computation and atomic input opera-
tions (the scheduling problem), and the scheme for distrib-
uting the initial data elements and the generated data items
of P to different subtasks (the data relocation problem).

The intermachine communication time in an HC system
can have a significant impact on overall system performance,
so techniques that can be used to reduce this time are impor-
tant. The contributions of this paper are on the techniques for
varying scheduling and data relocation schemes to decrease
intermachine communication time. In order to use an HC sys-
tem, a matching scheme must be determined (where the gen-
eration of such a matching may involve consideration of
scheduling and data relocation). When the subtasks’ compu-
tation and communication are assumed to be totally ordered
in time, the TIE algorithm presented in Section 4 can find in
polynomial time the optimal scheduling and data relocation
with respect to a given matching. Based on this TIE algorithm,
a refinement procedure for the data relocation and the sched-
uling of intermachine data transfer steps (corresponding to a
given matching and scheduling of computation) is presented
in Section 5 for HC systems where multiple subtasks’ compu-
tation and a single intermachine communication are per-
formed simultaneously whenever possible.

With the presence of data-dependent conditional con-
structs in the subtask flow graph, the post-conditional loca-
tions of the input-data items and output-data items of the
subtasks inside the “then” and “else” clauses cannot be de-
termined at compile time (i.e., their locations will depend
on the value of the conditional and how the clauses are exe-
cuted at run time). Future work includes applying the
methodologies and concepts developed in Sections 4 and 5
to include the data-dependent conditional constructs in the
subtask flow graph.

To limit the scope of this paper, the subtasks’ computa-
tion and communication of a specific application program P
were assumed to be totally ordered in time in Section 4 for

the presentation of the TIE algorithm and its optimality
proof. Section 5 describes one of the possible extensions to
the application of the TIE algorithm, where multiple
subtasks’ computation and a single intermachine commu-
nication are performed simultaneously whenever possible.
Future research includes applying the concepts developed
here to exploit the impact of data-reuse and multiple data-
copies on a more general HC environment, in which multi-
ple subtasks’ computation and multiple intermachine
communication steps can be performed concurrently
whenever possible.

GLOSSARY OF NOTATION

Af assignment function (assigns subtasks of applica-
tion program P to machines)

C[i, j] computation time of subtask i on machine j
Dg directed graph (corresponding to program P)

showing data transfer options based on a given Af
dk kth initial data element of the application program P
DS[i](j) source of the jth input-data item for subtask i
D[s, r](|e|)  time for transferring data item e from machine s

to machine r
FT(v) finishing time of atomic input operation (associated

with an input-data vertex v) and computation step
(associated with an output-data vertex v)

G[i] generated output-data set of subtask i
Gd[i, j] jth generated output-data item of subtask i
Gr[Af, DS]  generated graph corresponding to a particular DS

and Af
H[k, j] minimum time for machine j to obtain the initial

data element dk from one of the devices where dk is
stored before the execution of program P

I[i] input-data set of subtask i
Id[i, j] jth input-data item of subtask i
M[j] jth machine in the HC system, 0 £ j < m
m number of machines in the HC system
MST[Af]  minimum spanning tree of Dg
n number of subtasks in the application program P
NI[i] number of input-data items required by subtask i
NG[i] number of output-data items generated by subtask i
NS[j] number of subtasks assigned to be executed on

machine j
Order[i](j)  relative order of the jth atomic input operation

of subtask i with respect to all the atomic input op-
erations to be performed during the execution of
program P

Q number of initial data elements for the application
program P

Sf scheduling function associated with the applica-
tion program P

S[i] ith subtask of an application program P, 0 £ i < n
ST(v) starting time of atomic input operation (associated

with an input-data vertex v) and computation step
(associated with an output-data vertex v)

Tree[Af, DS]  spanning tree associated with Af and DS
Vg[i] output-data vertex of subtask i
V[i, j] jth input-data vertex of subtask i
W maximum communication time necessary to trans-

fer any data item from an initial source or machine
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in the heterogeneous suite to any other machine
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