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ABSTRACT

A discrete choice experiment (DCE) is a survey method that gives
insight into individual preferences for particular attributes.
Traditionally, methods for constructing DCEs focus on identifying
the individual effect of each attribute (a main effect). However, an
interaction effect between two attributes (a two-factor interaction)
better represents real-life trade-offs, and provides us a better under-
standing of subjects’ competing preferences. In practice it is often
unknown which two-factor interactions are significant. To address the
uncertainty, we propose the use of minimum aberration blocked
designs to construct DCEs. Such designs maximize the number of
models with estimable two-factor interactions in a DCE with two-level
attributes. We further extend the minimum aberration criteria to
DCEs with mixed-level attributes and develop some general theore-
tical results.
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1. Introduction

A discrete choice experiment (DCE) is a survey method used to quantify subject preferences

for various attributes, and to gain insight into how attributes influence subject choices. In a

DCE, subjects are offered choice sets that contain questions. Each choice set is made up of

several options and each option is made up of several attributes with two or more levels.

Subjects are asked to select a single option in each choice set. Grossmann and Schwabe (2015)

reviewed various designs for constructing DCEs and Lancsar and Louviere (2008) and

Johnson et al. (2013) provided checklists for good research practice in conducting a DCE.

DCEs combine ideas from economic theory with experimental design. In each choice

set, the option chosen by the subject is assumed to have the highest utility, where the

utility is the benefit that the subject experiences by selecting a particular option. In this

article, we assume the option chosen by the subject implies an implicit trade-off between

attributes, and the responses from a DCE are modeled using the multinomial logit (MNL)

model, which is the sum of two parts: (1) an explainable systematic component based on

the observed attributes and (2) a nonexplainable random component that captures other

attributes that may be relevant but not specified. The parameters in the MNL model

provide information on the relative importance of each attribute (i.e., its main effect) or its

interaction with other attributes (i.e., its two-factor interaction).
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The design of the DCE plays a critical role because it determines how the attributes and

their levels are combined to form choice sets. One common method is to use fractional

factorial designs (FFDs) to construct DCEs; see Street and Burgess (2007) and Bush

(2014), among others. These designs are based on a starting design that is either a full

factorial or an FFD, for which the entries represent the first option in each choice set.

Generators are then added component-wise to the starting design to form the remaining

options in each choice set. These methods are flexible for constructing DCEs for estimat-

ing main effects only. Because both main effects and two-factor interactions can jointly

determine whether DCEs are successfully used to accurately assess real-life decision-

making processes, designs that can also accurately estimate two-factor interactions are

more desirable. Our work in this article focuses on constructing more effective designs for

estimating main effects and two-factor interactions simultaneously.

Jaynes et al. (2016) proposed using existing blocked fractional factorial designs (BFFDs)

to construct DCEs for estimating main effects and select two-factor interactions. Such an

approach assumes that it is known in advance which two-factor interactions are significant.

This is problematic as significant interactions are often unknown in practice. Here we take

an alternative approach and propose using minimum aberration (MA) criteria for selecting

BFFDs to construct DCEs. MA designs are model robust and tend to have large capacity in

estimating various models involving two-factor interactions (Mukerjee and Wu 2006;

Cheng 2014). We review several MA criteria for comparing BFFDs and present examples

to illustrate the benefits of MA designs. Our main innovations are to extend the MA criteria

to DCEs with mixed-level attributes and to develop some general theoretical results.

Section 2 briefly reviews two-level FFDs and BFFDs. Section 3 describes how BFFDs can be

used to construct DCEs for the MNL model and a simulation study to compare DCEs

constructed from different BFFDs. In section 4, we introduce the MA criteria, present

examples to illustrate the advantages of MA designs, and justify theMA criteria in the concept

of estimation capacity. Section 5 discusses construction methods and section 6 shows how to

construct DCEs with mixed-level attributes under generalized MA criteria. Section 7 offers a

summary and a discussion on the use of MA BFFDs to construct DCEs.

2. Fractional and blocked fractional factorial designs

A FFD with k two-level attributes is said to be a 2�pth fraction of the full 2k design if it has

2k�p runs. The fraction is determined by p defining words, where a word describes the

relationship between columns in an FFD. The p defining words, and their products, form

the treatment defining contrast subgroup (Wu and Hamada 2009). In the treatment

defining contrast subgroup, there are 2p � 1 distinct words plus the identity, where each

element within the treatment defining contrast subgroup is called a word, except the

identity. The number of letters in a word is called its length. The length of the shortest

word in the treatment defining contrast subgroup is the resolution of the design. The

larger the resolution, the better is the design. The resolution of a design also determines

which effects can be identified. Let Ai;0 be the number of words of length i (i ¼ 1; . . . ; k) in

the treatment defining contrast subgroup, such that
P

k

i¼1

Ai;0 ¼ 2p � 1. Then the vector

Wt ¼ ðA1;0;A2;0; . . . ;Ak;0Þ is called the treatment wordlength pattern. In practice, we use
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designs with resolution III or higher with A1;0 ¼ A2;0 ¼ 0, so for simplicity, we

write Wt ¼ ðA3;0; . . . ;Ak;0Þ.

Example 1. Suppose we have k ¼ 5 two-level attributes and we wish to construct a half

fraction from the full 25 factorial design. We set p ¼ 1 and we determine the fraction by

specifying a defining relation, say E ¼ ABCD. Since there is only a single defining word for

this design, this defining word forms the treatment defining contrast subgroup

I ¼ ABCDE. This results in 2p � 1 ¼ 21 � 1 distinct words plus the identity I. Since the

only word in the treatment defining construct subgroup is of length five, this design is said

to have resolution V with treatment wordlength pattern Wt ¼ ðA3;0;A4;0;A5;0Þ ¼ ð0; 0; 1Þ:

In experimental design, BFFDs are commonly used for reducing systematic variations

and increasing precision of parameter estimation. To construct a BFFD we confound an

interaction effect with a block effect. This means that the design is unable to estimate the

two effects separately. To construct a two-level BFFD, we block a 2k�p FFD in 2q blocks

defined by q block defining words, with blocks of size 2k�p�q, which leads to two defining

contrast subgroups: the treatment defining contrast subgroup and the block defining

contrast subgroup. The q block defining words and their products form the block defining

contrast subgroup, which consists of 2q � 1 distinct words.

Any effects, including any aliased effects, associated with these blocking variables are

confounded with the blocks (Wu and Hamada 2009). This means that if an effect is

confounded with a block effect, it cannot be estimated, and if an effect is aliased with

another effect (not a block effect), it can be estimated only if all the aliased effects are

negligible. A main effect or a two-factor interaction is clear in a BFFD if it is not aliased with

any other main effects or two-factor interactions, or confounded with any block effects (Wu

and Hamada 2009). A clear main effect or two-factor interaction can be estimated without

having to assume negligibility of other two-factor interactions that may be of interest.

In a BFFD, each block effect is confounded with 2p treatment words (or effects). Let Ai;1

be the number of treatment words of length i that are confounded with a block effect, such

that
P

k

i¼1

Ai;1 ¼ 2pð2q � 1Þ. Then the vector Wb ¼ ðA1;1;A2;1; . . . ;Ak;1Þ is called the block

wordlength pattern. However, a blocking scheme is only feasible if none of the main effects

are confounded with block effects, that is, A1;1 ¼ 0, and we write Wb ¼ ðA2;1; . . . ;Ak;1Þ.

Example 2. Suppose we wish to divide the 25�1 FFD in Example 1 into 2q ¼ 22 blocks, each

of size 2k�p�q ¼ 25�1�2. This design has treatment defining contrast subgroup I ¼ ABCDE and

we can choose the block defining contrast subgroup b1 ¼ AB; b2 ¼ AC; and b3 ¼ b1b2 ¼ BC

(which consists of 2q � 1 ¼ 22 � 1 distinct words). With this design, additional effects are

confounded with the three block effects. For instance, when we multiply the treatment defining

contrast subgroup I ¼ ABCDE with the block defining contrast subgroup, we obtain b1 ¼
AB ¼ CDE; b2 ¼ AC ¼ BDE; and b3 ¼ b1b2 ¼ BC ¼ ADE. In this design, all fivemain effects

are clear plus seven two-factor interactions. This design has block wordlength pattern:

Wb ¼ ðA2;1;A3;1;A4;1;A5;1Þ ¼ ð3; 3; 0; 0Þ; that is, three two-factor interactions ðAB;AC;BCÞ

and three three-factor interactions ðCDE;BDE;ADEÞ are confounded with block effects.
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3. Blocked fractional factorial designs for discrete choice experiments

Amain advantage of using BFFDs to construct a DCE is that the entire aliasing structure of a

BFFD is known in advance and consequently we also knowwhich effects are estimable in the

DCE (Jaynes et al. 2016). The number of blocks in the BFFD represents the number of

choice sets in the DCE, and the size of the block represents the number of options within

each choice set. If we use a 2pth fraction of a 2k experiment in 2q blocks, the number of

choice sets in a DCE is 2q and the number of options in each choice set is 2k�p�q.

3.1. Multinomial logit model

The multinomial logit (MNL) model is a common model for modeling responses and

analyzing data from a DCE. The parameters in the model measure the usefulness of the

attributes and their interactions with other attributes. Specifically, suppose the DCE has S

choice sets and J options in each choice set. We assume that the responses from the

subjects are analyzed using random utility theory and define the utility for a subject that

chooses option j in choice set s to be

Ujs ¼ x
0
jsβþ �js: (1)

Here xjs is a k
� � 1 vector containing the model expansion of the attribute levels of option j in

choice set s, k� is the number of parameters to be estimated, β is the k� � 1 vector of model

parameters representing the effect of the attribute levels on the utility and εjs is an error term

following an independent identically distributed extreme value type 1 distribution.

Under the MNL model, the probability that a subject selects option j in choice set s is

pjs ¼
eðx

0
jsβÞ

P

J

r¼1

eðx
0
rsβÞ

; (2)

where β is estimated using maximum likelihood estimation. It is assumed in the MNL

model that β is the same for every subject and that subjects’ preferences for the attribute

levels are homogeneous across the population (Kessels et al. 2011). We also assume all

subjects are given the same choice sets and the choice of the option in each choice set is

independent because the errors are assumed to be independent. The log-likelihood func-

tion for the MNL model is

lðβÞ ¼
X

S

s¼1

X

J

j¼1

yjs logðpjsÞ; (3)

where yjs is a choice indicator, which equals 1 if the subject chooses option j in choice set

s, and zero otherwise (Gerard et al. 2008).

The optimal design X ¼ ½x0js� for estimating β in the MNL model depends on the Fisher

information matrix (Kessels et al. 2011). This matrix is the covariance of the derivative of

the log-likelihood function with respect to β (Sandor and Wedel 2001):

MðX; βÞ ¼
X

S

s¼1

X0
sðPs � psp

0
sÞXs; (4)
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where Xs ¼ ½x1s; . . . ; xJs�
0 is a submatrix of X that corresponds to choice set s, ps ¼

½p1s; . . . ; pJs�
0 and Ps ¼ diag½p1s; . . . ; pJs�. When all subjects are shown the same choice

sets, Xs is the same for all subjects. If the information matrix is diagonal, estimates of the

parameters are uncorrelated.

The design with the largest determinant of the information matrix MðX; βÞ is said to

be the D-optimal design. Such an optimal design provides the most precise estimates for

the model parameters (Atkinson and Donev 1992). However, the optimal design depends

on the unknown parameter β, so design strategies cannot be implemented unless the

parameters are known. One approach to overcome this problem is to construct a locally

optimal design assuming nominal values for the parameters are available from pilot

studies or experts’ opinion.

We construct locally D-optimal designs and assume that each option has an equal

probability of selection, that is, the nominal values are β ¼ 0k� , where 0k� is a k� � 1

vector of zeros. When β ¼ 0k� , the information matrix for a locally optimal choice design

under the MNL model is proportional to the information matrix for a BFFD with blocks

of size J under the general linear model (Kessels et al. 2011). Consequently, “locally

optimal DCEs obtained assuming β ¼ 0k� are exactly the same as optimal designs for

blocked experiments when the model of interest is linear and the block effects are treated

as fixed parameters” (Kessels et al. 2011, 176).

3.2. Simulation study

We now perform a simulation study using various DCEs constructed from different

BFFDs to compare estimates for the parameters in the MNL model. We consider a

DCE with five two-level attributes, and four choice sets each with four options. The

three designs labeled S1, S2, and S3 in Table 1 are 25�1 FFDs in 22 blocks taken from

Table 4 in Sun et al. (1997). Each design has a different treatment defining construct

subgroup and block defining words, which leads to different treatment, and block,

wordlength patterns. Table 1 also displays the two-factor interactions confounded with

block effects, the aliasing structure between main effects and two-factor interactions, and

the aliasing structure between two-factor interactions. S1 is the same design used in

Example 2. For the simulation study, we assume that the true model has five main effects

plus three two-factor interactions given by

μ ¼ 0:5xA � 0:5xB þ 0:5xC � 0:5xD þ 0:5xE þ 0:25xAxC � 0:25xAxD þ 0:25xBxE; (5)

where μ is the utility for the option ðA;B;C;D;EÞ. We first compute the MNL probability

of selecting each option within each choice set using Eq. (2). We then use these prob-

abilities to simulate a response according to the multinomial distribution for each of the

three designs. Each DCE is replicated 500 times to represent 500 subjects.

To illustrate the consequences of confounding and aliasing, for each design, we fit two

models: (i) a model with main effects only, and (ii) a model with all main effects and all

clear two-factor interactions plus one two-factor interaction from each aliased set that is

not confounded with a block effect. Tables 2 and 3 show the parameter estimates and

standard errors, respectively, from each design. We observe from Table 2 that parameter
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estimates from the model with only main effects are not consistent with the coefficients in

the true model (5) because the model does not contain the significant two-factor interac-

tions in the true model (5). Under the MNL model, these missing significant two-factor

interactions bias the estimates of the main effects even though all main effects are clear for

designs S1 and S2, and C and D are clear for design S3. This would not be possible in a

linear model.

For design S1, three two-factor interactions (AB;AC;BC) are confounded with the

three block effects and cannot be estimated. The remaining seven two-factor interactions

are clear. Comparing the parameter estimates from design S1 in Table 3 with those from

the true model (5), we observe that all five main effects are consistent with the coefficients

in Eq. (5). Both AD and BE, which are included in Eq. (5), are also consistent because they

are clear in the BFFD. However, AC, which is included in Eq. (5), cannot be estimated

because it is confounded with the block effect b2. Even though AC cannot be estimated it

does not bias the estimates of the clear effects in the true model (5).

For design S2, four two-factor interactions (AD;BD;CD;DE) are clear. The remaining

six two-factor interactions form three alias sets. One of the alias set is confounded with b3,

and cannot be estimated. We include one two-factor interaction (say AC;AE) in the model

from each of the other two alias sets. Comparing the parameter estimates for design S2 in

Table 3 with the true model (5), we see that all five main effects are consistent with the

coefficients in Eq. (5). The estimate for the two-factor interaction AD, which is included in

Eq. (5), is consistent with the coefficient in Eq. (5) because AD is clear in the BFFD. Since

AC and BE are aliased, and are both included in Eq. (5), in Table 3 the estimate for AC is

the sum of the estimates for AC and BE in the the true model (5).

Table 2. Main effect estimates (and standard errors) from the simulation study.

Effect Design S1 Design S2 Design S3

A 0.604 (0.032) 0.772 (0.033) 0.889 (0.041)
B –0.455 (0.032) –0.391 (0.033) –0.567 (0.040)
C 0.509 (0.032) 0.609 (0.029) 0.471 (0.032)
D –0.557 (0.027) –0.502 (0.026) –0.606 (0.028)
E 0.387 (0.026) 0.341 (0.029) 0.512 (0.037)

Note. True model: μ ¼ 0:5xA � 0:5xB þ 0:5xC � 0:5xD þ 0:5xE þ 0:25xAxC � 0:25xAxD þ 0:25xBxE:

Table 3. Main effects plus two-factor interactions (and standard errors) from the simulation study.

Effect Design S1 Design S2 Design S3

A 0.506 (0.048) 0.555 (0.044) 0.792 (0.051)
B –0.524 (0.048) –0.503 (0.045) –0.533 (0.051)
C 0.549 (0.048) 0.464 (0.044) 0.497 (0.051)
D –0.484 (0.048) –0.435 (0.046) –0.456 (0.041)
E 0.454 (0.048) 0.482 (0.045) 0.502 (0.051)
AB — — —

AC — 0.467 (0.045) —

AD –0.246 (0.048) –0.28 (0.038) –0.262 (0.039)
AE 0.028 (0.048) –0.025 (0.041) —

BC — — 0.029 (0.050)
BD 0.038 (0.048) 0.039 (0.045) —

BE 0.239 (0.048) — —

CD –0.005 (0.048) –0.015 (0.038) 0.011 (0.029)
CE 0.012 (0.048) — –0.053 (0.051)
DE –0.017 (0.048) –0.041 (0.045) –0.057 (0.041)

Note. True model: μ ¼ 0:5xA � 0:5xB þ 0:5xC � 0:5xD þ 0:5xE þ 0:25xAxC � 0:25xAxD þ 0:25xBxE:
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For design S3, two two-factor interactions (AC;BD) are confounded with two block

effects, b1 and b3, and cannot be estimated. Three two-factor interactions (BE;AE;AB) are
aliased with main effects and cannot be estimated either. The remaining five two-factor

interactions are clear. Comparing the parameter estimates of the main effects from design

S3 in Table 3 with those from the true model (5), we observe that only four of the main

effects are consistent with the coefficients in Eq. (5). The main effect A, which is aliased

with BE, is biased by BE because BE is included in the true model (5). Comparing the

estimates of the two-factor interactions from design S3 in Table 3 with those from the true

model (5), AD is consistent because AD is clear in the BFFD. Since AC is confounded with

the block effect b1, AC cannot be estimated.

From this simulation study, we have shown that a misspecified model can lead to biased

and misleading estimates, even if the effects are clear. This illustrates the importance of

including all significant effects in the model, particularly significant two-factor interac-

tions. For example, if there are significant two-factor interactions (such as in our true

model), and a main effects only model is fit, then the estimates of the main effects are

biased by the significant two-factor interactions, even if the main effects are clear. By

considering a BFFD, we present the following advantages: (1) Effects confounded with

block effects are not estimable, but do not bias the estimate of other effects; (2) aliasing

causes bias, but aliased effects are estimable if all the aliases are negligible; and (3) aliasing

or missing a significant two-factor interaction can bias the estimation of main effects even

if all main effects and two-factor interactions are clear. Hence, it is essential at the design

stage to know the aliasing and confounding structure of the designs in order to construct

an efficient DCE.

Viney et al. (2005), Bliemer and Rose (2011), and Burgess et al. (2011; 2015) reported

some empirical comparisons of DCEs and concluded that the choice of designs is not as

crucial when the sample size is reasonable. When the sample size becomes smaller, the

choice of designs matters more. Our simulation shows that the three designs differ sub-

stantially when some two-factor interactions are included in the true model, even though

they are equally good when the true model contains the main effects only. In the next

section, we propose the MA criteria for choosing BFFDs to construct DCEs.

4. Minimum aberration criteria

The choice of the BFFD for constructing a DCE depends on the number of attributes k,

the desired size of the choice set or the number of options, and which effects are to be

identified as clear. Sun et al. (1997), Sitter et al. (1997), Chen and Cheng (1999), Cheng

and Mukerjee (2001), Cheng and Wu (2002), Xu (2006), Xu and Lau (2006), and Xu and

Mee (2010), among others, discussed optimal choice of blocking schemes for FFDs. Jaynes

et al. (2016) focused on the choice of BFFDs to maximize the number of clear main effects

and two-factor interactions. This method is beneficial if it is known in advance which two-

factor interactions are significant; however, in practice, it is not known in advance which

two-factor interactions are significant. One way to select a BFFD is to use the total number

of clear effects to compare and rank order the different blocked 2k�p designs. However,

this is not always the best approach because it depends on the aliasing structure of the

designs being compared.
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In this article, we propose the use of the minimum aberration (MA) criteria to select

BFFDs to construct efficient DCEs, which maximizes the number of models with estim-

able two-factor interactions by minimizing the confounding or aliasing of two-factor

interactions. There are various approaches for applying MA criteria to select a BFFD

because of the presence of the two defining contrast subgroups, one for the treatment

effects and one for the block effects. One approach is to apply the MA criterion to the

treatment and block wordlength patterns separately; however, an MA design with respect

to one wordlength pattern may not have MA with respect to the other wordlength pattern.

Another approach is to combine the treatment and block wordlength patterns into one

sequence and apply the MA criterion to the combined wordlength pattern. With this

approach, the MA criterion ranks BFFDs according to their combined treatment and

block wordlength patterns. Several combined wordlength patterns have been proposed in

the literature:

Wscf ¼ ðA3;0;A2;1;A4;0;A3;1;A5;0;A4;1; . . .Þ (6)

Wcc ¼ ð3A3;0 þ A2;1;A4;0; 10A5;0 þ A3;1;A6;0 . . .Þ (7)

W1 ¼ ðA3;0;A4;0;A2;1;A5;0;A6;0;A3;1; . . .Þ (8)

W2 ¼ ðA3;0;A2;1;A4;0;A5;0;A3;1;A6;0; . . .Þ: (9)

These sequences were proposed by Sitter et al. (1997), Chen and Cheng (1999), and Cheng

and Wu (2002). Based on these combined wordlength patterns, several authors have

provided collections and tables of MA BFFDs based on the W-criteria for both two and

three-level attributes:

● Sitter et al. (1997): provide MA BFFDs based on the Wscf criterion for all 8 and 16

run designs; for 32 run designs up to 15 attributes, and for 64 and 128 run designs up

to 9 attributes.
● Chen and Cheng (1999): provide MA BFFDs based on theWcc criterion for 8, 16, and

32 runs up to 19 attributes.
● Cheng and Wu (2002): provide MA BFFDs based on the W1 and W2 criteria for all

27 run designs, and for 81 run designs up to 10 attributes.
● Xu and Lau (2006) and Xu (2006): provide MA BFFDs based on the Wscf ;W1, W2,

and Wcc criteria for all 32 run designs, for all 81 run designs, and for 64 runs up to 32

attributes.
● Xu and Mee (2010): provide MA BFFDs based on the W1 criterion for 128 runs and

up to 64 attributes.

Several authors have compared and commented on the advantages and disadvan-

tages of the four sequences (6)–(9); see Chen and Cheng (1999), Zhang and Park

(2000), Cheng and Wu (2002), and Xu and Mee (2010). Xu and Lau (2006) and Xu

(2006) summarized the situations in which MA BFFDs differ under the different

criteria (6)–(9). Cheng and Wu (2002) argued that both W1 and W2 are appropriate

sequences because they allow for a large number of two-factor interactions to be
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estimated. The following example illustrates the benefits of using the W1 and W2

criteria for selecting BFFDs to construct DCEs.

Example 3. Consider the three designs S1, S2, and S3 in our simulation study and two of

the three designs used in the simulation study by Jaynes et al. (2016). For reference, we

denote the other two designs as S4 and S5. S4 has treatment defining word I ¼ ABCE and

block defining words b1 ¼ AB ¼ CE, b2 ¼ AC ¼ BE, and b3 ¼ BC ¼ AE; S5 has treatment

defining word I ¼ ADE and block defining words b1 ¼ AB ¼ BDE, b2 ¼ AC ¼ CDE, and

b3 ¼ BC ¼ ABCDE. A direct calculation shows that we have:

● Design S1: W1 ¼ ð0; 0; 3; 1; . . .Þ;W2 ¼ ð0; 3; 0; 1; 3; . . .Þ.
● Design S2: W1 ¼ ð0; 1; 2; 0; . . .Þ; W2 ¼ ð0; 2; 1; 0; 4; . . .Þ.
● Design S3: W1 ¼ ð1; 0; 2; 0; . . .Þ; W2 ¼ ð1; 2; 0; 0; 3; . . .Þ.
● Design S4: W1 ¼ ð0; 1; 6; 0; . . .Þ; W2 ¼ ð0; 6; 1; 0; 0; . . .Þ.
● Design S5: W1 ¼ ð1; 0; 3; 0; . . .Þ; W2 ¼ ð1; 3; 0; 0; 2; . . .Þ,

Both S3 and S5 have one word of length three (A3;0 ¼ 1), which causes three two-factor

interactions aliased with three main effects. They are worse than designs S1, S2, and S4 in

terms of bothW1 andW2. Both S2 and S4 have no words of length three (A3;0 ¼ 0) and one

word of length four (A4;0 ¼ 1), but in design S2 two two-factor interactions are confounded

with block effects (A2;1 ¼ 2), while in design S4 six two-factor interactions are confounded

with block effects (A2;1 ¼ 6). Therefore, S2 is better than S4 in terms of both W1 and W2.

Design S1 has MA with respect to W1 because it has smaller A4;0 than design S2 (0 vs. 1),

which implies that in design S1 no two-factor interactions are aliased with other two-factor

interactions, whereas in design S2 three sets of two-factor interactions are aliased with other

two-factor interactions caused by one word of length four. Design S2 has MA with respect to

W2 because it has smaller A2;1 than design S1 (2 vs. 3), which implies that two two-factor

interactions are confounded with block effects in design S2 versus three two-factor interac-

tions confounded with block effects in design S1. Both S1 and S2 are better than the other

three designs in the capacity of estimating two-factor interactions.

Example 3 illustrated that by minimizing aliasing and confounding of two-factor

interactions, we maximize the number of estimable two-factor interactions. The A3;0

value captures the number of two-factor interactions aliased with main effects; the A2;1

value captures the number of two-factor interactions confounded with block effects. By

minimizing A3;0 and A2;1, we maximize the number of estimable two-factor interactions

besides the estimation of main effects. This is further described by the concept of

estimation capacity later.

The choice between the W1 and W2 criteria depends on whether aliased effects or

confounded effects are viewed as less desirable. For resolution III and IV FFDs, the choice

between W1 and W2 depends on whether A4;0 or A2;1 is less desirable, since both A4;0 and

A2;1 pertain to either aliasing or confounding of two-factor interactions. Similarly for

resolution V and VI FFDs, the choice between W1 and W2 depends on whether A6;0 or

A3;1 is less desirable, since both A6;0 and A3;1 pertain to either aliasing or confounding of

three-factor interactions.
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The next example further illustrates the differences between choices of W1 and W2.

Example 4. Consider a DCE with eight two-level attributes and eight choice sets each with

four options. We need a 2k�p ¼ 28�3 FFD in 2q ¼ 23 ¼ 8 blocks each of size

2k�p�q ¼ 28�3�3 ¼ 22, that is, eight choice sets each with four options. Table 5 in Xu and

Lau (2006) lists two possible MA BFFDs, labeled as 8-3.1/B3ðW1Þ and 8-3.2/B3ðW2Wscf Þ,

which can be used to construct such a DCE. We call them D1 and D2, where D1 is optimal

under the MA W1 criterion and D2 is optimal under both the MA W2 and Wscf criteria.

Design D1 has treatment defining contrast subgroup I ¼ ABCDF ¼ ABEG ¼ ACEH ¼
CDEFG ¼ BDEFH ¼ BCGH ¼ ADFGH and treatment wordlength pattern Wt ¼
ð0; 3; 4; 0; 0; 0Þ. This design has block defining words b1 ¼ ABC; b2 ¼ AD; b3 ¼ AE and

block wordlength pattern Wb ¼ ð8; 16; 11; . . .Þ. For this design, all eight main effects and

eight two-factor interactions (BD;BF;CD;CF;DG;DH; FG; FH) are clear.

Design D2 has treatment defining contrast subgroup I ¼ ABCDEF ¼ ABCG ¼ ABDH ¼
DEFG ¼ CEFH ¼ CDGH ¼ ABEFGH and treatment wordlength pattern Wt ¼
ð0; 5; 0; 2; 0; 0Þ. This design has block defining words b1 ¼ AB; b2 ¼ ACD; b3 ¼ CE and

block wordlength pattern Wb ¼ ð7; 18; 10; . . .Þ. For this design, all eight main effects and

four two-factor interactions (AE;AF;BE;BF) are clear.
Table 4 compares D1 and D2 and shows the main effects and two-factor interactions

associated with the 31 columns in Yates order. Comparing the W1 and W2 combined wor-

dlength patterns, D1 has W1 ¼ ð0; 3; 8; 4; . . .Þ and W2 ¼ ð0; 8; 3; 4; . . .Þ, and D2 has W1 ¼
ð0; 5; 7; 0; . . .Þ and W2 ¼ ð0; 7; 5; 0; . . .Þ. The MA W1 criterion favors D1 because it has a

smaller A4;0 (3 vs. 5), while W2 favors D2 because it only confounds seven two-factor interac-

tions with blocks, A2;1 ¼ 7 (vs. 8). Comparing the aliasing and confounding structure for each

design: D1 has (20� 6 ¼ ) 14 degrees of freedom for two-factor interactions; that is, D1 has six

sets of aliased two-factor interactions sacrificed for six block effects (for a total of eight two-

factor interactions sacrificed for block effects) out of 20. However, D2 has only (15� 3 ¼ ) 12

degrees of freedom for two-factor interactions; that is, D2 has only three sets of aliased two-

factor interactions sacrificed for three block effects (for a total of seven two-factor interactions

sacrificed for block effects) out of 15. Furthermore, D1 has eight clear two-factor interactions (vs.

D2 which has four clear two-factor interactions); therefore, D1 under theMAW1 criterion may

be preferred.

In Example 4, the W1 optimal design, D1, has less aliasing and is less likely to require a

follow-up experiment than the W2 optimal design. If there is a follow-up experiment, the W1

design will most likely be preferred because it has 14 degrees of freedom for two-factor

interactions not confounded with blocks, whereas the W2 design has 12. Xu and Mee (2010)

argued that follow-up experiments are less likely for large experiments.

4.1. Estimation capacity

The MA criteria can be justified by the concept of estimation capacity. Cheng, Steinberg, and

Sun (1999) showed that for unblocked FFDs, the MA criterion is a good surrogate for some

model-robustness criteria. We now extend this justification for blocked FFDs. Assume that the

main effects are of primary interest and their estimation is required. A model can be estimated

by a designD if all the effects in the model are jointly estimable. For i ¼ 1; . . . ; k
2

� �

, let EiðDÞ be
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the number of models containing all main effects and i two-factor interactions, which can be

estimated by design D. It is desirable to have EiðDÞ as large as possible. A design D1 is said to

dominateD2 if EiðD1Þ � EiðD2Þ for all i, with strict inequality for at least one i. A design is said

to have maximum estimation capacity (Chen and Cheng 1999; Cheng and Mukerjee 2001) if it

Table 4. Comparison of two 28�3 designs in 23 blocks.

Column D1 D2

1 A A
2 B B
3 AB ¼ EG AB ¼ CG ¼ DH = BLOCK
4 C C
5 AC ¼ EH AC ¼ BG
6 BC ¼ GH BC ¼ AG
7 DF = BLOCK G
8 D D
9 AD = BLOCK AD ¼ BH
10 BD BD ¼ AH
11 CF H
12 CD CD ¼ GH
13 BF = BLOCK
14 AF = BLOCK = BLOCK
15 F EF ¼ DG ¼ CH
16 E E
17 AE ¼ BG ¼ CH = BLOCK AE
18 BE ¼ AG BE
19 G
20 CE ¼ AH CE ¼ FH = BLOCK
21 H
22 = BLOCK
23 CG ¼ BH DF ¼ EG = BLOCK
24 DE = BLOCK DE ¼ FG
25 = BLOCK
26 FH = BLOCK
27 DG CF ¼ EH
28 FG
29 DH BF
30 AF
31 EF = BLOCK F

Table 5. A 25�1 design in 22 blocks.

A B C D E AB AC AD BC BD CD ABC ABD ACD BCD ABCD Block

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 1 1 0 0 1 0 1 1 0 1 1 1 1 1
3 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 2
4 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 2
5 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 3
6 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 3
7 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 4
8 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 4
9 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 4
10 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 4
11 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 3
12 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 3
13 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 2
14 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 2
15 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1
16 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 1

Note. E ¼ ABCD, b1 ¼ AB; b2 ¼ AC, and b3 ¼ b1b2 ¼ BC.
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maximizes EiðDÞ for all i. It is easy to see that E1ðDÞ ¼
k
2

� �

� 3A3;0ðDÞ � A2;1ðDÞ so that

minimizing 3A3;0ðDÞ þ A2;1ðDÞ would maximize E1ðDÞ. Cheng and Mukerjee (2001) argued

that further minimizing A4;0ðDÞ tends to make other EiðDÞ large. For resolution IV or higher

designs, A3;0ðDÞ ¼ 0; therefore, the MA criteria are good surrogates of the maximum estima-

tion capacity criterion although they are not exactly equivalent. For a 2k�p design in 2q blocks,

there are k main effects and 2q � 1 block effects. We can estimate at most f ¼ 2k�p � k� 2q

two-factor interactions so that EiðDÞ ¼ 0 for i > f and we only consider ðE1; . . . ;Ef Þ.

Example 5. Consider the five designs in Example 3. Their estimation capacities are:

S4 and S5 have the same estimation capacity although they are different. Both S1 and S2

dominate the other three designs in terms of estimation capacity and MA. S1 can estimate

all main effects and up to seven two-factor interactions (as E7 ¼ 1), whereas S2 can

estimate all main effects and at most six two-factor interactions (as E7 ¼ 0). S1 can

estimate more models than S2 if more than four two-factor interactions are important.

On the other hand, S2 can estimate more models containing all main effects and up to

four two-factor interactions than S1.

Example 6. Consider the two designs in Example 4 and a third design, called D3, which has

the same treatment defining contrast subgroup as D1 but different block defining words. The

independent block defining words for D3 are b1 ¼ AB; b2 ¼ AC; b3 ¼ AE and the block

wordlength pattern is Wb ¼ ð15; 6; 12; . . .Þ. D3 has five more (13 vs. 8) clear two-factor

interactions than D1 but it has larger A2;1 (15 vs. 8) than D1. The estimation capacities are:

Both D1 and D2 can estimate more models than D3 even though D3 has more clear two-

factor interactions. D3 is dominated by D1 in terms of both MA and estimation capacity.

D1 can estimate more models than D2 and so is preferred if seven or more two-factor

interactions are important. We note that there are many other designs that are dominated

by either D1 or D2 in terms of MA and estimation capacity.

As Examples 5 and 6 show, the W1 criterion would be a better choice if the number of

possible two-factor interactions is large, while the W2 criterion would be a better choice if

that number is thought to be smaller.

Design E1 E2 E3 E4 E5 E6 E7

S1 7 21 35 35 21 7 1
S2 8 26 44 41 20 4 0
S3 5 10 10 5 1 0 0
S4 4 6 4 1 0 0 0
S5 4 6 4 1 0 0 0

Design E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16

D1 20 184 1032 3942 10848 22180 34232 40081 35436 23292 11040 3568 704 64 0 0
D2 21 200 1142 4353 11665 22526 31572 31864 22576 10656 3008 384 0 0 0 0
D3 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1 0 0 0
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5. Construction methods

We present two methods to construct MA BFFDs. A regular 2k�p FFD can be viewed as k

columns of an N � ðN � 1Þ matrix, which consists of k� p independent columns and all

possible interactions among them, whereN ¼ 2k�p. To arrange a regular 2k�p FFD in 2q blocks,

onemust choose q columns from the remainingN � 1� k columns as possible generators. The

method presented by Xu and Lau (2006) uses coding theory to screen out infeasible block

schemes when searching over all possible N�1�k
q

� �

combinations of q block generators, which is

fast when q is small.

The method proposed by Xu and Mee (2010) directly partitions a regular 2k�p FFD into

2q blocks of size 2m (with m ¼ k� p� q). For two-level and multilevel blocked designs,

Theorem 1 from Xu and Mee (2010) presents a method to partition a regular FFD directly

into blocks. For convenience, we restate their theorem.

Theorem 5.1 (Xu and Mee, 2010). A regular sk�p design D can be properly partitioned into sq

blocks of size sm (with m ¼ k� p� q) if and only if there exists an m� k submatrix V of D such

that V has full row rank and every column of V is not a null vector.

Given an unblocked N ¼ 2k�p design, we choose m rows from the N � 1 nonzero rows

to form a matrix V and check whether both conditions in Theorem 5.1 are satisfied.

Theorem 5.1 is most useful when m is small.

Example 7. Consider the following example to block the MA 25�1 design defined by

E ¼ ABCD, given in Example 2 and Design S1 from the simulation study. This design is given

as the first five columns in Table 5. Theorem 5.1 states that there exists amatrixV that is a subset

of the design matrix given in Table 5. To partition this design into 22 blocks, rows 15 and 16

satisfy both conditions in Theorem 5.1. Therefore, this 25�1 MAFFD can be directly partitioned

in 22 blocks of size 25�1�2. To determine the block generators we examine the 11 remaining

columns. Looking at rows 15 and 16, there are three columns (AB, AC and BC) where both

elements are zero at rows 15 and 16. These columns correspond to the block columns

b1 ¼ AB; b2 ¼ AC, and b3 ¼ b1b2 ¼ BC. The principal block consists of rows {1, 2, 15, 16},

rows {3, 4, 13, 14} form block 2, rows {5, 6, 11, 12} form block 3, and rows {7, 8, 9, 10} form

block 4.

If m ¼ 1, then V is a row vector, and a regular 2k�p design can be partitioned into 2k�p�1

blocks if and only if the design consists of a row of k ones. In this case, the unblocked FFD is a

foldover design, and each row and its foldover form a block (Xu 2006). A regular foldover design

is known as an even design, where all of the treatment words are of even length. Xu (2006)

presented Corollary 3 for this special case, which states: “A regular 2k�p design containing the

null treatment can be partitioned into maximal 2k�p�1 blocks as a regular main effect (RME)

design if and only if it is an even design.” Here, an RME design is a design such that no main

effects are aliased with othermain effects, and nomain effects are confounded with block effects.

The treatment word (ABCDE) for the design in Example 7 is not of even length, and hence, there

is not a row of ones in this design. Consequently, the design is not an even design and cannot be

partitioned into maximal blocks. Let us consider another example.
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Example 8. Suppose we wish to block the 25�1 design defined by E ¼ ABC into maximal

blocks. This design is given as the first five columns in Table 6. We note that row 16 does

not contain any zeros in the first five columns. Based on Theorem 5.1, this design can be

arranged into maximal blocks, that is, eight blocks (23) of size 2 (2m ¼ 25�1�3). The

treatment word (ABCE) for this design is of even length, and thus this design is an even

design, and each row and its foldover form a block. For example, row 16 is the foldover of

row 1. Looking at row 16, there are seven columns ðAB;AC;AD;BC;BD;CD, and ABCD)

where the elements are zero. These seven columns form the block columns:

b1 ¼ AB; b2 ¼ AC; b3 ¼ AD; b4 ¼ b1b2 ¼ BC; b5 ¼ b1b3 ¼ BD; b6 ¼ b2b3 ¼ CD, and

b7 ¼ b1b2b3 ¼ ABCD. Rows 1 and 16 form the principal block, rows 2 and 15 form

block 2, rows 3 and 14 form block 3, and so on. With this design all five main effects

are clear, and all two-factor interactions are confounded with block effects.

6. Extensions to mixed-level and nonregular designs

We now extend our approach to construct DCEs with mixed-level k attributes. Let D ¼
ðT;BÞ be an N � ðkþ 1Þ matrix, where T is an ðN � kÞ matrix for the k attributes and B is

an ðN � 1Þ vector for b blocks or b choice sets. The matrix D is a mixed-level orthogonal

array (OA) of strength 2 or higher, which can be used to construct a DCE with k attributes

each at s1; . . . ; sk levels, and b choice sets each with N=b options. We denote such an OA by

OAðN; s1 � . . . � sk � bÞ. Table 5 shows the 25�1 design in 4 blocks from Example 2

representable by D ¼ ðT;BÞ, where the first five columns form the matrix T and the last

column forms the vector B. In this case, D is an OAð16; 2541Þ. As another example, consider

Table 6, where columns 1–5 and 13–15 define the 16� 8 matrix T and the last column

defines the vector B. Then D ¼ ðT;BÞ is OAð16; 2881Þ, which defines a DCE with eight two-

level attributes in eight choice sets and each choice set consists of a foldover pair.

When we use one of the columns in an OA to define a blocking scheme, all main effects

are orthogonal to block effects and the resulting block design is universally optimal for the

main effects model (Dey and Mukerjee 1999, Theorem 7.4.1). The connection between the

Table 6. A 25�1 design in 23 blocks.

A B C D E AB AC AD BC BD CD ABC ABD ACD BCD ABCD Block

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 2
3 0 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 3
4 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0 0 4
5 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 5
6 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 0 6
7 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 7
8 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 8
9 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 8
10 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 7
11 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 6
12 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 5
13 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 4
14 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 3
15 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 2
16 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1

Note. E ¼ ABC, b1 ¼ AB; b2 ¼ AC; b3 ¼ AD; b4 ¼ b1b2 ¼ BC; b5 ¼ b1b3 ¼ BD; b6 ¼ b2b3 ¼ CD, and b7 ¼ b1b2b3 ¼
ABCD.
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MNL model and the linear model for blocked designs in section 3.1 implies that such a

blocked design used as a DCE is a locally optimal design for the main effects MNL model

assuming β ¼ 0:

Theorem 6.1. When D ¼ ðT;BÞ is a mixed-level OAðN; s1 � . . . � sk � bÞ, all main

effects are orthogonal to block effects. This is a locally optimal design for the main effects

MNL model assuming β ¼ 0.

Although all mixed-level OAs are locally optimal designs for the main effects model,

they have different properties when some two-factor interactions are significant. To

further distinguish them, we extend the MA criteria to the mixed-level case. We first

review the generalized minimum aberration (GMA) criterion due to Xu and Wu (2001).

Following Xu and Wu (2001), for design T with N runs and k attributes, the full

analysis of variance (ANOVA) model is

y ¼ X0θ0 þ X1θ1 þ X2θ2 þ . . . þ Xkθk þ ε (10)

where y is the vector of N observations, θ0 is the general mean, θj is the vector of jth-order

factorial effects, X0 is the vector of 1’s, Xj the matrix of orthonormal contrast coefficients

for θj, and ε the vector of independent random errors. Note that jth-order factorial effects

represent main effects when j ¼ 1 and interactions when j � 2. Note that the contrast

matrix Xj is different from Xs defined in section 3.1.

For j ¼ 1; . . . ; k; Xu and Wu (2001) defined Aj, a function of Xj, to measure the overall

aliasing between all jth-order factorial effects and the general mean. Specifically, let Xj ¼ ½x
ðjÞ
il �

and define

AjðTÞ ¼ N�210XjX
0
j1 ¼ N�2

X

nj

l¼1

X

N

i¼1

x
ðjÞ
il

 !2

(11)

where 1 is the N � 1 vector of ones and nj is the number of all jth-order factorial effects. The

value of Aj is independent of the choice of the orthonormal contrasts used. The vector

ðA1; . . . ;AkÞ is called the generalized wordlength pattern (GWLP), because for a two-level

regular design, Aj is the number of words of length j. The GMA criterion (Xu and Wu 2001)

is to sequentially minimize A1;A2;A3; . . . . A design that does this is said to have GMA.

To use a mixed-level design D ¼ ðT;BÞ for a DCE, we define the treatment and block

wordlength patterns similarly to the two-level FFDs and BFFDs presented in section 2. For

a blocked design D ¼ ðT;BÞ, we define AiðDÞ as Eq. (11) by treating D as an unblocked

(mixed-level) design, and then define two types of wordlength patterns:

Ai;0ðDÞ ¼ AiðTÞ (12)

and

Ai�1;1ðDÞ ¼ AiðDÞ � AiðTÞ: (13)

When D ¼ ðT;BÞ is a mixed-level OA (of strength 2), A1ðTÞ ¼ A2ðTÞ ¼ 0 and A1ðDÞ ¼
A2ðDÞ ¼ 0 so that A1;0ðDÞ ¼ A2;0ðDÞ ¼ 0 and A1;1ðDÞ ¼ A2ðDÞ � A2ðTÞ ¼ 0. Then we

can apply the GMA criterion to the sequences (6)–(9) for mixed-level designs as in the

two-level designs. We use an example to show that for two-level designs the definitions of
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treatment and block wordlength patterns in this new formulation are consistent with the

original ones.

Example 9. Consider the 25�1 FFD in 22 blocks in Example 2 defined by I ¼
ABCDE and b1 ¼ AB; b2 ¼ AC. The treatment and block wordlength patterns are

Wt ¼ ðA3;0;A4;0;A5;0Þ ¼ ð0; 0; 1Þ and Wb ¼ ðA2;1;A3;1;A4;1;A5;1Þ ¼ ð3; 3; 0; 0Þ. Table 5

displays the blocked design D ¼ ðT;BÞ, where the first five columns form the treat-

ment matrix T and the last column is the block column B. It is obvious that

AiðTÞ ¼ Ai;0ðDÞ. To show the new formulation is consistent with the original one,

we explain how to compute AiðDÞ as a mixed-level OAð16; 2541Þ according to the

definition (11). The block column B has four levels, so it has three degrees of

freedom, which can be represented by the contrasts b1 ¼ AB; b2 ¼ AC; b3 ¼ BC.

From Eq. (10), X1 has 5þ 3 ¼ 8 columns (i.e., five main effects plus three block

effects), X2 has ð5� 4Þ=2þ 5� 3 ¼ 25 columns (i.e., 10 two-factor interactions plus

each block times each main effect), X3 has ð5� 4� 3Þ=6þ 3� ð5� 4Þ=2 ¼ 40 col-

umns (i.e., 10 three-factor interactions plus each block times each two-factor inter-

action), and so on. From this, we can see that AiðDÞ is connected with the treatment

and block wordlength patterns. For example, A3ðDÞ ¼ A3ðTÞ þ A2;1ðDÞ ¼ 0þ 3 ¼ 3

because three two-factor interactions are confounded with block effects. Similarly, we

have A4ðDÞ ¼ A4ðTÞ þ A3;1ðDÞ ¼ 0þ 3 ¼ 3, A5ðDÞ ¼ A5ðTÞ þ A4;1ðDÞ ¼ 1þ 0 ¼ 1. In

general we have AiðDÞ ¼ AiðTÞ þ Ai�1;1ðDÞ so Eq. (13) holds.

In general, for D ¼ ðT;BÞ, if B has b blocks, it has b� 1 contrasts. A generalized word

of length i in the mixed-level design D falls into one of two types: (i) It involves i factors

from T only, which defines a treatment relation, and (ii) it involves i� 1 factors from T

and one contrast from B, which defines a block relation. The numbers of words of these

two types are AiðTÞ and AiðDÞ � AiðTÞ, respectively. This justifies the definition of the

treatment and block wordlength patterns in Eqs. (12) and (13).

Example 9 shows that it is cumbersome to compute the GWLP according to the

definition (11). Xu and Wu (2001) developed a fast computation method based on coding

theory. The GWLP function in the R package “DoE.base” (Groemping, Amarov and Xu

2015) implements this method and can compute the GWLP for mixed-level designs

efficiently.

Example 10. Table 7 gives an OAð20; 2851Þ, which has 20 runs, eight two-level factors,

and one five-level factor. Suppose we want to study five two-level attributes with five

choice sets and four options in each choice set. We can choose any five two-level columns

as the treatment design T and the last column as the block column B, which defines five

blocks. There are in total
8
5

� �

¼ 56 choices to form an OAð20; 2551Þ. Consider three

designs. The first design uses columns: 2, 3, 5, 6, 8, 9. The block and treatment wordlength

patterns for this blocked design are Wt ¼ ðA3;0;A4;0;A5;0Þ ¼ ð0:4; 0:2; 0Þ and Wb ¼

ðA2;1;A3;1;A4;1;A5;1Þ ¼ ð2:4; 2:8; 1:2; 0Þ, respectively. The second design uses columns: 1,

2, 3, 4, 5, 9. The two wordlength patterns for this blocked design are Wt ¼ ð0:72; 0:2; 0Þ
and Wb ¼ ð2:40; 2:48; 1:2; 0Þ. The third design uses columns: 1, 3, 6, 7, 8, 9. The two
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wordlength patterns are Wt ¼ ð0:72; 0:52; 0Þ and Wb ¼ ð3:20; 1:68; 0:88; 0Þ. Among these

three designs, the first design is the best and the third design is the worst with respect to

all four sequences (6)–(9). Indeed, it can be verified that the first design has GMA with

respect to all four sequences (6)–(9) among all possible OAð20; 2551Þ derived from the

OAð20; 2851Þ given in Table 7.

We now develop some general theoretical results. A two-level design T is called an

even design if all its words have even length, that is, AiðTÞ ¼ 0 for odd i. It is known

that all even regular designs are foldover designs and can be used as a paired

comparison design with each foldover pair as a choice set; see section 5. This can be

generalized to nonregular designs so that the number of blocks is not necessarily a

power of two. It is known that a two-level design, regular or nonregular, is an even

design if and only if it is a foldover design (Cheng, Mee, and Yee 2008). Together with

Theorem 6.1, we have the following result.

Theorem 6.2. A two-level OA, regular or nonregular, can be used to define a locally

optimal paired comparison design for the main effects model if and only if it is an even (or

foldover) design and each foldover pair forms a choice set.

When a two-level regular even design is used to define a paired comparison design, all two-

factor interactions are confounded with block effects; see Example 8 and Table 6. We cannot

estimate any effects that are confoundedwith block effects, but they do not bias the estimation of

main effects. This is true for paired comparison designs in general. When each choice set

consists of a foldover pair, the probability pjs in Eq. (2) does not change whether some two-factor

interactions are included in the MNL model (1) or not.

Theorem 6.3. When a two-level foldover design, regular or nonregular, is used as a paired

comparison design, the estimates of all main effects are not biased even if some two-factor

interactions are significant.

Table 7. OAð20; 2851Þ:

A B C D E F G H Block

1 1 1 1 1 1 1 1 1 1
2 1 –1 –1 –1 1 1 –1 –1 1
3 –1 1 –1 1 –1 –1 –1 1 1
4 –1 –1 1 –1 –1 –1 1 –1 1
5 1 1 1 1 –1 1 –1 –1 2
6 1 –1 –1 –1 –1 –1 –1 1 2
7 –1 1 –1 –1 1 1 1 1 2
8 –1 –1 1 1 1 –1 1 –1 2
9 1 1 1 –1 –1 1 1 1 3
10 1 –1 –1 1 1 –1 –1 1 3
11 –1 1 –1 1 –1 –1 1 –1 3
12 –1 –1 1 –1 1 1 –1 –1 3
13 1 1 1 –1 –1 –1 –1 –1 4
14 1 –1 1 1 1 –1 1 1 4
15 –1 1 –1 1 1 1 –1 –1 4
16 –1 –1 –1 –1 –1 1 1 1 4
17 1 1 –1 –1 1 –1 1 –1 5
18 1 –1 –1 1 –1 1 1 –1 5
19 –1 1 1 –1 1 –1 –1 1 5
20 –1 –1 1 1 –1 1 –1 1 5
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Theorem 6.4. If a two-level OA, regular or nonregular, has GMA among all even (or

foldover) designs, then it can be used to define a paired comparison design that has GMA

with respect to all four criteria.

Bunch et al. (1996) and others used foldover pairs to construct DCEs. Theorem 6.3

provides a good theoretical justification for the popularity of two-level paired comparison

designs for estimating main effects in practice. Theorem 6.4 further shows that such

designs have GMA properties over all possible designs. The next result gives a sufficient

condition for a blocked design to have GMA properties with respect to all four criteria.

The corresponding result for regular designs was obtained by Xu (2006).

Theorem 6.5. If T has GMA among all designs and D ¼ ðT;BÞ as an unblocked design

has GMA among all designs, then D ¼ ðT;BÞ as a blocked design has GMA with respect to

all four criteria.

Example 11. Consider a paired comparison design with 2k�2 choice sets for k two-level

attributes. The MA 2k�1 design has resolution k and GWLP: Ak ¼ 1 and other Ai ¼ 0. For

even k, it is a foldover design and defines a GMA paired comparison design where each

foldover pair forms a choice set. For odd k, the MA design is not a foldover design as

Ak ¼ 1. The regular 2k�1 design with resolution k� 1 is a foldover design and has GMA

among all possible 2k�1 even designs. By Theorem 6.4, this resolution k� 1 design can be

used to define a GMA paired comparison design; see Example 8.

Example 12. Suppose we have k three-level attributes for 2 � k � 6 andwewish to construct

a DCE with six choice sets and three options each. We start with anyOAð18; 3661Þ, and choose
the six-level column as the vector B and any other k three-level columns as the matrix T. Xu

(2003) showed that T has GMA among all possible designs with 18 runs and k three-level

factors. We can further show that D ¼ ðT;BÞ has GMA among all possible OAð18; 3k61Þ.
Therefore, such a DCE has GMA with respect to all four criteria.

Butler (2004) showed that some two-level foldover designs have GMA among all possible

designs for N ¼ 24, 32, 48, 64 runs. These GMA foldover designs can be used to define GMA

paired comparison designs. There are many other results on the construction of GMA designs;

see Xu, Phoa, and Wong (2009) and Xu (2015) for recent developments of nonregular designs.

Cheng, Li, and Ye (2004) studied blocked nonregular two-level designs and proposed four

versions of GMA criteria. It can be shown that two of their criteria are special cases of the GMA

criteria defined here with respect to W1 and W2. Their other two criteria can be extended by

considering projections and the concept of generalized resolution proposed by Groemping and

Xu (2014) for mixed-level OAs. We do not pursue this here. We note that our formulation of

blocked designs for nonregular designs is more natural and more general than the approach by

Cheng et al. (2004), even for two-level designs. In their approach, blocks are defined by

independent generators as in regular designs so that the numbers of blocks are limited to a

power of two. In our approach, blocks are defined by an individual column of a mixed-level OA

so that the number of blocks are not limited to a power or amultiple of two; see Examples 10 and

12. Our approach relies on the existence of mixed-level OAs. There are various studies of the
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existence and construction of mixed-level OAs; see, for example, Dey and Mukerjee (1999) and

Hedayat, Sloane, and Stufken (1999). Many mixed-level OAs are available in the R package

“DoE.base,” and Kuhfeld and Tobias (2005) provide an SAS macro to generate thousands of

mixed-level OAs.

7. Summary and discussion

In this article, we have illustrated the use of MA BFFDs for constructing DCEs by building on

the research performed by Jaynes et al. (2016). By considering the use of MA BFFDs we can

maximize the number of models with estimable two-factor interactions by minimizing the

confounding or aliasing of two-factor interactions. We presented and compared various MA

criteria for selecting BFFDs. The choice of whichMA criteria to use to construct a DCE depends

on the goals of the study.We focused on the choice betweenW1 andW2, depending on whether

aliased effects or confounded effects are viewed as less desirable. With the simulation study and

various examples thereafter, we illustrated the following: (1) Effects confounded with block

effects are not estimable, but do not bias the estimate of other effects; (2) aliasing causes bias, but

aliased effects are estimable if all the aliases are negligible; and (3) aliasing ormissing a significant

two-factor interaction can bias the estimation of main effects even if all main effects and two-

factor interactions are clear. TheMA criteria deal with the intrinsic aliasing and confounding of

a design per se and so work for linear models as well as generalized linear models. In this article

we proposed the use of MA criteria for selecting BFFDs for constructing DCEs assuming the

MNLmodel. There is potential for future work considering various models other than theMNL

model and their properties.

Finally, we extended our approach to construct DCEs with mixed-level attributes through

the use of mixed-level OAs, as a combination of an unblocked FFD and a column for blocks,

that is, choice sets. This approach for constructing DCEs with mixed-level attributes relies on

the existence of mixed-level OAs and is flexible for constructing DCEs because the blocks are

defined by an individual column of a mixed-level OA and the number of blocks is not limited

to a power or a multiple of two. We further extended the MA criteria to the mixed-level case

and obtained some general theoretical results.

We demonstrated that MA designs tend to have large estimation capacity; that is, they

tend to maximize the number of estimable models involving two-factor interactions. This

is a desirable model-robustness property. To address uncertainty of potential important

two-factor interactions, Li et al. (2013) proposed model-robust DCEs by considering

models with all main effects and few two-factor interactions. They used a Bayesian

approach to evaluate design performance in terms of an average information criterion.

Their approach requires intensive computation and would not work well when the

number of total runs or factors is large. On the other hand, the MA criteria are fast to

compute and many MA designs have been tabulated for practical use.
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