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Abstract. Efficient paging procedures help minimize the amount of bandwidth expended in locating a mobile unit. Given a

probability distribution on user location, it is shown that the optimal paging strategy which minimizes the expected number of

locations polled E�L� is to query each location sequentially in order of decreasing probability. However, since sequential search

over many locations may impose unacceptable polling delay, D, optimal paging subject to delay constraints is considered. It is

shown that substantial reductions in E�L� can be had even after moderate constraints are imposed on acceptableD (i.e., D � 3).

Since all methods of mobility management eventually reduce to considering a time-varying probability distribution on user

location, this work should be applicable to a wide range of problems in the area. most notably those with additive cost

structures.

1. Introduction

Paging and registration are necessary features of

wireless communication networks because user loca-

tions vary as a function of time. Since paging and regis-

tration impose burdens on both the switching system

and radio resources [1,2,3], some effort has been

devoted to minimization of their use [4^11]. However,

minimization of paging and registration consists of sev-

eral distinct fundamental problems. Former work has

blended these problems and therefore obfuscated them

slightly.

Specifically, optimal paging and registration,

whether explicitly stated or not, is predicated on loca-

tion estimation based on some notion of user location

probability. It therefore makes sense to explicitly sepa-

rate the paging, registration, and probability distribu-

tion estimation problems. Three basic questions result:

1. Given a probability distribution, what is the least

average amount of effort necessary (number of loca-

tions searched) to find a user? What is the effect of

delay constraints?

2. Given a time-varying distribution known both by

the user and the system, what are the optimal paging

procedures based on information available at the

mobile? I.e., location-based, timer-based or ``state''-

based registration/paging.

3. How can these time-varying location probabilities

be efficiently estimated based on measurement and/

or models of user motion?

In this paper we consider the problem of item 1 and

derive optimal and near-optimal paging strategies for

minimizing the average number of locations (base-

stations) which must be polled. We assume that some

probability distribution on user location can be pro-

vided either through measurement or analysis of motion

models. Even for a uniform distribution where the user

is equally likely to be anywhere in the coverage area,

reductions of at least 50% can be had in the average

number of locations polled. For other distributions the

improvement is larger. Of course, the improvement

comes at the cost of increased delay; i.e., not all loca-

tions are polled at once. However, even under relatively

strong delay constraints, substantial improvements can

still be had.

This work provides a foundation for studying the

joint optimization of paging and registration [12,13] as

well as motivation for future work addressing

question 3.

2. Overview

After formally specifying the problem and establish-

ing some general results, we consider the minimization

of mean locations polled without a delay constraint. It

is shown that sequential polling in decreasing order of

probability minimizes this mean. Then, delay con-

straints are introduced; i.e., maximum and mean con-

straints are imposed on the number of polling events.

The maximum constraint and weighted mean cases can

be solved via dynamic programming. However, minimi-

zation subject to a mean constraint is not amenable to

dynamic programming solution. Therefore, a continu-

ous formulation is developed so that variational [14,15]

principles can be applied. The continuous formulation

can also be used to approximately solve the maximum

and weighted delay problems. We then apply the results

to a simple location probability distribution which
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arises for a number of motion models and to the worst-

case uniform distribution.

3. Preliminaries

3.1. Definitions and problem formulation

We enumerate the paging locations by 1; 2; . . . such

that the user is at location i with probability pi. We can

associate a user location with a random variable X such

that PfX � ig � pi.

Location areas are disjoint sets of locations whose

members are to be polled simultaneously. Let An be the

set of location indices covered by location area n. The

subscript n denotes the order in which the location areas

will be searched so that a polling strategy A is an

ordered sequence �A
1
;A

2
; . . .� of location areas to be

paged. We will use kn to denote the cardinality of An.

The probability of a user residing in location area

An is then

qn �

X

i2An

pi : �1�

If the user is found in location area An, then the number

of locations searched to find the user is

sn �

Xn

j�1

kj : �2�

Therefore, we can now define the cost of paging, L, as

the number of locations searched to find the user. We

observe thatPfL � sng � qn and that

E�L� �

X1

n�1

snqn : �3�

Since all locations within a location area are polled

simultaneously, the paging delay D equals number of

location areas searched before the user is found.We note

thatPfD � ng � qn and that

E�D� �

X1

n�1

nqn : �4�

Our basic problem will be the minimization of E�L�

subject to constraints on D or E�D� over the set of poll-

ing strategies.

3.2. General results

We first establish the following results. Proofs are

deferred until Appendix A.

Theorem "1". To minimize E�L� or E�D�, more probable

locations must not be searched after less probable loca-

tions. Formally, if i and j are locations with pi > pj , then

the location area sequence �A
1
;A

2
; . . .� that minimizes

either E�D� or E�L� must satisfy i 2 Al and j 2 Am for

some l � m.

Since the ordering of locations within a location

area An does not affect L or D, Theorem 1 implies that

we need only consider orderings of the location distribu-

tion pi which are decreasing. We define random variable

X to be a location random variable (LRV) if X takes on

values from the positive integers and PfX � ig � PfX

� i � 1g for all i � 1. The remainder of this work will

consider only the paging problem for which the user

locationX is specified by an LRV.

In addition, Theorem 1 implies that given an LRV

X , an optimal paging strategy that minimizes either

E�D� or E�L� is of the form A
1
� 1; . . . ; s

1
and An � snÿ1

�1; . . . ; sn. That is, for the appropriate choice of k
1
;

k
2
; . . ., we should first page the k

1
most probable loca-

tions, followed by the next k
2
most probable remaining

locations and so on. A few theorems relating L and D

achievable by different distributions follow. We will

make use of the following definitions:

Definition. Let the complementary distribution func-

tion of a random variable X be
�FX �i� � PfX > ig. A

random variable X is said to be stochastically greater

than random variable Y , written X>
st

Y , if
�FX �i�>

�FY �i�

for all i. Likewise if �FX �i� �
�FY �i� for all i thenX �

st

Y .

Definition. Let L�X� and D�X� be random variables

associated with the paging cost and delay respectively

for a given paging strategy on location random variable

X .

Theorem "2". Given a paging strategy �A
1
; A

2
; . . .� and

two location random variables X , Y respectively, if

X>
st

Y then D�X� >
st

D�Y� and L�X� >
st

L�Y�; i.e.,

increasing stochastic order of the location distribution

increases the stochastic order of bothL andD.

This result has the following simple corollary.

Corollary 1. If X >
st

Y , then E�L�X�� > E�L�Y�� and

E�D�X�� > E�D�Y��.

This permits us to find the finite distribution with the

poorest performance (maximum E�L� and E�D�) for any

given paging strategy.

Corollary 2. Given any location area set An, the uni-

form distribution, PfU � ig � 1=M for i � 1; . . . ;M,

maximizes both L�X� and D�X� over all location ran-

dom variables X having at most M non-zero elements.

Thus, the uniform distribution affords the worstL andD

performance of any finite distributionwithM elements.

The proof follows directly from Theorem 2 and the

following lemma.

Lemma 1. Over all location random variables X such
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that PfX > Mg � 0, the uniform random variable U

hasmaximum stochastic order; i.e.,U �

st

X .

4. Minimizing paging costs

4.1. Unconstrained delay

Here we prove that E�L� is minimized by sequential

search over the user locations in decreasing order of

probability; i.e., kn � 1 for all n. We likewise show that

D is maximized by this choice of the fkng.

Theorem "3". For an LRV X , Searching locations

sequentially in decreasing order of probability mini-

mizes the expected number of locations searched over all

possible choices of location area set fAng. Thus,

L
�
� min

fsng

E�L� �

X1

n�1

npn � E�X � :

Theorem "4". For an LRV X , the ordered sequential

paging algorithm of Theorem 3 maximizes D over all

choices of location area set fAng which satisfy An

� fsnÿ1 � 1; snÿ1 � 2; :::sng; i.e., less probable not

searched beforemore probable. Thus,

D
�
� max

fsng

E�D� �

X1

n�1

npn � E�X � :

4.2. Maximum, weighted and mean delay constraints

Here we seek to minimize E�L� while fixing the total

number of location area sets, N. Notice that in this case

the distribution pi must be finite; i.e., pi � 0, i > M for

some sufficiently large M. Otherwise there must be

some location area set with non-zero qn but infinite

cardinality kn and E�L� will be infinite. E�L� may be

rewritten as

E�L� �

XN

n�1

snqn �5�

and we seek sn which minimize it. It is also possible to

add a functionwhich penalizes largeD byminimizing

G �

XN

n�1

�sn � �n�qn ; �6�

where� � 0 is defined as the delayweighting factor.

Notice that eqs. (5) and (6) are both linear superposi-

tions of incremental costs of the form �nqn. Thus, using

boundary conditions sN �M where M is the number

of nonzero pi and s0 � 0, the problem may be solved

numerically using standard finite-horizon dynamic pro-

gramming [16].

Now consider the problem of minimizing L subject

to a constraint onD. Specifically,

minimize E�L�

subject to sn > 0

E�D� � D
�
:

This problem is not amenable to solution via dynamic

programming owing to the constraint on E�D�; i.e., the

total cost is not additive. Specifically, although the cost

is still composed of increments depending only on the sn

and qn, if the delay constraint is not met, then we impose

an effectively infinite cost for infeasibility. However, we

can reformulate all the constrained problems using con-

tinuous distributions. The resulting solutions provide

an underbound to the achievable L
�
, and in addition,

offer a means of obtaining an approximate solution to

the discrete problem.

Consider then a non-increasing probability density

function g�x� defined for 0 � x � X and comparable to

the non-increasing discrete distribution. We defineL as

L �

XN

n�1

xn

Z
xn

xnÿ1

g�!�d! ; �7�

where the xn � xnÿ1 are analogous to the sn for the dis-

crete case and xN � X . Likewise, we define

D �

XN

n�1

n

Z
xn

xnÿ1

g�!�d! : �8�

As an aside for completeness, notice that we can

make the analogy to the discrete case as precise as neces-

sary by setting xn � sn� for some � > 0. Therefore, the

discrete theorems which relate L andD for various loca-

tion distributions via stochastic ordering carry over to

the continuous case if we define the appropriate comple-

mentary density function

�

FX �x� � PfX > xg :

We can then consider minimizing

G � L � ��D ÿD
�
� � L � �D� constant : �9�

For minimization with a maximum D constraint we

have � � 0. For the weighted mean problem, � is some

constant greater than zero, and for constrained mean

problems, � is the Lagrange multiplier. Differentiation

of eq. (9) with respect to the xn yields

@G

@xn
� �xn ÿ xn�1 ÿ ��g�xn� �

Z
xn

xnÿ1

g�!�d! : �10�

Setting eq. (10) to zero yields

�xn�1 ÿ xn � ��g�xn� �

Z
xn

xnÿ1

g�!�d! : �11�

Since x0 � 0 and xN � X , this second order difference

equation has a unique solution [17]. Note that eq. (11)

may be rewritten as a recursion in xn,

xn�1 � xn ÿ ��
1

g�xn�

Z
xn

xnÿ1

g�!�d! ; �12�
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which given �, allows the fxng to be found iteratively

via a choice of x1. All that remains is to determine

whether G is convex.

Theorem "5". G is convex in x both for � � 0 and when

� is the Lagrangemultiplier chosen to satisfy eq. (11).

Thus, through appropriate choice of �, the continu-

ous formulation can be used to perform three different

minimizations:

� Minimize G subject toDmax � N,

� Minimize GwithDweighted by � > 0,

� Minimize G subject toD � D
�
.

4.3. Scaling of continuous solutions

Suppose we have obtained a set of optimal xn for a

particular probability density function g�x� and wish to

find the optimal yn for a scaled density g
0
�x� � �g��x�.

This situation arises naturally for Gaussian user loca-

tion distributions with time-dependent variances. We

will show that if x
�

n
is an optimal solution for g�x� then

y
�

n
� x

�

n
=� is an optimal solution for g

0
�x�. We will also

show the relationship between the G, L and D achieved

by x
�
and y

�
.

Theorem "6". If x
�

n
minimizesG � L � �D for some prob-

ability density function g�x�, then y
�

n
�

x
�

n

�
minimizes G

0

� L
0
�

�

�
D
0
for a scaled probability function g

0
�x�

� �g��x�. Furthermore, if G�x
�
� � G

�
then G

0
�y

�
�

� G
�
=�.

5. Application of results

5.1. Unconstrained D

We showed in section 4.1. that for a non-increasing

distribution, the minimum achievable mean number of

locations searched is the mean of the distribution. For

distributions which are not non-increasing, the mini-

mum L is the mean of the reordered distribution.

The Gaussian distribution, N�0; �
2
t� is a typical

time-varying location probability distribution for sys-

tems under isotropic random motion [18]. We used a

discretized and truncated version of the distribution

defined as

yn �

1

erf �
N
�����

t�
2

p �

2

������������

2�t�
2

p

Z

n

nÿ1

e
ÿ

x
2

2t�
2
dx �13�

with 1 � n � N. Notice that as t varies from 0 to infinity,

yn varies between a deterministic and uniform distribu-

tion on theN possibilities.

Under classical polling strategies, L
�
� N and

D � 1. In Fig. 1 L
�
is shown as a function of time for the

distribution yn with N � 20 and � � 1. Notice that at

all times, L
�
� �N � 1�=2. Thus, optimal polling sub-

stantially reduces the average number of locations

searched, even for a uniform distribution, by almost

half.

However, the unconstrained polling delayD is identi-

cal to L
�
and increases monotonically as the distribution

approaches uniformity. In the next section we show

that moderate constraints on D still result in L
�
reason-

ably close to those obtainable using unconstrainedD.

5.2. The uniform distribution and constrained D

We pursue analytic results for the uniform distribu-

tion since,

� They are simple to derive in closed form.

� As shown in Corollary 2, the uniform distribution

supplies an overbound on theminimumE�L� andE�D�

of any finite location random variable distribution.

� Through Corollary 1, a uniform distribution with

sufficiently few elements may be used to underbound

the minimum E�L� and E�D� of any finite location

random variable distribution.

Thus, we can begin to understand the behavior of L
�

and D
�
for arbitrary distributions in terms of the uni-

formdistribution.

We derive continuous solutions (which underbound

the discrete solutions) for maximum, weighted and

mean D constraints. Note that the maximum D and

weightedD solutions are simply the constrained meanD

solution with fixed Lagrange multiplier, �. These solu-

tions will later be compared to their discrete counter-

parts obtained via dynamic programming.

For a continuous uniform distribution defined on

�0;U �, eq. (11) yields

Fig. 1. Minimum paging cost L
�
for truncated time-varying Gaussian

location distribution. The polling delay D is unconstrained. N � 20

locations.
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xn�1 ÿ 2xn � xnÿ1 � ÿ� :

For n � 1; 2:::N with x0 � 0 and xN � U . we have

xn �

U

N

�

�

2

N

� �
nÿ

�

2

n
2
: �14�

Thus,

D �

XN

n�1

n

1

N

�

�

2U

�N � 1� ÿ n

�

U

� �
: �15�

Lmay be then calculated as

L �

XN

n�1

n

U

N

�

�

2

�N ÿ n�

� �
1

N

�

�

2U

�N � 1� ÿ n

�

U

� �
:

�16�

For mean constraints we find � in terms ofD
�

,U and N

as

� �

N � 1

2

ÿD
�

� �
12U

N
3
ÿN

: �17�

5.2.1. Maximum D constraints

For the case of maximum D � N we have � � 0.

Thus, xn � nU=N with D � �N � 1�=2 and L
�

� U
N�1

2N
.

In Fig. 2 we plot L
�

and D as N ranges from 1 to U for

U � 20. Also shown for comparison are the comparable

discrete solutions obtained using dynamic program-

ming. Notice the relatively close agreement.

5.2.2. Weighted D constraints

For the case of weighted D we may plot a family of

curves parametrized in �, the weighting factor. This was

done in Fig. 3 using U � 20 and 1 � N � 20. We also

show the close agreement of typical discrete solutions

obtained via dynamic programming for the � � 0:1

case. For comparison to the uniform location area

groupings obtained using a maximum D constraint

(eq. (14)), the x
�

n
for � � 0:1 with N � 20 are shown in

Fig. 4. Notice that the size of the groups decreases with

increasing n.

5.2.3. Mean D constraints

We plot L
�

versus D
�

for fixed U � 20 and

N � 1; 2; :::20 in Fig. 5. The range of N is necessary

since not all D
�

are achievable for a given value of N.

Fig. 2. Minimum paging cost L
�

and mean polling delay versus maxi-

mum delayN, for a uniform location distribution using the continuous

formulation. Discrete solution via dynamic programming (DP) also

shown.N � 20 locations.

Fig. 3. Family of minimum paging delay L
�

versus mean polling delay

curves, parametrized in delay weight, �, for a uniform location distri-

bution using the continuous formulation. Discrete solution via

dynamic programming (DP) also shown.N � 20 locations.

Fig. 4. Location area groupings xn obtained using a uniform location

distribution and a weighted delay criterion � � 0:1. Continuous and

discrete dynamic programming (DP) solutions shown. N � 20

locations.
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Also shown in the figure are the performance of discrete

solutions (fsng) to the problem obtained by rounding

the continuous solutions (fxng). The two solutions are

virtually identical.

6. Discussion and conclusion

In current systems, a connection request results in

the polling of all cells in the so-called ``location area''

where the user is registered. These location areas are

fixed and independent of individual users and usually

rather large; sometimes the size of an entire city. Since

each location polled requires the use of signaling

resources, it would be useful to minimize the average

amount of polling required to locate users.

If the user normally moves only among a fraction of

cells in the location area, then some savings can be had

by first searching in likely locations. This suggests that

the personalized user location areas derived here might

be useful in reducing the overall signaling load. Of

course, such a scheme requires some knowledge of

where any particular user is likely to be. Here, we

assume that such a probability distribution on user loca-

tion can be derived from past measurements of user

motion

1

and possibly stored with user profiles.

Given these assumed probability distributions on

the user location, we have derived optimal polling stra-

tegies which minimize the average number of locations

polled, L. The procedure which minimizes L, polls loca-

tions sequentially in decreasing order of probability

and the L achieved is thus the mean of the ordered distri-

bution, L
�
. If we assume that each polling event requires

unit time, then the mean polling delay D is equal to L
�
.

We also found that the uniform distribution achieved

the worst performance (maximum L
�
and D) of any dis-

tribution with the same number of non-zero elements.

In addition, a uniform distribution with fewer elements

can be used to overbound performance as well. Thus,

the uniform distribution is a useful surrogate for under-

standing the behavior of arbitrary distributions.

For large numbers of location areas, D � L
�
may be

unacceptably large. We therefore also considered the

problem of minimizing L under constraints on D. Pro-

blems such as constraining the maximum delay or

weighted average delay can be solved exactly using

dynamic programming (DP). Problems involving con-

straints on the mean delay, however, are not amenable

to DP solution. However, a continuous formulation

which may be applied to all the constrained D cases was

derived and variational techniques applied. The solu-

tion to the continuous problem overbounds the best per-

formance of any discrete solution since the discrete

solution is a subset of possible continuous solutions.

It was found that the discrete solutions obtained by

rounding the continuous solutions lie close to this

bound. Thus, the analytically tractable continuous for-

mulation seems to provide a good approximate solution

to the discrete case. The uniform distribution is espe-

cially tractable and, as previously mentioned, serves as

an underbound on performance over all finite distribu-

tions of the same length. The uniform distribution was

therefore used as a worst case to illustrate the gains pos-

sible using optimal paging strategies.

In the continuous case, it is generally seen that L
�
,

the average number of locations polled declines rapidly

withD the average number of polling events. This result

implies that near-optimum L
�
can be obtained even

under relatively severe constraints on D. Specifically,

for the uniform distribution of 20 elements, the uncon-

strained minimum L
�
is 10:5. However, even when a

mean polling delay of D
�
� 2 is required, L

�
� 13 can

still be achieved.

It is also noteworthy that the scaling properties of

the continuous solutions implies that the relative L
�

remains virtually constant under fixed delay con-

straints. For example, with D � 2 we can achieve

L
�
� 13 forU � 20.

For a distribution with U � 200 we can expect

through application of scaling that L
�
� 130 with the

sameD � 2. Since the absolute minimum L forU � 200

is 100:5, the relative L
�
of the absolute minima are

roughly equal.

In conclusion, for cases where the system need not

find the user immediately, the optimal paging strategies

presented here afford a means to significantly reduce

Fig. 5. Montage of minimum paging cost

�
versus fixed mean polling

�

for a uniform distribution with U � 20 and N � 1; 2; :::20. Both

continuous and rounded solutions shown.

1

The measurements might come specifically from the user in ques-

tion or might be compiled from an aggregate of users with similar

motion characteristics. Estimation of location probability distribu-

tions is the subject of current work.
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the average amount of signaling necessary to locate a

user, while maintaining modest average polling delayD.

This work is applicable to any and all types of user

motion for which a probability distribution on location

can be measured or derived. In addition, since not all

locations are polled simultaneously, a parallel search

for multiple users can be mounted thereby increasing

the potential paging rate and/or reducing the overall

system paging delay. These ideas are the subject of cur-

rent investigations.
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Appendix A: Proofs

Proof of Theorem 1

Suppose the set �A1;A2; . . .� is optimal but there

exists i 2 Al and j 2 Am with pi < pj but l > m. Let

�A
0

1
;A

0

2
; . . .� denote a new paging sequence derived from

�A1;A2; . . .� in which i and j are swapped so that i 2 A
0

m

and j 2 A
0

l
. For the modified paging sequence, we define

the paging cost and paging delay by L
0
and D

0
. We note

that

E�D� ÿ E�D
0
� � lpi �mpj ÿ �lpj �mpi�

� �l ÿm��pi ÿ pj�

> 0 :

This is a contradiction of the assumed optimality of

fAng. Likewise forE�L�we have

E�L� ÿ E�L
0
� � slpi � smpj ÿ �slpj � smpi�

� �sl ÿ sm��pi ÿ pj�

> 0 ;

which also contradicts the assumed optimality. p

Proof of Theorem 2

First, we verify thatD�X� >
st

D�Y� since

PfD�X� > ng � PfX > sng > PfY > sng

� PfD�Y� > ng :

Given l � 1, there exists n such that sn � l < sn�1, so

that

PfL�X� > lg � PfX > sng > PfY > sng

� PfL�Y� > lg :

Thus,

L�X� >
st

L�Y � :
p

Proof of Corollary 1

Let X � fxig >
st

Y � fyig be two different distribu-

tions over an index setA � faigwith ai � ai�1. We have

E�A�X�� �

X1

n�1

�an ÿ anÿ1�
�FX �nÿ 1�

>

X1

n�1

�an ÿ anÿ1�
�FY �nÿ 1� � E�A�Y �� :

Thus by Theorem 2 we must have E�D�X�� > E�D�Y��

and E�L�X�� > E�L�Y�� since D�X� >
st

D�Y � and

L�X� >
st

L�Y�. p

Proof of Lemma 1

Suppose X has distribution PfX � ig � pi with

pi � pi�1 and at most M non-zero elements and such

that �FX �i� >
�FU �i� � 1ÿ i=M for some i 2 1; . . . ;M.

Let i1 be the first such i. Since �FX �i1 ÿ 1� � �FU�i1 ÿ 1�

we have pi1 < 1=M. Since pi is decreasing, pi < 1=M for

all i � i1. Thus, �FX �i1� �

P
M

j�i1�1
pj < �M ÿ i1�=M,

which is a contradiction. p

Proof of Theorem 3

We have E�L� �
P

1

n�1
snqn. If we search Ar � fr`j`

� 1; . . . ; krg sequentially, the paging cost becomes

E�L
0
� �

X

n6�r

snqn �

Xkr

`�1

�srÿ1 � `�prl

�

X

n6�r

snqn

� �srÿ1 � kr�

Xkr

`�1

prl

�E�L� :

Thus, sequential search always reduces E�L�, and by

Theorem 1, the optimal sequential search is in order of

decreasing probability. p

Proof of Theorem 4

Suppose a set fAng maximizes E�D� and kr > 1. We

have E�D� �
P

1

n�1
nqn. If the set Ar is searched sequen-

tially then E�D� becomes

E�D
0
� �

Xrÿ1

n�1

nqn �

Xkrÿ1

`�0

�r� `�pr`�1 �

X1

n�r�1

�n� kr ÿ 1�qn

�

X1

n�1

nqn �

Xkrÿ1

`�0

`pr`�1 �

X1

n�r�1

�kr ÿ 1�qn

�

X1

n�1

nqn

� E�D� :

Thus, sequential searchmaximizesD. p
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Proof of Theorem 5

The second partials of G are

@
2

G

@x
i
@x

j

�

�x
i
ÿ x

i�1 ÿ ��
dg�x

i
�

dx
i

� 2g�x
i
� ; j � i ;

ÿg�x
i
� ; j � i � 1 ;

ÿg�x
iÿ1� ; j � i ÿ 1 ;

0 ; otherwise .

8

>
>
>
>
<

>
>
>
>
:

�18�

Given x and y, let z��� � �x� �1ÿ ��y. We will show

that G�z���� is convex in � over 0 � � � 1 for all admissi-

blex,y:
2

Let� � xÿ y so that z � ��� y. We then have

@
2

G�z�

@�
2

�

X
N

i;j�1

@
2

G�z�

@x
i
@x

j

�
i
�

j
: �19�

Using eq. (18) we obtain

@
2

G

@�
2

�

X
N

i�1

@
2

G�z�

@x
2

i

�
2

i

� 2

X
Nÿ1

i�1

@
2

G�z�

@x
i
@x

i�1

�
i
�

i�1

�

X
N

i�1

�z
i
ÿ z

i�1 ÿ ��g
0

�z
i
��

2

i

� 2

X
N

i�1

g�z
i
��

2

i

ÿ 2

X
Nÿ1

i�1

g�z
i
��

i
�

i�1

�

X
N

i�1

�z
i
ÿ z

i�1 ÿ ��g
0

�z
i
��

2

i

� g�z
1
��

2

1

� g�z
N
��

2

N

�

X
Nÿ1

i�1

g�z
i
���

i
ÿ�

i�1�
2

: �20�

For � � 0 we have z
n
ÿ z

n�1 ÿ � � 0 which implies that

@
2

G=@�
2

� 0 and G is convex when � � 0. The same

holds true for � chosen to satisfy eq. (11) owing to the

positivity of g��. p

Proof of Theorem 6

For optimality of y
n
we examine

@G
0

@y
n

� y

�

n

ÿ y

�

n�1
ÿ

�

�

� �

g

0

�y
�

n

� �

Z
y

�

n

y

�

nÿ1

g

0

�!�d! : �21�

Substitution of

x

�

n

�
for y

�

n

and �g��z� for g
0
�z� yields

@G
0

@y
n

� �x
�

n

ÿ x

�

n�1
ÿ ��g�x

�

n

� �

Z
x

�

n

�

x

�

nÿ1

�

�g��!�d! :

Letting ! � z=� yields

@G
0

@y
n

� �x
�

n

ÿ x

�

n�1
ÿ ��g�x

�

n

� �

Z
x

�

n

x

�

nÿ1

g�z�dz ; �22�

which is identically zero owing to the assumed optimal-

ity of x
�
. Thus, y

�

n

�
x

�

n

�
optimizes

G
0

�y
�

� � L�y
�

� �

�

�

D
0

�y
�

� :

Now, by analogy to the reduction of the integral

term in eq. (21) to that in eq. (22) and the definitions of

L and D from eqs. (7) and (8), we can see that

L
0

�y
�
� � L�x

�
�=�. Likewise, D

0

�y
�
� � D�x

�
�. Thus,

G
0

�y
�
� � G�x

�
�=�. p
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n
� x
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and y
n
� y

n�1) then z is admissible as well.
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