
A. Puiatti  et al. (Eds.): MobiQuitous 2011, LNICST 104, pp. 285–297, 2012. 
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 

Minimizing the Side Effect of Context Inconsistency 
Resolution for Ubiquitous Computing 

Chang Xu, Xiaoxing Ma, Chun Cao, and Jian Lu 

State Key Laboratory for Novel Software Technology, Nanjing University 
Department of Computer Science and Technology, Nanjing University 

Nanjing, Jiangsu, China 
{changxu,xxm,lj}@nju.edu.cn, caochun@gmail.com 

Abstract. Applications in ubiquitous computing adapt their behavior based on 
contexts. The adaptation can be faulty if the contexts are subject to inconsisten-
cy. Various techniques have been proposed to identify key contexts from incon-
sistencies. By removing these contexts, an application is expected to run with 
inconsistencies resolved. However, existing practice largely overlooks an appli-
cation’s internal requirements on using these contexts for adaptation. It may 
lead to unexpected side effect from inconsistency resolution. This paper studies 
a novel way of resolving context inconsistency with the aim of minimizing such 
side effect for an application. We model and analyze the side effect for rule-
based ubiquitous applications, and experimentally measure and compare it for 
various inconsistency resolution strategies. We confirm the significance of such 
side effect if not controlled, and present an efficient framework to minimize it 
during context inconsistency resolution. 

Keywords: Context inconsistency resolution, side effect, ubiquitous  
computing. 

1 Introduction 

Ubiquitous computing applications keep emerging. These applications adapt their 
behavior based on contexts perceived from environments. A good example is Android 
and iOS applications developed in recent years. They perceive environmental 
conditions (or contexts), and make continual adaptations for delivering smart services. 

Unfortunately, contexts from environments usually contain uncontrolled noises. 
Even with data filtering [14][16], contexts may still be subject to inconsistency (or 
context inconsistency) [25][27][28]. It behaves as an application’s contexts conflicting 
with each other by violating physical laws or application-specific rules. The applica-
tion’s adaptation can thus be faulty, e.g., one adaptation cancels the effect of the oth-
er, or an unexpected adaptation occurs at a wrong time or a wrong place. 

Context inconsistency detection is therefore receiving attention in recent years [12] 
[17][21][28]. While the detection is straightforward, how to effectively resolve de-
tected context inconsistencies is non-trivial. The contexts involved in an inconsistency 
are called inconsistent contexts. Which of them actually caused this inconsistency is 
usually unknown. Various techniques have proposed formulating heuristic rules, do-



286 C. Xu et al. 

main knowledge, or user intentions [1][4][13][25][26] to identify key contexts from 
these inconsistent ones. By removing these key contexts, an application is expected to 
no longer suffer from context inconsistency. However, existing practice largely  
overlooks every application’s internal requirements on using these contexts for its 
adaptation. Directly removing these contexts may change an application’s behavior 
unexpectedly, especially when these contexts are identified without knowing how 
they are to be used in this application. We call such unexpected consequences the side 
effect of context inconsistency resolution. 

As an extreme example, an application may remove all accessible contexts to re-
solve inconsistency. This will definitely change this application’s behavior drastically. 
Therefore, an intuitive idea is to minimize the loss of contexts during inconsistency 
resolution. However, simply reducing the number of removed contexts may not work 
as expected, since these removed contexts may play an important role in this applica-
tion. Therefore, a reasonable idea is to minimize the side effect of context inconsis-
tency resolution according to each application’s individual specification. 

Our later evaluation discloses that significant side effect (over 44.0%) can result 
from existing inconsistency resolution techniques, and this forms a practical challenge 
to effective context management for ubiquitous computing. In this paper, we are in-
terested in understanding, measuring, and minimizing such side effect according each 
application’s individual requirements, as well as addressing challenges in doing so. 

The remainder of this paper is organized as follows. Section 2 presents a running 
example to illustrate the side effect of context inconsistency resolution, and introduc-
es background knowledge. Section 3 proposes our side effect measurement frame-
work. Section 4 explains the realization of our framework and its use for measuring 
the side effect of context inconsistency resolution. Section 5 compares the side effect 
of various inconsistency resolution strategies, and shows how our framework mini-
mizes such side effect dynamically. Finally, Section 6 presents related work and  
Section 7 concludes this paper. 

2 Context Inconsistency Resolution and Its Side Effect 

2.1 Side Effect: A Running Example 

Unlike fixing traditional inconsistency in UML models [8][18] or data structures [6], 
resolving context inconsistency changes contexts as well as an application’s behavior 
due to its adaptation based on the changed contexts. Since such consequences are 
inevitable, then what one should protect in context inconsistency resolution? The 
answer would vary with the application nature. 

Consider a stock tracking application [28], in which a forklift transports stock 
items from the loading bay of a warehouse to its storage bay. RFID technology (RFID 
stands for radio frequency identification) is used to track each transported item. For 
safety, a rule is set up to ensure the nonexistence of missing RFID reads: Any item 
detected at the loading bay should be detected again later at the storage bay. This 
rule helps guard the completeness of inventory records. Context inconsistency resolu-
tion, if having to change contexts, should protect such rules from being violated. Be-
sides, if context inconsistency can be resolved by removing irrelevant contexts, e.g., 



 Minimizing the Side Effect of Context Inconsistency Resolution 287 

other forklift’s location contexts, that would be even preferred. This is because useful 
contexts (this forklift’s RFID contexts) can be thus protected from being destroyed. 

This example illustrates the importance of protecting useful properties (e.g., safety 
rules) and useful contexts (e.g., RFID contexts). Based on this, we argue two require-
ments for context inconsistency resolution in ubiquitous computing: 

(1) Identify key contexts from inconsistent contexts such that after removing these 
key contexts, the remaining contexts are inconsistency-free. 

(2) If there are multiple options fulfilling the first requirement, then select the one 
that protect useful properties and useful contexts as many as possible. 

Existing inconsistency resolution techniques have focused on the first requirement. 
Since they already form such “multiple options”, we focus on the second requirement 
in this work. We use side effect to model how these properties and contexts are af-
fected by inconsistency resolution, and propose to minimize it at runtime along with 
inconsistency resolution. To facilitate our discussions, we brief background know-
ledge about context inconsistency resolution below. 

2.2 Context Inconsistency Resolution Techniques and Strategies 

Context inconsistency stems from several reasons. A major one is noisy data. For 
example, RFID read rate can drop to 60-70% in real-life deployment [14]; GPS errors 
are often tens of meters; for GSM cellphone network, field tests can result in errors of 
187-287 meters [24]. People have proposed various filter and threshold techniques to 
smooth these noisy data [14], or measured them probabilistically with uncertainty 
levels [16]. Still, data-level techniques cannot completely prevent a ubiquitous 
computing application from suffering context inconsistency. 

Context inconsistency may also come from the failure of synchronizing all con-
texts [22] or the absence of a global consistency of all environmental conditions [19]. 
Due to such complexity, context inconsistency is receiving growing attention in re-
cent years. There are roughly three categories of existing work on addressing context 
inconsistency or inconsistent contexts. 

One category takes an application-specific approach based on context type or  
application nature. For example, Deshpande et al. [7] proposed smoothing location 
contexts by interpolation techniques; Jeffery et al. [14] proposed adjusting sensing 
window size to retrieve missing RFID contexts. These pieces of work use geometry 
knowledge or probabilistic models to preprocess contexts, e.g., making location con-
texts form an expected curve or RFID contexts statistically follow a distribution. They 
are not generally applicable to other types of contexts or applications. 

The second category targets at more applications by heuristic rules. These rules are 
formulated by domain experts or from empirical experiments. They suggest key  
contexts for removal in order to make resulting contexts inconsistency-free. Such 
rules can be conservative by removing all inconsistent contexts [1], or optimistic by 
denying the latest contexts in inconsistent ones from being accessible to applications 
[4]. The selection of such key contexts can also be random [4] or follow some crite-
rion, e.g., minimizing the number of all removed contexts [26]. 

The third category follows user’s preferences or priorities. They can be statically 
decided in advance [13][20][25], or calls for user’s participation at runtime to best fit 



288 C. Xu et al. 

user’s intentions dynamically [23]. 
While these techniques vary in their formulation and effectiveness, their conse-

quences on resulting contexts are similar, behaving as some key contexts are removed 
and remaining ones are accessible to applications. Therefore, we classify these tech-
niques according to their consequences on resulting contexts. Our classification in-
cludes the following four strategies that cover the aforementioned techniques (these 
four strategies are to be used in our later evaluation): 

(1) ALL: Removing all inconsistent contexts; 
(2) LATEST: Removing the latest context (a representative of those fixed criteria); 
(3) RANDOM: Removing a random context (a representative of random criteria); 
(4) FEWER: Minimizing the number of all removed contexts. 

3 Side Effect Measurement Framework 

Side effect measurement concerns how contexts are being used in an application in 
order to calculate how useful properties and contexts are affected. In the following, 
we first explain the concept of context, application specification, and side effect, and 
then present a framework to measure the side effect at runtime. 

3.1 Context and Application Specification 

In ubiquitous computing, new contexts characterizing environmental conditions keep 
emerging. Usually only a subset of recent contexts is accessible to applications. They 
are called available contexts. 

Available contexts are used in an application according to this application’s design 
logic. A large body of ubiquitous computing applications has their logics formulated 
by adaptation rules, which specify what to do under what conditions [11][20][22]. 
The set of such rules is called application specification. An application specification 
includes information about interesting contexts and the conditions under which adap-
tation should take place. They are important clues about useful contexts and proper-
ties concerned by this application. 

Such rule-based applications are being widely used and supported by many context 
middleware or frameworks [20][25], and they are our focus in the paper. 

3.2 Context Use and Side Effect 

If available contexts are already inconsistency-free, they are safe for using by an 
application specification. The process of evaluating contexts according to an 
application specification is called context evaluation. For example, the 
aforementioned stock tracking application checks whether available contexts indicate 
the forklift has arrived at the storage bay so that it can unload transported items. This 
checking process is an example of context evaluation. Let available contexts be A, 
application specification be S, and context evaluation be ⊗E. Fig. 1 abstracts this 
context use scenario. 



 Minimizing the Side Effect of Context Inconsistency Resolution 289 

A R

S

⊗E

A: Available contexts

S: Application specification

R: Result

A

I

A' R'

S

⊗R ⊗E

A: Available contexts

I: Context inconsistency

A': Resolved contexts

S: Application specification

R': Different result  

Fig. 1. Context use in an application (without 
context inconsistency resolution) 

Fig. 2. Context use in an application (with 
context inconsistency resolution) 

If available contexts contain any inconsistency, then the inconsistency should be 
resolved. Fig. 2 illustrates how available contexts A are first processed for resolving 
inconsistency I. Then resolved contexts A' are used for context evaluation by applica-
tion specification S. ⊗R represents the process of context inconsistency resolution. 

We note that R in Fig. 1 and R' in Fig. 2 are two different context evaluation re-
sults. Their comparison discloses the side effect of context inconsistency resolution. 
As different resolution strategies correspond to different processes of context incon-
sistency resolution, n strategies can lead to n different evaluation results R1, R2, …, 
Rn. Then the side effect can be measured by comparing these R1, R2, …, Rn to a base 
value Rbase. In practice, Rbase can be set to R, which represents the context evaluation 
result without any inconsistency resolution. If one finally selects a resolution strategy 
k (1 ≤ k ≤ n) that minimizes the difference between Rk and R, it implies the effort of: 
(1) first resolving context inconsistency, and then (2) making the application behave 
as similar as no context inconsistency resolution occurred. This effort is reasonable 
and makes sense in most cases. 

The comparison between Rk and R also concerns what metric to measure. It is de-
cided by what one plans to protect in context inconsistency resolution. To protect 
useful contexts, the number or types of contexts that are referred to in evaluation re-
sult Rk can be calculated as the side effect metric for comparison. If an application 
specification also contains useful properties like safety rules, the number of instances 
satisfying these properties can also be calculated from Rk as the side effect metric. 

3.3 Side Effect Measurement 

Side effect measurement seems straightforward but actually not. The major issue is 
the complexity caused by multiple context evaluations. Given n resolution strategies 
to compare, context evaluation has to be conducted n times, with n different sets of 
resolved contexts Ak (1 ≤ k ≤ n). Fig. 3 (left) illustrates the whole picture, and the part 
in the dashed rectangle is what one has to complete in order to compare n evaluation 
results. This part has to be completed efficiently as it works at runtime. 

We address this challenge using our incremental measurement idea. From Fig. 3 
(left), n context evaluations differ only at n inputted sets of resolved contexts Ak (1 ≤ k 
≤ n). These sets of resolved contexts come from the same available contexts A and 
same context inconsistencies I, but with a different resolution process ⊗Rk (1 ≤ k ≤ n). 
If one detects context inconsistency in short periods or incrementally [28], the number 
of context inconsistencies in each period would be a small constant. Then the n sets of 
resolved contexts A1, A2, …, An would be similar to each other. This motivates us to 
share the computation across n context evaluations with little cost. 



290 C. Xu et al. 

A

I

A1 R1

S

⊗R1 ⊗E

An⊗Rn
Rn⊗E

Select the best
result Rk and its 
corresponding 
strategy ⊗Rk

…… ……

   

A

A1 R1

S

Select the best
result Rk and its 
corresponding 
strategy ⊗Rk

…… ……

⊗ER

Δ1
differ

apply 
/undo

An Rn
differ

apply 
/undoΔn  

Fig. 3.Side effect measurement framework (left: direct; right: incremental) 

We brief our incremental side effect measurement idea below for Fig. 3 (right): 

(1) Conduct context evaluation on available contexts A and application specifica-
tion S, and obtain result R for later reference. 

(2) For each resolution process ⊗Rk, calculate the difference Δk between resolved 
contexts Ak and available contexts A. Then apply Δk to reference result R to ob-
tain updated result Rk. 

(3) Undo Δk to restore Rk back to R. 
(4) Repeat Steps (2)-(3) for all n resolution processes, and finally select the best 

one that minimizes the given side effect metric (subject to user’s choice). 

The novelty of this idea is that one does not have to conduct n complete context eval-
uations. Instead, one only needs to conduct it once, and later update it n times for 
different results. The benefits include reduced computation time (almost down to 1/n 
time) as well as reduced space cost (no need to store n intermediate evaluation re-
sults). However, the key to success is how one can efficiently update reference result 
R to obtain required result Rk and later restore it back to R. This concerns underlying 
data structures and operations, and we present one realization for them below. 

4 Realization of the Framework 

In this section, we discuss the realization of our incremental side effect measurement 
framework. We start with basic blocks of context, pattern, and rule in an application 
specification, and explain key data structures for supporting efficient context 
evaluation and its result update and restoration. 

4.1 Context, Pattern, and Rule 

Context. Context is represented as a tuple with multiple fields, each of which is a 
name-value pair. This is comparable to many pieces of existing work on context 
modeling [13][20][21] in order to be representative. For example, an RFID context 
can be represented as ((type, “RFID”), (subject, “tag 0327”), (predicate, “detected 
by”), (object, “reader a”), (time, “10:20:05am”)). 

Pattern. Pattern is used to select interesting contexts satisfying predefined conditions 
in this pattern. For example, pattern ((type, “RFID”), (subject, “tag 0327”)) select all 
RFID contexts about tag 0327, i.e., this tag is being continually tracked by this pat-
tern. When context c satisfies the conditions in pattern P, we say that c matches P, 
represented as c∈P. 



 Minimizing the Side Effect of Context Inconsistency Resolution 291 

forall vload∈LOAD[-100]

exists vstor∈STOR[-50] exists vstor∈STOR[-50]

match(vload, vstor) match(vload, vstor) match(vload, vstor) match(vload, vstor)

vload = lx vload = ly

vstor = sx vstor = sy vstor = sx vstor = sy

true false false true  
Fig. 4. Context evaluation tree for the safety rule in the stocking tracking application 

Rule. A modeling language is used to specify rules in an application specification. It 
is based on first-order logic with timing constraints. Its expressive power is compara-
ble to existing work on specifying adaptation rules [16][20][22][25]: 

f ::= forall v∈P[t] (f) | exists v∈P[t] (f) | (f) and (f) | (f) or (f) | 
(f) implies (f) | not (f) | bfunc(v, …, v). 

The above syntax follows their traditional first-order logic interpretations. P[t] refers 
to a pattern P that selects contexts restricted by a period of t. Terminal bfunc refers to 
any application-specific function that returns a Boolean value. 

An application specification can contain multiple rules, each of which is con-
structed by recursively using the above syntax. For example, the following rule speci-
fies the aforementioned safety rule in the stock tracking application: 

forall vload∈LOAD[-100] (exists vstor∈STOR[-50] (match(vload, vstor))). 

This rule specifies that each RFID context perceived at the loading bay (in the past 
100s) should be able to find its matched RFID context at the storage bay later within a 
specified period (in the past 50s), implying the nonexistence of missing RFID reads. 

4.2 Context Evaluation Tree 

We use context evaluation tree (CET) to represent how context evaluation is 
conducted for a rule in the application specification. Each rule owns such a tree. By 
this tree, we can: (1) efficiently update it for a new context evaluation, and (2) 
measure the aforementioned side effect metrics for useful contexts and properties. 

Suppose LOAD[-100] = {lx, ly} and STOR[-50] = {sx, sy}. Then the CET of the 
safety rule can be constructed as Fig. 4 shows. The construction naturally follows the 
rule’s syntactic hierarchy. From this CET, the number of useful contexts can be easily 
calculated (4), as a total of four contexts have participated in the context evaluation of 
this rule. Besides, the number of instances satisfying the safety rule can also be de-
rived (2), as two pairs of contexts ((lx, sx) and (ly, sy)) satisfy the match function. We 
next explain how a CET can be efficiently updated for computation reuse (reuse for n 
context evaluations in comparing n resolution strategies). 

4.3 CET Update 

We first explain efficient construction of a CET. As a CET is based on available 
contexts A and application specification S, it can be seen as the result of applying a 
series of context changes (constituting A) to an empty CET (following a rule’s 
syntactic hierarchy in S). These context changes include the following two types: 

New Context. When a new context emerges from environment, a relevant CET can 
be incrementally updated to incorporate this context. For example, if STOR[-50] has a 



292 C. Xu et al. 

new context sz, then two “exists vstor∈STOR[-50]” nodes should be attached with a 
new branch corresponding to this new context sz as existing contexts sx, sy. 

Expired Context. If a previous context expires due to its timing constraint, a relevant 
CET can also be incrementally updated to incorporate this change. For example, if 
LOAD[-100]’s previous context lx expires, then the branch corresponding to context lx 
(with three nodes) should be removed from the tree. 

Therefore, the reference result R required in Step (1) of the side effect measure-
ment framework can be efficiently calculated without reconstructing whole CETs 
when any context change occurs. For the side effect comparison in Steps (2)-(3), we 
note that R should also be efficiently updated to obtain Rk (1 ≤ k ≤ n) for n resolution 
strategies. This can be done by updating relevant CETs to incorporate the following 
two change types from resolution strategies: 

Removed Context. When a resolution strategy needs to remove a context for resolv-
ing inconsistency in Step (2), we temporarily remove branches corresponding to this 
context from relevant CETs (similar to “expired context”). However, these branches 
are kept in a buffer. Later when the framework needs to undo this resolution strategy 
in Step (3), we restore these branches to their original places. 

Added Context. We also support some rare resolution strategies that add new con-
texts to resolve inconsistency. This can be done by temporarily adding corresponding 
branches to relevant CETs (similar to “new context”). These branches are removed 
later to undo the effect of a resolution strategy. 

Therefore, applying and undoing a resolution strategy can also be incrementally 
realized without reconstructing whole CETs. 

4.4 Efficiency Analysis 

Due to space limitation, we only brief our efficiency analysis results below. Let the 
height of a CET be h and its node number be d. We have: 

(1) Handling a “new context”/“added context” change takes O(h) – O(d) time; 
(2) Handling an “expired context”/“removed context” change takes O(h) time; 
(3) Undoing an “added context”/“removed context” change takes O(1) time. 

In our side effect measurement framework, each resolution strategy takes a limited 
number of steps to resolve context inconsistency detected in small periods. Let the 
number be restricted by a constant l (usually 0.3-0.5 in our experiments). We have: 

Step (2): Applying n resolution strategies takes O(n⋅l⋅h) – O(n⋅l⋅d) time; 
Step (3): Undoing n resolution strategies takes O(n⋅l⋅h) time. 

Consider that l is a small constant, h is fixed (also a constant), and almost all resolu-
tion strategies remove selected inconsistent contexts only (factor d can thus be  
removed). Then Steps (2) and (3) take O(n) time, which implies that the whole 
framework takes O(1) time to measure the side effect for each resolution strategy 
(Step (1) is incrementally conducted as explained and can be merged into later steps). 
This guarantees the framework to be efficient and scalable at runtime. 

A buffer needs to be maintained for keeping temporarily removed branches, but at 
the same time, the same size of space is released from relevant CETs. Therefore, there 
is no extra space cost in addition to what is required by CETs themselves. 



 Minimizing the Side Effect of Context Inconsistency Resolution 293 

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

6 9 12 15 18 21 0 3

R
at

io
(%

)

Hour

Ratio on hours

EFFECT

FEWER

RANDOM

ALL

LATEST

Fig. 5. Side effect comparison (hour-based)

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

R01 R02 R04 R05 R06 R08 R14 R15

R
at

io
 (%

)

Rule

Ratio on rules

EFFECT

FEWER

RANDOM

ALL

LATEST

 
Fig. 6. Side effect comparison (rule-based) 

5 Experimentation 

We use an open-source context simulator Siafu (http://siafusimulator. 
sourceforge.net/) to measure and compare the side effect of different context 
inconsistency resolution strategies. Siafu loads the data of a realistic town of Leimen 
in Germany. It ran for a continuous 24-hour day and generated a total of 288,000 
contexts. These contexts contain a controlled error rate of 15% and were checked 
against 12 consistency constraints for inconsistency. The contexts and detected 
inconsistencies were used for our experiments. 

To measure the side effect of context inconsistency resolution on ubiquitous appli-
cations, we studied Active Campus [9], Gaia [20][21], Socam [10], CARISMA [2], 
Egospaces [15], and Runes [5]. From them, we formulated 16 rules as the application 
specification for our experiments. The specification contains varying requirements of 
using contexts for adaptation. Its mixed nature helps alleviate possible bias caused by 
any single application. 

The experiments were conducted on a machine with Intel Core 2 Duo 2.13GHz 
CPU and 1GB RAM. Software includes Windows XP Professional SP3 and 
Oracle/Sun JRE 1.6. The side effect is measured by the ratio between Rk and R on a 
metric that combines both the number of useful contexts and number of instances 
satisfying useful properties, with an equal weight for experimental purposes. 

Fig. 5 compares the side effect of five resolution strategies based on different hours 
(starting at 6am). These strategies include FEWER, RANDOM, ALL, and LATEST dis-
cussed earlier in Section 2. A new strategy is EFFECT, which compares the above four 
strategies at runtime and always selects the one that minimizes the side effect (by 
highest ratios). From Fig. 5, all strategies caused side effect. RANDOM, ALL, and 
LATEST are most severe with a ratio of 38.0-68.8% (31.2-62.0% side effect). FEWER is 
better with a ratio of 55.8-73.5% (26.5-44.2% side effect). EFFECT’s ratio is highest 
(72.1-85.7%), implying the least side effect (14.3-27.9%). 

Fig. 6 compares the side effect based on different rules. Among 16 rules, eight of 
them (R01-02, R04-06, R08, R14-15) are affected by inconsistent contexts. RANDOM, 
ALL, and LATEST are most severe with a ratio of 36.6-85.5% (14.5-63.4% side effect). 
FEWER is better with a ratio of 40.0-100.0% (0.0-60.0% side effect). EFFECT’s ratio is 
still highest (71.1-100.0%), meaning the best control on the side effect (0.0-28.9%). 

On average, RANDOM, ALL, and LATEST have a ratio of 56.0%, 49.4%, and 48.5%, 
which shows significant side effect (over 44.0%) resulted from context inconsistency  
 



294 C. Xu et al. 

resolution. FEWER behaves better: 67.5% (32.5% side effect), which results from its 
nature that tries to minimize the number of all removed contexts in resolving inconsis-
tency. This helps protect applications from losing useful contexts and properties to 
some degree. By dynamically selecting the strategy that minimizes the side effect at 
runtime, EFFECT improves the average ratio to 81.4% (18.6% side effect). We note 
that zero side effect may not be possible as inconsistency resolution inevitably 
changes contexts and an application’s behavior. Still, EFFECT makes such attempt and 
controls context inconsistency resolution with the least side effect on applications. 

We owe this ability to the framework’s runtime efficiency and scalability (negligi-
ble experimental time: totally several seconds for all 24-hour contexts). Otherwise, it 
would have failed to measure and compare the side effect dynamically. 

6 Related Work 

Ubiquitous computing and context-awareness are receiving increasing attention. 
Various application frameworks [11][15] and middleware infrastructures 
[2][10][20][25] have been proposed to support the development of context-aware 
ubiquitous applications. These applications may be subject to context inconsistency at 
runtime, and therefore call for efforts to address context inconsistency. 

People proposed various techniques to detect context inconsistency efficiently by 
reusing previous checking results [28], or asynchronously by identifying distributed 
inconsistency-triggering events that occur concurrently [12]. Detected context incon-
sistencies can be modeled or analyzed in different forms like application exceptions 
against normal work routines [17], or semantic conflicts when different terminologies 
or semantics are mixed [21]. 

Context inconsistency resolution work like [14][16] focuses on filtering raw  
contextual data probabilistically and marking remaining ones with uncertainty levels. 
While this gives useful hints on how likely they are correct, applications still  
face problems when selecting useful contexts from them without knowing possible 
consequences by doing so. Domain knowledge or user observations can be formulated 
as heuristic rules or user preferences [1][4][13][20][23][25][26], but they help little on 
this issue. As disclosed by our analysis and experimental results, these pieces of work 
suffer from uncontrolled side effect that impairs useful contexts and properties specif-
ic to certain applications. 

A recent piece of work [3] proposed resolving context inconsistency based on ap-
plication logics. This shares some observations as ours. However, this work assumes 
the availability of effect function for each action in an application, and requires error 
recovery plans to compensate what has been caused by context inconsistency. 

Our work is based on our earlier efforts for context inconsistency detection [28] 
and manual resolution with fixed policies [25]. We later extended the work with heu-
ristic rules to automatically resolve context inconsistency [26]. We identified negative 
consequences caused by context inconsistency resolution, and experimentally meas-
ured them for two applications [27]. Based on our earlier preliminary efforts, in this  
 



 Minimizing the Side Effect of Context Inconsistency Resolution 295 

paper we formulated the side effect issue in context inconsistency resolution, and 
presented an efficient side effect measurement framework. Our incremental measure-
ment technique enables runtime side effect calculation and comparison, allowing the 
selection of the best resolution strategy with the least side effect on applications. 

7 Conclusion 

The study in this paper measures the significant side effect caused by context 
inconsistency resolution on ubiquitous applications. It shows that side effect can be a 
new criterion for evaluating various inconsistency resolution techniques in addition to 
their original objectives. It can be further explored what is the most suitable base to 
which the side effect should be compared, and how the most suitable measurement 
metric can be selected. The answers should be application-specific. Our framework 
provides a systematic way to measure such side effect, as well as an efficient 
realization to compare different resolution strategies at runtime. This suits for 
applications whose requirements of using contexts are not static and can evolve 
dynamically (i.e., context-aware). We are now working on realistic experiments and 
automated context repair techniques towards better quality guarantee for ubiquitous 
applications. 

Acknowledgments. This research was partially funded by National Science Founda-
tion (grants 60736015, 61021062, 61100038) and 863 program (2011AA010103) of 
China. Chang Xu was also partially supported by Program for New Century Excellent 
Talents in University (NCET-10-0486).  

References 

[1] Bu, Y., Gu, T., Tao, X., Li, J., Chen, S., Lu, J.: Managing Quality of Context in Perva-
sive Computing. In: 6th Inter. Conf. on Quality Software, Beijing, China, pp. 193–200 
(October 2006) 

[2] Capra, L., Emmerich, W., Mascolo, C.: CARISMA: Context-aware Reflective Middle-
ware System for Mobile Applications. IEEE Trans. on Software Engineering 29(10), 
929–945 (2003) 

[3] Chen, C., Ye, C., Jacobsen, H.: Hybrid Context Inconsistency Resolution for Context-
aware Services. In: IEEE Inter. Conf. on Pervasive Computing and Communications, 
Seattle, Washington, USA, pp. 10–19 (March 2011) 

[4] Chomicki, J., Lobo, J., Naqvi, S.: Conflict Resolution Using Logic Programming. IEEE 
Trans. on Knowledge and Data Engineering 15(1), 244–249 (2003) 

[5] Costa, P., et al.: The RUNES Middleware for Networked Embedded Systems and Its 
Application in a Disaster Management Scenario. In: 5th Annual IEEE Inter. Conf. on 
Pervasive Computing and Communications, White Plains, NY, USA, pp. 69–78 (March 
2007) 

[6] Demsky, B., Rinard, M.C.: Goal-directed Reasoning for Specification-based Data Struc-
ture Repair. IEEE Trans. on Software Engineering 32(12), 931–951 (2006) 



296 C. Xu et al. 

[7] Deshpande, A., Guestrin, C., Madden, S.R.: Using Probabilistic Models for Data Man-
agement in Acquisitional Environments. In: 2nd Biennial Conf. on Innovative Data Sys-
tems Research, Asilomar, California, USA, Article 26, pp. 1–13 (January 2005) 

[8] Egyed, A.: Fixing Inconsistencies in UML Design Models. In: 29th Inter. Conf. on 
Software Engineering, Minneapolis, MN, USA, pp. 292–301 (May 2007) 

[9] Griswold, W.G., Boyer, R., Brown, S.W., Tan, M.T.: A Component Architecture for an 
Extensible, Highly Integrated Context-aware Computing Infrastructure. In: 25th Inter. 
Conf. on Software Engineering, Portland, USA, pp. 363–372 (May 2003) 

[10] Gu, T., Pung, H.K., Zhang, D.Q.: Toward an OSGi-based Infrastructure for Context-
aware Applications. In: 2nd IEEE Inter. Conf. on Pervasive Computing and Communica-
tions, Orlando, Florida, USA, pp. 66–74 (March 2004) 

[11] Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-aware 
Pervasive Computing. In: 2nd IEEE Conf. on Pervasive Computing and Communica-
tions, Orlando, Florida, USA, pp. 77–86 (March 2004) 

[12] Huang, Y., Ma, X., Cao, J., Tao, X., Lu, J.: Concurrent Event Detection for Asynchron-
ous Consistency Checking of Pervasive Context. In: 7th Annual IEEE Inter. Conf. on 
Pervasive Computing and Communications, Galveston, Texas, USA, pp. 131–139 
(March 2009) 

[13] Insuk, P., Lee, D., Hyun, S.J.: A Dynamic Context-conflict Management Scheme for 
Group-aware Ubiquitous Computing Environments. In: 29th Annual Inter. Computer 
Software and Applications Conf., Edinburgh, UK, pp. 359–364 (July 2005) 

[14] Jeffery, S.R., Garofalakis, M., Frankin, M.J.: Adaptive Cleaning for RFID Data Streams. 
In: 32nd Inter. Conf. on Very Large Data Bases, Seoul, Korea, pp. 163–174 (September 
2006) 

[15] Julien, C., Roman, G.C.: EgoSpaces: Facilitating Rapid Development of Context-aware 
Mobile Applications. IEEE Trans. on Software Engineering 32(5), 281–298 (2006) 

[16] Khoussainova, N., Balazinska, M., Suciu, D.: Towards Correcting Input Data Errors 
Probabilistically Using Integrity Constraints. In: 5th Inter. ACM Workshop on Data En-
gineering for Wireless and Mobile Access, Chicago, Illinois, USA, pp. 43–50 (June 
2006) 

[17] Kulkarni, D., Tripathi, A.: A Framework for Programming Robust Context-aware Appli-
cations. IEEE Trans. on Software Engineering 36(2), 184–197 (2010) 

[18] Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency Management with Repair Ac-
tions. In: 25th Inter. Conf. on Software Engineering, Portland, USA, pp. 455–464 (May 
2003) 

[19] Rajamani, V., Julien, C.: Blurring Snapshots: Temporal Inference of Missing and Uncer-
tain Data. In: 8th Annual IEEE Inter. Conf. on Pervasive Computing and Communica-
tions, Mannheim, Germany, pp. 40–50 (March-April 2010) 

[20] Ranganathan, A., Campbell, R.H.: An Infrastructure for Context-awareness Based on 
First Order Logic. Personal and Ubiquitous Computing 7, 353–364 (2003) 

[21] Ranganathan, A., Campbell, R.H., Ravi, A., Mahajan, A.: ConChat: A Context-aware 
Chat Program. IEEE Pervasive Computing 1(3), 51–57 (2002) 

[22] Sama, M., Elbaum, S., Raimondi, F., Rosenblum, D.S., Wang, Z.: Context-aware Adap-
tive Applications: Fault Patterns and Their Automated Identification. IEEE Trans. on 
Software Engineering 36(5), 644–661 (2010) 

[23] Shin, C., Dey, A.K., Woo, W.: Mixed-initiative Conflict Resolution for Context-aware 
Applications. In: 10th Inter. Conf. on Ubiquitous Computing, Seoul, Korea, pp. 262–271 
(2008) 



 Minimizing the Side Effect of Context Inconsistency Resolution 297 

[24] Wu, Z.L., Li, C.H., Ng, J.K.Y., Leung, K.R.P.H.: Location Estimation via Support Vec-
tor Regression. IEEE Trans. on Mobile Computing 6(3), 311–321 (2007) 

[25] Xu, C., Cheung, S.C.: Inconsistency Detection and Resolution for Context-aware Mid-
dleware Support. In: Joint 10th European Software Engineering Conf. and 13th ACM 
SIGSOFT Symp. on the Foundations of Software Engineering, Lisbon, Portugal, pp. 
336–345 (September 2005) 

[26] Xu, C., Cheung, S.C., Chan, W.K., Ye, C.: Heuristics-based Strategies for Resolving 
Context Inconsistencies in Pervasive Computing Applications. In: 28th Inter. Conf. on 
Distributed Computing Systems, Beijing, China, pp. 713–721 (June 2008) 

[27] Xu, C., Cheung, S.C., Chan, W.K., Ye, C.: On Impact-oriented Automatic Resolution of 
Pervasive Context Inconsistency. In: 6th Joint Meeting of the European Software Engi-
neering Conf. and the ACM SIGSOFT Symp. on the Foundations of Software Engineer-
ing, Dubrovnik, Croatia, pp. 569–572 (September 2007) 

[28] Xu, C., Cheung, S.C., Chan, W.K., Ye, C.: Partial Constraint Checking for Context Con-
sistency in Pervasive Computing. ACM Trans. on Software Engineering and Methodol-
ogy 19(3), Article 9, 1–61 (2010) 


	Minimizing the Side Effect of Context Inconsistency Resolution for Ubiquitous Computing
	Introduction
	Context Inconsistency Resolution and Its Side Effect
	Side Effect: A Running Example
	Context Inconsistency Resolution Techniques and Strategies

	Side Effect Measurement Framework
	Context and Application Specification
	Context Use and Side Effect
	Side Effect Measurement

	Realization of the Framework
	Context, Pattern, and Rule
	Context Evaluation Tree
	CET Update
	Efficiency Analysis

	Experimentation
	Related Work
	Conclusion
	References


