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Abstract— One of the most fundamental skills of a domestic
service robot is the ability to manipulate objects. Hereto, the
end-effector must be positioned accurately in Cartesian space.
To move the end-effector to its desired pose, a suitable end-pose
for the mobile platform and a corresponding configuration of
the manipulator and possibly torso must be found. To determine
the optimal base pose, it is common to compute manipulator
configurations corresponding to a large number of possible
base poses, requiring a large number of IK computations with
each a number of samples or iterations with corresponding
time-consuming collision checks. This paper demonstrates how
the total number of required iterations can be minimized by
computing a single IK solution for the kinematic chain including
the base kinematics and using the result as the base pose for
manipulation. As a secondary objective, the distance to joint
limits is maximized. A further reduction in the total number
of iterations can be achieved by only constraining translations
and rotations that need to be constrained for the task at hand.

I. INTRODUCTION

Over the past years, increasing research attention has been

devoted to domestic service robots. These robots usually

consist of a mobile base with one or two robotic arms. These

arms have six or seven Degrees-of-Freedom (DoFs) and are

possibly mounted on a torso with additional DoFs. One of

the most fundamental skills of a domestic service robot is the

ability to manipulate objects. Accurately positioning the end-

effector in Cartesian space is crucial to this end. To move the

end-effector to its desired pose, a suitable base pose and a

corresponding configuration of the manipulator and possibly

torso must be found. Here, the base pose is defined as the

position x, y and orientation θ of the robot on the ground

plane with respect to a fixed reference frame. Commonly,

the base pose and manipulator configuration are computed

separately because:

• The kinematic and dynamic characteristics of platform

and manipulator usually differ significantly [1];

• A relatively large part of the end-effector positioning

error is due to the mobile platform [2];

• Subsequent motion planning algorithms are also per-

formed decoupled, reducing a high dimensional motion

planning problem into two problems of lower dimen-

sion.

The research leading to these results has received funding from the Dutch
ministry of Economic affairs.

To determine the optimal base pose, it is common to compute

the manipulator configuration for a large number of base

poses. The pose which gets the lowest score on a predefined

cost-function is subsequently selected. This cost-function

concerns secondary objectives such as distance to joint limits,

manipulability and distance to obstacles. Examples of this

approach are [2], [3], [4], [5]. References [2] and [3] search

a grid, where every grid cell represents a possible base

pose. An Inverse Kinematics (IK) solver computes a cor-

responding manipulator configuration for the cell where the

optimization is started and its eight neighbors. The cell for

which the resulting manipulator configuration has the highest

manipulability is then selected until a (local) minimum has

been reached. By starting this optimization from 10 to 20
randomly selected initial poses, the global optimum is found.

In [4], a co-evolutionary algorithm is used with IK computed

for the manipulator only. In [5], a generalized success model

is learned offline, which is subsequently used online to map

positions to a predicted probability distribution for successful

manipulation. However, the learned success model might not

always be applicable to the situation at hand.

These approaches all require a large number of IK so-

lutions to be computed since a manipulator configuration

is determined for every evaluated base pose. Depending

on the used algorithm (see Section II), each IK solution

requires a number of samples (in case of a algorithmic

search-based approach) or iterations (in case of a numerical

iterative solver). If a collision-free solution is required, this

implies that a large number of collision-checks needs to be

performed. This is a drawback of these approaches since

collision-checking is computationally the most expensive

step in the optimization process [4], [6]. Therefore, it is

desired to minimize the total number of samples or iterations

required to optimize the base pose for manipulation.

This paper demonstrates how the total number of required

iterations can be reduced by computing a single IK solution

for the kinematic chain including the DoFs of the base.

As a secondary objective, the distance to the joint limits is

maximized. A number of situations is used to illustrate the

effectiveness of this approach.

In the next section, the base pose optimization is discussed.

The results will be presented in Section III, followed by a

discussion and concluding remarks.



II. OPTIMIZING THE BASE POSE FOR MANIPULATION

The main purpose of this work is to compute the base

pose that is optimal for manipulation using as few iterations

or samples as possible. As mentioned in the introduction, this

is done by including the DoFs of the base in the kinematic

chain of the manipulator. It is assumed that torso joints, if

present, are also included. Computing IK solutions plays a

central role in this approach for determining the optimal base

pose. These solutions can be computed in various ways, as

will be discussed next, followed by the a description of the

algorithm that is used in this approach, the way redundancy

is exploited and how the base can be included efficiently.

A. Inverse Kinematics Algorithms

Since the kinematic chains of domestic service robots such

as the PR2 [7], the Care-O-bot 3 [8], [9], and AMIGO

have more than six DoFs, there is no analytical solution

due to the redundant DoFs. As an alternative, numerical

solvers are used. A numerical iterative IK solver based

on the generalized pseudo-inverse of the Jacobian matrix

corresponds to the Newton method for a system of nonlinear

equations [10]. Such solvers have a few distinct advantages:

• they offer flexibility in selecting the DoFs that need to

be constrained, e.g., when grasping an object which is

axisymmetric around the z−axis this DoF does not need

to be constrained.

• redundancy can be addressed straightforwardly by pro-

jecting the contributions of secondary objectives, such

as distance to joint limits, optimization of manipulabil-

ity or distance to obstacles, into the Jacobian nullspace.

An alternative way of computing IK solutions is in-

troduced in [11], which uses an algorithmic search-based

approach. Although this has proven to be a robust and fast

approach it also has some drawbacks:

• It has a fixed set of inverse kinematics parameteriza-

tions (Transformation, Translation, Rotation and Look-

at Ray). This means it is not possible to specify a goal

pose in different DoFs;

• Redundancy is addressed by setting a selected free joint

to a user specified value when solving the IK. This

means that the dimension of the search space increases

with every DoF. For example, for a 7-DoF manipulator

the dimension of the search space is 7−6 = 1, for a 8-

DoF manipulator this is 8−6 = 2 etc. Furthermore, the

entire search space should always be evaluated to find

the optimal solution, requiring many samples in case of

multiple redundant DoFs.

Due to the flexibility of selecting the DoFs that need to be

constrained and the exploitation of redundancy, the numerical

iterative solver will be used, which is discussed in more detail

in the following sections.

B. Differential kinematics of redundant manipulators

The numerical iterative IK solver makes extensive use

of the Jacobian matrix J(q), which maps the joint space

velocities q̇ to Cartesian space velocity ve:

ve = J(q)q̇ (1)

with ve the r× 1 vector of end-effector velocity of concern

for the specific task and J the corresponding r×n Jacobian

matrix. Furthermore, q̇ denotes the n × 1 vector of joint

velocities. With a redundant manipulator, there are n − r
redundant DoFs. With n × n positive definite weighting

matrix W it can be shown that:

q̇ = W−1JT
(

JW−1JT
)−1

ve (2)

Redundancy can be utilized to optimize secondary objectives

incorporated in cost function H(q). Eq. 2 is then extended

to:

q̇ = J†v̇e −NW−1

(

∂H

∂q

)T

(3)

with J† the weighted generalized pseudo-inverse J† =

W−1JT
(

JW−1JT
)−1

and N the null space projection

matrix N =
(

I− J†J
)

. The weighting matrix W is used

to tune the contributions of the various degrees of freedom.

Although a weighted generalized pseudo-inverse is well-

known in linear algebra, this is often not applied in IK

solvers.

C. An iterative numerical inverse kinematics algorithm

This relation can now be used in a closed-loop solution

scheme. With e = xd − xe the error of the end-effector in

Cartesian space, i.e., the difference between the desired end-

effector pose xd and the current end-effector pose xe, and

K a positive definite matrix, (3) changes to:

q̇ = J†Ke−NW−1

(

∂H

∂q

)T

(4)

which can be numerically integrated with step size ∆t:

q(tk+1) = q(tk) + q̇∆t (5)

This update step is repeated until the termination condition

is met: the norm of the error e has decreased below a certain

threshold, in this case 1× 10−5.

To enforce a solution between the joint limits of the

manipulator, an additional check is performed on every joint:

qi(tk+1) = min(qi,max,max(qi,min, qi(tk+1))) (6)

Evidently, truncating the update step of one or more joints

deteriorates performance and therefore it is convenient to

keep the joints as closely as possible to the center of their

range, as will be shown in Section III-D.

D. Exploiting Redundancy

As discussed above, redundancy in manipulators can be

used to optimize various secondary objectives. In this case,

the distance to the joint limits is maximized. Hereto, the cost

function:

H =
n
∑

i=1

ki
(qi − qi,0)

2

(qi,max − qi,min)
2

(7)



is introduced [12], with ki a gain, qi,min and qi,max the joint

limits and qi,0 = (qi,max + qi,min) /2. The partial derivative

with respect to joint qi is given by:

∂H

∂qi
=

2ki

(qi,max − qi,min)
2
(qi − qi,0) (8)

As becomes clear from this expression, this particular choice

for joint limit avoidance costs acts as a spring on each joint

to keep it in the center of its range.

Note that the cost function H is not included in the

convergence criterium, hence the algorithm might terminate

while H has not yet reached its optimum. Nevertheless,

adding this to the convergence criterium would increase the

required number of iterations which is undesirable. Although

exploiting redundancy this way has already been introduced

by [13], this concept is not yet by default used in IK solvers.

Addressing redundancy this way is more common in case of

Cartesian control of robots where no explicit IK solution is

computed such as, e.g., [14], [15].

E. Including the base platform in the kinematic chain

Fig. 1. The 2D costmap is shown where blue is free space and red defines
(inflated) obstacles, resulting from the sensor measurements indicated by
the white line. The base pose is defined with respect to the “/map” frame
as indicated in the figure. The spheres indicate how an update step that
would result in a collision (yellow sphere) is truncated (green) to remain
collision-free.

To compute the optimal base pose, the two translational

and one rotational DoFs of the base are added to the

kinematic chain. These are defined with respect to a fixed

frame, see Fig. 1. An important difference between the base

on the one hand and the manipulator and torso on the other

hand is the notion of joint limits. In case of the base platform,

these are not defined but the base pose might be constrained

by the environment. This can be seen in Fig. 1: the obstacle

on the left side of the figure, indicated by the white line

representing sensor measurements, is inflated with the radius

of the smallest circle that circumscribes the robot footprint

and a safety margin. The safety margin forms a constraint

while selecting the optimal base pose for grasping: increasing

the safety margin decreases the solution space. The inflated

obstacle is shown in red in the costmap. An update step in the

optimization process might result in the center of the base to

invade the red area, which can be detected by querying the

costmap. This is computationally of low cost compared to

a collision check. The yellow marker indicates the situation

where an update step invades the red area. If this is the case, a

bi-section algorithm is used to limit the step in this direction,

i.e., the step in x- and y-direction is truncated to the point

that the base is just not in collision, as is indicated by the

green marker.

As mentioned in Section II-B, the matrix W can be

used to weigh the contribution of the various controlled

DoFs. Choosing the weighting factors for the base large

with respect to the manipulator joints will cause the base to

converge quickly; nevertheless, if an obstacle is encountered

and the contribution of the base is truncated, the convergence

will deteriorate significantly because the manipulator joints

do not contribute significantly. This illustrates the importance

of weighting the generalized pseudo-inverse in an iterative

algorithm.

III. RESULTS

As mentioned previously, the aim of the approach de-

scribed above was to use as few iterations as possible to

compute the optimal base position for manipulation. To

illustrate the use of the base positioning algorithm, two cases

are discussed in Sections III-A and III-C where the AMIGO

robot has to grasp an object which is initially out of reach.

Furthermore, the effect of the joint limit avoidance will be

discussed in Section III-D.

AMIGO is the domestic service robot of the Eindhoven

University of Technology. Its base platform has four omni-

wheels and is hence fully holonomic. It is equipped with

two 7-DoF Philips Experimental Robotic Arms. These have

the dimensions of the arms of a large person and are placed

on an extendable upper body. In its lower position, AMIGO

can grasp objects from the floor while in its upper position

it has the size of a child and can therefore operate most

features in a domestic environment. The kinematic structure

of AMIGO is redundant: including the base platform, the

kinematic chain contains 3 + 1 + 7 = 11 DoFs.

A. Grasping an object from a table

Fig. 2. The AMIGO robot must
driver closer to the table to be able
to grasp the red can.

Fig. 3. In this position, the can is
within reach.

The first situation that is discussed is shown in Fig. 2.

Here, the AMIGO robot has to grasp the red can, which is

currently out of reach, from the desk. The optimization was

executed with various initial base poses. Note that the robot

will use its left gripper, with the grasp vector perpendicular

to the edge of the table.



Fig. 4. Initial condition (red arrow) and optimized pose (green arrow)
corresponding to the situations in Figures 2 and 3. Similar to Fig. 1, the
blue area is free and red defines inflated obstacles. The black areas represent
the table legs in the localization map, while the white dots indicate the
measured position of the table legs.

The results of this optimization are shown in Figures 3, 4

and 5. It can be seen that convergence of the optimization

is always reached within 80 iterations. To compare this

result of one optimization with 80 iterations: [2] typically

performs more than 100 optimizations (since an IK solution

is computed for each grid cell), each requiring multiple

iterations. Similarly, [4] used a population size of 84 and

hence required a minimum of 84 optimizations. Therefore,

the total number of iterations for both algorithms is at least

an order of magnitude larger than the approach presented

in this paper. As can be seen in the lower plot of Fig. 5,

the joint limit costs have all converged to approximately the

same value.

B. Experimental Results

The situation described in Section III-A has also been in-

vestigated experimentally. The results of this experiment are

comparable to the simulations, as can be seen by comparing

Figures 4 and 6.
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Fig. 5. Norm of the error (upper plot) and joint limit avoidance cost (lower
plot) while optimizing the base pose with different initial conditions.

Fig. 6. Initial condition (red arrow) and optimized pose (green arrow)
corresponding to the situations in Figures 7 and 8. Here, the red area defines
inflated obstacles, resulting from sensor measurements (the white dots) of
the table legs.

In Figures 7 and 8, the robot can be seen in its initial pose

and in its final pose. Here, it can also be seen that the final

base pose is similar to the simulation result (see Fig. 3) and

that the robot is indeed able to grasp the object from the

table at this base pose.

Fig. 7. The AMIGO robot must
driver closer to the table to be able
to grasp the red can.

Fig. 8. In this position, the can is
within reach.

C. Releasing degrees of freedom

Fig. 9. AMIGO must grasp the can
with its left hand: what should be
the orientation of the gripper and the
corresponding base pose?

Fig. 10. In this position, the can is
within reach.

The situation in Sections III-A and III-B is relatively easy:

the can is placed sufficiently far from obstacles such as the

table legs. The situation in Fig. 9 is much more challenging

since the object is placed close to a wall and the robot

cannot move its base underneath the table. This situation

becomes even more challenging if the robot has to grasp the

object with its left gripper. Commonly, a number of grasp

vectors is defined which are all evaluated, i.e., base poses



and corresponding manipulator configurations need to be

computed for every vector, leading to a dramatic increase of

the required collision checks. In this case, four grasp vectors

have been defined for which the base pose is computed (see

Fig. 11). The convergence and joint limit costs are shown

with dashed lines in Fig. 12. Furthermore, the corresponding

joint values of the manipulator are displayed in Fig. 13.

It appears that the solutions differ significantly, both in

convergence as well as joint limit costs H . The magenta

solution does converge quickly, but the cost H is significantly

larger that for the other angles. This can be attributed to joint

wrist2, which is close to its joint limit. Based on the cost

criterium H , one would choose the green solution.

Nevertheless, the can is axisymmetric, hence instead of

evaluating a discrete number of possible grasp vector, one

DoF (in this case the yaw angle) can be left unconstrained

in the optimization. The vectors ve and e now have length

5 instead of 6 while the Jacobian matrix J correspondingly

only has 5 rows. Instead of computing the base pose four

times and selecting the best one, only one optimization

with 89 iterations is required (indicated by the green grasp

vector in Fig. 11 and the solid line in Fig. 12). This shows

the reduction in the total number of iterations that can be

obtained when properly selecting the DoFs that need to

be constrained. The joint limit costs have not converged

entirely but the difference from the sampling-based solution

is negligible.

D. Joint limit avoidance

The optimizations discussed in the previous sections have

all been performed using the joint limit avoidance as dis-

cussed in Section II-D. To illustrate the effect of joint limit

avoidance, the optimization of Section III-C is repeated with

increasing contribution of the joint limit avoidance algorithm.

The results are displayed in Fig. 14, where the blue lines

indicate the situation without joint limit avoidance and the

green, red, cyan, magenta and brown lines indicate increasing

contribution.

It appears that having no joint limit avoidance leads to

very poor performance, also in terms of convergence. This

can be explained by looking at the joint values (see Fig. 15).

Fig. 11. The yellow arrows indicate the constrained grasp vectors for the
red object, corresponding to Fig. 9. The green arrow indicates the optimized
grasp vector.
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Fig. 12. Norm of the error (upper plot) and joint limit avoidance cost
(lower plot) for different grasp vectors (the yellow vectors in Fig. 11). The
solid green line indicates the situation where the end-effector yaw is left
unconstrained (the resulting grasp vector is the green vector in Fig. 11).

It appears that after some excursions during the first ten

iterations, the torso joint, shoulder3 joint and elbow1 joint

have moved to their joint limits. As a result, the update

steps of these joints are truncated, deteriorating the rate of

convergence. If joint limit avoidance is applied, the solutions

moves away from the joint limits and the convergence rate

is restored. This can be seen by looking at the green and

red lines: after a number of samples, the error |e| quickly

converges below the threshold 1× 10−5.

Nevertheless, the joint limit avoidance parameters should

not be chosen too large: if the update step ∆q is too large,

the Jacobian J(q) changes significantly hence the joint limit

avoidance does not map in the Jacobian nullspace anymore.

The magenta and brown solutions in Fig. 14 already require

more iterations, indicating that there is a tradeoff between

convergence and optimality in terms of joint limit avoidance.

As a conclusion, it can be stated that actively avoiding the

joint limits prevents the optimization from moving into the

limits of the solution space as much as possible, improving

convergence. Furthermore, the maximized distance to joint

limits will be an advantage if a pose error is introduced when

actually positioning the base.

IV. DISCUSSION

In this paper only collisions of the base platform are

considered; hence, a 2D costmap can be used to this end.

Nevertheless, the ultimate goal is to find a collision-free base

pose for which a corresponding collision-free manipulator

configuration exists. Similar to [14], one can define pairs of

closest points pi between robot segments and between robot

segments and external objects with associated distance dpi
,

the cost gpi
per collision pair pi is given by:

gpi
=

{

s (dpi
− dB)

2
0 ≤ dpi

≤ dB
0 dpi

> dB
(9)
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Fig. 13. Joint positions with the end-effector yaw constrained (dashed)
and unconstrained (green, solid). The black lines indicate the various joint
limits.

where dB denotes a threshold below which the costs are zero

and s denotes the slope. The total costs are given by:

Hcollision =
P
∑

i=1

gpi
(10)

Implementation of this approach is future work.

One of the main concerns using an iterative numerical

algorithm as discussed in Section II is the question whether

the solution converges within a certain number of iterations.

Convergence may be slow or end up in a local minimum,

something that might also happen in the approach presented

here. One of the ways to prevent this is selecting proper

initial conditions. In [2], [3], 10 to 20 initial poses are used

to compute one base pose. In the situations discussed in

Section III, a random initial pose has been used, with the

constraint that the robot should have the object to grasp

somewhere in front of him. The number of iterations can

be further reduced by selecting a proper initial base pose. A

pragmatic approach hereto is based on workspace analysis of

the manipulator. This has indicated that grasping at offsets

xoffset = 0.5 m and xoffset = 0.2 m has the highest
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Fig. 14. Norm of the error (upper plot) and joint limit avoidance cost
(lower plot) for increasing contribution of joint limit avoidance.

probability of succeeding. To compute the initial pose, the

costmap is sampled a number of times on a circle with radius

r =
√

x2
offset

+ y2
offset

. The sample with the lowest cost is

subsequently selected as the initial pose. The orientation also

follows directly from both offsets. The result is shown in

Fig. 16, where red arrows indicate that the base would be in

collision with the environment, yellow and green arrows indi-

cate feasible positions of which the green one has the largest

distance to obstacles. By starting the optimization with a

distance and orientation that is suitable for manipulation, as

well as sufficient clearance from obstacles, convergence is

less likely to be slow or end up in a local minimum. The

green arrow therefore represents a suitable initial base pose

to speed up the optimization process.

V. CONCLUSIONS

The purpose of this paper was to compute a suitable base

pose for manipulation using as few iterations as possible.

This was achieved by including the DoFs of the base

platform in the kinematic chain. This way, a suitable base

pose could be determined using a single IK computation,

using less than 100 iterations.

This is a great improvement compared to other methods;

these compute manipulator configurations for at least 80
possible base poses, each requiring multiple iterations. The

total number of iterations for these methods is hence at least

an order of magnitude larger than for the approach presented

in this paper. Since collision checking is the most time-

consuming part of grasp-planning, minimizing the number

of iterations and hence the number of collision checks will

ultimately speed up grasp planning.

Furthermore, it was shown that maximizing the distance

to joint limits can improve convergence, which will also be

an advantage if a pose error is introduced when actually

positioning the base.

In future work, additional secondary objectives such ob-

stacle avoidance can be added to this approach similar to the
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Fig. 15. Joint positions corresponding to Fig. 14.

currently implement joint limit avoidance. A further decrease

in the required number of iterations can be achieved by

suitably selecting the initial pose.
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Fig. 16. A pragmatic approach to compute initial conditions: the costmap
is queried on a circle at a pre-specified radius from the object of interest.
The pose with the lowest cost, indicated with the green arrow, will be used
as initial condition for the optimization.


