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Abstract
In this paper, we study the iteration complexity of cubic regularization of Newton
method for solving composite minimization problems with uniformly convex objec-
tive. We introduce the notion of second-order condition number of a certain degree
and justify the linear rate of convergence in a nondegenerate case for the method
with an adaptive estimate of the regularization parameter. The algorithm automati-
cally achieves the best possible global complexity bound among different problem
classes of uniformly convex objective functions with Hölder continuous Hessian of
the smooth part of the objective. As a byproduct of our developments, we justify an
intuitively plausible result that the global iteration complexity of theNewtonmethod is
always better than that of the gradient method on the class of strongly convex functions
with uniformly bounded second derivative.

Keywords Newton method · Cubic regularization · Global complexity bounds ·
Strong convexity · Uniform convexity
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1 Introduction

A big step in a second-order optimization theory is related to the global complexity
guarantees which were justified in [17] for the cubic regularization of the Newton
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method. The following results provide a good perspective for the development of this
approach, discovering accelerated [14], adaptive [4,5] and universal [10] schemes. The
latter methods can automatically adjust to a smoothness properties of the particular
objective function. In the same vein, the second-order algorithms for solving a system
of nonlinear equations were discovered in [13], and randomized variants for solving
large-scale optimization problems were proposed in [7–9,12,18].

Despite to a number of nice properties, global complexity bounds of the cubically
regularized Newton method for the cases of strongly convex and uniformly convex
objective are not still fully investigated, as well as the notion of second-order non-
degeneracy (see discussion in Sect. 5 in [14]). We are going to address this issue in
the current paper.

The rest of the paper is organized as follows. Section 2 contains all necessary
definitions andmain properties of the classes of uniformly convex functions and twice-
differentiable functions with Hölder continuous Hessian. We introduce the notion of
the condition number γ f (ν) of a certain degree ν ∈ [0, 1] and present some basic
examples.

In Sect. 3, we describe a general regularized Newton scheme and show the linear
rate of convergence for this method on the class of uniformly convex functions with a
known degree ν ∈ [0, 1] of nondegeneracy. Then, we introduce the adaptive cubically
regularized Newton method and collect useful inequalities and properties, which are
related to this algorithm.

In Sect. 4, we study global iteration complexity of the cubically regularized Newton
method on the classes of uniformly convex functions with Hölder continuous Hessian.
We show that for nondegeneracy of any degree ν ∈ [0, 1], which is formalized by
the condition γ f (ν) > 0, the algorithm automatically achieves the linear rate of
convergence with the value γ f (ν) being the main complexity factor.

Finally, in Sect. 5 we compare our complexity bounds with the known bounds for
other methods and discuss the results. In particular, we justify an intuitively plausible
(but quite a delayed) result that the global complexity of the cubically regularized
Newton method is always better than that of the gradient method on the class of
strongly convex functions with uniformly bounded second derivative.

2 Uniformly Convex Functions with Hölder Continuous Hessian

Let us start from some notation. In what follows, we denote by E a finite-dimensional
real vector space and by E

∗ its dual space, which is a space of linear functions on E.
The value of function s ∈ E

∗ at point x ∈ E is denoted by 〈s, x〉. Let us fix some
linear self-adjoint positive-definite operator B : E → E

∗ and introduce the following
Euclidean norms in the primal and dual spaces:

‖x‖ := 〈Bx, x〉1/2, x ∈ E, ‖s‖∗ := 〈s, B−1s〉1/2, s ∈ E
∗.

For any linear operator A : E → E
∗, its norm is induced in a standard way:

‖A‖ := max
x∈E

{‖Ax‖∗ | ‖x‖ ≤ 1
}
.
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Our goal is to solve the convex optimization problem in the composite form:

min
x∈dom F

F(x) := f (x) + h(x), (1)

where f is a twice differentiable on its open domain uniformly convex function, and
h is a simple closed convex function with dom h ⊆ dom f . Simple means that all
auxiliary subproblems with an explicit presence of h are easily solvable.

For a smooth function f , its gradient at point x is denoted by ∇ f (x) ∈ E
∗, and its

Hessian is denoted by ∇2 f (x) : E → E
∗. For convex but not necessary differentiable

function h, we denote by ∂h(x) ⊂ E
∗ its subdifferential at the point x ∈ dom h.

We say that differentiable function f is uniformly convex of degree p ≥ 2 on a
convex set C ⊆ dom f if for some constant σ > 0 it satisfies inequality

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + σ
p ‖y − x‖p, x, y ∈ C . (2)

Uniformly convex functions of degree p = 2 are known as strongly convex. If
inequality (2) holds with σ = 0, the function f is called just convex. The follow-
ing convenient condition is sufficient for function f to be uniformly convex on a
convex set C ⊆ dom f :

Lemma 2.1 Lemma 1 in [14]) Let for some σ > 0 and p ≥ 2 the following inequality
holds:

〈∇ f (x) − ∇ f (y), x − y〉 ≥ σ‖x − y‖p, x, y ∈ C . (3)

Then, function f is uniformly convex of degree p on set C with parameter σ .

From now on, we assume C := dom F ⊆ dom f . By the composite representa-
tion (1), we have for every x ∈ dom F and for all F ′(x) ∈ ∂ F(x):

F(y) ≥ F(x) + 〈F ′(x), y − x〉 + σ
p ‖x − y‖p, y ∈ dom F . (4)

Therefore, if σ > 0, then we can have only one point x∗ ∈ dom F with F(x∗) = F∗,
which always exists for F being uniformly convex and closed. A useful consequence
of uniform convexity is the following upper bound for the residual.

Lemma 2.2 Let f be uniformly convex of degree p ≥ 2 with constant σ > 0 on set
dom F. Then, for every x ∈ dom F and for all F ′(x) ∈ ∂ F(x) we have

F(x) − F∗ ≤ p−1
p

( 1
σ

) 1
p−1 ‖F ′(x)‖

p
p−1∗ . (5)

Proof In view of (4), bound (5) follows as in the proof of Lemma 3 in [14]. ��
It is reasonable to define the best possible constant σ in inequality (3) for a certain

degree p. This leads us to a system of constants:

σf (p) := inf
x,y ∈ dom F

x �=y

〈∇ f (x)−∇ f (y),x−y〉
‖x−y‖p , p ≥ 2.

(6)
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We prefer to use inequality (3) for the definition of σf (p), instead of (2), because of
its symmetry in x and y. Note that the value σf (p) also depends on the domain of F .
However, we omit this dependence in our notation since it is always clear from the
context.

It is easy to see that the univariate function σf (·) is log-concave. Thus, for all
p2 > p1 ≥ 2 we have:

σf (p) ≥ (
σf (p1)

) p2−p
p2−p1 · (

σf (p2)
) p−p1

p2−p1 , p ∈ [p1, p2]. (7)

For a twice-differentiable function f , we say that it has Hölder continuous Hessian
of degree ν ∈ [0, 1] on a convex set C ⊆ dom f , if for some constant H, it holds:

‖∇2 f (x) − ∇2 f (y)‖ ≤ H‖x − y‖ν, x, y ∈ C . (8)

Two simple consequences of (8) are as follows:

‖∇ f (y) − ∇ f (x) − ∇2 f (x)(y − x)‖∗ ≤ H‖x − y‖1+ν

1 + ν
, (9)

| f (y) − Q(x; y)| ≤ H‖x − y‖2+ν

(1 + ν)(2 + ν)
, (10)

where Q(x; y) is the quadratic model of f at the point x :

Q(x; y) := f (x) + 〈∇ f (x), y − x〉 + 1
2 〈∇2 f (x)(y − x), y − x〉.

In order to characterize the level of smoothness of function f on the setC := dom F ,
let us define the system of Hölder constants (see [10]):

Hf (ν) := sup
x,y∈dom F

x �=y

‖∇2 f (x)−∇2 f (y)‖
‖x−y‖ν , ν ∈ [0, 1].

(11)

We allowHf (ν) to be equal to+∞ for some ν. Note that functionHf (·) is log-convex.
Thus, any 0 ≤ ν1 < ν2 ≤ 1 such that Hf (νi ) < +∞, i = 1, 2, provide us with the
following upper bounds for the whole interval:

Hf (ν) ≤ (Hf (ν1)
) ν2−ν

ν2−ν1 · (Hf (ν2)
) ν−ν1

ν2−ν1 , ν ∈ [ν1, ν2]. (12)

If for some specific ν ∈ [0, 1]wehaveHf (ν) = 0, this implies that∇2 f (x) = ∇2 f (y)

for all x, y ∈ dom F . In this case restriction, f |dom F is a quadratic function and we
conclude that Hf (ν) = 0 for all ν ∈ [0, 1]. At the same time, having two points
x, y ∈ dom F with 0 < ‖x − y‖ ≤ 1, we get a simple uniform lower bound for all
constants Hf (ν):

Hf (ν) ≥ ‖∇2 f (x) − ∇2 f (y)‖, ν ∈ [0, 1].
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Let us give an example of function, which has Hölder continuous Hessian for all
ν ∈ [0, 1].
Example 2.1 For a given ai ∈ E

∗, 1 ≤ i ≤ m, consider the following convex function:

f (x) = ln

(
m∑

i=1
e〈ai ,x〉

)
, x ∈ E.

Let us fix Euclidean norm ‖x‖ = 〈Bx, x〉1/2, x ∈ E, with operator B := ∑m
i=1 ai a∗

i .
Without loss of generality, we assume that B � 0 (otherwise we can reduce dimension
of the problem). Then,

Hf (0) ≤ 1, Hf (1) ≤ 2.

Therefore, by (12) we get, for any ν ∈ [0, 1]:

Hf (ν) ≤ 2ν .

Proof Denote κ(x) ≡ ∑m
i=1 e〈ai ,x〉. Let us fix arbitrary x, y ∈ E and direction h ∈ E.

Then, straightforward computation gives:

〈∇ f (x), h〉 = 1

κ(x)

m∑

i=1

e〈ai ,x〉〈ai , h〉,

〈∇2 f (x)h, h〉 = 1

κ(x)

m∑

i=1

e〈ai ,x〉〈ai , h〉2 − ( 1

κ(x)

m∑

i=1

e〈ai ,x〉〈ai , h〉)2

= 1

κ(x)

m∑

i=1

e〈ai ,x〉 (〈ai , h〉 − 〈∇ f (x), h〉)2 ≥ 0.

Hence, we get

‖∇2 f (x)‖ = max‖h‖≤1
〈∇2 f (x)h, h〉 ≤ max‖h‖≤1

∑m
i=1〈ai , h〉2 = max‖h‖≤1

‖h‖2 = 1.

Since all Hessians of function f are positive definite, we conclude that Hf (0) ≤ 1.
InequalityHf (1) ≤ 2 can be easily obtained from the following representation of the
third derivative:

f ′′′(x)[h, h, h] = 1

κ(x)

m∑

i=1

e〈ai ,x〉 (〈ai , h〉 − 〈∇ f (x), h〉)3

≤ 〈∇2 f (x)h, h〉 max
1≤i, j≤m

〈ai − a j , h〉 ≤ 2‖h‖3.

��
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Let us imagine now that we want to describe the iteration complexity of some
method, which solves the composite optimization problem (1) up to an absolute accu-
racy ε > 0 in the function value. We assume that the smooth part f of its objective is
uniformly convex and has Hölder continuous Hessians. Which degrees p and ν should
be used in our analysis? Suppose that, for the number of calls of the oracle, we are
interested in obtaining a polynomial-time bound of the form:

O
(
(Hf (ν))α · (σf (p))β · log F(x0)−F∗

ε

)
, α, β �= 0.

Denote by [x] the physical dimension of variable x ∈ E, and by [ f ] the physical
dimension of the value f (x). Then, we have [∇ f (x)] = [ f ]/[x] and [∇2 f (x)] =
[ f ]/[x]2. This gives us

[Hf (ν)] = [ f ]
[x]2+ν , [σf (p)] = [ f ]

[x]p , [ (Hf (ν))α · (σf (p))β ] = [ f ]α+β

[x]α(2+ν)+β p .

While x and f (x) can be measured in arbitrary physical quantities, the value “number
of iterations” cannot have physical dimension. This leads to the following relations:

α + β = 0 and α(2 + ν) + β p = 0.

Therefore, despite to the fact that our function can belong to several problem classes
simultaneously, from the physical point of view only one option is available:

p = 2 + ν

Hence, for a twice-differentiable convex function f with infν∈[0,1] Hf (ν) > 0, we
can define only one meaningful condition number of degree ν ∈ [0, 1]:

γ f (ν) := σ f (2+ν)

Hf (ν)
. (13)

If for some particular ν we have Hf (ν) = +∞, then by our definition: γ f (ν) = 0.
It will be shown that the condition number γ f (ν) serves as a main factor in the

global iteration complexity bounds for the regularized Newton method as applied to
the problem (1). Let us prove that this number cannot be big.

Lemma 2.3 Let infν∈[0,1] Hf (ν) > 0 and therefore the condition number γ f (·) be
well defined. Then,

γ f (ν) ≤ 1
1+ν

+ inf
x,y∈dom F

‖∇2 f (x)‖
‖∇2 f (y)−∇2 f (x)‖ , ν ∈ [0, 1]. (14)

In the case when dom F is unbounded: supx∈dom F ‖x‖ = +∞, then

γ f (ν) ≤ 1
1+ν

, ν ∈ (0, 1]. (15)
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Proof Indeed, for any x, y ∈ dom F , x �= y, we have:

σ f (2 + ν)
(6)≤ 〈∇ f (y) − ∇ f (x), y − x〉

‖y − x‖2+ν

= 〈∇ f (y) − ∇ f (x) − ∇2 f (x)(y − x), y − x〉
‖y − x‖2+ν

+ 〈∇2 f (x)(y − x), y − x〉
‖y − x‖2+ν

(9)≤ Hf (ν)

1 + ν
+ ‖∇2 f (x)‖

‖y − x‖ν
.

Now, dividing both sides of this inequality byHf (ν), we get inequality (14) from the
definition of Hf (ν) (11). Inequality (15) can be obtained by taking the limit ‖y‖ →
+∞. ��

From inequalities (7) and (12), we can get the following lower bound:

γ f (ν) ≥ (
γ f (ν1)

) ν2−ν

ν2−ν1 · (
γ f (ν2)

) ν−ν1
ν2−ν1 , ν ∈ [ν1, ν2],

where 0 ≤ ν1 < ν2 ≤ 1. However, it turns out that in unbounded case we can have a
nonzero condition number γ f (ν) only for a single degree.

Lemma 2.4 Let dom F be unbounded: supx∈dom F ‖x‖ = +∞. Assume that for a
fixed ν ∈ [0, 1] we have γ f (ν) > 0. Then,

γ f (α) = 0 for all α ∈ [0, 1] \ {ν}.

Proof Consider firstly the case: α > ν. From the condition γ f (ν) > 0, we conclude
that Hf (ν) < +∞. Then, for any x, y ∈ dom F we have:

σf (2 + α)‖y − x‖2+α

2 + α

(2)≤ f (y) − f (x) − 〈∇ f (x), y − x〉
(10)≤ 1

2
〈∇2 f (x)(y − x), (y − x)〉 + Hf (ν)‖y − x‖2+ν

(1 + ν)(2 + ν)
.

Dividing both sides of this inequality by ‖y − x‖2+α and letting ‖x‖ → +∞, we get
σf (2 + ν) = 0. Therefore, γ f (α) = 0. For the second case, α < ν, we cannot have
γ f (α) > 0, since the previous reasoning results in γ f (ν) = 0. ��

Let us look now at an important example of a uniformly convex function with
Hölder continuous Hessian. It is convenient to start with some properties of powers
of Euclidean norm.

Lemma 2.5 For fixed real p ≥ 1, consider the following function:

f p(x) = 1
p ‖x‖p, x ∈ E.
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1. For p ≥ 2, function f p(·) is uniformly convex of degree p:1)

〈∇ f p(x) − ∇ f p(y), x − y〉 ≥ 22−p‖x − y‖p, x, y ∈ E. (16)

2. If 1 ≤ p ≤ 2, then function f p(·) has ν-Hölder continuous gradient with ν = p−1:

‖∇ f p(x) − ∇ f p(y)‖∗ ≤ 21−ν‖x − y‖ν, x, y ∈ E. (17)

Proof Firstly, recall two useful inequalities, which are valid for all a, b ≥ 0:

|aα − bα| ≤ |a − b|α, when 0 ≤ α ≤ 1, (18)

|aα − bα| ≥ |a − b|α, when α ≥ 1. (19)

Let us fix arbitrary x, y ∈ E. The left-hand side of inequality (16) equals

〈‖x‖p−2Bx − ‖y‖p−2By, x − y〉 = ‖x‖p + ‖y‖p − 〈Bx, y〉(‖x‖p−2 + ‖y‖p−2),

and we need to verify that it is bigger than 22−p
[‖x‖2 +‖y‖2 −2〈Bx, y〉] p

2 . The case

x = 0 or y = 0 is trivial. Therefore, assume x �= 0 and y �= 0. Denoting τ := ‖y‖
‖x‖ ,

r := 〈Bx,y〉
‖x‖·‖y‖ , we have the following statement to prove:

1 + τ p ≥ rτ(1 + τ p−2) + 22−p
[
1 + τ 2 − 2rτ

] p
2 , τ > 0, |r | ≤ 1.

Since the function in the right-hand side is convex in r , we need to check only two
marginal cases:

1. r = 1 : 1 + τ p ≥ τ(1 + τ p−2) + 22−p|1 − τ |p, which is equivalent to
(1 − τ)(1 − τ p−1) ≥ 22−p|1 − τ |p. This is true by (19).

2. r = −1 : 1 + τ p ≥ −τ(1 + τ p−2) + 22−p(1 + τ)p, which is equivalent to
(1+ τ p−1) ≥ 22−p(1+ τ)p−1. This is true in view of convexity of function τ p−1

for τ ≥ 0.

Thus, we have proved (16). Let us prove the second statement. Consider the function
f̂q(s) = 1

q ‖s‖q∗ , s ∈ E
∗, with q = p

p−1 ≥ 2. In view of our first statement, we have:

〈s1 − s2,∇ f̂q(s1) − ∇ f̂q(s2)〉 ≥ ( 1
2

)q−2 ‖s1 − s2‖q∗, s1, s2 ∈ E
∗. (20)

For arbitrary x1, x2 ∈ E, define si = ∇ f p(xi ) = Bxi
‖xi ‖2−p , i = 1, 2. Then ‖si‖∗ =

‖xi‖p−1, and consequently,

xi = ‖xi‖2−p B−1si = ‖si‖
2−p
p−1∗ B−1si = ∇ f̂q(si ).

1) For the integer values of p, this inequality was proved in [14].
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Therefore, substituting these vectors in (20), we get

(
1

2

)q−2

‖∇ f p(x1) − ∇ f p(x2)‖q∗ ≤ 〈∇ f p(x1) − ∇ f p(x2), x1 − x2〉.

Thus, ‖∇ f p(x1) − ∇ f p(x2)‖∗ ≤ 2
q−2
q−1 ‖x1 − x2‖

1
q−1 . It remains to note that 1

q−1 =
p − 1 = ν. ��
Example 2.2 For real p ≥ 2 and arbitrary x0 ∈ E, consider the following function:

f (x) = 1
p ‖x − x0‖p = f p(x − x0), x ∈ E.

Then, σf (p) = ( 1
2

)p−2
. Moreover, if p = 2 + ν for some ν ∈ (0, 1], then it holds

Hf (ν) ≤ (1 + ν)21−ν,

andHf (α) = +∞, for all α ∈ [0, 1] \ {ν}. Therefore, in this case we have γ f (ν) ≥
1

2(1+ν)
, and γ f (α) = 0 for all α ∈ [0, 1] \ {ν}.

Proof Let us take an arbitrary x �= 0 and set y := −x . Then,

〈∇ f (x) − ∇ f (y), y − x〉 = 〈‖x‖p−2Bx + ‖x‖p−2Bx, 2x〉 = 4‖x‖p.

On the other hand, ‖y − x‖p = 2p‖x‖p. Therefore, σf (p)
(6)≤ 22−p, and (16) tells us

that this inequality is satisfied as equality.
Let us prove now that Hf (ν) ≤ (1 + ν)21−ν for p = 2 + ν with some ν ∈ (0, 1].

This is

‖∇2 f (x) − ∇2 f (y)‖ ≤ (1 + ν)21−ν‖x − y‖ν, x, y ∈ E. (21)

The corresponding Hessians can be represented as follows:

∇2 f (x) = ‖x‖ν B + νBxx∗ B
‖x‖2−ν , x ∈ E \ {0}, ∇2 f (0) = 0.

For the case x = y = 0, inequality (21) is trivial. Assume now that x �= 0. If
0 ∈ [x, y], then y = −βx for some β ≥ 0 and we have:

‖∇2 f (x) − ∇2 f (−βx)‖ ≤ |1 − βν |(1 + ν)‖x‖ν ≤ (1 + β)ν(1 + ν)21−ν‖x‖ν

= (1 + ν)21−ν‖x − y‖ν,

which is (21). Let 0 /∈ [x, y]. For an arbitrary fixed direction h ∈ E, we get:

∣∣〈(∇2 f (x) − ∇2 f (y))h, h
〉∣∣ =

∣∣∣(‖x‖ν − ‖y‖ν) · ‖h‖2 + ν ·
( 〈Bx,h〉2

‖x‖2−ν − 〈By,h〉2
‖y‖2−ν

)∣∣∣.
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Consider the points u = Bx
‖x‖1−ν = ∇ fq(x) and v = By

‖y‖1−ν = ∇ fq(y)with q = 1+ν.
Then,

‖x‖ν = ‖u‖∗, 〈Bx,h〉2
‖x‖2−ν = 〈u,h〉2

‖u‖∗ and ‖y‖ν = ‖v‖∗, 〈By,h〉2
‖y‖2−ν = 〈v,h〉2

‖v‖∗ .

Therefore,

∣∣〈(∇2 f (x) − ∇2 f (y))h, h
〉∣∣

=
∣∣∣(‖u‖∗ − ‖v‖∗) · ‖h‖2 + ν ·

( 〈u, h〉2
‖u‖∗

− 〈v, h〉2
‖v‖∗

)∣∣∣. (22)

Let us estimate the right-hand side of (22) from above. Consider a continuously
differentiable univariate function:

φ(τ) := ‖u(τ )‖∗ · ‖h‖2 + ν · 〈u(τ ), h〉2
‖u(τ )‖∗

,

u(τ ) := u + τ(v − u), τ ∈ [0, 1].

Note that

φ′(τ ) = 〈u(τ ), B−1(v − u)〉
‖u(τ )‖∗

· ‖h‖2 + 2ν〈u(τ ), h〉〈v − u, h〉
‖u(τ )‖∗

− ν〈u(τ ), h〉2〈u(τ ), B−1(v − u)〉
‖u(τ )‖3∗

= 〈u(τ ), B−1(v − u)〉
‖u(τ )‖∗

·
(
‖h‖2 − ν〈u(τ ),h〉2

‖u(τ )‖2∗
)

︸ ︷︷ ︸
≥0

+ 2ν〈u(τ ), h〉〈v − u, h〉
‖u(τ )‖∗

.

Denote γ := 〈u(τ ),h〉
‖u(τ )‖∗·‖h‖ ∈ [−1, 1]. Then,

∣∣φ′(τ )
∣∣ ≤ ‖v − u‖∗ · ‖h‖2 · (

1 − νγ 2 + 2ν|γ |) ≤ (1 + ν) · ‖v − u‖∗ · ‖h‖2.

Thus, we have:

∣∣〈(∇2 f (x) − ∇2 f (y))h, h
〉∣∣ = |φ(1) − φ(0)| ≤ (1 + ν) · ‖v − u‖∗ · ‖h‖2.(23)

It remains to use the definition of u and v and apply inequality (17) with p = q. Thus,
wehave proved, that for p = 2+ν theHessian of f isHölder continuous of degree ν.At
the same time, taking y = 0,weget‖∇2 f (x)−∇2 f (y)‖ = ‖∇2 f (x)‖ = (1+ν)‖x‖ν .
These values cannot be uniformly bounded in x ∈ E by any multiple of ‖x‖α with
α �= ν. So, the Hessian of f is not Hölder continuous for any degree different from
2 + ν. ��
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Remark 2.1 Inequalities (16) and (17) have the following symmetric consequences:

p ≥ 2 ⇒ ‖∇ f p(x) − ∇ f p(y)‖∗ ≥ 22−p‖x − y‖p−1,

p ≤ 2 ⇒ ‖∇ f p(x) − ∇ f p(y)‖∗ ≤ 22−p‖x − y‖p−1,

which are valid for all x, y ∈ E.

3 Regularized NewtonMethod

Let us start from the case when we know that for a specific ν ∈ [0, 1] function f
has Hölder continuous Hessian: H f (ν) < +∞. Then, from (10), we have the global
upper bound for the objective function:

F(y) ≤ Mν,H (x; y) := Q(x; y) + H‖x−y‖2+ν

(1+ν)(2+ν)
+ h(y), x, y ∈ dom F,

where H > 0 is large enough: H ≥ Hf (ν). Thus, it is natural to employ the minimum
of a regularized quadratic model:

Tν,H (x) := argmin
y∈dom F

Mν,H (x; y), M∗
ν,H (x) := min

y∈dom F
Mν,H (x; y),

and define the following general iteration process [10]:

xk+1 := Tν,Hk (xk), k ≥ 0 (24)

where the value Hk is chosen either to be a constant from the interval [0, 2Hf (ν)] or
by some adaptive procedure.

For the class of uniformly convex functions of degree p = 2 + ν, we can justify
the following global convergence result for this process.

Theorem 3.1 Assume that for some ν ∈ [0, 1] we have 0 < Hf (ν) < +∞ and
σf (2 + ν) > 0. Let the coefficients {Hk}k≥0 in the process (24) satisfy the following
conditions:

0 ≤ Hk ≤ βH f (ν), F(xk+1) ≤ M∗
ν,Hk

(xk), k ≥ 0, (25)

with some constant β ≥ 0. Then, for the sequence {xk}k≥0 generated by the process
we have:

F(xk+1) − F∗ ≤
(
1 − 1+ν

2+ν
· min

{
γ f (ν)(1+ν)

(1+β)(2+ν)
, 1

} 1
1+ν

)
(F(xk) − F∗) . (26)

Thus, the rate of convergence is linear and for reaching the gap F(xK ) − F∗ ≤ ε it

is enough to perform K = ⌈ 2+ν
1+ν

· max
{ (1+β)(2+ν)

γ f (ν)(1+ν)
, 1

} 1
1+ν log F(x0)−F∗

ε

⌉
iterations.
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Proof As in the proof of Theorem 3.1 in [10], from (25) one can see that

F(xk+1) ≤ F(xk) − α (F(xk) − F∗) + α2+ν (1+β)Hf (ν)‖xk−x∗‖2+ν

(1+ν)(2+ν)
,

for any α ∈ [0, 1]. Then, taking into account the uniform convexity (4), we get

F(xk+1) ≤ F(xk) −
(
α − α2+ν (1+β)Hf (ν)

(1+ν)σf (2+ν)

)
(F(xk) − F∗) .

The minimum of the right-hand side is attained at α∗ = min
{ γ f (ν)(1+ν)

(2+ν)(1+β)
, 1

} 1
1+ν. Plug-

ging this value into the bound above, we get inequality (26). ��
Unfortunately, in practice it is difficult to decide on an appropriate value ofν ∈ [0, 1]

with Hf (ν) < +∞. Therefore, it is interesting to develop the universal methods
which are not based on some particular parameters. Recently, it was shown [10] that
one good choice for such universal scheme is the cubic regularization of the Newton
Method [17]. This is actually the process (24) with the fixed parameter ν = 1. For
this choice, in the rest part of the paper we omit the corresponding index in the
definitions of all necessary objects: MH (x; y) := M1,H (x; y), TH (x) := T1,H (x),
and M∗

H (x) := M∗
1,H (x) = MH (x; TH (x)). The adaptive scheme of our method with

dynamic estimation of the constant H is as follows.

Algorithm 1: Adaptive Cubic Regularization of Newton Method

Initialization. Choose x0 ∈ dom F , H0 > 0.
Iteration k ≥ 0.
1: Find the minimal integer ik ≥ 0 such that F(T

Hk2
ik (xk )) ≤ M∗

Hk2
ik

(xk ).

2: Perform the Cubic Step: xk+1 = T
Hk2

ik (xk ).

3: Set Hk+1 := 2ik−1Hk .

Let us present themain properties of the composite CubicNewton step x �→ TH (x).
Denote

rH (x) := ‖TH (x) − x‖.

Since point TH (x) is a minimum of strictly convex function MH (x; ·), it satisfies the
following first-order optimality condition:

〈∇ f (x) + ∇2 f (x)(TH (x) − x) + HrH (x)
2 B(TH (x) − x), y − TH (x)

〉

+h(y) ≥ h(TH (x)), y ∈ dom F . (27)

In other words, the vector

h′(TH (x)) := −∇ f (x) − ∇2 f (x)(TH (x) − x) − HrH (x)
2 B(TH (x) − x)
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belongs to the subdifferential of h:

h′(TH (x)) ∈ ∂h(TH (x)). (28)

Computation of a point T = TH (x), satisfying condition (28), requires some standard
techniques of ConvexOptimization and LinearAlgebra (see [1,3,16,17]). Arithmetical
complexity of such a procedure is usually similar to that of the standard Newton step.

Plugging into (27) y := x ∈ dom F , we get:

〈∇ f (x), x − TH (x)〉
≥ 〈∇2 f (x)(TH (x) − x), TH (x) − x〉 + Hr3H (x)

2 + h(TH (x)) − h(x). (29)

Thus, we obtain the following bound for theminimal value M∗
H (x) of the cubicmodel:

M∗
H (x)

(29)≤ f (x) − 1
2 〈∇2 f (x)(TH (x) − x), TH (x) − x〉 − Hr3H (x)

3 + h(x)

= F(x) − 1
2 〈∇2 f (x)(TH (x) − x), TH (x) − x〉 − Hr3H (x)

3 . (30)

If for some value ν ∈ [0, 1] the Hessian is Hölder continuous:Hf (ν) < +∞, then
by (9) and (28) we get the following bound for the subgradient:

F ′(TH (x)) := ∇ f (TH (x)) + h′(TH (x))

at the new point:

‖F ′(TH (x))‖∗
≤ ‖∇ f (TH (x)) − ∇ f (x) − ∇2 f (x)(TH (x) − x)‖∗ + Hr2H (x)

2
(9)≤ Hf (ν)r1+ν

H (x)

1+ν
+ Hr2H (x)

2 = r1+ν
H (x) ·

(Hf (ν)

1+ν
+ Hr1−ν

H (x)

2

)
. (31)

One of the main strong point of the classical Newton’s is its local quadratic conver-
gence for the class of strongly convex functions with Lipschitz continuous Hessian:
σf (2) > 0 and 0 < Hf (1) < +∞ (see, for example, [15]). This property holds for the
cubically regularized Newton as well [14,17]. Indeed, ensuring F(TH (x)) ≤ M∗

H (x)

as in Algorithm 1, and having H ≤ βHf (1) with some β ≥ 0, we get:

F(TH (x)) − F∗ (5)≤ 1

2σf (2)
‖F ′(TH (x))‖2∗

(31)≤ (1 + β)2H2
f (1)

8σf (2)
r4H (x)

≤ (1 + β)2H2
f (1)

8σ 3
f (2)

〈∇2 f (x)(TH (x) − x), TH (x) − x〉2

(30)≤ (1 + β)2H2
f (1)

2σ 3
f (2)

(
F(x) − F∗)2 .
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And the region of quadratic convergence is as follows:

Q = {
x ∈ dom F : F(x) − F∗ ≤ 2σ 3

f (2)

(1 + β)2H2
f (1)

}
.

After reaching it, themethod starts to double the right digits of the answer at every step,
and this cannot last for a long time. Therefore, from now on we are mainly interested
in the global complexity bounds of Algorithm 1, which work for an arbitrary starting
point x0.

For noncomposite case, as it was shown in [10], if for some ν ∈ [0, 1] we have
0 < Hf (ν) < +∞ and the objective is just convex, then Algorithm 1with small initial

parameter H0 generates a solution x̂ with f (x̂) − f ∗ ≤ ε in O
((Hf (ν)D2+ν

0
ε

) 1
1+ν

)

iterations, where D0 := max
x

{‖x − x∗‖ : f (x) ≤ f (x0)}. Thus, the method in

[10] has a sublinear rate of convergence on the class of convex functions with Hölder
continuous Hessian. It can automatically adapt to the actual level of smoothness. In
what follows we show that the same algorithm achieves linear rate of convergence for
the class of uniformly convex functions of degree p = 2 + ν, namely for functions
with strictly positive condition number: supν∈[0,1] γ f (ν) > 0.

In the remaining part of the paper, we usually assume that the smooth part of our
objective is not purely quadratic. This is equivalent to the condition infν∈[0,1] Hf (ν) >

0. However, to conclude this section, let us briefly discuss the case minν∈[0,1] Hf (ν) =
0. If we would know in advance that f is a convex quadratic function, then no regu-
larization is needed since a single step x �→ TH (x) with H := 0 solves the problem.
However, if our function is given by a black-box oracle and we do not know a priori
that its smooth part is quadratic, then we can still use Algorithm 1. For this case, we
prove the following simple result.

Proposition 3.1 Let A : E → E
∗ be a self-adjoint positive semidefinite linear operator

and b ∈ E
∗. Assume that f (x) := 1

2 〈Ax, x〉 − 〈b, x〉, and the minimum x∗ ∈
Argmin
x∈dom F

{
F(x) := f (x) + h(x)

}
does exist. Then, in order to get F(xK ) − F∗ ≤ ε

with arbitrary ε > 0, it is enough to perform

K = ⌈
log2

H0‖x0−x∗‖3
6ε + 1

⌉
(32)

iterations of Algorithm 1.

Proof In our case, the quadratic model coincides with the smooth part of the objective:
Q(x; y) ≡ f (y), x, y ∈ E. Therefore, at every iteration k ≥ 0 of Algorithm 1 we
have ik = 0 and Hk = 2−k H0. Note that xk+1 = T2−k H0

(xk) = argmin
y∈dom F

{
F(y) +

2−k H0
6 ‖y − xk‖3

}
, and

F(xk+1) ≤ F(y) + 2−k H0
6 ‖y − xk‖3, y ∈ dom F . (33)
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Let us prove that ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all k ≥ 0. If this is true, then plugging
y ≡ x∗ into (33), we get: F(xk+1) − F∗ ≤ 2−k H0

6 ‖x0 − x∗‖3 which results in the
estimate (32). Indeed,

‖xk − x∗‖2 = ‖(xk − xk+1) + (xk+1 − x∗)‖2
= ‖xk+1 − x∗‖2 + ‖xk − xk+1‖2 + 2〈B(xk − xk+1), xk+1 − x∗〉,

and it is enough to show that 〈B(xk − xk+1), x∗ − xk+1〉 ≤ 0. Since xk+1 satisfies
the first-order optimality condition:

−2−(k+1) H0‖xk+1 − xk‖B(xk+1 − xk) := F ′(xk+1) ∈ ∂ F(xk+1), (34)

we have:

〈B(xk − xk+1), x∗ − xk+1〉
(34)= 2k+1

H0‖xk − xk+1‖〈F ′(xk+1), x∗ − xk+1〉 ≤ 0,

where the last inequality follows from the convexity of the objective. ��

4 Complexity Results for Uniformly Convex Functions

In this section,we are going to justify the global linear rate of convergence ofAlgorithm
1 for a class of twice differentiable uniformly convex functionswithHölder continuous
Hessian. Universality of this method is ensured by the adaptive estimation of the
parameter H over the whole sequence of iterations. It is important to distinguish two
cases: Hk+1 < Hk and Hk+1 ≥ Hk .

First, we need to estimate the progress in the objective function after minimizing
the cubic model. There are two different situations here:

either Hr1−ν
H (x) ≤ 2Hf (ν)

1 + ν
, or Hr1−ν

H (x) >
2Hf (ν)

1 + ν
.

Lemma 4.1 Let 0 < Hf (ν) < +∞ and σf (2 + ν) > 0 for some ν ∈ [0, 1]. Then, for
arbitrary x ∈ dom F and H > 0 we have:

F(x) − M∗
H (x)

≥ min
[(

F(x) − F∗) · (1 + ν)

(2 + ν)
· min

{( (1 + ν)γ f (ν)

2(2 + ν)

) 1
1+ν , 1

}
,

(
F(TH (x)) − F∗) 3(1+ν)

2(2+ν) · (2 + ν

1 + ν

) 3(1+ν)
2(2+ν) · (σf (2 + ν))

3
2(2+ν)

3
√

H

]
. (35)
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Proof Let us consider two cases. 1) Hr1−ν
H (x) ≤ 2Hf (ν)

1+ν
. Then, for arbitrary y ∈

dom F , we have:

M∗
H (x) := Q(x; TH (x)) + H

6
‖TH (x) − x‖3 + h(TH (x))

≤ Q(x; y) + Hr1−ν
H (x)‖y − x‖2+ν

2(2 + ν)
+ h(y)

(10)≤ F(y) + Hf (ν)‖y − x‖2+ν

(1 + ν)(2 + ν)
+ Hr1−ν

H (x)‖y − x‖2+ν

2(2 + ν)

≤ F(y) + 2Hf (ν)‖y − x‖2+ν

(1 + ν)(2 + ν)
,

where the first inequality follows from the fact, that

TH (x) = argmin
y∈dom F

{
Q(x; y) + Hr1−ν

H (x)‖y − x‖2+ν

2(2 + ν)
+ h(y)

}
.

Let us restrict y to the segment: y = αx∗ + (1 − α)x, with α ∈ [0, 1]. Taking into
account the uniform convexity, we get:

M∗
H (x) ≤ F(x) − α

(
F(x) − F∗) + α2+ν 2Hf (ν)‖x∗ − x‖2+ν

(1 + ν)(2 + ν)

(4)≤ F(x) −
(
α − α2+ν 2Hf (ν)

(1 + ν)σf (2 + ν)

) (
F(x) − F∗) .

The minimum of the right-hand side is attained at α∗ = min
{ (1+ν)γ f (ν)

2(2+ν)
, 1

} 1
1+ν . Plug-

ging this value into the bound, we have:

M∗
H (x) ≤ F(x) − min

{( (1 + ν)γ f (ν)

2(2 + ν)

)1/(1+ν)
, 1

}

· (1 + ν)

(2 + ν)
· (

F(x) − F∗) ,

and this is the first argument of the minimum in (35).

2) Hr1−ν
H (x) >

2Hf (ν)

1+ν
. By (31), we have the bound:

‖F ′(TH (x))‖∗ < Hr2H (x). (36)

Using the fact that ∇2 f (x) � 0, we get the second argument of the minimum:

F(x) − M∗
H (x)

(30)≥ Hr3H (x)

3

(36)≥ ‖F ′(TH (x))‖
3
2∗

3
√

H
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(5)≥
(
2 + ν

1 + ν

) 3(1+ν)
2(2+ν) · (σf (2 + ν))

3
2(2+ν)

3
√

H
· (

F(TH (x)) − F∗) 3(1+ν)
2(2+ν) .

��

Denote by κ f (ν) the following auxiliary value:

κ f (ν) := Hf (ν)
2

1+ν

(σf (2 + ν))
1−ν

(1+ν)(2+ν)

· 6 · (8 + ν)
1−ν
1+ν

((1 + ν)(2 + ν))
2

1+ν

· (1 + ν

2 + ν

) 1−ν
2+ν , ν ∈ [0, 1]. (37)

The next lemma shows what happens when parameter H is increasing during the
iterations.

Lemma 4.2 Assume that for a fixed x ∈ dom F the parameter H > 0 is such that:

F(TH (x)) > M∗
H (x). (38)

If for some ν ∈ [0, 1], we have σf (2 + ν) > 0, then it holds:

H (F(T2H (x)) − F∗)
1−ν
2+ν < κ f (ν). (39)

Proof Firstly, let us prove that from (38) we have:

Hr1−ν
H (x) <

6Hf (ν)

(1+ν)(2+ν)
. (40)

Assuming by contradiction, Hr1−ν
H (x) ≥ 6Hf (ν)

(1+ν)(2+ν)
, we get:

M∗
H (x) := H‖TH (x) − x‖3

6
+ Q(x; TH (x)) + h(TH (x))

≥ Hf (ν)‖TH (x) − x‖2+ν

(1 + ν)(2 + ν)
+ Q(x; TH (x)) + h(TH (x))

(10)≥ F(TH (x)),

which contradicts (38). Secondly, by its definition, M∗
H (x) is a concave function of

H . Therefore, its derivative d
d H M∗

H (x) = 1
6r3H (x) is non-increasing. Hence, it holds:

r2H (x) ≤ rH (x)
(40)
<

( 6Hf (ν)

(1+ν)(2+ν)H

) 1
1−ν . (41)
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Finally, by the smoothness and the uniform convexity, we obtain:

H
(
F(T2H (x)) − F∗) 1−ν

2+ν
(5)≤ H

(
1 + ν

2 + ν

( 1

σf (2 + ν)

) 1
1+ν

) 1−ν
2+ν ‖F ′(T2H (x))‖

1−ν
1+ν∗

(31)≤ H

(
1 + ν

2 + ν

( 1

σf (2 + ν)

) 1
1+ν

) 1−ν
2+ν (

r1+ν
2H (x) ·

(Hf (ν)

1 + ν
+ Hr1−ν

2H (x)

)) 1−ν
1+ν

(41)
< H

(
1 + ν

2 + ν

( 1

σf (2 + ν)

) 1
1+ν

) 1−ν
2+ν (

r1+ν
2H (x) · (8 + ν)Hf (ν)

(1 + ν)(2 + ν)

) 1−ν
1+ν

(41)
<

(
1 + ν

2 + ν

( 1

σf (2 + ν)

) 1
1+ν

) 1−ν
2+ν

( Hf (ν)

(1 + ν)(2 + ν)

) 2
1+ν

6(8 + ν)
1−ν
1+ν =: κ f (ν).

��
We are ready to prove the main result of this paper.

Theorem 4.1 Assume that for a fixed ν ∈ [0, 1] we have 0 < Hf (ν) < +∞ and
σf (2 + ν) > 0. Let parameter H0 in Algorithm 1 be small enough:

H0 ≤ κ f (ν)

(F(x0)−F∗)(1−ν)/(2+ν) , (42)

where κ f (ν) is defined by (37). Let the sequence {xk}K
k=0 generated by the method

satisfy condition:

F(THk2 j (xk)) − F∗ ≥ ε > 0, 0 ≤ j ≤ ik, 0 ≤ k ≤ K − 1. (43)

Then, for every 0 ≤ k ≤ K − 1, we have:

F(xk+1) − F∗

≤ (
1 − min

{ (2 + ν) ((1 + ν)(2 + ν))1/(1+ν)
(
γ f (ν)

) 1
1+ν

(1 + ν)63/2 · 21/2 · (8 + ν)(1−ν)/(2+2ν)
,
1

2

}) · (
F(xk) − F∗) .

(44)

Therefore, the rate of convergence is linear, and

K ≤ max
{(

γ f (ν)
) −1
1+ν · 1+ν

2+ν
· 63/2·21/2·(8+ν)(1−ν)/(2+2ν)

((1+ν)(2+ν))1/(1+ν) , 1
} · log F(x0)−F∗

ε
.

Moreover, we have the following bound for the total number of oracle calls NK during
the first K iterations:

NK ≤ 2K + log2
κ f (ν)

ε(1−ν)/(2+ν) − log2 H0. (45)
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Proof The proof is based on Lemmas 4.1 and 4.2, and monotonicity of the sequence{
F(xk)

}
k≥0. Firstly, we need to show that every iteration of themethod iswell-defined.

Namely, we are going to verify that for a fixed 0 ≤ k ≤ K − 1, there exists a finite
integer  ≥ 0 such that either F(THk2 (xk)) ≤ M∗

Hk2 (xk)or F(THk2+1(xk))−F∗ < ε.
Indeed, let us set

 := max
{
0, log2

⌈
κ f (ν)

Hkε
(1−ν)/(2+ν)

⌉}
, and H := Hk2 ≥ κ f (ν)

ε(1−ν)/(2+ν) . (46)

Then, if we have both F(TH (xk)) > M∗
H (xk) and F(T2H (xk)) − F∗ ≥ ε, we get by

Lemma 4.2:

H
(39)
<

κ f (ν)

(F(T2H (xk ))−F∗)(1−ν)/(2+ν) ≤ κ f (ν)

ε(1−ν)/(2+ν) ,

which contradicts (46). Therefore, if we are unable to find the value 0 ≤ ik ≤  (see
line 1 of Algorithm) in a finite number of steps, that only means we have already
solved the problem up to accuracy ε.

Now, let us show that for every 0 ≤ k ≤ K it holds:

Hk (F(xk) − F∗)
1−ν
2+ν ≤ max

{
κ f (ν), H0 (F(x0) − F∗)

1−ν
2+ν

}
. (47)

This inequality is obviously valid for k = 0. Assume it is also valid for some k ≥ 0.
Then, by definition of Hk+1 (see line 3 of Algorithm), we have Hk+1 = Hk2ik−1.
There are two cases. 1) ik = 0. Then, Hk+1 < Hk . By monotonicity of

{
F(xk)

}
k≥0

and by induction, we get:

Hk+1 (F(xk+1) − F∗)
1−ν
2+ν < Hk (F(xk) − F∗)

1−ν
2+ν

≤ max
{
κ f (ν), H0 (F(x0) − F∗)

1−ν
2+ν

}
.

2) ik > 0. Then, applying Lemma 4.2 with H := Hk2ik−1 = Hk+1 and x := xk ,
we have:

Hk+1 (F(xk+1) − F∗)
1−ν
2+ν = H (F(T2H (x)) − F∗)

1−ν
2+ν

(39)≤ κ f (ν).

Thus, (47) is true by induction. Choosing H0 small enough (42), we have:

2Hk (F(xk) − F∗)
1−ν
2+ν ≤ 2κ f (ν), 0 ≤ k ≤ K . (48)

From Lemma 4.1 we know, that one of the two following estimates is true (denote
δk := F(xk) − F∗):

1) F(xk) − F(xk+1) ≥ α · δk ⇔ δk+1 ≤ (1 − α) · δk, or
2) F(xk) − F(xk+1) ≥ β · δk+1 ⇔ δk+1 ≤ (1 + β)−1δk ≤ (1 − min{β, 1}/2) · δk ,
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where α := 1+ν
2+ν

· min
{( (1+ν)γ f (ν)

2(2+ν)

) 1
1+ν , 1

}
, and

β := ( 2+ν
1+ν

) 3(1+ν)
2(2+ν) · (σf (2+ν))

3
2(2+ν)

3(2κ f (ν))1/2
(37)= 2+ν

1+ν
· 21/2·((1+ν)(2+ν))

1
1+ν

63/2·(8+ν)(1−ν)/(2+2ν) · γ f (ν)
1

1+ν .

It remains to notice that α ≥ min
{
β, 1

}
/2. Thus, we obtain (44).

Finally, let us estimate the total number of the oracle calls NK during the first K
iterations. At each iteration, the oracle is called ik + 1 times, and we have Hk+1 =
Hk2ik−1. Therefore,

NK =
K−1∑

k=0

(ik + 1) =
K−1∑

k=0

(
log2

Hk+1

Hk
+ 2

)

= 2K + log2 HK − log2 H0
(48),(43)≤ 2K + log2

κ f (ν)

ε(1−ν)/(2+ν)
− log2 H0.

��
Note that condition (42) for the initial choice of H0 can be seen as a definition

of the moment, after which we can guarantee the linear rate of convergence (44). In
practice, we can launch Algorithm 1 with arbitrary H0 > 0. There are two possible
options: either the method halves Hk at every step in the beginning, so Hk becomes
small very quickly, or this value is increased at least once, and the required bound is
guaranteed by Lemma 4.2. It can be easily proved, that this initial phase requires no

more than K0 = ⌈
log2

H0ε
(1−ν)/(1+ν)

κ f (ν)

⌉
oracle calls.

5 Discussion

Let us discuss the global complexity results, provided by Theorem 4.1 for the Cubic
Regularization of the Newton Method with the adaptive adjustment of the regulariza-
tion parameter.

For the class of twice continuously differentiable strongly convex functions with
Lipschitz continuous gradients f ∈ S2,1

μ,L(dom F), it is well known that the classical
gradient descent method needs

O
( L

μ
log F(x0)−F∗

ε

)
(49)

iterations for computing ε-solution of the problem (e.g., [15]). As it was shown in [6],
this result is shared by a variant of Cubic Regularization of the Newton method. This
is much better than the bound O

(( L
μ

)2 log F(x0)−F∗
ε

)
, known for the damped Newton

method (e.g., [2]).
For the class of uniformly convex functions of degree p = 2 + ν having Hölder

continuous Hessian of degree ν ∈ [0, 1], we have proved the following parametric

estimates: O
(
max

{(
γ f (ν)

) −1
1+ν , 1

} · log F(x0)−F∗
ε

)
, where γ f (ν) := σf (2+ν)

Hf (ν)
is the
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condition number of degree ν. However, in practice we may not know exactly an
appropriate value of the parameter ν. It is important that our algorithm automatically
adjusts to the best possible complexity bound:

O
(
max

{
infν∈[0,1]

(
γ f (ν)

) −1
1+ν , 1

} · log F(x0)−F∗
ε

)
. (50)

Note that for f ∈ S2,1
μ,L(dom F) we have:

‖∇2 f (x) − ∇2 f (y)‖ ≤ L − μ, x, y ∈ dom F .

Thus, Hf (0) ≤ L − μ and γ f (0) ≥ μ
L−μ

. So we can conclude that the estimate (50)
is better than (49). Moreover, addition to our objective arbitrary convex quadratic
function does not change any of Hf (ν), ν ∈ [0, 1]. Thus, it can only improve the
condition number γ f (ν), while the ratio L/μ may become arbitrarily bad. It confirms
an intuition that a natural Newton-type minimization scheme should not be affected
by any quadratic parts of the objective, and the notion of well-conditioned and ill-
conditioned problems for second-order methods should be different from that of for
first-order ones.

Note that in the recent paper [11], a linear rate of convergence was also proven for
the accelerated second-order scheme, with the complexity bound:

O
(
max{(γ f (ν))

−1
2+ν , 1} · log Hf (ν)D2+ν

0
ε

)
. (51)

This is the better rate than (50). However, themethod requires to know the parameter ν,
and the constant of uniform convexity. Thus, one theoretical question remains open: is
it possible to construct universal second-order scheme, matching (51) in the uniformly
convex case.

Looking at the definitions of Hf (ν) and σf (2 + ν), we can see that, for all x, y ∈
dom F, x �= y,

σf (2 + ν) ≤ 〈∇ f (x)−∇ f (y),x−y〉
‖x−y‖2+ν , 1

Hf (ν)
≤ ‖x−y‖ν

‖∇2 f (x)−∇2 f (y)‖ ,

and

γ f (ν) := σf (2+ν)

Hf (ν)
≤ 〈∇ f (x)−∇ f (y),x−y〉

‖∇2 f (x)−∇2 f (y)‖·‖x−y‖2 .

The last fraction does not depend on any particular ν. So, for any twice-differentiable
convex function, we can define the following number:

γ f := inf
x,y∈dom F

x �=y

〈∇ f (x)−∇ f (y),x−y〉
‖∇2 f (x)−∇2 f (y)‖·‖x−y‖2 .

If it is positive, then it could serve as an indicator of the second-order non-degeneracy,
for which we have a lower bound: γ f ≥ γ f (ν), ν ∈ [0, 1].
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6 Conclusions

In this work, we have introduced the second-order condition number of a certain
degree, which plays as the main complexity factor for solving uniformly convex min-
imization problems with Hölder-continuous Hessian of the objective by second-order
optimization schemes.

We have proved that cubically regularized Newton method with an adaptive esti-
mation of the regularization parameter achieves global linear rate of convergence on
this class of functions. The algorithm does not require to know any parameters of the
problem class and automatically fits to the best possible degree of nondegeneracy.

Using this technique, we have justified that global iteration complexity of cubic
Newton is always better than corresponding one of gradient method for the standard
class of strongly convex functions with uniformly bounded second derivative.

Data sharing not applicable to this article as no datasets were generated or analyzed
during the current study.
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