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Abstract. Automata for unranked trees form a foundation for XML
schemas, querying and pattern languages. We study the problem of effi-
ciently minimizing such automata. We start with the unranked tree au-
tomata (UTAs) that are standard in database theory, assuming bottom-
up determinism and that horizontal recursion is represented by deter-
ministic finite automata. We show that minimal UTAs in that class are
not unique and that minimization is np-hard. We then study more re-
cent automata classes that do allow for polynomial time minimization.
Among those, we show that bottom-up deterministic stepwise tree au-
tomata yield the most succinct representations.

1 Introduction

Finite automata for unranked trees constitute the theoretical basis for XML
schema languages [16] and are used in numerous areas of XML-related research,
such as path and pattern languages [17, 22] and XML querying [7, 18]. Research
on automata minimization therefore contributes to each of those fields.

In the context of XML schema languages, minimized schemas would im-
prove the running time on document validation, or on static tests involving the
schemas, such as typechecking of XML transformations [13, 26]. Minimal deter-
ministic automata for unranked tree languages play a prominent role in recent
approaches to query induction for Web information extraction [3]. The objec-
tive is to identify a tree automaton for a previously unknown target language
from given examples. Standard algorithms from grammatical inference [1, 8, 19]
such as RPNI always induce minimal deterministic automata. The smaller this
automaton is, the easier it can be inferred.

In this work we focus on the minimization of automata for unranked tree
languages, which is a fundamental problem to automata theory and recently
attracted some attention [6, 21]. The question is particularly relevant for classes
of deterministic automata, since minimization can be done both efficiently and
leads to unique canonical representatives of regular languages, as is well-known
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for string languages and ranked tree languages. It is also well-known that minimal
non-deterministic automata are neither unique, nor efficiently computable [9, 11].

The investigation of efficient minimization of deterministic automata for un-
ranked trees language started quite recently [6, 21]. The deterministic devices
considered there, however, differ from the standard deterministic automata in
database theory – the bottom-up deterministic unranked tree automata (UTAs)
of Brüggemann-Klein, Murata, and Wood [2]. In this paper, we investigate effi-
cient (i.e. ptime) minimization starting from such UTAs.

The transition relation of UTAs uses regular string languages over the states
of the automaton to express horizontal recursion. However, it is not specified how
these regular string languages should be represented. In practice, this is usually
done by finite automata or regular expressions. If we allow for non-deterministic
finite automata in bottom-up deterministic UTAs, then minimization becomes
pspace-hard. As we are interested in efficient minimization, we restrict the finite
subautomata in UTAs to be deterministic too. These DFAs impose left-to-right
deterministism in addition to bottom-up determinism.

In the first part of the paper, we will prove two surprising results for these
bottom-up and left-to-right deterministic UTAs. We present a counterexample
for the uniqueness of minimal UTAs that represent a given regular language. We
then prove that minimization becomes np-complete and thus unfeasible. Both
results are in strong contrast to what is known for bottom-up deterministic
automata in the ranked case. Our np-hardness proof refines the proof techniques
from [9, 11], showing np-hardness of minimization for classes of finite automata
with limited amount of non-determinism.

In the second part of the paper, we compare the sizes of minimal automata
for known automata classes that allow for efficient minimization. We show that
bottom-up deterministic stepwise tree automata [4] yield the most succinct rep-
resentations, both compared to the bottom-up deterministic parallel UTAs of
[6, 21], as well as with respect to bottom-up deterministic automata over the
standard first-child next-sibling encoding of regular tree languages (up to in-
version). The difference in representation size is quadratic in the first case and
exponential in the second case.

Finally we discuss a small minimization result for top-down deterministic tree
automata. This notion of top-down determinism is very similar to the notion
defined in [6] as it has exactly the same expressive power – but the question of
minimizing these automata was not treated.

2 Preliminaries

In this section we provide the necessary background on strings, trees and tree
automata.

2.1 Strings

For a finite set S, its size |S| is its number of elements. By N we denote the set
of natural numbers. We fix a finite alphabet Σ. When a ∈ Σ we also say that
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a is a Σ-symbol. A string w = a1 · · ·an is a finite sequence of Σ-symbols. We
denote the empty string by ε.

We assume familiarity with nondeterministic finite automata (NFAs), deter-
ministic finite automata (DFAs), unambiguous finite automata (UFAs) and reg-
ular expressions (REs). Given a fininte automaton or a regular expression A,
we sometimes freely identify A with the language L(A) it defines. The size of a
finite automaton or regular expression is the size of its state set, or its number
of symbols respectively. Let C be a class of representations of regular string lan-
guages (that is, NFAs, DFAs, UFAs, or REs). Then the minimization problem
for C is defined as follows: Given an A ∈ C and an integer m, does there exist
an A′ ∈ C such that A and A′ accept the same language and the size of A′ is
lesser than or equal to m. The containment and equivalence problems for C ask,
given A, B ∈ C whether L(A) ⊆ L(B) or L(A) = L(B) respectively. We recall
the following results from formal language theory:

Theorem 1 ([9, 24, 25]).

(1) Containment and equivalence of NFAs and REs is pspace-complete;
(2) Containment and equivalence of UTAs and DFAs is in ptime;
(3) Minimizing NFAs and REs is pspace-complete;
(4) Minimizing UFAs is np-complete;
(5) Minimizing DFAs is in ptime.

2.2 Unranked Trees

The set of unranked Σ-trees, denoted by T , is the smallest set of strings over Σ
and the parenthesis symbols ‘)’ and ‘(’ such that for each a ∈ Σ and w ∈ T ∗,
a(w) is in T . So, a tree is either ε (empty) or is of the form a(t1 · · · tn) where
each ti is a tree. The latter denotes the tree where the subtrees t1, . . . , tn are
attached to the root labeled a. We write a rather than a(). Note that there is
no a priori bound on the number of children of a node in a Σ-tree; such trees
are therefore unranked. In the following, whenever we say tree, we always mean
Σ-tree. A tree language is a set of trees.

For every tree t ∈ T , the set of nodes of t, denoted by Dom(t), is the subset
of N

∗ defined as follows: (i) if t = ε, then Dom(t) = ∅; and (ii) if t = a(t1 · · · tn)
where each ti ∈ T , then Dom(t) = {ε} ∪

⋃n
i=1{iu | u ∈ Dom(ti)}. For every

u ∈ Dom(t), we denote by labt(u) the label of u in t.

2.3 Unranked Tree Automata

Definition 2 ([2]). An unranked tree automaton (UTA) is a tuple B = (Q, Σ,
δ, F ), where Q is a finite set of states, F ⊆ Q is the set of final states, and δ is
a function δ : Q × Σ → 2(Q∗) such that δ(q, a) is a regular string language over
Q for every a ∈ Σ and q ∈ Q.

To simplify notation, we sometimes also write a(L) → q for δ(q, a) = L. A run
of B on a tree t is a labeling λ : Dom(t) → Q such that for every v ∈ Dom(t)
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with n children we have that λ(v1) · · · λ(vn) ∈ δ(λ(v), labt(v)). Note that when
v has no children, the criterion reduces to ε ∈ δ(λ(v), labt(v)). A run is accepting
iff the root is labeled with an accepting state, that is, λ(ε) ∈ F . A tree is accepted
if there is an accepting run. The set of all accepted trees is denoted by L(B)
and is called a regular tree language. A UTA is bottom-up deterministic if for all
q, q′ ∈ Q with q �= q′ and a ∈ Σ we have that δ(q, a) ∩ δ(q′, a) = ∅.

When defining the size of a UTA, we have to fix a representation of the
regular languages δ(q, a). As argued in the introduction, we represent δ(q, a)
by a DFA since non-deterministic representations immediately make the mini-
mization problem intractable (Theorem 1). We denote by DUTA the bottom-up
deterministic UTAs where the transitions δ(q, a) are represented by DFAs. As
DFAs are deterministic when reading a string from left to right, we also refer
to DUTAs as bottom-up left-to-right deterministic UTAs . The size of a DUTA
B = (Q, Σ, δ, F ) is |Q| +

∑
(q,a) |δ(q, a)|, where |δ(q, a)| is the number of states

of the DFA accepting δ(q, a).
We mention the following basic result about DUTAs.

Theorem 3. Containment and equivalence of DUTAs is in ptime.

Proof (Sketch). Given two DUTAs, we can translate them in ptime into tree
automata over a known binary encoding of unranked trees, such as the first-child
next-sibling encoding. The canonical way to do this translates a DUTA into an
unambiguous tree automaton over binary trees. Due to the work of Seidl [23], we
can test containment and equivalence of these automata in ptime. �

To the best of our knowledge, it is not known whether the standard contain-
ment test works in ptime, since complementing a DUTA is not trivial (un-
less the DUTA is complete, then one just has to switch final and non-final
states).

2.4 Are DUTAs Deterministic?

We raise the question whether the computation of a DUTA is truly deterministic
or not. Informally, we assume that a computation of a DUTA proceeds in a
bottom-up manner, reads every node of a tree only once and remembers only one
state of an internal DFA while reading the states that are assigned to the children
of a certain node. We show in a small example that under these conditions, the
computation of a DUTA in fact still has a very limited form of non-determinism.
In the next section we show that this is exactly what makes minimization hard.

Let A be the DUTA with transition function

δ(qa, a) = δ(qb, b) = ε

δ(q1, r) = {qaqa} by 1 2 3
qa qa

δ(q2, r) = {qaqb} by 4 5 6
qa qb
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Fig. 1. A tree t, a successful run on t and a partially successful run on t

and final states {q1, q2}. This automaton accepts the language {r(aa), r(ab)}.
When computing a bottom-up run for the tree in Figure 1(a), the state qa will
be assigned to both a-labeled leafs. At that point, it remains to assign a state
to the r-labeled root. Here, we have the choice of starting to run the DFA for
δ(q1, r) or for δ(q2, r). In Figure 1(b), we show the run that we obtain by choosing
δ(q1, r) (in which we also annotated the internal states 1, 2 and 3 of δ(q1, r) in
italic), and Figure 1(c) shows the partial run that is obtained when choosing
δ(q2, r), which cannot be completed to a successful run. So even though there
is only one successful run, the computation of the run itself still has a limited
choice. Intuitively, this corresponds to an unambiguous rather than completely
deterministic automata model.

One could argue that this choice in the computation is implementation-
dependent. When implementing the automaton A, one could e.g. choose to sim-
ulate δ(q1, r) and δ(q2, r) in parallel. But then, one actually obtains a different
notion of UTAs, namely the parallel UTAs [6, 21] that we study in Section 4.4.

3 Minimizing UTAs

In this section we study the minimization problem on bottom-up left-to-right
deterministic UTAs. We show two unexpected negative results: Given a regular
tree language L, there does not exist an (up to isomorphism) unique minimal
DUTA that accepts L. The minimization problem for DUTAs even turns out to
be np-complete.

3.1 Minimal Automata are Not Unique

We show the non-uniqueness by an example. Consider the regular languages
L1, L2 and L3 defined by regular expressions (bbb)∗, b(bbbbbb)∗ and bb(bbbbbbbbb)∗

respectively. Note that L1, L2 and L3 are pairwise disjoint, and that the minimal
DFAs A1, A2 and A3 accepting L1, L2 and L3 have 3, 6 and 9 states respectively.
It is easy to verify that the minimal DFAs B1 and B2 accepting L1 ∪ L2 and
L1 ∪ L3 have 6 and 9 states respectively. Let L = L1 ∪ L2 ∪ L3 and consider the
tree language T := {r(a(w)) | w ∈ L}.

There exist two minimal DUTAs for T . The first one, N1 = (Q1, Σ, δ1, F1)
has accept state q0 and transition function

δ1(q0, r) = q1 + q2 δ1(q1, a) = B1 δ1(q2, a) = A3 δ1(b, b) = ε.
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1 2 3

456

1 2 3 4 5

6789

(a)

1 2 3 4 5

6789

1 2 3

456

(b)

Fig. 2. Figure 2(a) contains the DFAs B1 and A3; and Figure 2(b) contains the DFAs
B2 and A2. All transition arrows read the symbol b.

The size of N1 is |Q1|+ |δ1(q0, r)|+ |B1|+ |A3|+ |δ1(b, b)| = 4+2+6+9+1 = 22.
The DFAs B1 and A3 are sketched in Figure 2(a). The other automaton, N2 =
(Q2, Σ, δ2, F2) has accept state q0 and transition function

δ2(q0, r) = q1 + q2 δ2(q1, a) = B2 δ2(q2, a) = A2 δ2(b, b) = ε.

The size of N2 is |Q2|+ |δ2(q0, r)|+ |B2|+ |A2|+ |δ2(b, b)| = 4+2+9+6+1 = 22.
The DFAs B2 and A2 are sketched in Figure 2(b).

Of course, there are other possibilities to write L = L1 ∪ L2 ∪ L3 as a disjoint
union of regular languages. The obvious combinations one can make with A1,
A2 and A3 lead to DUTAs of size 26 (using A1, A2 and A3), 28 (using (A2 ∪A3)
and A1) and 24 (one automaton for L).

We show that no other combination of splitting L into a union of regular
languages will result in a smaller DUTA accepting T . First, observe that any
DUTA defining T needs at least three states in its state set Q, since all trees
in T have depth three. However, as argued above, the minimum size of such a
DUTA with three states is 3+2+18+1 = 24. The only way to obtain a smaller
DUTA is then to define L as a union of DFAs, of which the sum of the number
of states is strictly smaller than 9 + 6 = 15. However, if we write L as a union
of DFAs, there must be at least one DFA D1 that accepts an infinite number
of strings in L2. It is easy to see that D1 has at least 6 states, as D1 may not
accept strings not in L. Analogously, we can argue that there must be at least
one DFA D2 that accepts an infinite number of strings in L3. If D1 = D2, it is
easy to see that D1 has at least 18 states. If D2 �= D1, then it is easy to see that
D2 has at least 9 states. Therefore, the above automata are indeed minimal for
T , and as Figure 2 shows, they are clearly not isomorphic.

3.2 Minimization Is np-Complete

The minimization problem for DUTAs is defined analogously as the minimization
problem for finite automata: Given a DUTA A and an integer m, decide whether
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there exists a DUTA B such that L(B) = L(A) and the size of B is lesser than
or equal to m.

As Section 3.1 illustrates, the problem of defining a regular string language as
a small disjoint union of DFAs lies at the heart of the minimization problem for
DUTAs. We call this problem general minimum disjoint union and define
it formally as follows: Given a DFA M and an integer �, do there exist DFAs
M1, . . . , Mn such that

(1) L(M) = L(M1) ∪ · · · ∪ L(Mn); and
(2) for every i �= j, L(Mi) ∩ L(Mj) = ∅; and
(3)

∑n
i=1 |Mi| ≤ �?

It can be shown that general minimum disjoint union is np-complete by a
reduction from vertex cover. Actually, general minimum disjoint union

is even np-complete when n = 2. The proof for this is not straightforward, and
technically the hardest proof in the paper, but the reduction is interesting in its
own right. The proof can be found in [15]. Although we do not go deeper on this
in the paper, variations of the reduction can actually be used to show that the
three open problems stated in the conclusion of [11] are np-complete [12].

Theorem 4. DUTA minimization is np-complete.

Proof (Sketch). The upper bound follows from Theorem 3. Given a DUTA A
and an integer m, the np algorithm simply guesses an automaton B of size at
most m and verfies in ptime whether it is equivalent to A.

For the lower bound, we do a reduction from general minimum disjoint

union. Given a DFA M = (QM , ΣM , δM , IM , FM ) and integer �, we have to
construct a DUTA A and an integer m such that A has an equivalent DUTA
of size m iff M can be written as a disjoint union of DFAs for which the size
does not exceed �. Intuitively, we construct A such that it accepts the trees of
the form r(w), where the root node is labeled with a special symbol r and the
string w is in L(M). For the full proof, we refer to [15]. �

4 Solutions for Efficient Minimization

As we have shown, UTA minimization is unfeasible even when the horizontal
languages are represented by DFAs. The problem is raised when using multiple
rules for the same label, for recognizing these horizontal regular languages.

Three alternative notions of bottom-up deterministic tree automata for un-
ranked trees were proposed recently, each of them yielding a solution to the
problem. First, one can define notions of bottom-up determinism based on trans-
lations between unranked and ranked trees. Stepwise tree automata [4] are an
algebraic notion of automata for unranked trees which also correspond to au-
tomata over binary trees by means of such a translation. Alternatively, one can
use tree automata that operate on the standard encoding of unranked into binary
trees (see, e.g. [7]).
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Finally, parallel UTAs (pUTAs) alter the rule format of UTAs and have been
independently proposed in [21] and [6]. All these automata yield notions of
bottom-up determinism which lead to unique minimal automata and polyno-
mial time minimization.

4.1 Automata on Binary Trees

We first treat the automata models which can also be defined on ranked trees.
We therefore recall the notion of a traditional tree automaton.

Definition 5. A (traditional) tree automaton (TA) for a binary signature is a
tuple A = (Q, Σ, δ, (Ia)a∈Σ , F ) where Q is a finite set of states, the signature
Σ = Σ0 	 Σ2 consists of a finite set of constants Σ0 and finite set of binary
function symbols Σ2, F ⊆ Q is the set of final states, Ia ⊆ Q is a set of initial
states for every a ∈ Σ0, and δ is a function δ : Q×Q×Σ2 → 2Q mapping a pair
of states and a function symbol to a set of possible new states.

A run of A on a tree t is a labeling λ : Dom(t) → Q such that (i) for every
leaf node u, λ(u) ∈ Ilab(u); and (ii) for all inner nodes u, λ(u) ∈ δ(λ(u1), λ(u2),
lab(u)). A run is accepting iff the root is labeled with an accepting state, that
is, λ(ε) ∈ F . A tree is accepted if there is an accepting run on t.

A binary tree automaton is (bottom-up) deterministic if for all q, q′ ∈ Q and
a ∈ Σ, δ(q, q′, a) contains at most one element. To simplify notation for TAs, we
sometimes also write a → q and a(q, q′) → p to say that q ∈ Ia and p ∈ δ(q, q′, a)
respectively.

The size of a binary tree automaton A = (Q, Σ, δ, (Ia)a∈Σ, F ) is the number
of elements in its state set Q. We denote the size of A by |A|.

4.2 Stepwise Tree Automata

Stepwise tree automata are an algebraic version of automata for unranked
trees [4]. For the algebraic perspective, we refer to that paper.

A stepwise tree automaton over an unranked signature Σ is a (traditional)
tree automaton over the binary signature Σ 	 {@} where all labels in Σ serve
as constants and @ is a binary function symbol.

One of the nicest features of stepwise tree automata is that they are traditional
tree automata, but can also run over unranked trees. Indeed, stepwisetree au-

initial states Ia = {5} Ib = {4}
rules @(5, 4) → 6 @(5, 5) → 6

@(6, 4) → 6 @(6, 5) → 6
final states {5, 6}

Fig. 3. A deterministic stepwise tree automaton for a((a|b)∗), equivalent to the pUTA
in Figure 5
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Fig. 4. Runs of the stepwise automaton from Figure 3. To the left, on the unranked
tree and to the right, on its Curried binary encoding.

tomata can be understood as traditional tree automata that operate on Curried
binary encodings of unranked trees. Currying the unranked tree

plus(4, 5, plus(6, 7, 8))

for instance yields plus@4@5@(plus@6@7@8) which (if we assume left associa-
tivity) is the binary tree

@
(
@

(
@(plus, 4), 5

)
, @

(
@(@(plus, 6), 7), 8

))
,

but in infix notation. Figure 4 shows this correspondence. The italic states in the
left tree correspond exactly to the bold states in the run on its Curried encoding,
which is the tree on the right. On the unranked tree, the italic states can be seen
as the explicit computation of the tree automaton. For every node, the state in
bold is simply a copy of the rightmost italic state below. In Section 4.4, we show
a run of an equivalent parallel UTA in Figure 5. There, the correspondence
between the italic and the bold states is given by the output function of the
automaton.

Myhill-Nerode Property. The Myhill-Nerode theorem yields an up to iso-
morphism unique representation for minimal deterministic automata for regular
languages. The states of the minimal automaton correspond to the classes of the
congruence induced by the language.

The Myhill-Nerode theorem holds generally for algebraic automata notions
(see e.g. [5]) and thus for finite automata, standard tree automata [10, 27], and
stepwise tree automata [4]. Myhill-Nerode inspired theorems for automata on
unranked trees were shown for UTAs (Theorem G in [2]) and for parallel UTAs
[6], which we treat in Section 4.4. Remarkably, in the former case the theorem
does not lead to minimal automata and in the latter case the theorem uses two
quite particular equivalence relations instead of a single canonical congruence,
as in the ranked case. In this section, we formulate the Myhill-Nerode theorem,
such that it holds both for traditional tree automata and stepwise tree automata
interpreted over unranked trees.

In both cases, a context C is a function mapping trees to trees. In the case
of binary trees over Σ, a context can be represented by a binary tree over the
binary signature Σ 	{•} that contains a single occurence of the hole marker • at
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a leaf node. Context application C(t) to a tree t replaces the hole marker in C by
t. A context C for an unranked tree over Σ is a tree over the unranked signature
Σ	{•} that contains a single occurence of the hole marker, but this time possibly
labeling an internal node. Given a context C and a tree t = a(t1 · · · tn), we define
context application C(t) inductively as follows:

– •(t′1, · · · , t′m)(a(t1, · · · , tn)) = a(t1, · · · , tn, t′1, · · · , t′m)
– a(t′1, · · · , t′i, · · · , t′m)(t) = a(t′1, · · · , t′i(t), · · · , t′m) where t′i contains the •.

A congruence on trees is an equivalence relation ≡ that satisfies for every context
C: if t1 ≡ t2 then C(t1) ≡ C(t2). It is of finite index when there are only a finite
number of equivalence classes. Given a tree language L, we define the congruence
≡L induced by L through:

t1 ≡L t2 iff for every context C: C(t1) ∈ L ⇔ C(t2) ∈ L.

Theorem 6 (Myhill-Nerode). For any ranked or unranked tree language L
it holds that L is a regular tree language iff its congruence ≡L has finite index.
Furthermore, there exists an (up to isomorphism) unique minimal bottom-up
deterministic (stepwise) tree automaton for all regular languages L. The size of
this automaton is equal to the index of ≡L.

The proof of this theorem is immediate from the binary case [10]. It follows from
the observation that the contexts we define for unranked trees are obtained by
translating the contexts over binary trees through the inverse of the Curried
encoding. We note that this theorem was partially proven in [2] (Theorem G).
However, we feel that the present proof is simpler (as the theorem immediately
carries over from the ranked case) and also leads to minimal automata, which is
not the case in [2].

4.3 Standard Binary Encoding

Analogously as with stepwise tree automata, a tree automaton over the standard
first-child next-sibling encoding of a tree can be seen as working directly over
the unranked tree (see, e.g. [7]). In this encoding, an unranked tree is simply
viewed as a binary tree over the first-child and next-sibling relation. Whenever
a Σ-symbol has no left or no right child, a special symbol ⊥ is inserted.

As in Section 4.2, a Myhill-Nerode theorem for unranked trees can also be
obtained using the inverse of the standard first-child next-sibling encoding. How-
ever, in Section 5.1, we argue that the latter leads to exponentially more equiv-
alence classes, and hence, exponentially larger minimal automata.

4.4 Parallel UTAs

The problem with UTAs bottom-up left-to-right determinism is that it may force
the interpreter of the automaton to choose between several rules for the same
label. The obvious solution is to run all automata for the same label in parallel,
and thus unify them. This idea leads to the notion of parallel UTAs.
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δ(a) = (1|2)∗ by 5 6
1, 2

1,2

with o(5) = 1, o(6) = 3

δ(b) = ε by 4

with o(4) = 2

a 3

a 1
5

5

b 2
4

6 6

b 2
4

6

Fig. 5. A deterministic pUTA (Q, Σ, δ, {1, 3}, o) for a((a|b)∗), equivalent to the stepwise
tree automaton in Figure 3, and its run on a(abb), annotated in bold to the right of
the alphabet symbols. The runs of the internal DFAs are annotated in italic.

A parallel UTA (pUTA) is a tuple A = (Q, Σ, δ, F, o) which consists of a
finite set Q of states, a collection of horizontal regular languages δ(a) ⊆ Q∗

represented by a finite automaton for each a ∈ Σ, a set of final states F ⊆ Q,
and a collection of output functions o(a) for all a ∈ Σ that maps final states of
the finite automaton recognizing δ(a) to states in Q.

Let (Qa, Q, δa, Ia, Fa) be the finite automaton recognizing δ(a) for every a ∈
Σ. A run of A on a tree t is a labeling function λ : Dom(t) → Q that satisfies
for all nodes u ∈ Dom(t) with n children that λ(u) = o(a)(δ∗a(λ(u1) · · · λ(un))),
where δ∗a is the homomorphic extension of δa to strings in Q∗. An example for a
pUTA is illustrated in Figure 5.

We call a pUTA deterministic if all subautomata for recognizing horizontal
languages δ(a) are DFAs. The class of deterministic pUTAs has unique minimal
automata and allows for efficient minimization [6, 21]. They can recognize all
regular languages, as shown by the following transformations.

Every deterministic pUTA A can be transformed into an equivalent DUTA
(Q, Σ, δ′, F ) so that for every a ∈ Σ and q ∈ Q:

δ′(q, a) = (Qa, Q, δa, Ia, o(a)−1(q))

Conversely, any DUTA can be converted into an equivalent deterministic pUTA
but possibly at the cost of an exponential blow-up. The first step is to unify
the horizontal subautomata for the language ∪q∈Qδ(q, a) for every label a, by
constructing the product automaton (which can cause the exponential blow-up).
The output function o(a) maps every tuple in the product with a final state of
the automaton recognizing δ(q, a) to q.

5 Size Comparison

5.1 Stepwise vs Standard Binary Encoding

Let �t� denote the standard binary first-child next-sibling encoding of an un-
ranked Σ-tree t over Σ 	 {⊥}. Let t denote the tree obtained from t by re-
versing for every node its list of children. For instance, if t = a(b, c, d(e, f)),
then t = a(d(f, e)c, b). We extend these notations in the obvious way to tree
languages.
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To be able to compare stepwise tree automata to tree automata over the
first-child next-sibling encoding, we need to study one of the two over these
reversed trees. The reason is that deterministic stepwise tree automata read the
children of a node from left to right whereas deterministic tree automata over the
standard encoding read them from right to left, which leads to an exponential
blow-up of the minimal size in both directions. The witness tree languages for
this claim are based on the languages L((a + b)na(a + b)∗)n∈N, which cause an
exponential blow-up for DFAs which read strings from right to left. Here we take
the standard encoding over the reversed trees.

Lemma 7. For all unranked trees t1, t2, if �t1� ≡�L� �t2� then t1 ≡L t2.

Proof (Sketch). This follows from the definitions of the encoding and the con-
texts: any context for a tree in the standard encoding can be obtained by trans-
lating a context in the Curried encoding. �

Proposition 8. The minimal bottom-up deterministic stepwise tree automaton
for an unranked regular language L is never larger than the minimal bottom-up
deterministic tree automaton for the inverted standard encoding �L�.

Proof. Due to the Myhill-Nerode Theorem 6 it is sufficient to compare the in-
dexes of the congruences ≡L and ≡�L�. By Lemma 7, if two trees are in different
equivalence classes of ≡L then their encodings will be different equivalent classes
of ≡�L�, i.e., the index of L smaller or equal than the index of �L�. �

Proposition 9. There exists an infinite class of languages (Li)i∈N such that
for every Li, the minimal bottom-up deterministic stepwise tree automaton for
Li is exponentially more succinct than the minimal bottom-up deterministic tree
automaton for the encoding �Li�.

Proof (Sketch). The proof is based on the fact that the smallest DFA for the
union of DFAs A1, . . . , An can be exponentially larger than the sum of the sizes
|A1| + · · · + |An|. �

5.2 Stepwise vs Parallel UTAs

We mention the following proposition without proof:

Proposition 10. Minimal deterministic stepwise tree automata are always
smaller or equal than minimal deterministic parallel UTAs for the same
language.

It is easy to see that translating a stepwise automaton to a pUTA gives at most
a quadratic blow-up. This upper bound is also tight:

Proposition 11. There exists an infinite class of languages (Li)i∈N such that
for every Li, the minimal bottom-up deterministic stepwise tree automaton is
quadratically more succinct than the minimal deterministic pUTA.
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Proof. The lemma holds for Ln = {a1(an), . . . , an(an)}. pUTAs need n dif-
ferent automata of size n to accept the string an, so their minimal size is
O(n2). Stepwise automata can share the state sets of these, so their minimal size
is O(n). �

6 Top-Down Deterministic UTAs

We briefly discuss a minimization result for top-down deterministic UTAs. Ac-
cording to the definition of Brüggemann-Klein, Murata and Wood, a UTA A =
(Q, Σ, δ, F ) is top-down deterministic if for all q ∈ Q, a ∈ Σ, and n ≥ 0, δ(q, a)
contains at most one string of length n [2]. We show that a more expressive form
of top-down deteriminism still allows for (i) a ptime minimization algorithm
and (ii) uniqueness up to isomorphism of the minimal automaton. This notion
of top-down determinism not only allows to take into account the number of sib-
lings but also their labeling. It is very similar to the notion defined by Cristau,
Löding and Thomas [6].

To define the notion of top-down determinism, we assume that there is a
function f : Q → Σ that associates to each state the unique alphabet symbol it
can be assigned to in a run of the automaton. The idea from this function stems
from specialized DTDs [20], which are always provided by such a function. The
results in this section therefore directly carry over onto specialized DTDs. We
extend this function f in the obvious way to strings over Q.

The main motivation of this section lies in XML schema languages. Indeed,
the proposed notion of top-down determinism is strictly more powerful than the
notions of single-type and restrained competition specialized DTDs [16], which
correspond to the expressive power of XML Schema [28] and 1-pass preorder
typing [14] respectively. It is not hard to see that the proposed minimization
algorithm preserves the single-type and restrained competition properties and
hence, as a corollary, minimization of single-type and restrained competition
specialized DTDs (in which the internal regular languages are represented by
DFAs) is also in ptime.

We call a UTA A = (Q, Σ, δ, F ) top-down deterministic if every language
defined by a DFA D representing δ(q, a) has the following property: if w and w′

in L(D) and f(w) = f(w′) then w = w′.

Theorem 12. Every top-down deterministic UTA can be minimized in ptime.
This minimal top-down deterministic UTA is unique up to isomorphism.

We briefly sketch the minimization algorithm. Let A = (Q, Σ, δ, F ) be top-
down deterministic with mapping f : Q → Σ. Given a state q ∈ Q, we de-
note by L(A, q) the language accepted by (Q, Σ, δ, {q}). The following algorithm
minimizes A:

(1) Trim A, that is, remove all unreachable states from Q, and remove all q ∈ Q
for which L(A, q) = ∅, and their corresponding transitions.
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(2) Test, for each qi and qj in Q, i �= j, whether L(A, qi) = L(A, qj). If L(A, qi) =
L(A, qj), then replace all occurrences of qj in the definition of δ by qi, remove
the transition δ(qj , f(qj)), and remove qj from Q.

(3) For each q ∈ Q, minimize the DFA representing δ(q, f(q)).

7 Conclusions

We have shown that the minimization problem for DUTAs (bottom-up deter-
ministic UTAs in which the languages in the transition function are represented
by DFAs) is np-complete. The reason behind this hardness result is that these
DUTAs are not truly deterministic. Indeed, DUTAs still allow to represent reg-
ular languages over states by a disjoint union of DFAs, as exemplified in Sec-
tion 3.1. Furthermore, the canonical translations of DUTAs over the known
ranked encodings result in unambiguous rather than deterministic binary tree
automata.

A second contibution of the paper is a comparison between several notions
of determinism for unranked tree automata. We compared three different no-
tions: parallel UTAs, which were defined independently in [6] and [21], stepwise
tree automata [4], and ranked tree automata over the first-child next-sibling
encoding. In general, the stepwise tree automata provide the smallest minimal
automata. Moreover, since they have a direct connection to traditional ranked
tree automata through an encoding based on currying, a ptime minimization
algorithm and a Myhill-Nerode theorem is immediate.

Acknowledgments

We thank Frank Neven and Thomas Schwentick for helpful discussions and com-
ments on a previous version of the paper.

References

1. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.
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