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Abstract — Integrated circuit designs need to be verified in 

simulation over a large number of process corners that 
represent the expected range of transistor properties, supply 
voltages, and die temperatures.  Each process corner can 

require substantial simulation time.  Unfortunately, the 
required number of corners has been growing rapidly in the 
latest semiconductor technologies.  We consider the problem 

of minimizing the required number of process corner 
simulations by iteratively learning a model of the output 
functions in order to confidently estimate key maximum 

and/or minimum properties of those functions.  Depending 
on the output function, the required number of corner 
simulations can be reduced by factors of up to 95%. 

Index Terms — Adaptive algorithms, circuit simulation, 
design automation, function approximation, Gaussian 
processes, robustness, unsupervised learning. 

I. INTRODUCTION 

To ensure sufficient yield, integrated circuit (IC) 

designs must be verified in simulation for the expected 

range of operating conditions.  These conditions are 

specified using process-related parameters (e.g., the 

threshold voltages and transconductances of the n- and p-

type transistors), the supply voltages, and the average die 

temperature.  For convenience the conditions are usually 

discretized into a finite number of combinations, called 

“PVT corners.” The greater complexity and variability of 

semiconductor processes at 32 nm and below has 

increased the required number of PVT corners, with some 

recent technologies requiring over 1000 corners [1]-[2].  

Given that each circuit simulation can be time-consuming, 

it is desirable to avoid simulating all of the PVT corners 

(i.e., a “full factorial” experiment) while still ensuring 

high-confidence design verification (DV). 

Verifying circuit behavior involves verifying that key 

output properties (e.g., voltage, current, delay, rise & fall 

time) stay within ranges given in the specification.  The 

maximum and/or minimum property values must be 

determined over all PVT corners. We thus have one or 

more combinatorial optimization problems for initially 

unknown function(s) over a discrete input space. Such 

problems are treated in the subfield of statistics called 

Response Surface Methodology (RSM) [3]-[4].  If nothing 

can be assumed about a function, we must verify the 

function with an exhaustive, full factorial search of the 

discrete input space.  However, if one can make strong (or 

reasonable) assumptions about the continuity of the 

function, then it may be possible to guarantee (or to ensure 

with high probability) design correctness after only a 

“fractional factorial” search of a subset of the input space.  

For example, if the output function is known to be 

“Lipschitz continuous,” then the rate of change of the 

function for any two input vectors will be bounded by 

some real constant and so search algorithms can safely 

prune away regions of the search space [5]. 

II. CONCEPTUAL FRAMEWORK 

In our combinatorial optimization problem, the function 

is expensive to evaluate [6], requiring a long-running 

simulation. Thus the number of simulations must be 

minimized. However, given the potentially disastrous 

consequences of very low yield for an inadequately 

verified IC, it is costly to terminate the optimization 

search too soon and then miss the true output maxima (or 

minima).  The overall problem can be decomposed into 

the three simpler subproblems described in the next three 

subsections [6]. 

A. Selecting the Initial Training Set 

Selecting the initial training set is the classic experiment 

design problem in RSM [4],[7]. If there are n ≥ 1 PVT 

parameters with distinct maximum, minimum and modal 

values, then one could include all 3n joint combinations of 

these values in the initial training set. Such a 3n design 

would allow a fitted quadratic model of the function. 

However, a 3n design produces a large training set for n ≥ 

5.  A smaller 2n design can be augmented with inputs to 

form a “central composite design” that allows a quadratic 

model to be calculated [7].  

We chose to use a heuristic-based modified version of 

the central composite design (CCD), which picks n2 initial 

corners from the 2n factorial points of the CCD. The 

training set includes one “typical” corner (with the modal 

value of each PVT parameter) plus n2 – 1 corners that are 

selected from the 2n corners that have extreme values for 

each PVT parameter. We modified this design using a 

heuristic that spreads out the n2 – 1 extremal corners.  The 

results of simulating the initial training set corners are 

used to construct an initial Gaussian Process Model 



(GPM) of the output function [8].  We used the software 

package “scikit-learn” to construct the GPMs [9]. 

B. Selecting the Next Set of PVT Corners to Simulate 

This subproblem chooses the next step (a set of 

unsimulated PVT corners) in an iterative search of the 

input space [10].  The objectives could change as the 

search progresses.  Initially the priority might be to learn 

the global shape of the output function and to identify both 

the most and least promising input regions. Once 

candidates for maxima (or minima) have been found, the 

priority might shift to searching the neighbourhoods of 

those extrema to help the decision to terminate the search. 

  Given a set of evaluated input-to-output mappings, a 

GPM provides for each unevaluated input x an estimate of 

the corresponding function value F(x) plus an estimate of 

the uncertainty σF(x) of the function value estimate [8],[9].  

The uncertainties can be exploited when selecting the next 

PVT corner(s) to simulate.  By combining function 

estimates with estimates of the uncertainty in those 

function estimates, one can identify input regions that 

could contain function maxima, given the maxima found 

so far.  We investigated ways of combining the function 

estimates and uncertainties to select the next corner(s). 

C. Deciding When to Terminate the Search 

For each unsimulated PVT corner x, the GPM that is 

computed from the set X of all PVT corners simulated so 

far provides a function estimate Fpred(x) and an estimate of 

the error σpred(x) in Fpred(x) with respect to the actual 

simulated output F(x). The values of Fpred(x) and σpred(x) 

can be used to estimate the likelihood that the simulated 

value F(x) would exceed the largest simulated value 

F(xmax), xmax ϵ X, that has been found so far.  We start by 

assuming that each predicted value Fpred(x) will be 

Gaussian-distributed about the actual output value F(x) 

with standard deviation σpred(x).  If this is true, then x 

could be safely ruled out as the location xmax of the true 

function maximum if F(x) + k σF(x) were to be less than 

the F(xmax) for some suitable k, say k = 3, 4 or more. 

III. BASELINE SIMULATION CONTROL ALGORITHM 

The baseline algorithm uses the method, described 

above, for selecting an initial training set of size n2.  In the 

iterative search, the unsimulated corner x that has the 

greatest value of Fpred(x) + 3σpred(x) is selected as the next 

corner to simulate.  The search is terminated when no 

unsimulated corners x remain such that Fpred(x) + 3σpred(x) 

exceeds the largest output F(xmax) found so far.  If the 

GPM does indeed produce normally-distributed 

predictions of the output function with standard deviation 

σpred(x), then use of this criterion will terminate the search 

too soon with a probability of about Q(3.0) = 0.135%, 

where Q(d) denotes the Q-function which gives the tail 

probability of a normal distribution at d or more standard 

deviations from the mean. 

 

Fig. 1. Convex hull plot for the baseline Fpred(x) + 3 σpred(x) heuristic. 

Fig. 1 illustrates the progress of the algorithm using the 

baseline Fpred(x) + 3ơpred(x) selection heuristic.  The 

function being learned and verified is the fall time of an 

output of a benchmark circuit provided to us by Solido.  

This circuit has three outputs that have, to different 

degrees, proved to be rather difficult to learn.  Fig. 1 plots 

all of the corners x with respect to the (simulated or 

predicted) output F(x) on the vertical axis and the 

uncertainty σpred(x) on the horizontal axis after 75 (out of 

1080) corners have been simulated.  The simulated 

corners appear at the left edge of the plot with uncertainty 

σpred(x) = 0.  Located at the converging point of the lines is 

the greatest simulated output found so far, F(xmax).  The 

remaining unsimulated (and hence predicted) corners 

appear over a broader region to the right with nonzero 

uncertainties σpred(x) > 0.  The dashed boundary to the top 

and right of the unsimulated corners is the convex hull of 

those corners. Intuitively the corners on the convex hull 

represent “worst-case” corners that could, after simulation, 

be most likely to exceed the present F(xmax) [11].  At each 

iteration, the one simulated corner x moves to the left edge 

with uncertainty σpred(x) = 0 and simulated value F(x). 

The termination heuristic is also illustrated in Fig. 1. 

The diagonal lines labelled “1-Sigma”, “2-Sigma”, etc. are 

defined by the equations Fj(xmax) – k σpred(x) = 0, for k = 1, 

2, etc., where Fj(xmax) denotes the largest output value 

found so far after j simulations. According to the Fpred(x) + 

k σpred(x) heuristic, the termination criterion is met when, 

for all unsimulated corners x, Fpred(x) + k σpred(x) ≤ 

Fj(xmax). Thus termination occurs when all unsimulated 



corners x lie below the k-sigma line. Clearly the algorithm 

should aim to move the unsimulated corners below the k-

sigma line in as few simulations as possible. If greater 

confidence is required that the true F(xmax) has been 

found, then a k-sigma line with a larger k should be used. 

As emphasized above, there is a potentially very large 

cost to not finding the true maximum (or minimum) of the 

output(s). One can approximate the probability of finding 

the true maximum by re-running the simulation control 

algorithm for many randomly generated choices of the 

initial training set, and then compute the fraction of those 

runs that successfully found the true output maximum. 

Fig. 2 plots the results of such an experiment. Each point 

represents an averaged value of 100 runs and 

approximates the probability of finding the true maximum 

as the total number of simulations increases. Three 

different output functions–delay, fall time, and rise time–

were considered for the same challenging benchmark 

circuit. (Many other circuits were also considered, but 

they proved to be easier to learn than the one three-output 

circuit reported here.)  Each run generated a randomized 

initial training set of n2 corners from the 2n factorial 

points, where n is the number PVT parameters.  In this 

circuit n = 7 and the full factorial experiment contained 

1080 corners.  The points in Fig. 2 have been linked up 

with lines to show what happens as the simulations are 

allowed to proceed and meet successively the 3-sigma to 

10-sigma termination criteria.  The left ends of the lines in 

Fig. 2 start where the 3-sigma criteria was first satisfied. 

 

Fig. 2. Probability of finding the true max. using Fpred(x) + 3 σpred(x). 

The plots in Fig. 2 show that the “delay” output (shown 

with dashed lines) was easier to learn than either the “fall 

time” (dotted lines) and the “rise time” (solid lines). Note 

that the 3-sigma termination heuristic was inadequate to 

ensure that the true maximum was found.  For the delay 

output, it was necessary to meet the 6-sigma termination 

criterion after 216 simulations to ensure that the true 

maximum was found for this circuit property. Here, the 

speed-up using the 6-sigma termination criterion was 

1080/216 = 5×. 

Fig. 2 shows that the “fall time” and “rise time” outputs 

were harder to learn than the “delay” output. The fall time 

output required 587 simulations on average and a 5-sigma 

termination criterion to always find the true maximum in 

the 100 runs. The speed-up here was 1080/587 = 1.84×. 

Once again, the 3-sigma termination criterion failed to 

find the true maximum with a probability of an ideal 3-

sigma of 99.7%. The rise time output was clearly the 

hardest to learn of the three outputs.  For two out of the 

100 runs, the true maximum was still not found after 895 

simulated corners. 

IV. IMPROVED SELECTION HEURISTICS 

We investigate the performance of an improved search 

algorithm that applies new heuristics to the baseline 

algorithm. The first heuristic reduces the initial training 

size to reduce the number of unnecessary simulations and 

to allow the algorithm to benefit from more directed 

selection of corners. The new initial training size is 

max(0.01M, 2n), where M is the total number of corners 

and n is the number of PVT parameters. 

From Fig. 2 we see that the rise time output does not 

rise to 100% probability of finding the true maximum. 

Upon further investigation, we determined that this 

termination failure was often due to an inability to detect 

the true output maximum in an unsimulated corner when 

that corner was adjacent, in a Manhattan distance sense, 

from the corner that was already declared by the 3-sigma 

selection heuristic to be the output maximum. Our study 

then turned to investigate ways of avoiding the evident 

weakness in the termination heuristic.  

The second heuristic is an enhancement function E(x) 

that magnifies the predicted error σpred(x) to make it more 

likely that unsimulated corners near the present F(xmax) 

will be considered. E(x) has value 1.25 when x differs 

from xmax in one discrete step in only one parameter, and 

value 1.15 when x differs from xmax in two steps in one or 

two parameters; otherwise, E(x) has value 1.0. 

Experiments with a modified search algorithm using the 

two new heuristics found an increase in the approximate 

probability of finding the true maximum in the delay and 

fall time outputs of the circuit of interest, with a 5-sigma 

termination criterion. However, for the more difficult rise 

time output, the probability reaches 99% even with the 10-

sigma termination criterion. 

Based on this result, a third heuristic was further 

considered to select multiple corners to simulate every 



iteration. The next corners to be simulated are all the 

corners that lie on the present convex hull.   

 

 
Fig. 3. Probability of finding the maximum using an improved 

heuristic-based algorithm. 

Fig. 3 shows the performance of the improved 

algorithm. The probability of findiing the true maximum 

for the fall time and rise time outputs is significantly 

increased for the 3-sigma stopping criterion. All three 

outputs reach 100% probability of finding the true 

maximum by the 6-sigma termination criterion. The 

difficult rise time output now reaches 100% probability of 

finding the true max after 300 simulations. The fall time 

output requires 815 simulations to reach 100% probability. 

We see a speed up of 1080/291 = 3.71× for the delay 

output, 1080/300 = 3.6× for the rise time output and 

1080/815 = 1.33× for the fall time output. 

VI. CONCLUSIONS AND FUTURE WORK 

Using Gaussian Process Models to automatically learn 

approximations of an unknown output function in order to 

verify a specification for that circuit output proved 

effective for most but not all of the small industrial 

benchmark circuits considered.  For a set of nine circuits, 

the convex hull heuristic with a 6-sigma stopping criterion 

was able to reach speedups from 1.03× to 20.69×; these 

correspond to reductions in corner simulations ranging 

from 2.9% to 95%. The average speed up over the nine 

circuits and forty-six outputs was 4.99×, which 

corresponds to a reduction of 80% of corner simulations.    

The convex hull plots proved to be especially useful for 

visualizing the progress of the learning algorithm towards 

a termination condition that combined the function values 

and uncertainties predicted by the constructed GPM for 

the unsimulated PVT corners. 

There are many possible directions for future research.  

A larger set of typical and harder-to-learn benchmark 

circuits is being collected to ensure the generality of the 

new simulation control heuristics. While the GPM 

approach has proven to be effective in the middle learning 

phase, it clearly has difficulty learning some output 

functions and also has difficulty deciding when to 

terminate.  Additional function modeling methods are 

being used to augment the GPM to overcome its evident 

weaknesses.  Recent work is clarifying how to coordinate 

the search most efficiently for circuits with multiple 

outputs. 
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