
Minimizing the Routing Cost During Logic Extraction�

Hirendu Vaishnav, Massoud Pedram

Department of EE - Systems

University of Southern California

Los Angeles, CA 90089

Abstract-This paper describes techniques for reduc-
ing the routing cost during logic extraction. Two rout-
ing cost functions derived from the global structure of
a boolean network are analyzed and the e�ectiveness of
each cost function is compared against the conventional
literal savings cost function. Experimental results ob-
tained with these routing cost functions are presented
and discussed in detail.

I. Introduction

Recent advances in CMOS technology aiming to re-
duce device sizes and to put more functionality on the
chip generate circuits in which routing dominates the
chip area and circuit timing. Hence, addressing rout-
ing issues at all levels of design abstraction has become
a necessity. Structural and functional exibilities avail-
able at higher levels of design abstraction can indeed be
exploited to greatly impact the routing cost of the cir-
cuit. However, it is very di�cult to accurately estimate
the routing cost at these higher levels. In this paper, we
�rst propose new cost functions for logic synthesis that
reect the post-layout routing cost and then use them
during logic extraction.

Logic extraction is the process of identifying subex-
pressions common to two or more functions, which are
then extracted as intermediate nodes in a multi level cir-
cuit. The goal of extraction is to minimize the chip area
by sharing logic across the network. Literal count has
been traditionally used as the objective function during
extraction as it correlates well with the gate area. How-
ever, minimizing the gate area does not always reduce
the chip area. One reason for this is that extraction
mechanisms based on literal minimization often produce
circuits with large number of fanouts per node, increas-
ing the routing overhead. Indeed, such increase in the
routing overhead may undo any area savings due to lit-
eral minimization. Hence, it is imperative that routing
cost be considered during logic extraction.
Recently, a number of researchers have addressed rout-

ing optimization during logic synthesis. Saucier et al.
[11] proposed a lexicographical extraction mechanism to
reduce the routing cost of the circuit by deriving and

�This research was supported in part by the NSF's Research Initiation

Award under contract No. MIP-9223812.

maintaining an order amongst primary inputs of the cir-
cuit. Pedram et al. [6] proposed a mechanism in which
an incrementally updated companion placement is used
to estimate the routing area and delay during logic syn-
thesis. Vaishnav et al. [7, 12] proposed a mechanism
to reduce the routing overhead by minimizing the cross-
ing number of a circuit during technology decomposi-
tion and fanout optimization. However, the problem of
identifying accurate routing measures that can be used
during earlier phases of logic synthesis has been left un-
addressed. In this paper, two routing measures and the
corresponding routing-driven extraction procedures are
described. These procedures improve the routing area
by localizing the signal fanouts and by evenly distribut-
ing the signals across the network. Some important em-
pirical observations regarding the e�ect of extraction of
divisors with low literal savings on the routing area of
the circuit are also presented.
The remainder of this paper is organized as follows.

Section II gives a brief review of the algebraic extrac-
tion procedures. The proposed routing measures are de-
scribed in Section III. Section IV describes the corre-
sponding routing-driven extraction mechanisms. Exper-
imental results are presented in Section V. Conclusions
are given in section VI.

II. Background

Initial work on extraction was reported by Roth and
Karp [10] and by Lawler [4]. Both these approaches
apply boolean techniques for extraction. However, com-
putational complexity of these techniques render them
impractical for large circuits. Hence, recent approaches
use the following procedure along with algebraic division
methods to derive common divisors [2, 1, 8]. In the fol-
lowing, we give an overview of the algebraic extraction
techniques.
First, all candidate divisors associated with nodes in

the network are generated and common divisors are de-
tected. A divisor may consist of a single cube or multiple
number of cubes. Multiple cube divisors which can not
be further divided by a single cube, i.e., cube-free di-
visors, are called kernels. The quotient of the division
process is referred to as a cokernel. A cost value is then
assigned to each divisor. This cost value has tradition-
ally been the number of literals saved due to extraction
of the divisor. A divisor that has the best cost is then
selected and introduced in the network. After dividing
the fanout nodes of a divisor by the selected divisor, the
cost of the remaining candidate divisors might change.
Hence, it is necessary to update the weight of remaining
candidate divisors after each extraction.
A mechanism to identify and extract common kernels

32nd ACM/IEEE Design Automation Conference
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission. 1995 ACM 0-89791-756-1/95/0006 $3.50

(based on rectangle covering problem) was �rst proposed
by Brayton et al. [2, 1]. Rajski et al. [8] simpli�ed the
problem by considering only cube-free double-divisors
(i.e., kernels with two cubes) and single divisors with
two literals. This approach improves the run time while
not sacri�cing the quality of the resultant circuits.
In our approach, only double-divisors and two-literal

single divisors are used. Hence, the basic framework
in our approach for routing driven extraction is similar
to that of [8]. However, to adapt their extraction pro-
cedure to perform routing-driven extraction, two basic
questions need to be answered: (1) How to estimate the
routing cost of a candidate divisor during extraction? (2)
How to minimize this routing cost during extraction?

III. Estimating the Routing Cost

Many circuit parameters contribute to the routing
cost. These parameters can be classi�ed in two cat-
egories: parameters which are dependent on the local
structure of the boolean network; and those which are
dependent on the global structure of the boolean net-
work. Local parameters characterize the routing cost of
a node or a net in the circuit whereas global parameters
characterize the routing cost of the boolean network as
a whole. For example, number of pins on a net is a
local parameter a�ecting the routing cost. Clearly, a
multi-pin net requires larger area to route compared to
a two-pin net. In this paper, we emphasize one such local
parameter, namely, the fanout range of a node. Fanout
range of a signal is de�ned as the span of the fanouts of
a node in terms of some geometrical (e.g., placement po-
sitions of the fanouts) or topological (e.g., logical depths
of the fanouts) measure. If fanouts of a node are within
a limited range, the routing length of the output net
will be less than that of a net with widely distributed
fanouts. The collection of fanout ranges for all the nets
in the network constitutes a global parameter a�ecting
the routing cost. In this paper, two global routing mea-
sures characterizing the routing cost based on the fanout
ranges of the nodes will be presented and analyzed.
A. Fanout Ranges
An ideal scenario for minimizing the routing overhead

is when the routing length of each net is minimum and
the routing is equally distributed across the chip. Min-
imization of the routing lengths can be achieved by lo-
calizing the fanout ranges during logic synthesis. Lo-
calization implies, bringing all the nodes belonging to
a net close to each other in terms of some geometrical
or topological distance metric. During logic synthesis
the network is still being modi�ed, making it di�cult
to estimate post-placement geometric distances between
nodes. A reasonable estimate of the relative positions
of nodes can be obtained from a companion placement
solution as in [6]. Alternatively, one can use the topo-
logical distances among various nodes. Experimental re-
sults show that geometric distances are reliable when
the global interconnection structure is almost �nalized,
e.g., during technology dependent phase of logic synthe-
sis. During technology independent phase, topological
distances are more representative of the post-placement
geometric distances.
Let us denote the set of fanouts of a node i by Oi and

the depth of node i by di (di = 0 if i is a primary input).

De�nition III.1 The fanout interval of a node i, is
given by [bi; ei] = [minj2Oi

fdjg;maxj2Oi
fdjg] where bi

and ei correspond to the beginning and the end of the
fanout interval, respectively. The fanout range Ri of
node i is calculated as Ri = ei � bi.

Circuit Depth

0
1
2
3
4
5
6
7
8
9
10
11
12

bi = 5

ei = 12

i

Fanout
Interval

Fanout Range = 12 - 5
 = 7

Fig. 1. Illustration of fanout ranges and fanout intervals

These de�nitions are illustrated in Figure 1. To con-
�rm the correlation between fanout ranges and actual
wiring cost, we calculated the wire lengths of nets with
di�erent fanout ranges after placement and routing.
These circuits were area-optimized using Sis, placed us-
ing Gordian [3], and routed using TimberWolf global
router [5] and Yacr2 [9] channel router. The results for
three benchmark circuits are presented in Figure 2. As
shown in Figure 2, netlength increases with an increase
in the fanout range. The correlation is especially good
for nets with low fanout range. This indicates that for
larger nets, placement randomizes the e�ect of fanout
ranges on the netlength. However, as shown in Figure
3, about 95% of nets have fanout range of 10 or less.
Moreover, these nets contribute about 80% of the total
netlength. Hence, it is appropriate to use fanout ranges
to capture the relative routing costs during logic synthe-
sis.

B. Fanout Range Based Routing Costs
Let R(N) denote the routing cost of a boolean network

N . The concept of fanout ranges can be used to estimate

0 1 2 3 4 5 6 7 8 9 10
500

1000

1500

2000

2500

3000

3500

4000

Fanout Range

A
ve

ra
ge

 N
et

le
ng

th

* = cps

+ = duke2

o = spla

Fig. 2. Average netlengths for di�erent fanout ranges
for three benchmark circuits.

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

Fanout Range

N
um

be
r

of
 N

et
s

427

6
30 9

35 12 14 12 17 13 21 10 7 8 3 3 1

Benchmark Circuit cps

0 2 4 6 8 10 12 14 16
0

1

2

3

4
x 10

5

Fanout Range

T
ot

al
 N

et
le

ng
th

Fig. 3. Number of nets with di�erent fanout ranges and
sum of their netlengths in circuit cps.

Circuit Depth

b1 = 5

e1 = 12

b2 = 1

b3 = 6

b4 = 3

e2 = 7

e3 = 10 e4 = 11

s1

s2

s3

s4

s5

s6

s7

0
1
2
3
4
5
6
7
8
9
10
11
12

p1 = 1

p2 = 2

p3 = 3
p4 = 4

p5 = 3

p6 = 4
p7 = 1e5 = 11

b5 = 10

Square Overlap Cost = 12·2 + 22·2 + 32·1 + 42·1 + 32·3 + 42·1 + 12·1 = 79

Fig. 4. Illustration of the square overlap function

this routing cost as:

R(N) =
X

i2N

fmaxj2Oi
fdjg �minj2Oi

fdjgg (1)

In this case, we are adding up the fanout ranges of all
the nodes in the network to determine the routing cost of
the network. However, this objective function does not
attempt to distribute the fanout ranges across the cir-
cuit. Uniform distribution of the signals across the chip
tends to reduce congestion in the circuit. Apart from
creating routing di�culties, congestion results in dead
area in other parts of the chip, increasing the total chip
area signi�cantly. We propose a modi�ed objective func-
tion that achieves minimization as well as distribution of
fanout ranges simultaneously.
Suppose the fanout interval [bi; ei] for each node i 2 N

is known. Let MN denote the sorted set-union of all bi's
and ei's, and SN denote the set of segments formed be-
tween two adjacent elements inMN . Furthermore, let pr
denote the number of fanout intervals that overlap with
segment sr 2 SN , and lr denote the length of segment sr
(see Figure 4). Since reducing the fanout interval over-
lap tends to uniformly distribute the signals across the
network, we de�ne the following cost function:

R(N) =
X

sr2SN

F (pr; lr) =
X

sr2SN

pr
2lr (2)

This function reduces the fanout range overlap by min-
imizing the sum of the square of overlaps. Note that
F (pr; lr) can be any other function that discourages in-
terval overlaps1.
Assuming that all other fanout intervals remain the

same, reducing the fanout range of one node will result in
a monotonic decrease in the value of the above function.
Likewise, keeping all other fanout intervals �xed, if the
fanout interval of one node is gradually shifted in such a
way that the fanout range overlap is reduced (i.e., signals
are more distributed) the value of the above cost function
decreases monotonically. Hence, minimization of above
cost function will result in signal distribution as well as
signal localization.

IV. Routing Driven Extraction

For both routing costs described in equations (1) and
(2), we implemented a corresponding routing-driven ex-
traction procedure. The greedy scheme of conventional
extraction algorithmwas used with all divisors restricted
to be either double divisors, or single divisors with two
literals as in [8]. From the list of candidate divisors, con-
ventional approaches choose a divisor which provided the
best literal savings while we choose a \good" divisor that
optimizes the routing cost. A \good" divisor is selected
from the list of candidate divisors based on their literal
savings potential to ensure that the reduction of routing
area is not achieved at the cost of a substantial increase
in the active area.
The basic strategy to select \good" divisors from the

list of candidate is as follows: if maximum literal savings
from any divisor is M , select all divisors with literal
savings within p% of M . In our experiments, the divisor
was selected only if the literal savings for that divisor
was within 10% of the maximum literal savings.
A. Updating the Fanout Ranges
Calculating the routing cost based on equations (1)

and (2) requires a recalculation of fanout ranges of the
nodes in the network for each candidate divisor.

Lemma IV.1 If the depth of a node changes after ex-
traction, it will increase by one.

Proof Follows from the monotone speed-up property
of a unit delay model and the fact that a depth increase
of one for a fanin of a node can lead to a depth increase
of at most one for the node.
Extracting a divisor D may only change the depth of

the nodes in its transitive fanout cone TFOD. Hence,
fanout range of a node may change only if it fans out to
a node in this TFOD. We recursively traverse transitive
fanout cone of the extracted node until we arrive at a
node whose depth does not change due to the extrac-
tion. After identifying the nodes whose depth changes,
i.e., increases by one, we check the immediate fanins of
these nodes to update the range of these nodes. In the
worst case, this might imply a complete depth update
of the network and a traversal of each fanin connection
resulting in the time complexity of O(E) for a boolean
graph G(V;E). However, this range update can be done
more e�ciently by considering only the depth determin-
ing edges as explained next.

1In fact, de�ning F (pr; lr) = prlr gives us the same cost func-
tion as given by equation 1.

B. Improving the E�ciency of Fanout
Range Update

Before the extraction, we identify all the depth de-
termining edges (DD Edges), i.e., all edges ij such that
depth(j) = depth(i) + 1. The concept of DD edges is
shown in Figure 5. Each such edge indicates a depth
dependency, i.e., if a DD edge connects output of node
i to the input of node j, increasing the depth of i or
extracting a divisor from j containing i will increase the
depth of node j by one. We refer to such an extraction
as an extraction along a DD edge.

Theorem IV.2 Fanout range of a node in the network
may change only if a candidate divisor is extracted along
a depth determining edge.

Proof If a divisor is not extracted along a DD edge,
depth of none of the fanout nodes of the divisor will
change. Hence, fanout range of all other nodes in the
network will remain unchanged.
Hence, if a divisor is not extracted along a DD edge,

the routing costs based on equations (1) and (2) remain
unchanged except for the new fanout range of the ex-
tracted node. In this case, equation (1) and equation
(2) can be computed in O(1) and O(maxDepth), re-
spectively where maxDepth is the depth of the resultant
circuit.

A B C D

e f g h

i j k l

m

n o

P

Divisors
A + B
AC + B

B + C
B + D
CD
B + e
e + fg
fh

C + D
BC

ij + l
mn

 DD Signature Set
{{e,f}, {f, g} , {h}, {k}, {f}, {P}}

DD Signatures
{e, f}
{e, f}

{f, g}
--
{h}
{k}
--
--

{f}
{f}

--
{P}

Fanouts
e, f
e, f

f, g
k
h, l
i, k
n
o

f
f

P
P

Fig. 5. Illustration of the DD edges and DD Signature
Set. Solid lines correspond to DD edges

Apart from allowing a more e�cient network traversal
for depth update, the concept of DD edge can be used
to reduce the number of updates required for each set of
\good" divisors as explained next. We de�ne as depth
dependent signature (DD signature) the set of fanouts
along DD edges of the divisor. For example, in Fig-
ure 5 divisor CD fans out to nodes h and l. However,
since only depth of h will change due to the extraction
of CD, the DD signature of CD is fhg. For each such
divisor, the nodes whose depths changed due to the ex-
traction are identi�ed by identifying all the nodes which
are reachable on DD edges from the each node belonging
to the DD signature of that divisor.
From the set of candidate divisors, all distinct DD sig-

natures are identi�ed as depth dependent signature set
(DD signature set). The size of the DD signature set

corresponds to the number of routing cost calculations
needed to identify the best divisor minimizing the rout-
ing cost. It should be noted that further minimization
of the DD signature set can be obtained by reducing a
DD signature containing all depth dependent fanouts of
a node i into node i itself. For example, in Figure 5
signature fPg can be reduced to fmg or fng. However,
in this case it does not lead to further minimization of
the DD signature set. In any case, the size of DD signa-
ture set is upper bounded by the number of candidate
divisors under consideration. Thus, the concept of DD
signature set is used to reduce the number of timesR(N)
needs to be computed.

V. Experimental Results

Before presenting results of our extraction mecha-
nisms, we produce in Table I, the results obtained by
optimizing circuits in Sis using the rugged script (which
uses \fx" to perform extraction). All circuits including
the recommended set of two level examples were mapped
using the Sis mapper with Lib2 gate library in area
mode, placed using Gordian [3] and routed using Tim-
berWolf global router [5] and Yacr2 detailed router [9].
Since our fanout range based cost functions are likely to
be more e�ective when the layout of the circuit is direc-
tional, all the input pads were placed along the bottom
edge of the chip and all the output pads were placed
along the top edge of the chip. These results are used as
a basis for comparison with our experiments.

Table I. Results after routing circuits optimized using
\script.rugged"

Route Gate Chip Delay

Ckt Area Area Area

b12 160 96 256 14.41

cordic 159 108 267 17.17

cps 6447 1316 7762 88.12

duke2 1496 481 1977 38.79

ex1010 24067 2622 26689 523.40

ex4 1188 516 1704 17.09

misex2 222 125 347 13.41

misex3c 1471 508 1979 75.92

pdc 2018 643 2661 37.12

rd84 218 152 370 23.91

spla 2362 700 3062 47.07

9sym 502 234 736 26.02

alu4 1936 606 2542 54.43

apex2 874 362 1236 27.23

apex3 14019 1722 15741 123.84

apex4 22252 2525 24777 599.54

rd73 137 88 225 23.46

table3 4855 993 5848 202.90

In all of our experiments, \fx" in the rugged script was
substituted by the corresponding extraction procedure.
The rest of the rugged script was kept intact.

A. Low Weight Divisors and Single Divi-
sors

During our experiments, we observed that extraction
of low literal savings divisors, while improving the literal
count of the circuit, usually led to worse routing and chip
area. The same was also true for single divisors. This is
due to the fact that literal savings per occurrence of a
single divisor is limited by the size of the single divisor.
By not extracting these divisors, for large circuits,

although the literal count and the active cell area in-
creased, the chip area decreased substantially. This is
due to the fact that the existing placement/routing al-
gorithms can handle clusters of nodes that are weakly
connected much better than those which are strongly
connected. For small circuits, however, if the additional
literal savings due to extraction of these low weight divi-
sors is signi�cant, then the savings in gate area compen-
sates for the increase in routing area. If the additional
literal savings due to extraction of such low weight di-
visors is small compared to overall literal savings, in-
creased routing overhead dominates the potential reduc-
tion in gate area and hence, such divisors should not be
extracted.
Hence, in our experiments, we did not extract single

divisors and any divisor with less than two literal savings
for circuits with 2000 literals or more. These circuits are
ex1010, apex3 and apex4. For the remaining circuits,
low weight divisors and single divisors were extracted
as long as they accounted for 10% or more of the total
literal savings.
We implemented extraction mechanisms based on the

measures given in equations (1) and (2). Equation (1)
corresponds to the sum of ranges for nodes in the net-
work, and hence, it is referred to as range based extrac-
tion. Likewise, extraction based on equation (2) is re-
ferred to as overlap based extraction.

B. Range Based Extraction
Using equation (1), a divisor which results in min-

imum increase (or maximum decrease) in the sum of
fanout ranges of the nodes in the network is selected.
These nodes are identi�ed by the traversal technique de-
scribed in subsection A. In the greedy extraction proce-
dure, this implies that at every step, the increase in the
sum of fanout ranges is minimized.
The results of this approach are given in table II. Each

entry in the table is normalized with respect to the corre-
sponding entry in table I. On average, we obtained 14%
improvement in routing and 12% improvement in chip
area. The active gate area of the circuits and the circuit
delay remained about the same. The improvement on
the recommended set of circuits is about 10% in route
area and 9% in chip area with no change in the delay
and gate area. It should be noted that circuits with lit-
eral count of 2000 or more (ex1010, apex3, and apex4),
the routing area improved by 52% with a chip area im-
provement of 49% in spite of an increase of 32% in active
area. The delay degraded by 4% for these circuits.

C. Overlap Based Extraction
Overlap based extraction minimizes the fanout range

overlap function given by equation (2). The results are
given in table III. Each entry in the table is normalized
with respect to the corresponding entry in table I. On
average, we obtained 13% improvement in routing and

Table II. Range based extraction results

Route Gate Chip Delay

Ckt Area Area Area

b12 0.88 0.99 0.92 0.98

cordic 0.72 0.73 0.72 0.84

cps 0.96 1.00 0.97 0.89

duke2 0.84 0.99 0.88 0.94

ex1010 0.43 1.32 0.51 1.01

ex4 1.02 0.99 1.01 1.03

misex2 0.97 1.00 0.98 1.07

misex3c 0.86 0.97 0.89 1.07

pdc 0.98 1.03 0.99 1.01

rd84 1.05 0.98 1.02 1.11

spla 1.20 1.04 1.16 1.00

9sym 0.76 0.79 0.77 1.13

alu4 0.96 0.99 0.96 1.01

apex2 0.98 1.01 0.99 1.14

apex3 0.60 1.19 0.67 1.33

apex4 0.42 1.17 0.49 0.79

rd73 0.92 1.05 0.97 0.76

table3 0.88 1.00 0.90 1.06

AVERAGE 0.86 1.01 0.88 1.01

Table III. Overlap based extraction results

Route Gate Chip Delay

Ckt Area Area Area

b12 0.93 0.99 0.95 0.98

cordic 0.72 0.73 0.72 0.84

cps 1.06 1.00 1.05 0.93

duke2 0.94 0.99 0.95 0.97

ex1010 0.43 1.32 0.52 1.01

ex4 1.00 0.99 1.00 1.02

misex2 0.97 1.00 0.98 1.07

misex3c 0.88 0.97 0.90 1.07

pdc 0.98 1.04 1.00 0.99

rd84 0.98 0.94 0.96 1.08

spla 1.18 1.04 1.14 0.99

9sym 0.79 0.79 0.79 1.07

alu4 0.95 0.99 0.96 1.01

apex2 0.96 1.01 0.97 1.13

apex3 0.63 1.19 0.69 1.32

apex4 0.42 1.17 0.49 0.79

rd73 0.91 0.98 0.94 0.91

table3 0.99 1.00 0.99 1.10

AVERAGE 0.87 1.01 0.89 1.02

11% improvement in chip area. The active gate area
and the circuit delay remained about the same. The
improvement on the recommended set of circuits is about
9% in route area and 8% in chip area for no change in
the delay and gate area. For circuits with literal count
of 2000 or more, the routing area improved by 51% with
chip area improvement of 48% in spite of an increase of
32% in active area. Delay increased by 4%.
Thus, both routing measures result in similar improve-

ments in the chip area and routing area. However, on
average, the delay has remained the same. This is due to
the fact that we are not directly trying to minimize the
delay along the longest path, and hence, our algorithm
has a random e�ect on the delay.
As expected from the increased time complexity, the

runtimes of both these routing-driven extraction were an
order of magnitude slower than the \fast extract".

VI. Discussion

In this paper, we proposed routing costs that can be
minimized during logic synthesis. By minimizing these
routing costs, we can improve routing area and hence
post-layout chip area, performance, and power consump-
tion. Results of extraction procedures based on these
routing costs were reported. The results indicate that
these measures are e�ective in reducing the routing cost.
However, we also observed that overall chip area is very
sensitive to the active area, speci�cally, for smaller cir-
cuits. Hence, for smaller circuits, a deviation from literal
savings cost function, if not controlled properly, may re-
sult in substantial increase in active area and hence, an
increase in the overall chip area.
The depth based routing costs are intuitive in nature.

However, these routing costs are di�cult to control dur-
ing extraction. Since the extraction procedure is greedy,
choosing a divisor based on current depths of the nodes,
which are going to change as a result of subsequent di-
visor extraction, might not minimize the routing cost
function e�ectively. Another approach is to control or-
der of node extraction such that parameters (e.g., logi-
cal depth) based on which the divisor was chosen remain
valid through extraction. However, we suspect that this
will restrict the extraction mechanism signi�cantly, re-
sulting in a substantial increase in active area. Moreover,
using a \fast extract" as opposed to \general kernel" ex-
traction could a�ect the routing negatively as \fast ex-
tract" often results in a large number of small divisors
with a large number of fanouts and an increased circuit
depth. It is likely that the results would improve even
further if a better mechanism to minimize these routing
cost were applied and if the extraction was not restricted
to double divisors and single divisors with two literals.
We also believe that these measures can be applied even
more successfully to subsequent steps of logic synthesis
where the depth of the nodes can be controlled more
e�ectively.
Our future work will focus on developing other routing

cost functions for logic synthesis and on experimental
evaluation and and comparison of various functions. In
particular, we will focus on characterizing circuits for
which extraction based on some routing cost functions
is very e�ective. Also, an increase in the active gate area
could lead to an increase in the number of rows required
to maintain unit aspect ratio. For large circuits, this

often led to signi�cant improvements in routing area. A
characterization of the exact e�ect of number of rows on
the routing area is thus needed. We intend to explore
this topic further.
A �nal note is that our routing-driven approach does

not improve the results for some circuits and is sensitive
to the placement and routing tools used. A future area of
research will focus on precise characterization of circuits
for which the proposed approach is highly e�ective and
those for which it is not e�ective. This question must
really be addressed in the context of the layout tools
used.

Acknowledgements
The �rst author would like to thank Juergen Kasper

for his help with the initial implementation of the code
and for stimulating discussions.

References
[1] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and

A. Wang. Multi-level logic optimization and the rectangular
covering problem. In Proceedings of the IEEE International

Conference on Computer Aided Design, Nov. 1987.

[2] R. K. Brayton and C. McMullen. The decomposition and
facorization of Boolean expressions. In Proceedings of the

International Symposium on Circuits and Systems, pages 49{
54, Rome, May 1982.

[3] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich.
GORDIAN: VLSI placement by quadratic programming and
slicing optimization. IEEE Transactions on Computer-Aided

Design, CAD-10:356{365, March 1991.

[4] E. L. Lawler. An approach to multilevel Boolean minimiza-
tion. Journal of the Association for Computing Machinery,
11, July 1964.

[5] K. W. Lee and C. Sechen. A new global router for row-based
layout. In Proceedings of the IEEE International Conference

on Computer Aided Design, pages 180{183, November 1988.

[6] M. Pedram and N. Bhat. Layout driven logic restructur-
ing / decomposition. In Proceedings of the IEEE Interna-

tional Conference on Computer Aided Design, pages 134{137,
November 1991.

[7] M. Pedram and H. Vaishnav. Technology decomposition us-
ing optimal alphabetic trees. In Proceedings of the European

Conf. on Design Automation, pages 573{577, March 1993.

[8] J. Rajski and J. Vasudevamurthy. The testability-preserving
concurrent decomposition and factorization of boolean ex-
pressions. In IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, volume 11, pages 778{
793, June 1992.

[9] J. Reed, A. Sangiovanni-Vincentelli, and M. Santamauro. A
new symbolic channel router: YACR2. In IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and

Systems, pages 208{219, July 1985.

[10] J. Roth and R. Karp. Minimization over Boolean graphs.
IBM Journal of Research and Development, 6(2):227{238,
April 1962.

[11] G. Saucier, J. Fron, and P. Abouzeid. Lexicographical ex-
pressions of boolean functions with applications to multilevel
synthesis. In IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, volume 12, pages 1642{
1654, November 1993.

[12] H. Vaishnav and M. Pedram. Routability-driven fanout op-
timization. In Proceedings of the 30th Design Automation

Conference, pages 230{236, June 1993.

