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Abstract

Sybil detection is a crucial task to protect online

social networks (OSNs) against intruders who

try to manipulate automatic services provided by

OSNs to their customers. In this paper, we first

discuss the robustness of graph-based Sybil de-

tectors SybilRank and Integro and refine theoret-

ically their security guarantees towards more re-

alistic assumptions. After that, we formally in-

troduce adversarial settings for the graph-based

Sybil detection problem and derive a correspond-

ing optimal attacking strategy by exploitation of

trust leaks. Based on our analysis, we propose

transductive Sybil ranking (TSR), a robust ex-

tension to SybilRank and Integro that directly

minimizes trust leaks. Our empirical evaluation

shows significant advantages of TSR over state-

of-the-art competitors on a variety of attacking

scenarios on artificially generated data and real-

world datasets.

1. Introduction

The sheer number and variety of online social networks

(OSN) today is staggering. Although the purpose and the

shaping of these networks vary generously, the majority of

them has one aspect in common: the value of most OSNs

is in its user data and the information that one can infer

from the data. This, unfortunately, results in a big incen-

tive for culprits to intrude OSNs and manipulate their data.

One popular method of intruding and attacking an OSN

is referred to as Sybil attack, where the intruder creates a

whole bunch of fake (Sybil) accounts that are all under the

attacker’s control. The intruder’s influence over the OSN
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is multiplied by the number of accounts created, which

opens possibilities of manipulation typically for gaining

some monetary advantage in the end.

The term, Sybil attack, was coined by Douceur (2002) who

showed that this kind of attack will be always possible un-

less a trusted agency certifies identities. Unfortunately, this

approach is orthogonal to how OSNs grow. The thresh-

old of registration must be as low as possible to attract as

many new users as possible. On the other hand, Sybil at-

tacks can damage the value of OSNs significantly, which

has been proved by the fact that Facebook shares dropped

in 2012 after the company revealed that a significant share

of its network is made up by Sybil accounts (The Associ-

ated Press, 2012).

There exists a number of “classic” feature-based solutions

(Stein et al., 2011; Cao et al., 2012; Stringhini et al., 2010;

Yang et al., 2014). However, up until now, it remains an un-

solved problem as those methods can be evaded by cleverly

designed attacking schemes (Bilge et al., 2009; Boshmaf

et al., 2011; Wagner et al., 2012; Lowd & Meek, 2005) and

manual detection is too expensive, time consuming, and

simply unfeasible in large OSNs (Cao et al., 2012).

More recent graph-based Sybil detection methods assume

that honest (non-Sybil) nodes form a strongly connected

subgraph and attackers can establish a limited amount of

edges which leads to a sparse cut between the honest sub-

raph and the Sybil nodes. The majority of the graph-based

methods define trusted nodes, which the defender is sure to

be honest, and use random walks (Yu et al., 2010; Danezis,

2009; Cao et al., 2012) or other typical graph-based algo-

rithms like breadth-first-search (Tran et al., 2011) and be-

lief propagation (Gong et al., 2014) to convey trust from the

trusted nodes. A node is identified as Sybil if sufficient am-

mount of trust is not delivered to it. Among random-walk

based approaches, SybilRank is known to be the state-of-

the-art, of which the performance is theoretically guaran-

teed (Cao et al., 2012). However, the theory holds only

under unrealistic topological assumptions of the network.

In this paper, we show that the same theoretical guarantee

can be obtained under more realistic situations.

We further dicuss the robustness of the random walk ap-

proach against adversarial strategies. To this end, we for-

mally introduce adversarial settings for graph-based Sybil
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detection and derive an optimal attacking strategy that is

based on the exploitation of trust leaks. Based on our anal-

ysis, we propose a transductive Sybil ranking (TSR), an in-

tegrated approach capable of adjusting edge weights based

on sampled trust leaks. We empirically show good perfor-

mance of TSR against the state-of-the-art baselines on a va-

riety of attacking scenarios using artificially generated data

as well as real-world Facebook data.

2. Preliminaries

We are given a graph G = (V,E) consisting of nodes V
and pairwise edges E between nodes. We denote GS =
(VS , ES) the Sybil sub-graph, GH = (VH , EH) the disjunct

honest sub-graph, and VT ✓ VH our trusted (verified non-

Sybil nodes) random walk seed nodes. EA is the set of

edges connecting any node in GS and any node in GH .

Sybil Rank is considered the state-of-the-art graph-based

method to detect Sybil accounts as it outperformed all its

contestants (Cao et al., 2012). It is also based on ran-

dom walks and operates solely on the topology of the

graph. Sybil Rank starts from the initial distribution {p
(i)
0 2

[0, 1]}
|V |
i=1 (without superscript refers to a vector contain-

ing all elements), in which “trust” is assigned to the known

honest nodes VT :

p
(i)
0 =

(
1

|VT | if vi 2 VT ,

0 otherwise.
(1)

Then, it “propagates” the trust via a short (k steps) random

walk:

p>k = p>k�1Q = · · · = p>0 Q
k , (2)

where Q 2 R
|V |⇥|V | is the transition matrix through the

edges with Qi,j = (
P

j0 1[(i, j
0) 2 E])�1, if (i, j) 2 E,

and else 0. It is known that the stationary distribution π ⌘
p1 is the normalized degree distribution (Behrends, 2000)

π> =
⇣

deg(v1)
Vol(V ) , . . . ,

deg(v|V |)

Vol(V )

⌘

, (3)

where deg(v) is the degree of node v, i.e., the number of

all incident edges of v, and Vol(V ) =
P

v2V deg(v) is the

sum of the degrees for all nodes in V . SybilRank conpen-

sates the effect of degrees, and use the degree-normalized

probability

p(i) = p
(i)
k /π(i) (4)

as the ranking score, where a high ranking indicates a high

probability of being an honest node.

Essentially, SybilRank relies on the assumption that the to-

tal number of attacking edges is bounded. Under this as-

sumption, only a small fraction of the trust is propagated

through the sparse cut between the honest network and the

Sybil nodes during the short random walk, while ”trust” go

through the ”non-trusted” honest nodes through the dense

connections within the the honest subgraph.

Boshmaf et al. (2016) developed Integro to cope with a

larger number of attacking edges. To this end, Integro intro-

duces weights on the edges to bias the random walk, where

the weights are determined after its pre-processing step to

detect victims. Here a victim is defined as a node that estab-

lished a connection to one of the Sybil nodes. The set of all

victim nodes is defined by Vv = {v 2 Vh : 9(v, s) 2 EA}.

After the detection step, Integro lowers the weights to all

incident edges to the detected victims, which prevents the

trust to propagate through victim nodes. As the victims

form a natural border between the honest and the Sybil

graph, this reduces the overall flow of trust into the Sybil

graph. Boshmaf et al. found that traditional feature-based

classification methods yield good and robust detection of

victims. A notable advantage against the feature-based

Sybil detection is that, unlike Sybils, victims generally do

not behave adversarial, as they don’t have any incentive to

”hide”.

3. SybilRank’s Security Guarantee Under

More Realistic Assumptions

Cao et al. (2012) gave a security guarantee for SybilRank.

Let g := |EA| be the number of attacking edges and n :=
|V | be the number of all nodes in the graph. their theory

relies on the notion of trust leaks.

Definition 1. (Trust leaks) Let rk0 =
P

i2VH
p
(i)
k0 be the

trust that remains in the honest graph after k0 random

walk steps. We call l =
Pk

k0=1(rk0+1 � rk0) the abso-

lute trust leak. Assume that the attacking edges are cre-

ated randomly, following a distribution α(EA). We call

CH(k0) = Eα(EA)[
rk0+1�rk0

rk0

] the expected relative trust

leak.

CH(k0) is actually a constant with respect to k0 under rea-

sonable assumptions on α(EA). The following lemma has

been proved:

Lemma 1. (Cao et al., 2012) Assume that the graph G is

created randomly, following the configuration model (Mol-

loy & Reed, 1995). Then, the expected relative trust leak in

each iteration is given by CH = g
vol(VH) .

This leads to a theoretical guarantee of SybilRank.

Theorem 1. (Cao et al., 2012) Assume that the graph G is

created randomly, following the configuration model. The

total number of Sybils that are ranked higher than non-

Sybils by SybilRank is O(g log n).

Theorem 1 implies good performance of SybilRank, but
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it holds under the assumption that the attacking edges are

created in the same process as the honest graph,1 which is

not realistic.

Below, we show that the same guarantee is obtained under

the following more realistic assumption:

Assumption 1. The graph G is constructed by the follow-

ing steps:

1. Honest graph GH construction: GH is connected, non-

bipartite, and scale free, i.e., the degree distribution

follows the power law distribution.

2. Sybil graph GS construction: The topology of GS is

arbitrary.

3. Attacking edges EA generation: The attacking edges

are genarated on all possible edges EA ⇢ VS ⇥ VH

between the honest and the Sybil subgraphs with equal

propability.

Under Assumption 1, evaluating the expected trust leak is

less straightforward. Nevertheless, we can show that it re-

sults in the same formal security guarantee stated in Theo-

rem 1.

To properly compute the expected trust leak, the fol-

lowing random variables are defined. Xv counts the

number of attacking edges incident to node v, Yv =
π(v) Xv

deg(v,GH)+Xv
= π(v) Xv

deg(v,G) is the trust leak in node

v and Z =
P

v2VH
Yv is the total trust leak. Note that here

π(v) is the current amount of trust in node v and not the

stationary distribution of the random walk. This notation

is used to avoid confusion with the probability mass func-

tion denoted by P . From Assumption 1 it follows that Xv

is hypergeometrically distributed (Tuckwell, 1995) with the

following parameters: the population size: N = |VH⇥VS |,
successes: K = |{v}⇥ VS |, and the draws n = |EA|. Let

g := |EA| be the number of attacking edges. Moreover, let

nH := |VH | and nS := |VS | denote the number of honest

nodes and Sybil nodes, respectively.

The probability mass function of Xv is given by P (Xv =

k) =

✓
K

k

◆✓
N �K

n� k

◆

/

✓
N

n

◆

and according to Tuckwell

(1995), its expected value can be computed by E[Xv] =

nK
N

= |EA|
|{v}⇥VS |
|VH⇥VS | = |EA|

|VH | = g
nH

. The final goal is

to compute the expected value of Z. The linearity of the

expected value yields E[Z] =
P

v2VH
E[Yv] and for the

expected value of Yv we get

E[Yv] =
π(v)

deg(v,G)

P1
k=0 kP (Xv = k)

= π(v)
deg(v,G)E[Xv] =

π(v)
deg(v,G)

g
nH

.

1This assumption is not explicitly stated in Cao et al. (2012),
but apparent from their derivation.

Using this result, the expected value of Z becomes E[Z] =
P

v2VH
E[Yv] =

g
nH

P

v2VH

π(v)
deg(v,G) , where the right hand

side still contains a sum that needs to be evaluated individ-

ually for each node to compute its actual value. In order

to “average out” this sum, we rely on the assumption that

the honest nodes GH is power law-distributed (Barabási,

2009). To do this, a new random variable Dv is introduced

which measures the degree of v. Then, the assumption re-

sults in the probability of a node having a degree of d being

P (Dv = d) = d�γ

ζ(γ) , where ζ is the Riemann zeta function

ζ(s) :=
P1

n=0 n
�s (Barabási, 2009).

With this expression, it is possible to “average out” the ex-

act topology of the graph by computing the expected value

with respect to the newly defined random variable Dv:

E[Z] = g
nH

P1
d=1

P

v2VH

π(v)
d

P (Dv = d)

= g
nH

P

v2VH
π(v)

P1
d=1

1
d
d�γ

ζ(γ)

= g
nH

P

v2VH

π(v)
ζ(γ)

P1
d=1 d

�(γ+1)

= g
nH

ζ(γ+1)
ζ(γ)

P

v2VH
π(v).

| {z }

Total trust in the honest graph

This yields the following lemma.

Lemma 2. Under Assumption 1 the expected relative trust

leak in each iteration of the random walk is given by

C̃H = g
nH

ζ(γ+1)
ζ(γ)

| {z }
=:e

where e < 1 is a constant that depends on the parameter of

the assumed power law distribution for the degree distribu-

tion.

Although Lemma 2 gives a different expected relative trust

leak from Lemma 1, the fact that the maximum number

of connection for each node is bounded in every OSN and

therefore O(nH) = O(vol(VH)) leads to the same asymp-

totic behavior as Theorem 2:

Theorem 2. Under Assuption 1, the total number of Sybils

that are ranked higher than non-Sybils by SybilRank is

O(g log n).

This result explicitly shows that, asymptotically, Sybil-

Rank’s security guarantee remains unchanged even under

more realistic Assumption 1.

4. Adversarial Strategies

In this section, we discuss adversarial strategies against

graph-based Sybil detection methods.

Attacker’s Action Although attackers in general can

take variety of actions, we restricts their action to adding

attacking edges.
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Definition 2 (Attacking strategy). Given an honest graph

GH and a Sybil graph GS , an attacking strategy describes

the set of attacking edges established by the intruder.

The cost of action is measured by the number of attacking

edges.

Attacker’s Knowledge Generally, we focus on adversar-

ial attacks against random walk based approaches. That

is, an attacker’s strategy for establishing edges from Sybil

nodes to honest nodes in order to cloak an attacker’s Sybil

sub-network. For analysis, we assume different levels of

knowledge that the attacker has on the defender’s strategy

and information:

A.1 Strategy only.

A.2 Strategy + topology.

A.3 Strategy + topology + trusted nodes (positively la-

beled nodes).

B.1 Strategy + topology + trusted nodes (positively la-

beled nodes) + untrusted nodes (negatively labeled

nodes).

Here, we divided the level of access to inside information

for the attacker into two groups. In group A (i.e., A.1, A.2,

A.3) attackers are able to gather sophisticated information

based on publicly available sources, whereas in group B

(i.e., B.1) either some back-channel provides non-public

information (e.g. defender marked Sybil nodes based on

their analysis), or, the attackers are provided with all infor-

mation visible to the defenders.

Clearly, it is too hard, if not impossible, to have an out-of-

the-box solution for the setting described in group B and

we therefore resort our analysis on the settings in group A.

In the first case (A.1), no efficient adversarial strategies for

graph-based random walk approaches is possible. The at-

tackers must build up sufficient attacking edges to trusted

nodes in order to absorb enough trust. In A.3 (and A.2

as a special case) on the other hand, the attacker gained

enough information to guide the creation of attacking edges

efficiently. This paper focuses on this most interesting sit-

uation. More specifically, we assume the following: the

intruder knows defender’s strategy (algorithm details), the

topology of the honest graph, and the set of trusted nodes,

i.e., she knows about GH = (VH , EH) and VT . Based on

that knowledge the intruder can establish attacking edges

to honest nodes of her choice with the goal to create an at-

tacking scenario where the applied defense method fails.

Although the exact topology of the Sybil graph is not spec-

ified any further, for the following results it is assumed that

it is designed in a way that suits the intruder well.

Attacker’s Goal Attackers can have various final goals,

e.g., spamming honest users to earn money, feeding wrong

information to honest nodes, stealing nonpublic informa-

tion, damaging countries/companies, etc. Depending on

the goal, the objective of the optimal strategy can differ.

We assume that attacker’s try to maximize their influence

and hence, have an inherent need to increase the number of

attacking edges.

Random-walk based approaches such as SybilRank and In-

tegro rely on the fact that the absolute trust leak l from the

honest graph to the Sybil graph is small (i.e., below the

amount needed to reach the stationary distribution within

the Sybil sub-graph) which ensures low trust scores for the

Sybil nodes. However, if enough trust is being propagated

to the Sybil graph, trust values will be close to the station-

ary distribution in the Sybil graph as well as in the honest

graph. Consequently, the degree-normalized ranking val-

ues will be similar to the ones in the honest graph, which

makes Sybil nodes indistinguishable from honest nodes and

therefore disables the detector.

Definition 3 (Disabling Attacking Strategy). Let GH and

GS be the honest graph and the Sybil graph. Let l : 2E !
R be the absolute trust leak as a function of an attacking

strategy. Then, an attacking strategy EA ⇢ VH ⇥ VS is

said to be disabling if

l(EA) � td, (5)

where td is the disabling threshold, which depends on the

topology of the Sybil graph and the detection algorithm.

Surely, an attacker does not aim for just any disabling strat-

egy but for the one that comes at the lowest cost. As the

cost of an attacking strategy is assumed to be increasing

in the number of attacking edges, an optimal/minimal dis-

abling strategy is given by the following definition.

Definition 4 (Optimal Disabling Strategy). An attacking

strategy AE is said to be optimal if it is the solution to the

following optimization problem:

min
EA⇢VH⇥VS

|EA| (6)

s. t. l(EA) � td.

To solve this, the disabling threshold td and the trust leak

function must be known to the attacker. Ignoring the edge

weights (which are unknown to the attacker) the amount

of trust needed within the Sybil graph to reach the sta-

tionary distribution of the random walk is given by td =
P

vi2VS
πi = vol(VS)

vol(V ) . To exactly evaluate l(EA) the en-

tire random walk needs to be simulated which is infeasi-

ble for the attacker without knowing its exact length and

the edge weights. A useful estimate is to consider only

the first iteration. The computation of this value is fea-

sible and the trust leak per attacking edge is by far the
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largest in the first iteration because all the trust is con-

centrated in the relatively small subset of trusted nodes

VT . The trust leak in the first iteration l̃(EA) is given by

l(EA) =
P

v2VT

κ(v)
deg(v,GH)+κ(v) , where κ(v) is the attack-

ing degree (i.e., the number of attacking edges) of node

v. This leads to a greedy strategy where the intruder itera-

tively adds those attacking edges which produce the largest

increase in l̃. In the following the term adversarial strat-

egy/attacker refers to this greedy strategy.

5. Proposed Method

In this section, we propose our new method and derive

its efficient solver. Our method is specifically designed to

cope with a large number of attacking edges by minimiz-

ing “trust leaks”, that is, minimizing a sampled trust leak

by adjusting the edge weights—a missing mechanism for

SybilRank and Integro.

Transductive Sybil Ranking Combining the approach

of Backstrom & Leskovec (2011) and SybilRank (Cao

et al., 2012), our proposed method, called transductive

Sybil ranking (TSR), tries to leverage potential prior knowl-

edge, negative labels, to bias a short random walk so that

random walk methods work even with the existence of a

large number of attacking edges.

Assume that all nodes carry attributes and n  |V | nodes

are additionally attached with label information, i.e., the

defender knows a subset of nodes are honest, and another

subset of nodes are sybil. More formally, the defender is

given labeled nodes L := {(xi, yi) 2 X ⇥ {+1,�1}}ni=1

and unlabeled nodes U := {xi 2 X}
|V |
i=n+1. Since only

the honest nodes can be trusted, VT ✓ {vi 2 V ; yi = +1}
holds.

We define an edge feature function ψu,v between nodes u
and v as ψu,v : X ⇥ X ! Y . A corresponding param-

eterized, non-negative scoring function fw : Y ! R
+ is

learned during training and applied as edge weight au,v =
fw(ψu,v) in the weighted adjacency matrix Q 2 R

|V |⇥|V |:

Qu,v =

(
au,vP
x au,x

if (u, v) 2 E,

0 otherwise.
(7)

Throughout our experiments, we restrict ourselves to the

following differentiable edge feature function:

fw(ψu,v) = (1� exp(�w>ψu,v))
�1. (8)

Once the transition matrix is fixed, The remaining pro-

cedure is the same as SybilRank. Namely, starting form

the initial distribution (1), k-steps random walk (2) is ap-

plied with the transition matrix (7). After that, the degree-

normalized ranking probability (4) is used for classifica-

tion. However, we are also given negatively labeled nodes,

which are used to train the parameter w of the edge fea-

ture function (8), so that p(i) < p(j), 8 i, j 2 {1, . . . , n}
with yi = �1 and yj = +1. In the spirit of regularized risk

minimization (Vapnik, 1999), this problem is formalized as

follows:

Definition 5 (TSR optimization problem). TSR solves a

quadratically regularized, non-convex optimization prob-

lem with generic loss-functions h : [0, 1]⇥{+1,�1} ! R:

minimize
w

F (w) =
λ

2
kwk2 +

nX

i=1

h(p(i)(w), yi) . (9)

Using the notion of p(i)(w) visually indicates that node

ranking probabilities p are (non-linearly) dependent on the

parameter vector w. As for the choice of loss-functions, we

examine the following:

• Wilcoxon-Mann-Whitney (WMW) loss (Yan et al.,

2003). WMW maximizes the area under the ROC

curve:

h(p, y) =

nX

j=1

1[y = +1^yj = �1]
⇣

1 + exp�
p�pj

b

⌘�1

.

• Smooth hinge-loss variant A smooth variant of the

classical support vector machine hinge-loss with two

additional parameters: a decision boundary b 2 R and

a scaling parameter a 2 R:

h(p, y) =

8

><

>:

1
2 � y(ap� b) if y(ap� b)  0,
1
2 (1� y(ap� b))2 if 0 < y(ap� b)  1,

0 if 1 < y(ap� b).

In this work, we focus on smooth, differentiable loss-

functions only, ensuring fast convergence to local optima

via gradient-based methods, i.e., fast second-order meth-

ods (BFGS). A pivotal point is hence, to assess the gradient

w.r.t. w.

Gradient Computation The remaining of this section is

dedicated to the derivation of the gradient:

∂F (w)
∂w

= ∂λkwk2

∂2w +
Pn

i
∂h(p(i)(w),yi)

∂w
,

where the loss-function h can be further split into
∂h(p(i)(w),yi)

∂w
= ∂h(p(i)(w),yi)

∂p(i)(w)
∂p(i)(w)

∂w
. Since we con-

strained ourselves to differentiable loss-function h(p, y),
the partial derivative w.r.t. p can be calculated rather

straightforward. More complicated is the evaluation of

∂p(i)

∂w
= ∂

∂w

p
(i)
k

π(i) =

✓

∂p
(i)
k

∂w
π(i) � p

(i)
k

∂π(i)

∂w

◆

π(i)�2
. (10)
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The derivative of the i-th component of π is given by:

∂π(i)

∂w
=

⇣
∂deg⇤(vi)

∂w
vol(V )� ∂vol(V )

∂w
deg⇤(vi)

⌘

vol(V )�2,

where
∂deg⇤(vi)

∂w
=

P

e2E
vi2e

∂ae

∂w
=

P

e2E
vi2e

∂fw(ψe)
∂w

and

∂vol(V )
∂w

= 2
P

e2E
∂ae

∂w
= 2

P

e2E
∂fw(ψe)

∂w
. As fw is said

to be differentiable the only part of Eq. (10) that remains is

the Jacobian ∂pk/∂w.

Theorem 3. The derivative ∂pk/∂w for k � 1 is given by:

∂pk

∂w
=

✓
k�1P

l=0

plQ
k�1�l

◆

∂Q
∂w

. (11)

(the proof is given in Appendix A). The derivative of Q,

defined in Eq. (7), is given by

∂Quv

∂w
=

8

<

:

∂auv
∂w

P
x aux�auv

P
x

∂aux
∂w

(
P

x aux)
2 if (u, v) 2 E,

0 otherwise.

This completes the computation of the gradient and enables

the application of gradient-based methods, i.e., BFGS to

find a (locally) optimal estimate ŵ. By using this estimate,

TSR weights the whole graph, with which a short random

walk is performed to obtain the final ranking p.

Robustness of TSR against Attacks By using the neg-

ative label information, our TSR, in principle, monitors

“trust leak” through random walk, and adjusts the edge

weights so that the leak is minimized. As a result, the

weights tend to be lower on the attacking edges (to reduce

the propagation), and higher on the Sybil edges (to boost

the stationary distribution). Thus, we can expect that our

TSR, which is an advanced integrated method, is more ro-

bust against attacks than the SybilRank and the two-step

Integro approach.

6. Empirical Evaluation on Synthetic Data

To assess the robustness of the proposed method and the

baseline methods, we generate artificially network topol-

ogy and edge and node attributes in order to have full con-

trol of the underlying ground truth. We separately create

two graphs, the honest and the Sybil graph. Both use the

generation method proposed by Holme & Kim (2002) for

scale free networks. Node features are generated randomly

and correlated through dependency injection. The edge

features function ψu,v simply stacks node features of the

two adjacent nodes xu and xv (see Appendix B for more

details). Connections between Sybil and honest graphs are

established according to a random attacking strategy that

iteratively adds attacking edges randomly, i.e., equally dis-

tributed on the set of all possible attacking edges VH ⇥ VS

or a adversarial attacking strategy that solves Problem (6)

for optimal attacks. This strategy only chooses an hon-

est node to be attacked next and the corresponding Sybil

node is chosen randomly (equally distributed on the set

of all Sybil nodes VS). We test our method, TSR, using

the proposed loss functions and compare against the state-

of-the-art methods SybilRank and Integro. As Integro de-

pends on a preceding victim prediction, we simulated one

that achieves highest possible rankings (ROC-AUC close

to 1.0).2

Random Attacking Strategy We generated a sample

network (|VH | = 200 and |VS | = 30) and select 15 hon-

est nodes and 8 Sybil nodes randomly, which will be used

as labeled examples for our TSR. The labeled honest nodes

are also used as the set VT of trusted seeding nodes for

the random walks in all methods. We evaluate the per-

formance in terms of ROC-AUC-values for the computed

ranking. This procedure was repeated 20 times for vary-

ing number of attacking edges (10-200 edges). Figure 1

shows ROC-AUC curves for all methods under the random

attacking setting. We can obsreve that our TSR, regard-

less of the choice of loss function, performs superior to the

other methods. Integro’s accuracy deteriorates fast but still

has an edge over SybilRank up to the point where the ROC-

AUC-value reaches 0.5. After that SybilRank and Integro

essentially perform similar.

Adversarial Attacking Strategy For the adversarial set-

ting, we ran the same benchmarks but this time attacking

edges were added according to the adversarial attacking

strategy. Due to the much more aggressive setting, we

varied the number of attacking edges from 1-40 and re-

peated this procedure 20 times to report averaged ROC-

AUC accuracies. The results are depicted in Figure 2. All

choices of loss functions outperform SybilRank and Inte-

gro clearly. The results confirm our considerations that

SybilRank’s performance drops fast and steep as soon as

a certain amount of attacking edges is established. Integro

behaves more robust than SybilRank, but, ultimately, must

resign after a few more attacking edges. Again, our TSR

is significantly more robust against adversarial attacks and

can withstand higher number of attacking edges until its

performance finally deteriorates.

7. Empirical Evaluation on Real-world Data

We also evaluated our method on a sample of the Facebook

graph Leskovec & Mcauley collected from survey partic-

ipants using the Facebook app. The dataset includes the

topology (|V | = 4039 users and |E| = 88234 friend-

2SybiRank, Integro, and TSR rely on different information, and
therefore, the fairness of comparison is not trivial. We discuss this
issue in Appendix C.
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Figure 1. Results for the random attacking setting. Accuracy

in terms of ROC-AUC for all methods on the generated graph

(|VH | = 200, |VS | = 30) with 20 repetitions and varying number

of attacking edges.

Figure 2. Results for the adversarial setting.

ships) as well as node features for every node (see Ta-

ble 1 for summary), Figure 3). Node features are comprised

of obfuscated categorical features of users profiles includ-

ing education, work, hometown, language, last name, etc.

As with most of real world social graphs, the data ex-

hibits strong multi-cluster structure, as seen in Figure 3

and Figure 4. These clusters pose additional challenges to

the application of random walk-based methods as the trust

propagation between two loosely inter-connected clusters

is low (Cao et al., 2012; Boshmaf et al., 2016). Hence, trust

seeds should be distributed among all clusters. Following

SybilRank and Integro (Cao et al., 2012), we employ the

Louvian clustering method (Blondel et al., 2008) first.

As common, the Sybil graph needs to be generated. For

this purpose, a (small) subgraph was copied and declared

as Sybil. The attacking edges were created to link the

honest and the Sybil graph following one of the attacking

strategies (random or adversarial). It was made sure that no

Sybil node attacked one of the direct neighbors of its origin

which is reasonable for most social graphs. Edge features

Figure 3. Visualization of the Facebook graph. The size of a

node represents its degree.

Figure 4. Adjacency matrix of the Facebook graph. Nodes

have been grouped together.

for TSR are as follows: the number of shared features (in to-

tal), the number of shared friends, and the number of shared

features within specific categories. The other experimental

setup is the same as the previous section.

Random Attacks The trusted nodes |VT | = 50 were ran-

domly distributed among all clusters and a small subset of

Sybils |VD| = 30 was chosen as known Sybil nodes. At-

tacking edges EA were established following the random

attacking strategy ranging from |EA| = 1 to |EA| = 1400.

Experiments were repeated 10 times. Integro was run with

Table 1. Topological properties of the Facebook sample graph

Property Value

Number of nodes 4039

Number of edegs 88234

Strongly connected True

Weighted (edges) False

Avg. clustering coefficient 0.6055

Diameter 8
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Figure 5. Comparison of the detection methods in a random

attacking scenario on the Facebook graph. Accuracy in terms

of average AUROC for all evaluated methods.

Figure 6. Comparison of the detection methods in an adver-

sarial attacking scenario on the Facebook graph.

two levels of accuracy in simulated victim detection, i.e.,

perfect (AUROC = 1) and almost perfect (AUROC = 0.9).

Figure 5 shows the AUROC-values. The detection per-

formance of SybilRank is the lowest and drops soon as

attacking edges increase. Integro with the perfect vic-

tim detection outperforms the other methods, but with just

a slight reduction in the victim detection accuracy (AU-

ROC = 0.9), its performance drops significantly. All ver-

sions of TSR perform almost on par with perfect version

of Integro in the lower range of attacking edges (1—800).

In the higher range (800—1400), the hinge loss drop fast

to end up with a performance similar to Integro with the

almost perfect victim detection. However, the variant that

uses the WMW-loss does not show this performance drop

and stays close to the upper-bound of Integro.

Adversarial Attacks The number of adversarial attack

edges ranged from |EA| = 1 to |EA| = 45. Figure 6 shows

the recorded average AUROC-values. Again, SybilRank’s

performance drops the fastest and steepest and Integro is in-

significantly better in this adversarial scenario. Both vari-

ants of TSR performs better than the baselines. However,

the WMW-loss variant performs only slightly better than

SybilRank and Integro, while the hinge-loss variant keeps

good performance even for a large number of attacking

edges. As our future work, we will investigate which loss

function should be chosen, depending on data and assumed

attacker’s strategy. Overall, whereas SybilRank’s and Inte-

gro’s performance drops to an average AUROC-value be-

low 0.5 at |EA| = 30, the hinge-loss variant of TSR still

achieves an average value over 0.9 at the same amount of

attacking edges.

8. Conclusion & Outlook

In this paper, we studied the problem of Sybil detection.

We first refined the security guarantees of random walk ap-

proaches towards more realistic assumptions. Then, we

formalized and coined the adversarial setting and intro-

duced optimal strategies for attackers. Further, we pro-

posed a new method, transductive Sybil ranking (TSR), that

leverages prior information, network topology as well as

node and edge features. Unlike Integro, it is fused in a sin-

gle optimization framework and can be solved efficiently

by using gradient-based optimizer. In our empirical evalu-

ation, we showed the advantages of our method and inves-

tigated the susceptibility of our method and baseline com-

petitors to adversarial attacks. Further research will focus

on the application of our method to real-world, large-scale

OSNs.
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