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Abstract

The least-action principle from the Wentzell-Freidlin theory of large deviations

is exploited as a numerical tool for finding the optimal dynamical paths in spa-

tially extended systems driven by a small noise. The action is discretized and

a preconditioned BFGS method is used to optimize the discrete action. Appli-

cations are presented for thermally activated reversal in the Ginzburg-Landau

model in one and two dimensions, and for noise-induced excursion events in the

Brusselator taken as an example of a nongradient system arising in chemistry.

In the Ginzburg-Landau model, the reversal proceeds via interesting nucleation

events, followed by propagation of domain walls. The issue of nucleation versus

propagation is discussed, and the scaling for the number of nucleation events as

a function of the reversal time and other material parameters is computed. Good

agreement is found with the numerical results. In the Brusselator, whose deter-

ministic dynamics has a single stable equilibrium state, the presence of noise is

shown to induce large excursions by which the system cycles out of this equilib-

rium state. c© 2004 Wiley Periodicals, Inc.

1 Introduction

Consider a stochastic ODE or PDE perturbed by a small noise,

ẋ = b(x) +
√

ε Ẇ , ut = L(u) +
√

ε η(x, t) .

Here ε ≪ 1, and Ẇ and η are, respectively, temporal and spatiotemporal white

noises. In the absence of noise, the system evolves to its equilibrium states and

stays there indefinitely. The presence of noise changes that picture over long time

scales. The system may hop between metastable states, make excursions out of

these states, etc.

At first sight one might think that the influence of noise happens at such a long

time scale that it is rarely of practical importance. That this view is incorrect may

Communications on Pure and Applied Mathematics, Vol. LVII, 0637–0656 (2004)
c© 2004 Wiley Periodicals, Inc.



638 W. E, W. REN, AND E. VANDEN-EIJNDEN

be understood by noticing that most physical processes will not happen at zero
temperature when thermal noise is absent. In fact, nature presents naturally a very
wide range of temporal scales. The atomistic vibration that gives rise to thermal
noise happens on the time scale of femtoseconds (10−15 seconds), and the processes
of interest to our daily lives are mostly on the order of seconds or longer, leaving
plenty of room for rare events caused by thermal noise to make their appearance.
Chemical reactions, nucleations, and conformational changes of biomolecules are
all examples of such rare events.

Traditionally the method of choice for a quantitative understanding of the effect
of noise has been the Monte Carlo method or direct simulation of the Langevin
equation. When the noise is small, which is the case of interest here, these methods
become prohibitively expensive, due to the presence of two disparate time scales:
the time scale of the deterministic dynamics and the time scale between the rare
events caused by the noise.

Noticing this difficulty, alternative theories and numerical methods have been
proposed. The most notable analytical work is the theory of Wentzell and Freidlin
[11], which gives an estimate on the probability of the paths in terms of an action
functional. The most probable path is given by the one that minimizes the action
functional. The Wentzell-Freidlin action is an analogue of the Onsager-Machlup
action [7, 19], and it can be used as a numerical tool in which optimal trajectories
between the initial and final states in the system are computed by optimizing the
action functional. We shall call methods of this type minimum action methods, and
the optimal path the minimal action path (MAP).

In this paper we develop a minimum action method for spatially extended sys-
tems described by PDEs. Although the idea of using Wentzell-Freidlin action or a
variation thereof as numerical tools is not new in the context of ODEs (see, e.g.,
[1, 19]), the main challenge in spatially extended systems is that the action func-
tional and its derivative typically involve high-order spatial derivatives, giving rise
to highly ill-conditioned numerical problems. Therefore a good choice of precon-
ditioner is required in order to achieve an acceptable convergence rate.

It should be pointed out that if the system happens to be a gradient system, then
over an infinite time interval the minimal action path becomes a minimal energy
path (MEP), which is a heteroclinic orbit that connects two local minima of the
potential. Efficient numerical methods have been developed for finding the MEP
as well as the transition rates. Notable examples include the nudged elastic band
method (NEB) [13] and the string method [3, 4, 5, 21]. These methods are typically
more efficient than methods based on minimizing the action functional. Yet the
minimum action method has the advantage of being applicable to both gradient
and nongradient systems. It can also be applied to studying events on finite-time
intervals that have exponentially small probability in small domains but become
ubiquitous when the size of the system is large.

This paper is organized as follows. In Section 2 we briefly review the Wentzell-
Freidlin theory. In Section 3 we present the numerical method for the example
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of the one-dimensional Ginzburg-Landau model. Results on the two-dimensional

Ginzburg-Landau model are presented in Section 4. Nongradient systems are dis-
cussed in Section 5 with the example of the Brusselator. Some conclusions are

drawn in Section 6. The appendix contains a discussion on the limited-memory

BFGS method, which is used in the minimum action method.

2 Wentzell-Freidlin Theory and the Least-Action Principle

We consider a random process X ε(t) in R
n defined by the stochastic differential

equation (SDE)

(2.1) Ẋ ε = b(X ε) +
√

ε σ Ẇ , X ε(0) = x0 .

Here W (t) is a Wiener process in R
n . As ε → 0, the trajectory X ε(t) converges in

probability to the solution x(t) of the unperturbed equation

(2.2) ẋ = b(x) , x(0) = x0 ,

on every finite time interval. In the path space, the probability distribution of X ε(t)

is concentrated in a neighborhood of x(t). Any other event that does not include

x(t) and its neighborhood has very small probability.

The Wentzell-Freidlin theory gives an estimate of the probability distribution

of the random process in the path space. We state the estimate by first introducing

an action functional in the path space. We denote by C[0,T ] the set of continuous
functions on the interval [0, T ] with values in R

n . In this space, we define the

metric

ρT (ϕ, ψ) = sup
0≤t≤T

|ϕ(t) − ψ(t)| .

For ϕ ∈ C[0,T ], we define an action functional associated with (2.1) as

(2.3) ST [ϕ] =
1

2

∫ T

0

∣

∣σ−1(ϕ̇ − b(ϕ))
∣

∣

2
dt

if the integral is finite. Otherwise, we set ST [ϕ] to be +∞.

The Wentzell-Freidlin estimates are:

(1) For any δ > 0, γ > 0, and K > 0 there exists an ε0 > 0 such that

(2.4) P{ρT (X ε, ϕ) < δ} ≥ exp

{

−
1

ε
(ST [ϕ] + γ )

}

for ε < ε0,

where T > 0 and ϕ ∈ C[0,T ] are such that ϕ(0) = x0 and T + ST [ϕ] ≤ K .

(2) For any δ > 0, γ > 0, and s0 > 0 there exists an ε0 > 0 such that for

0 < ε ≤ ε0 and s < s0 we have

(2.5) P{ρT (X ε,	T (s)) ≥ δ} ≤ exp

{

−
1

ε
(s − γ )

}

where

	T (s) = {ϕ ∈ C[0,T ], ϕ(0) = x0, ST [ϕ] ≤ s} for s > 0
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and

ρT

(

X ε,	T (s)
)

= sup
ϕ∈	T (s)

ρT (X ε, ϕ) .

For details of the proofs of these estimates, we refer to [11]. Roughly speak-

ing, the estimates (2.4) and (2.5) tell us that the probability that X ε stays in a

δ-neighborhood of a path ϕ is

(2.6) P
{

ρT (X ε, ϕ) < δ
}

≈ exp

{

−
1

ε
ST [ϕ]

}

.

The above estimates can be used to calculate the probability of various events as-

sociated with (2.1) by constrained minimization of the action functional. For in-

stance, let a and b be two states of the system and fix a time T . Then the probability

PT that the system moves from a to a δ-neighborhood of b within time T can be

estimated using the Wentzell-Freidlin theory:

(2.7) lim
ε→0

ε ln PT = − min
ϕ

ST [ϕ] ,

where the minimization in (2.7) is constrained by

(2.8) ϕ(0) = a , ϕ(T ) = b .

The minimizer of (2.7), or the MAP ϕ⋆, gives the most probable path for the transi-

tion from a to b in the sense that the probability that the system moves by another

path is exponentially smaller in ε.

So far we have only discussed finite-dimensional systems. In the following,

we will be interested in the application of Wentzell-Freidlin theory to infinite di-

mensional systems described by stochastic PDEs. Wentzell-Freidlin theory can

be extended to PDEs (for some results, see, e.g., [2, 6, 9, 10]), with an action

functional similar to (2.3). Yet this extension leads to several subtleties. One major

difficulty is associated with the fact that the noise we are most interested in, the spa-

tiotemporal white noise, is too singular for the stochastic PDE to be well-defined in

dimensions higher than 1 [12]. In this case, the noise must be regularized in space,

for instance, by introducing a small but finite correlation length λ. It is still an

open question as to what the physical effect of such regularization is. Discussing

this issue is beyond the scope of the present paper. Nevertheless, we note that the

action associated with the regularized problem formally has a limit when λ → 0.

This limiting action is the one we will always use in the applications below.

3 Minimum Action Method:

Application to the One-Dimensional Ginzburg-Landau Model

We will discuss the minimum action method by way of an example: the ther-

mally activated switching of a bistable system modeled by the Ginzburg-Landau

equation

(3.1) ut = δuxx − δ−1V ′(u) , x ∈ [0, 1] ,
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FIGURE 3.1. Two equilibrium states of (3.1) for δ = 0.03.

with Dirichlet boundary conditions

(3.2) u(0, t) = 0 , u(1, t) = 0 .

We take V (u) to be the standard double-well potential

(3.3) V (u) =
1

4
(1 − u2)2 .

In equation (3.1) δ is a small parameter, which indicates that the dynamics corre-

sponding to the reaction term, δ−1V ′(u), is fast while the diffusion is slow. The

system can be considered as the gradient flow associated with the energy

(3.4) E[u] =
1

2

∫ 1

0

(

δu2
x + 2δ−1V (u)

)

dx .

The dynamics in (3.1) has two stable equilibrium states, u+(x) and u−(x), which

minimize the energy (3.4). When δ is small, u±(x) = ±1 except in two thin layers

of width δ at x = 0 and x = 1, as shown in Figure 3.1.

Now we add to (3.1) a small noise term modeling thermal effects:

(3.5) ut = δuxx − δ−1V ′(u) +
√

ε η ,

where ε is proportional to the temperature of the system and η is a spatiotemporal

white noise with covariance

(3.6) E (η(x, t)η(y, s)) = δ(x − y)δ(t − s) .

It is shown in [6] (see also [15]) that (3.5) makes sense at least in dimension 1.

The presence of the noise in (3.5) destroys the long-time stability of the equi-

libria u±. For instance, if the initial state is u+, there is a finite probability PT that

the system switches to u− in any time interval [0, T ]. From large-deviation theory

[6], the probability PT satisfies

(3.7) lim
ε→0

ε ln PT = − min
u

ST [u] ,
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where the action functional is given by

(3.8) ST [u] =
1

2

∫ T

0

∫ 1

0

(

ut − δuxx + δ−1V ′(u)
)2

dx dt .

The minimization problem in (3.7) is constrained by the conditions

(3.9) u(0, t) = u(1, t) = 0 , u(x, 0) = u+(x) , u(x, T ) = u−(x) .

The minimizer of (3.8) constrained by (3.9) defines the optimal switching path

between u+ and u− during the time interval [0, T ].

3.1 Minimization of the Action Functional

To find the optimal switching path, we minimize the action (3.8) in a simple

two-step numerical procedure. In the first step we discretize the action functional

using finite differences. In the second step we minimize the discretized action

functional using the limited memory BFGS (L-BFGS) method (see the appendix).

Other methods can also be used for either step; for example, finite elements can be

used in the first step. We made these choices for their simplicity.

We discretize the space-time domain [0, 1] × [0, T ] with a mesh with sizes

�x = 1/I and �t = t/J , and we define the grid point (xi , tj ) by

xi = i�x , i = 0, 1, . . . , I,

tj = j�t , j = 0, 1, . . . , J.

We also define

xi+1/2 =
(

i +
1

2

)

�x , tj+1/2 =
(

j +
1

2

)

�t .

The numerical approximation to u(xi , tj ) is denoted by Ui, j . In order to simplify

the expression, we introduce the force

(3.10) p(x, t) = ut − δuxx + δ−1V ′(u) ,

so the action can be written as

(3.11) ST [u] =
1

2

∫ T

0

∫ 1

0

p2(x, t)dx dt .

We use the trapezoidal rule to discretize the spatial integral and the midpoint rule

to compute the temporal integral, thus obtaining

(3.12) ST (U ) =
1

2
�x�t

I−1
∑

i=1

J−1
∑

j=0

P2
i, j+1/2 ,
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where Pi, j+1/2 is the numerical approximation to p(xi , tj+1/2) by central finite dif-

ference:

(3.13) Pi, j+1/2 =
Ui, j+1 − Ui, j

�t
+ δ−1V ′

(

Ui, j+1 + Ui, j

2

)

−
δ

2

(

Ui+1, j+1 − 2Ui, j+1 + Ui−1, j+1

�x2
+

Ui+1, j − 2Ui, j + Ui−1, j

�x2

)

.

The discretized boundary conditions corresponding to (3.9) are

(3.14)
U0, j = UI, j = 0 , j = 0, 1, . . . , J,

Ui,0 = u+(xi ) , Ui,J = u−(xi ) , i = 0, 1, . . . , I.

The BFGS method requires the gradient of (3.12); this is given by

∂ST

∂Ui, j

=
(

2�x +
�x�t

δ
V ′′

(

Ui, j−1 + Ui, j

2

)

+
2δ�t

�x

)

Pi, j−1/2

−
(

2�x −
�x�t

δ
V ′′

(

Ui, j + Ui, j+1

2

)

−
2δ�t

�x

)

Pi, j+1/2

−
δ�t

�x

(

Pi−1, j−1/2 + Pi−1, j+1/2 + Pi+1, j−1/2 + Pi+1, j+1/2

)

for i = 1, 2, . . . , I − 1, j = 1, 2, . . . , J − 1.

In the BFGS method, the initial approximation to the inverse of the Hessian

plays the role of preconditioner. A good choice of the preconditioner is vital for

the efficiency of the algorithm. A general choice is to use the diagonal matrix

(3.15) H 0
k = γk I

where γk is defined in the appendix. For our problem, we found that the linear part

of the Hessian of the action (3.8), which contains the highest-order derivatives, is

a better preconditioner:

(3.16) H 0
k = B−1 =

(

−∂2
t + δ2∂4

x

)−1
.

The operator B can be inverted efficiently by the fast Fourier transform (FFT). In

the following, we will compare the behavior for different choices of H 0
k .

3.2 Numerical Results

In Table 3.1 we illustrate the behavior of the L-BFGS method for different

choices of H 0
k and the memory parameter m. In this problem, the parameter δ is

0.05, and T is 1, and we used 100×100 points in the discretization. For a complex

system, the evaluation of the objective function and its gradient dominates the cost

of the computation. Therefore, in the table we present the number of function and

gradient evaluations nfg required for the L2-norm of the gradient to reach a certain

tolerance. We also present the number of iterations, denoted by nit, in parentheses.

Note that nfg is always bigger than nit, since at each iteration step, several function



644 W. E, W. REN, AND E. VANDEN-EIJNDEN

H 0
k = I H 0

k = γk I H 0
k = B−1

nfg(nit) nfg(nit) nfg(nit)

m = 4 16634 (8298) 18697 (17838) 744 (709)

m = 5 17492 (8742) 13130 (12714) 658 (638)

m = 6 18219 (9092) 10070 (9771) 573 (547)

m = 7 16902 (8421) 9745 (9500) 570 (553)

m = 8 17928 (8935) 10200 (9938) 561 (544)

m = 9 17400 (8656) 9446 (9208) 564 (550)

m = 10 18624 (9265) 8765 (8547) 540 (520)

TABLE 3.1. Performance of L-BFGS for various choices of the storage

parameter m and initial approximations to the Hessian. nfg is the total

number of function and gradient evaluations, and nit is the total number

of iterations required to decrease the L2-norm of the gradient to 10−10.

and gradient evaluations might be needed in the line search if the search direction
pk is not well scaled (see the appendix for the definition of pk).

The first conclusion that can be drawn from this table is that the number of
function and gradient evaluations is insensitive to the memory parameter m. Since
the cost of each iteration increases with the amount of storage, the method is most
efficient for moderate m, for example, m = 6 or 7. Second, the table shows that
for fixed m, the Hessian approximation by (3.16) improves the convergence sig-
nificantly, which indicates that (3.16) is a good preconditioner for this problem.
Furthermore, for H 0

k = γk I and H 0
k = B−1, the two values nfg and nit are of the

same order, which indicates that the search direction pk is well scaled, and, as a
result, the initial step length αk = 1 is accepted in most iterations. However, for
H 0

k = I , the number nfg is about twice the size of nit, which means that pk is not
well scaled, and the line search is required to obtain a suitable step length.

Figure 3.2 shows the sequence of profiles of the optimal path u at different
times in [0, T ] for various values of T at a fixed δ = 0.03. The switching proceeds
by nucleation followed by propagation of domain walls. For large T , the switch-
ing proceeds by propagating one domain wall from one boundary to another, as
shown in Figure 3.2(a). As T becomes smaller, however, the number of nucleation
events increases. In Figure 3.3, we display the values of the action against T for
the various local minimizers shown in Figure 3.2. Figure 3.4 shows the space-time
plot of the square of the force p(x, t) corresponding to the switching event in Fig-
ure 3.2(f). This can be interpreted as the minimal noise necessary to induce the
switching. The peaks correspond to the nucleations. These results are explained
next.

3.3 Nucleation Versus Propagation in One Dimension

The results in the last section can be understood as follows. (Our discussion
here is rather qualitative; more quantitative results will be presented in [22]. For a
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FIGURE 3.2. Snapshots of profiles of the minimizer u during a switch-

ing from u+ (top curve) to u− (bottom curve) at equally spaced times in

[0, T ] for different T at fixed δ = 0.03. (a) T = 7; (b) T = 2; (c) T = 1;

(d) T = 0.8; (e) T = 0.6; (f) T = 0.4.

complementary discussion of nucleation versus propagation in one dimension, see

[8].) Consider the critical points of the energy (3.4), i.e., the solutions of

(3.17) δuxx − δ−1V ′(u) = 0

with u|x=0 = u|x=1 = 0. Besides u+ and u−, corresponding to the minimizers of

the energy, there are also saddle point configurations with an increasing number

of domain walls. Our result shows that, for large T , the switching path crosses

the saddle point configuration with minimum energy, i.e., the configuration with a

single domain wall shown in Figure 3.2(a) (this result is standard; see [6] and also
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FIGURE 3.3. The action as a function of the switching time T for the

six minimizers shown in Figure 3.2.
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FIGURE 3.4. The space-time value of p2(x, t) for the minimizer (f) in Figure 3.2.

[14]). As T is decreased, the optimal switching path crosses (the vicinity of) saddle

point configurations with increasing energy; i.e., it involves more nucleations and

therefore more domain walls, giving rise to a cascade of nucleation events. The

reason is that both the nucleation and domain wall motion are noise induced. As T
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decreases, at a fixed number of nucleations the speed of propagation of the domain

wall must increase in order to complete the switching during the allowed time T .

This is energy consuming and, at certain critical values of T , it becomes more fa-

vorable to make an additional nucleation. The same type of cascade of nucleations

is also observed if T is fixed but δ is decreased.

To quantify these observations, we use test functions to find an upper bound for

the action. The numerical results indicate that switching occurs via domain wall

propagation at constant speed c. Therefore, to describe the motion of a domain

wall localized at x = x⋆ + ct , we take

(3.18) u(x, t) = tanh

(

η
√

2

)

with η =
x − x⋆ − ct

δ
.

This hyperbolic tangent profile fits very well the minimizer obtained numerically,

which suggests that it will lead to a rather sharp bound on the action. (3.18) is a

solution of (3.17) with the boundary conditions limx→±∞ u = ±1. (3.18) is valid

locally in the strip |x − x⋆ − ct | ≪ λ with δ ≪ λ ≪ 1 and must be modified to

describe the other domain walls outside of this strip. Inserting (3.18) into (3.8),

one obtains

ST

[

tanh

(

η
√

2

)

θ(x)

]

≈
c2

4δ

∫ T

0

∫

R

sech4

(

η
√

2

)

dη dt =
√

2

3
T c2δ−1.

Since this is the cost per domain wall, and their velocity is 1/(2nT ) if there are

2n of them (for simplicity, we consider only the situation where the number of

domain walls is even; i.e., there is no domain wall starting from the boundary of the

domain—it gives the right scaling for large n anyway), the total cost of propagation

is

(3.19) Aprop =
C2

T nδ
with C2 =

√
2

6
.

This estimate indicates that propagation alone does not account for all the action

cost of switching since otherwise one could make Aprop as small as one wishes

by increasing n (and hence decreasing c). The additional cost comes from the

nucleation events. To describe these we look for the minimizer of (3.8) localized

in a region of size O(δ) both in space and time,

u(x, t) = v

(

x − x⋆

δ
,

t

δ

)

,

for some v(·) to be determined later and obtain

(3.20) ST [v] ≈
1

2

∫ ∞

0

∫

R

(vτ − vξξ + V ′(v))2 dξ dτ .
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The minimum cost of a nucleation event is given by the minimum of the above

action constrained by

v(ξ, 0) = −1 , v(ξ,∞) = +1 if ξ ∈
[

−
1

2
λδ−1,

1

2
λδ−1

]

,

where, as before, λ satisfies δ ≪ λ ≪ 1. The minimum is achieved by following

backward in time the orbit associated with

vτ = vξξ − V ′(v) ,

which connects the state where v = +1 if ξ ∈ [− 1
2
λδ−1, 1

2
λδ−1] to v = −1.

Indeed, the action (3.20) can be written as

ST [v] =
1

2

∫ ∞

0

∫

R

(vτ + vξξ − V ′(v))2 dξ dτ

+ 2

∫ ∞

0

∫

R

vτ (vξξ − V ′(v))dξ dτ

along the orbit; the first term vanishes, as can be seen by reversing time in the

integration, whereas the second term reduces to twice the difference of energy

between the state where v = +1 if ξ ∈ [− 1
2
λδ−1, 1

2
λδ−1] and the minimum energy

state v = −1 (which has zero energy). In the limit as λδ−1 → ∞, the energy of

the state where v = +1 if ξ ∈ [− 1
2
λδ−1, 1

2
λδ−1] and v = −1 if ξ → ±∞ can be

estimated as twice the energy of the tangent hyperbolic profile already encountered

before. We denote twice this energy by C1 and therefore obtain the following

estimate for the cost of n nucleations corresponding to 2n domain walls (assuming

again that there is no nucleation at the boundary of the domain):

(3.21) Anucl = C1n .

Using (3.19) and (3.21), we obtain the total cost of the nucleation and propaga-

tion of 2n domain walls:

(3.22) A(n, δ, T ) = C1n +
C2

nδT
.

For fixed δ and T , the optimal number of nucleations is given by (ignoring the

integer constraint)

(3.23) n⋆ = arg min
n

A(n, δ, T ) =
(

C2

C1δT

)
1
2

,

and from (3.7) one has

(3.24) lim
ε→0

ε ln PT = −A(n⋆, δ, T ) = −2

(

C1C2

δT

)
1
2

,

which gives the envelope of the curves in Figure 3.3.
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(a) (b) (c) (d) (e)

FIGURE 4.1. Snapshots of profiles of the minimizer u during a switch-

ing from u+ (top figure in each column) to u− (bottom figure in each

column) at five equally spaced times in [0, T ] for T = 1 and different δ

and different boundary conditions: (a)–(d) correspond to (4.2), (e) corre-

sponds to (4.3). In (a) δ = 0.04; (b) δ = 0.03; (c) δ = 0.02; (d) δ = 0.01;

(e) δ = 0.01. The gray scale is from white for u = 1 to black for

u = −1.

4 Application to the Two-Dimensional Ginzburg-Landau Model

4.1 Numerical Results

As an example in two dimensions, we consider

(4.1) ut = δ�u − δ−1V ′(u)

in the unit square � = [0, 1] × [0, 1]. We will consider two different Dirichlet

boundary conditions:

(4.2) u|x=0 = u|x=1 = 1 , u|y=0 = u|y=1 = −1 ,

and

(4.3) u|x=0 = u|x=1 = u|y=0 = u|y=1 = 0 .
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In both cases, (4.1) has two stable equilibrium states. One of them, u+, which is the
top figure in each column in Figure 4.1, is close to u = 1 except at the boundary
layers at y = 0 and y = 1 in the case (4.2), or at the edge of the square in the
case (4.3). Another stable state, u−, which is the bottom figure in each column in
Figure 4.1, is close to u = −1 except at the boundary layers at x = 0 and x = 1
in the case (4.2), or at the edge of the square in the case (4.3). Similar to the one-
dimensional problem, assuming the system switches from u+ to u− before a given
time T , we minimize the action

(4.4) ST [u] =
1

2

∫ T

0

∫

�

(

ut − δ�u + δ−1V ′(u)
)2

dx dy dt

to find the optimal switching path between the two states. The numerical algorithm
we use is a direct extension of the method for the one-dimensional model.

4.2 Nucleation Versus Propagation in Higher Dimensions

In Figure 4.1, we show the time sequences of the switching process for different
values of δ at fixed T = 1. The paths (a), (b), (c), and (d) correspond to the first
case with boundary condition (4.2), and (e) corresponds to (4.3). The overall trend
is consistent with what was found in the one-dimensional example; namely, there
are more and more nucleation events as δ → 0.

As in the one-dimensional case, we can estimate the optimal number of nucle-
ations for fixed T and δ in two dimensions by using test functions. As suggested by
our numerical results, we will assume that the switching occurs via the dynamics of
domain walls or, more appropriately, sharp interface motion. Consistent with this
scenario, suppose the location of the interface at time t is specified by the curve
γ (t) (or the hypersurface in higher dimension), and assume the minimizer of the
action can be approximated by the test function

(4.5) u(x, y, t) = tanh

(

ρ((x, y), γ (t))
√

2 δ

)

.

Here ρ((x, y), γ (t)) denotes the distance of the point (x, y) from the interface
γ (t). (4.5) is valid if ρ((x, y), γ (t)) ≤ λ with δ ≪ λ ≪ 1. Inserting (4.5)
into (4.4) and using the properties that ρt is the normal velocity of the interface
un , −�ρ its mean curvature κ , and |∇ρ| = 1 by definition, one obtains to leading
order in δ

ST

[

tanh

(

ρ
√

2 δ

)]

≈
1

4δ

∫ T

0

∫

γ (t)

(un + δκ)2 ds dt

∫

R

sech4

(

ρ
√

2

)

dρ

=
√

2

3δ

∫ T

0

∫

γ (t)

(un + δκ)2 dσ dt .

(4.6)

This limiting action is valid in dimension 2 or higher. Interestingly, to leading order
in δ, (4.6) is complete, and there is no need to include an additional term to account
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for nucleation events provided that their codimension is dc = d (i.e., we exclude

scenarios with line nucleation in d = 2, line or surface nucleation in d = 3, etc.).

This is to be contrasted with the situation in one dimension. To understand why this

is the case, notice first that the curvature term in (4.6) guarantees that the number

of nucleations in the minimizers of this action must be finite since a large number

of nucleations leads to an interface with very high curvature and hence, from (4.6),

very high cost.

To verify that the additional cost of nucleations is higher order in δ, let us esti-

mate their cost in d dimensions with a test function of the form

u(x, t) = v

(

x − x⋆

δ
,

t

δ

)

,

where x, x⋆ ∈ R
d , and x⋆ is the nucleation point. Inserting this function in (4.4)

gives

(4.7) ST [v] =
1

2
δd−1

∫ ∞

0

∫

Rd

(vτ − �ξv + V ′(v))2 ddξ dτ = O(δd−1) .

Next we estimate the minimum of the action in (4.6) and show that it is lower order

in δ (i.e., the cost of nucleations accounted by (4.7) is indeed negligible).

To estimate the order of magnitude of the action, we look for an interface com-

posed of n spheres with radius R(t). In this case, un = Ṙ, κ = R−1. We impose

that R(T/2) = 1
2
n−1/d ; i.e., the n circular interfaces at t = T/2 just touch each

other as they should. We also assume that the motion is consistent with the scaling

of flow by curvature; i.e., we take

(4.8) R(t) =
1

√
2

n− 1
d

(

t

T

)
1
2

.

This last assumption can in fact be removed and the scaling of (4.8) can be deduced

by minimization of (4.6) with circular interface satisfying R(T/2) = 1
2
n−1/d . Here

we use (4.8) directly for simplicity of presentation. Inserting (4.8) in (4.6) gives

ST (n) =
√

2

3
δ−1nSd

∫ T

0

(

Ṙ +
δ

R

)2

Rd−1 dt

=
2d/2

3
Sdδ

−1n
1
d

(

n− 1
d T − 1

2 + δn
1
d T

1
2
)2

,

where Sd is the surface of the unit sphere in d dimensions. Here n is the only

parameter that remains to be minimized over. Since

ST

(

ν(δT )− d
2
)

=
2d/2

3
Sd(T δ)− 1

2 ν
1
d

(

ν− 1
d + ν

1
d

)2
,

it follows that

(4.9) min
n

ST (n) = C3(T δ)− 1
2 ,
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where

C3 =
2d/2

3
Sdν⋆ with ν⋆ = arg min

ν

ν
1
d

(

ν− 1
d + ν

1
d

)2
.

Thus the minimal cost of (4.6) is bounded above by O(δ−1/2). Furthermore, the
number of nucleations scales as

(4.10) n⋆ = (δT )− d
2 ν⋆ = O

(

(δT )− d
2
)

.

This makes the additional contribution from (4.7) negligible as asserted since n⋆ =
O(δ−d/2) nucleations have a cost of the order of O(δ−d/2δd−1) = O(δd/2−1) only.

5 Nongradient Systems

The methodology can be applied equally well to nongradient systems. In this
section we illustrate this on the example of the Brusselator:

(5.1)







ut =
1

α
(uxx + 1 + u2v − (1 + A)u)

vt = vxx + Au − u2v ,

where A and α are two parameters. We consider these equations on x ∈ [0, 1] and
impose Neumann boundary conditions

(5.2) ux(0, t) = ux(1, t) = 0 , vx(0, t) = vx(1, t) = 0 .

The Brusselator was introduced as a simple model of a nonlinear chemical sys-
tem in which the relative concentration of products can oscillate in time as in, for
example, the Belousov-Zhabotinski reaction [17, 20].

The Brusselator has a stable fixed point at (1, A). We will be interested in
finding the optimal path from the stable fixed point to another point in the phase
space under the influence of a small noise,

(5.3)







ut =
1

α
(uxx + 1 + u2v − (1 + A)u) +

√
2ε η1(x, t)

vt = vxx + Au − u2v +
√

2ε η2(x, t) ,

where η1 and η2 are two independent spatiotemporal white noises and we impose
the reflecting boundary condition at {u = 0} and {v = 0}.

The action functional associated with (5.3) is

(5.4)

ST [u, v] =
1

2

∫ T

0

∫ 1

0

(

ut −
1

α

(

uxx + 1 + u2v − (1 + A)u
)

)2

dx dt

+
1

2

∫ T

0

∫ 1

0

(

vt − vxx − Au + u2v
)2

dx dt .

We minimize this action functional using a straightforward extension of the method

described earlier. In Figure 5.1, we plot the spatial means ū =
∫ 1

0
u dx and v̄ =

∫ 1

0
v dx of the optimal pathways for various final states and the contour lines of the

corresponding actions.
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FIGURE 5.1. Left panel: The spatial means ū =
∫ 1

0 u dx and v̄ =
∫ 1

0 v dx of the optimal switching pathways from the stable position (1,A)

to various other states. Note that there is more than one local mini-

mizer of the action in the vicinity of (0.8, 0.1). Also shown are the two

nullclines (dashed lines). Right panel: The contour lines of the corre-

sponding action as a function of the final states. In the calculation, the

parameters are α = 0.1, A = 0.5, and T = 2.

One can see from Figure 5.1 that the optimal paths contain large excursions.

This is one of the special features of nongradient systems. More thorough discus-

sion of this example as well as other examples of infinite-dimensional, nongradient

systems will be presented elsewhere [16].

6 Discussion

In summary, the least-action principle provided by the Wentzell-Freidlin theory

of large deviations is exploited as a numerical tool for finding the optimal dynam-

ical path for spatially extended systems driven by a small noise. We presented the

numerical results for the Ginzburg-Landau system in one and two dimensions, as

well as applications to nongradient systems. A quasi-Newton method, the lim-

ited memory BFGS method, is used to minimize the Wentzell-Freidlin action.

Other numerical issues such as the preconditioners are also discussed. We also

present analytical results on the nucleation and propagation of domain walls for

the Ginzburg-Landau models. The theoretical estimates agree very well with the

numerical results.

Although it requires the calculation of the Hessian of the energy functional

and it is in general more expensive than methods based on computing the minimal

energy path (such as the string method or NEB), the minimum action method has

the advantage of being applicable to nongradient systems and finite-time events.

Although the latter have exponentially small probability in small samples, they are

relevant in large samples because their probability increases with system size and

eventually tends to 1.
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Appendix: Limited Memory BFGS Method

The BFGS method is one of the most popular and efficient quasi-Newton meth-

ods for large-scale problems [18]. It only requires that the gradient of the objec-

tive function be supplied at each iterate, and yet achieves superlinear convergence.

Suppose f (x) is the objective function that we are minimizing and xk is the current

iterate. The BFGS method defines the next one as

(A.1) xk+1 = xk + αk pk .

The step length αk is chosen to satisfy the Wolfe conditions:

(A.2)

{

fk+1 ≤ fk + c1αk∇ f T
k pk

∇ f T
k+1 pk ≥ c2∇ f T

k pk

with 0 < c1 < c2 < 1. The search direction pk is given by

(A.3) pk = −Hk∇ fk

where Hk is an approximation of the inverse of the Hessian of f (x) at xk . In the

BFGS method, Hk is defined recursively by

(A.4) Hk+1 =
(

I − ρksk yT
k

)

Hk

(

I − ρk yksT
k

)

+ ρksksT
k

where

(A.5) sk = xk+1 − xk , yk = ∇ fk+1 − ∇ fk , and ρk =
1

yT
k sk

.

The initial Hessian approximation H0 plays the role of preconditioner for the

problem. In fact, it can easily be shown that the BFGS method is identical to

the preconditioned conjugate gradient method with the preconditioner B0 = H−1
0

when applied to strongly convex quadratic functions. One general strategy for the

choice of H0 that has proven to be effective in practice is to use H0 = γ1 I , where

the scaling factor γ1 is defined by

(A.6) γk =
yT

k−1sk−1

yT
k−1 yk−1

.

When applied to a smooth convex function with an arbitrary starting point x0

and a symmetric positive definite matrix H0, the BFGS method can be proven to

be globally convergent. Furthermore, the rate of convergence is superlinear, which

is adequate for practical problems.

In the BFGS method, Hk defined by (A.4) is usually a dense matrix, so the cost

of storing and manipulating it is prohibitively large for large-scale systems. The

limited memory BFGS method, abbreviated as L-BFGS, can be used to circumvent

this problem. The idea is to store and use the m most recent vector pairs {si , yi } to

construct the approximation of the Hessian. Once the new iterate xk+1 is computed,

the oldest vector pair in the set {si , yi }, which is less likely to be relevant to the
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behavior of the objective function at the current iteration, is discarded in order to
save the storage and the computational cost.
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