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Abstract In this paper, we present a novel solution to the minimum attention
control problem for linear systems. In minimum attention control, the objective is
to minimise the ‘attention’ that a control task requires, given certain performance
requirements. Here, we interpret ‘attention’ as the inverse of the interexecution time,
i.e., the inverse of the time between two consecutive executions. Instrumental for our
approach is a particular extension of the notion of a control Lyapunov function and
the fact that we allow for only a finite number of possible interexecution times. By
choosing this extended control Lyapunov function to be an co-norm-based function,
the minimum attention control problem can be formulated as a linear program, which
can be solved efficiently online. Furthermore, we provide a technique to construct a
suitable co-norm-based (extended) control Lyapunov function. Finally, we illustrate
the theory using a numerical example, which shows that minimum attention control
outperforms an alternative ‘attention-aware’ control law available in the literature.
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1 Introduction

A current trend in control engineering is to no longer implement controllers on
dedicated platforms with dedicated communication channels, but to use (shared)
communication networks instead. Since in such an environment the control task
has to share the communication resources with other tasks, the availability of these
resources is limited and might even change over time. Despite the fact that resources
are scarce, controllers are typically still implemented in a time-triggered fashion, in
which control tasks are executed periodically. This design choice is motivated by the
fact that it enables the use of a well-developed theory on sampled-data systems, e.g.,
Astrom and Wittenmark (1997) and Chen and Francis (1995), to design controllers
and analyse the resulting closed-loop systems. This design choice, however, leads
to over-utilisation of the available communication resources and requires over-
provisioned hardware, as it might not be necessary to execute the control task every
period. For this reason, several alternative control strategies have been developed to
reduce the required communication resources needed to execute the control task.!

Two of such approaches are event-triggered control, see, e.g., Donkers and
Heemels (2012), Heemels et al. (2008), Henningsson et al. (2008), Lunze and
Lehmann (2010), Tabuada (2007), and self-triggered control, see, e.g., Anta and
Tabuada (2010), Mazo Jr et al. (2010), Velasco et al. (2003), Wang and Lemmon
(2009). In event-triggered control and self-triggered control, the control law consists
of two elements: namely, a feedback controller that computes the control input,
and a triggering mechanism that determines when the control input has to be
updated. Both in event-triggered control as well as in self-triggered control, the
resulting control system is a hybrid system, as the controller implementation is
based on discrete events generated by continuous dynamics. While in event-triggered
control the triggering mechanism uses current measurements and the triggering
condition is verified continuously, in self-triggered control the next update time is
computed together with the control input and based on the currently available sensor
measurements and plant dynamics.

Current design methods for event-triggered control and self-triggered control are
mostly emulation-based, meaning that the feedback controller is designed in oblivion
of communication constraints followed by the design of the triggering mechanism.
Since the feedback controller is designed before the triggering mechanism, it is
difficult, if not impossible, to obtain an optimal design of the combined feedback
controller and triggering mechanism in the sense that the minimum number of
controller executions is achieved while guaranteeing stability and a certain level of
closed-loop performance.

In this paper, we consider minimum attention control (MAC), see Brockett
(1997), in which the objective is to minimise the attention required by the control

INote that all the control laws discussed in this section have larger computational complexity than
a standard sampled-data controller. However, these control laws require fewer executions and thus
fewer transmissions of measurements and actuator signals, which is particularly relevant in control
application where computation is ‘cheap’ and communication is ‘expensive’. As such, the focus of
this paper is to ‘trade communication for computation’ (Yook et al. 2002).
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loop, i.e., to maximise the time between consecutive executions of the control tasks,
while guaranteeing a certain level of closed-loop performance. Note that the control
objective in MAC is similar to self-triggered control, where the objective is also to
have as few executions of the control task as possible, given a certain closed-loop
performance requirement. However, contrary to existing design methods for self-
triggered control, methods for synthesising MAC are typically not emulation based
in the sense that it is not required to have a separate feedback controller available
before the triggering mechanism is designed. Clearly, a joint design procedure is
more likely to yield a (close to) optimal design than a sequential design procedure
would. As with event-triggered and self-triggered control, the resulting control
system in MAC can also be regarded as a hybrid system.

The control problem studied in this paper is related to the one studied in Anta
and Tabuada (2010) and Ypez et al. (2011). However, compared to these references,
we will propose an alternative approach to solve the control problem at hand and,
compared to Anta and Tabuada (2010), we will focus on linear systems. In the
solution strategy we propose, we focus on linear plants, as already mentioned, and
consider only a finite number of possible interexecution times. Moreover, we will
employ a novel type of control Lyapunov function (CLF) that can be seen as an
extension of the CLF for sampled-data systems. This extended CLF will enable
us to guarantee a certain level of performance. We will show that by choosing
the extended CLF to be an oco-norm-based function, see, e.g. Kiendl et al. (1992)
and Polanski (1995), the MAC problem can be formulated as a linear program
(LP), which can be efficiently solved online, thereby alleviating the computational
burden as experienced in Anta and Tabuada (2010). Furthermore, we will provide
a technique to construct suitable co-norm-based (extended) CLFs. Finally, we will
illustrate the theory using a numerical example, in which it will be shown that MAC
can outperform the self-triggered control strategy of Mazo Jr et al. (2010).

The remainder of this paper is organised as follows. After introducing the nec-
essary notational conventions used in this paper, we formulate the MAC problem
in Section 2. In Section 3, we show how the MAC problem can be solved using
extended CLFs, in Section 4, we show how to guarantee well-defined solutions and,
in Section 5, we present a computationally tractable algorithm to solve the MAC
problem efficiently. Finally, the presented theory is illustrated using a numerical
example in Section 6 and we draw conclusions in Section 7. The Appendix contains
the proofs of the lemmas and theorems.

1.1 Nomenclature

The following notational conventions will be used. For a vector x € R”, we denote
by [x]; its i-th element and by || x|/, := |/ S, |x|? its p-norm, p € N, and by || x|l =

max;—,...ny ||, its co-norm. For a matrix A € R™, we denote by [A];; its i, j-th
element, by AT € R”*" its transpose and by | Al := max,.o Hm””, its induced p-
“lip

~~~~~

set of nonnegative real numbers by R, := [0, c0), and for a function f:R, — R”,
we denote the limit from above for time ¢ € R, by lim, f(s), provided that it exists.
Finally, to denote a set-valued function F from R” to R”, we write F : R" — R,
meaning that F(x) € R™ for each x € R".
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2 Problem formulation

In this section, we formulate the minimum attention control problem. To do so, let
us consider a linear time-invariant (LTT) plant given by

%x = Ax + Bu, (1)

where x € R™ denotes the state of the plant and u € R"™ the input applied to the
plant. The plant is controlled in a sampled-data fashion, using a zero-order hold
(ZOH), which leads to

u() = i, forallz e [t, trr1), )

where the discrete-time control inputs i, k € N, and the strictly increasing sequence
of execution instants {f;}rcy are given by the solutions to the following control
problem.

Problem 1 (Minimum Attention Control (MAC)) Find a set-valued function Fyac :
R < R™ and a function /& : R"™* — R, such that

ity € Fyac(x(t))

tey1 = e + h(x(t)),

®)

for all k € N, renders Eq. 1 with Eq. 2 stable and guarantees a certain level of
performance, both defined in an appropriate sense, while, for each x € R™, h(x) is as
large as possible. Moreover, there has to exist a scalar § > 0, such that A(x) > § for
all x € R™.

Note that the mapping Fyac is a set-valued function, i.e., Fyac(x) € R™, for
all x € R™. This means that i, k € N, can be chosen to be any element of the
set Fyac(x(tx)) € R™, while still guaranteeing the required properties of the MAC
problem. For a practical implementation, however, we use a criterion such as
the input of minimal energy (minimal norm) to choose a particular element of
Pyac(x(tr) C R™.

To make the preceding problem well defined, we need to give a precise meaning
to the terms stability and performance qualifying the solutions of the closed-loop
system given by Egs. 1, 2, with Eq. 3.

Definition 1 The system, given by Egs. 1, 2, with Eq. 3, is said to be globally
exponentially stable (GES) with a convergence rate « > 0 and a gain ¢ > 0, if for
any initial condition x(0), the corresponding solutions satisfy

lx@®1 < ce™[|xO) ], 4)

forallt e R,.
The notion of performance used in this paper is expressed in terms of both a
desired convergence rate « as well as a desired gain c. Without the inclusion of the
gain c, the design of a control law that requires arbitrarily little attention, i.e., with

the time between two executions #4.; — #; chosen arbitrary large, is straightforward.
Namely, for any controllable plant with ZOH, Eqgs. 1, 2, and t4+, =ty + h, k € N,
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there exists a sampled-data controller iy = Kx(f) for (almost) any constant & > 0
and some matrix K, such that any desired convergence rate « is achieved. Namely,

as the discretisation x (1) = eAx(t) + foh e“*ds Bily, is controllable for (almost) all
h > 0, the matrix K can be designed such that all the absolute values of eigenvalues
of e + foh e*dsBK are smaller than e=®". Hence, even for an arbitrarily large
interexecution time, still any convergence rate « can be achieved. However, the
following illustrative example will show that this might yield a very large gain ¢ and,
thus, still results in unacceptable closed-loop behaviour.

Example 1 (Motivating example) Consider an unstable and scalar-state plant, as
in Eq. 1, with scalars A > 0 and B # 0, and a ZOH, as in Eq. 2, with a constant
interexecution time h := fx4| — #;, and #, = 0, k € N. This plant and ZOH can be
rendered GES with any desired convergence rate «, given any constant 2 > 0, k € N.
This is because the discretisation x(tx41) = e x(t) + £ (e — 1) is controllable

A(e—o(/x _eAh)
B(eA"—1)

responses to initial conditions x(0) € R satisfy x(t;) = e~y (0), k e N, see Fig. 1 in
which A = B =1,a = 1, x(0) = 1. Although every response in Fig. 1 is exponentially
bounded with convergence rate « = 1, the intersample behaviour tends to become
worse as the interexection time 4 becomes large. To be more precise, it can be shown
that for any given A > 0 and B # 0 and any desired « > 0, & > 0, the proposed
control input i, renders the plant with ZOH, Egs. 1, 2, GES with convergence rate o

A eM_pah [ g(eeh_pAhy
Ada (e —1) \ (A+a)(e @"—1)

is tight, i.e., Eq. 4 holds with equality for some t € RT. As this gain is a strictly
increasing function of ~ > 0 for any «, A > 0, we can conclude that, even though
any convergence rate « can be obtained for any interexecution time / > 0, the gain
¢ can become arbitrarily large. Hence, specifying a desired convergence rate o only
provides an incomplete quantification of what is meant by ‘high performance’.

for any 4 > 0. By choosing the control inputs i = Xx(tz), the system’s

a/A
and gain ¢ = ) . In fact, the obtained exponential bound

As this motivating example shows, the guaranteed gain c typically becomes large
when the time between two controller executions f — # is large (see also Lemma 1
below), even though any convergence rate « can be obtained. Therefore, requiring a
certain gain c is as important as requiring a certain convergence rate « to specify the
desired closed-loop behaviour. Preventing the gain ¢ from becoming unacceptably

Fig.1 The evolution of the 1 ]
state x as function of time ¢ for h=1
A=B=1la=1x0)=1 Zfi
and for several i 0.75F —
=
°§,’ 0.5F 1
0.25F |
0 ‘ \
0 1 2 3 4 5
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large will require special measures and we will present such special measures in the
next section.

3 Formulating the MAC problem using control Lyapunov functions

In this section, we will propose a solution to the the MAC problem by formulating
it as an optimisation problem. In the optimisation problem, we will use an extension
to the notion of a control Lyapunov function (CLF). Before doing so, we will briefly
revisit some existing results on CLFs, see, e.g., Kellett and Teel (2004) and Sontag
(1983), and show how they can be used to design control laws that render the
plant with ZOH, Egs. 1, 2, GES with a certain convergence rate « > 0 and a certain
gain ¢ > 0.

3.1 Preliminary results on control Lyapunov functions

Let us now introduce the notion of a CLF, which has been applied to discrete-time
systems in Kellett and Teel (2004) and will now be applied to periodic sampled-data
systems, given by the plant with ZOH, Egs. 1, 2, in which ;. =ty + A, k € N, for
some fixed i > 0.

Definition 2 Consider the plant with ZOH, Egs. 1, 2. The function V : R — R is
said to be a control Lyapunov function (CLF) for Egs. 1 and 2, a convergence rate
a > 0, a control-gain bound 8 > 0 and an interexecution time 4 > 0, if there exist
constants a,a € R, and g € N, such that for all x € R™

all x|’ < V(x) <allx|?, Q)
and, for all x € R™ there exists a control input & € R™ satisfying ||&i|| < B]x| and

Vietx + foh eMdsBi) < e "V (x). (6)

Based on a CLF for a convergence rate « > 0, a control-gain bound g > 0 and an
interexecution time /4 > 0, as in Definition 2, the control law

: i € F(x):={ueR"™| f(x,u, h,a)< 0and [ul| < Bllxl}, o
i1 =t + A,
in which

fox,u, h, o) = Vetx + foh e Bdsu) — e "V (x), 8)

renders the plant with ZOH, Egs. 1, 2, GES with a convergence rate « > 0 and a
certain gain ¢ > 0, as we will show in the following lemma.

Lemma 1 Assume there exists a CLF for Eq. 1 with Eq. 2, a convergence rate
a > 0, a control-gain bound B > 0 and an interexecution time h > 0, in the sense of
Definition 2. Then, the control law given by Eq. T renders the plant with ZOH, Egs. 1, 2,
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GES with the convergence rate o and the gain ¢ = ¢(«, B, h), where
h
c(a, B, h) == ﬁ(e”"‘”" +8 / e”A“SdS”B”)eah. (9)
= 0

Proof This lemma is a special case of Lemma 2 that we will present and prove below.
]

Lemma 1 is in line with the observation made in the motivating example at the end
of Section 2, i.e., it is important to express the notion of performance both in terms
of the convergence rate o as well as the gain c. Namely, even though a CLF could
guarantee GES with a certain convergence rate «, for some control-gain bound g and
for any arbitrarily large A, by using the control law given by Eq. 7,7 the consequence
can be that the guaranteed gain ¢ becomes extremely large, leading to undesirably
large responses for large interexecution times 4 = x4 — t, k € N. To avoid having
such unacceptable behaviour, we propose a control design methodology that is able
to guarantee a desired convergence rate «, as well as a desired gain c, even for large
interexecution times /. This requires an extension of the CLF defined above.

3.2 Extended control Lyapunov functions

The observation that the interexecution time /4 influences the gain c is important to
allow the MAC problem to be formalised using CLFs. Namely, in order to achieve
sufficiently high performance (meaning a sufficiently large o and a sufficiently small
¢), Lemma 1 indicates that the interexecution time 4 has to be selected sufficiently
small. This, however, contradicts the objective of MAC, in which the interexecution
time is to be maximised. We therefore propose an extended control Lyapunov
function (eCLF), which we will subsequently use to solve the MAC problem. The
basic idea of the proposed eCLF is illustrated in Fig. 2, in which the function V' is
such that it does not only decrease from #; to #;4, in the sense that V(x(f;4)) <
V(x(t)), but also from #; to intermediate time instants ¢, + f;, for some (well-chosen)
values fy > 0 satisfying 4 —tx > y, ke N, [ € {1,..., L — 1}. The existence of
such an eCLF guarantees high performance, by excluding undesirable intersample
behaviour, even though the interexecution time Ay, := x4 — t, k € N, can be large,
as we will show after giving the formal definition of the eCLF.

Definition 3 Consider the plant with ZOH, Eqgs. 1, 2. The function V : R™ — R
is said to be an extended control Lyapunov function (eCLF) for Egs. 1 and 2, a
convergence rate o > 0, a control-gain bound 8 > 0O and aset H :={hy, ..., A }, L €
N, satisfying 7,1 > iy > Ofor all/ € {1, ..., L — 1}, if there exist constants a,a € R,
and g € N, such that for all x € R"=

allx|? < V(x) <alx| (10)

2Recall that because of the fact that the discretisation of Eq. 1 with Eq. 2 is controllable for (almost)
all constant & =t — t, any convergerence rate « can be achieved (for some well-chosen control
gain bound B > 0), as discussed before.
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Fig.2 The eCLF illustrated: A
by choosing a control input u, ..
such the function V decreases T — V("I;(t))
from ¢ to all t; + Ay, :

lefl,..., L}, a small gain ¢ \. ------ X - u(t)

can be guaranteed v,
LN
th—1 t Uit1 o
: " hi, * Time
E—
- hg

and, for all x € R™ there exists a control input iz € R™ satisfying ||&i|| < B]/x| and
V(ehx + foh’ e*dsBit) < e @1V (x) (11)
foralll e {l,...,L}.

As before, based on an eCLF for a convergence rate « > 0, a control-gain bound
B > 0 and a set H as in Definition 3, the control law

{ i € FO):={ue R™| fx,u, @) <OVIe(l,..., Lyand Ju] < fllx|}. )
eyt = e+ D,

with f(x,u, iy, @) as defined in Eq. 8, renders the plant with ZOH, Egs. 1, 2, GES
with a convergence rate o > 0 and a certain gain ¢ > 0 that is typically smaller than
the gain obtained using an ordinary CLF, as we will show in the following lemma.

Lemma 2 Assume there exists an eCLF for Eq. 1 with Eq. 2, a convergence rate o > 0,
a control-gain bound B > 0 and a set H := {hy, ..., hr}, L € N, satisfying by, > Iy >
Oforalll € {1, ..., L — 1}, in the sense of Definition 3. Then, the control law given by
Eq. 12 renders the plant with ZOH, Egs. 1, 2, GES with the convergence rate o and
the gain ¢ = c(«a, B, Ap, hr), where

— An
c(a, B, Ap, hr) ::\(/E(EHA"AH/ + ﬂea(hL—Ah)/(; euA”SdSHBH)eaAﬁ, (13)

with Ay, := maxyeqi,.. 1y (ly — ly—y), in which hy := 0.
Proof The proof is given in the Appendix. O

The existence of an eCLF for a well-chosen set H (i.e., realising a sufficiently
small Ay) guarantees high performance in terms of the convergence rate o and
the gain c, while still allowing for large interexecution times /iy, = tx11 — fx, k € N.
Indeed, by using the intermediate time instants #; + f;, the gain ¢ in Lemma 2 is
generally much smaller than the gain ¢ in Lemma 1. However, making Aj too
small might lead to infeasibility of the control law, as decreasing Ay for a fixed
interexecution time #;, — f;, means taking more intermediate times /; and, thus, that
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more inequality constraints are added to the set-valued function F in Eq. 12, which,
besides resulting in a much more complicated control law, might cause F(x) = ¥ for
some x € R™. Hence, a tradeoff must be made between the magnitude of the gain
¢ and the number of constraints in F(x) and we will exactly exploit this fact in the
solution to the MAC problem, as we will explain below.

3.3 Solving the MAC problem using eCLFs

We will now propose a solution to the MAC problem. As a starting point, we consider
the control law given by Eq. 12, which is based on an eCLF. Indeed, the existence
of an eCLF for a convergence rate « > 0, a control-gain bound g > 0 and a set H
implies GES with convergence rate « and gain ¢ of the plant with ZOH, Egs. 1, 2,
and the control law given by Eq. 12, according to Lemma 2. However, given the
function V, a convergence rate «, a control-gain bound g and a set H, it might not
always be possible to ensure that F(x) # ¢ for all x € R". To resolve this issue, we
take subsets of  of the form H; := {hy,..., h;},for L € {1, ..., L}, such that H; C
H> € ... € Hy =H, and propose our solution to the MAC problem by maximising
Le {1,..., L} for each given x € R". In other words, for each given x € R, L is
maximised such that F; (x) # ¢, in which

Fi(x) == {ue R™| f(x,u, lj,e) <OVIe{l,..., L}and |lu] < BlxIl}. (14)

with f(x, u, iy, ) as defined in Eq. 8. We maximise L to make the interexecution
times tx1 — #x = h; maximal, yielding that the control law requires minimum atten-
tion. Hence, this MAC law is given by Eq. 3, in which we take

Fvac(x) = Fiu ) (X)

(15)
h(x) := hj.

and
L*(x) :=max{L € {1,..., L}| F;(x) # @}. (16)

Indeed, the control law given by Eq. 3 with Eqgs. 15 and 16 is a solution to the
MAC problem, as every control input i, is chosen such that the interexecution
time f 1 — tk = Nf.(y,) 1 the largest one in the set H for which Fy. ) (x(#)) # 0.
Note that this control law is well defined if Fyac(x) # @, for all x € R". This
condition is equivalent to requiring that Fj(x) # @ for all x € R*. Namely, for
each x € R™, it holds that F(x) 2 F>(x) 2 ... 2 Fr(x), which gives that, for each
x € R™, Fyac(x) # ¢ implies that F;(x) # ¢, while the fact that F,(x) # ¢ implies
that Fyvac(x) # @ follows directly from Egs. 15 and 16. Hence, Eq. 15 is well defined
if F1(x) # ¢ for all x € R™, which is guaranteed if the function V is an ordinary CLF
for Eq. 1 with Eq. 2, a convergence rate « > 0, a control-gain bound g > 0 and an
interexecution time £, in the sense of Definition 1.

We will now formally show that the proposed MAC law renders the plant with
ZOH, Egs. 1,2, GES with convergence rate « and a certain gain c.

Theorem 1 Assume there exist a set H := {hy, ..., hr}, L € N, satisfying fy. > by >

Oforalll € {1,..., L — 1}, and an ordinary CLF for Eq. 1 with Eq. 2, a convergence
rate « > 0, a control-gain bound B > 0 and the interexecution time hy, in the sense of
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Definition 2. Then, the MAC law given by Eq. 3, with Egs. 8, 14, 15 and 16, renders
the plant with ZOH, Egs. 1, 2, GES with the convergence rate a and the gain ¢ =
c(a, B, A, hy) asin Eq. 13.

Proof The proof is given in the Appendix. O

4 Obtaining well-defined solutions using co-norm based eCLFs

In this section, we will address the issue of how to guarantee that the solution to
the MAC problem is well defined, i.e., that Fyac(x) # @ for all x € R™. As was
observed in the previous section, the existence of an ordinary CLF for Eq. 1 with
Eq. 2, a convergence rate «, a control-gain bound g, ensures that the MAC law is
well defined. To obtain such a CLF and to guarantee that the control problem can
be solved efficiently (as we will show in the next section), we focus in this section on
oo-norm-based eCLFs of the form

V(x) = [ PXlloos (17)

with P € R™ satisfying rank(P) = n,. Note that Eq. 17 is a suitable candidate
eCLF, in the sense of Definition 3, with ¢ = 1, since Eqgs. 5 and 10 are satisfied with

a=|Pls, a = max{a > 0| a| x| < || Px| forall x € R"™}. (18)

In fact, rank(P) = n, ensures that a > 0.
We will now provide a two-step procedure to obtain a suitable CLF. The first step
is to consider an auxiliary control law of the form

u(t) = Kx(1) (19)

that renders the plant, as given by Eq. 1, GES. To avoid any misunderstanding,
Eqg. 19 is not the control law being used; it is just an auxiliary control law that is
useful to construct a candidate eCLF. The actual MAC law will be given by Eq. 3,
with Egs. 15 and 16, and does not use the matrix K.

Using the auxiliary control law, we can construct a candidate eCLF used in the
MAC law by first finding an ordinary Lyapunov function for the plant, given by
Eq. 1 with control law, given by Eq. 19 (without ZOH as in Eq. 2). We will do this by
employing the following intermediate result, which can be seen as a slight extension
of the results presented in Kiendl et al. (1992) and Polariski (1995) to allow GES to
be guaranteed, instead of only global asymptotic stability.

Lemma 3 Assume that there exist a matrix P € R™*" with rank(P) = n,, a matrix
0 € R™™ and a scalar & > 0 satisfying

P(A+ BK)— QP =0 (20a)
[Qli+ > [10)] < —&. (20b)
jell,..m\ (i}
forallie{1,...,m}. Then, control law, as in Eq. 19, renders the plant, as in Eq. 1,

GES with convergence rate & and gain ¢ = da/a, with a and a as in Eq. 18.
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Proof The proof is given in the Appendix. O

Using the result of Lemma 3, and a matrix K for which the matrix A + BK has all
its eigenvalues in the left-half plane, we can find a matrix P. Namely, for the case of
global asymptotic stability, constructive methods to obtain such a matrix P (and an
appropriate matrix Q and an appropriate scalar &) are given in Kiendl et al. (1992)
and Polanski (1995) and these methods can be extended in a straightforward manner
to make them applicable for guaranteeing GES.

The second step in the procedure is to show that a matrix P satisfying the
conditions of Lemma 3, renders the plant with ZOH, Eqgs. 1, 2, GES in case the
auxiliary control law is a sampled-data control law given, for all k € N, by

{ i, = Kx(ty)

(21)
liy1 =t +h

provided that # > 0 is well chosen.

Lemma 4 Suppose the conditions of Lemma 3 are satisfied. Then, for each o > 0
satisfying o < @, the system given by Eqs. 1, 2 and 21 is GES with convergence rate o
and gain ¢ = c(a, | K||, h) as in Eq. 9, for all h < hyax (o) with

ha (@) = min{f > 0 || P + [FeASds BK)(PTP) " P|o > i), (22)
Proof The proof is given in the Appendix. O

Using the matrix P and the function /.« (o) obtained from Lemmas 3 and 4, we
can now formally state the conditions under which the proposed solution to the MAC
problem is well defined and how a desired convergence rate « and a desired gain ¢
can be guaranteed.

Theorem 2 Assume there exist matrices P € R"™*" K ¢ R"*" qnd a scalar @ > 0
satisfying the conditions of Lemma 3, and let 0 < o < & and ¢ > ¢. If the control-gain
bound B satisfies B > | K|« and the set H := {hy, ..., hr}, for some L € N, is such
that hy < hna () as in Eq. 22, and ¢ > ¢(a, B, Ap, hy) as in Eq. 13, then the MAC
law as given by Eq. 3, with Egs. 8, 14, 15, 16 and 17, is well defined and renders the
plant with ZOH, Egs. 1, 2, GES with the convergence rate o and the gain c.

Proof The proof is given in the Appendix. O

This theorem formally shows how to choose the scalar g and the set H to make
the proposed solution to the MAC problem well defined and to achieve a desired
convergence rate o and a desired gain ¢. Namely, given a plant, a desired convergence
rate o and a desired gain c, select a matrix K so that the matrix A + BK has all its
eigenvalues in the left-half plane. Subsequently, construct a matrix P using Lemma 3
and the methods presented in Kiendl et al. (1992) and Polanski (1995), yielding also
an @ > « and a ¢ < c. This will result in an Ay, () using Lemma 4, which allows the
scalar 8 and the set H to be chosen using the results of Theorem 2 and leading to a
well-defined MAC law that renders the plant with ZOH, Egs. 1, 2, GES.
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Remark 1 In this section, we proposed to construct a suitable eCLF by constructing
an eCLF-candidate using an auxiliary continuous-time controller given by Eq.
19 and, subsequently, selecting a suitable 7; using a (periodically) sampled-data
controller given by Eq. 21 with & < h;. Alternatively, we could have proposed to
construct a suitable eCLF by constructing an eCLF-candidate using a (periodically-
triggered) sampled-data controller, as in Eq. 21 directly, with & = h;, for a given
hy > 0. Namely, it can be shown that for any stabilising controller given by Eq. 21,
there exist a matrix P € R™*" with rank(P) = n,, a matrix Q € R™*" and a scalar
& > 0 satisfying

P + [ eAdsBK) — QP =0 and [ Qllw < e . (23)

This matrix P can be used directly in the eCLF for the MAC problem. In principle,
both methods will result in a suitable eCLF for MAC, but we prefer the former
method over the latter as it allows a matrix P to be constructed without having to
choose an A, first.

5 A computationally tractable minimum attention control solution

As a final step in providing a complete solution to the MAC problem, we will
now propose a computationally efficient algorithm to compute the control inputs
generated by the MAC law using online optimisation. To do so, note that the oo-
norm-based eCLFs as in Eq. 17 allow us to rewrite Eq. 8 as

fx,u,h,a) = | Pe*'x + fohPe‘“Bdsu”00 — e Px|| . (24)

We can now observe that the constraint f(x, u, i, ) < 0, which appears in Eq. 15,
is equivalent to

|[[PeAix + ['Peds Bds ul;| — e[| Px]| o0 < 0, (25)
foralli € {1, ..., m}, which is equivalent to f(x, u,h,a) < 0,where
1
z Pe?ix + Pfh esdsBu " .
x,u, h,a) = 0 —e " Px : 26
f( ) [_ Pe‘Ahx _ Pfoh eAstBI/l ” ”OO 1 ( )

and the inequality is assumed to be taken elementwise, which results in 2m linear
scalar constraints for u.

Equation 26 reveals that co-norm-based eCLFs convert the MAC problem into
a feasibility problem with linear constraints, allowing us to propose an algorithmic
solution to this problem. The algorithm is based on solving the maximisation that
appears in Eq. 16 by incrementally increasing L.

Algorithm 1 Let the matrix P € R""x, the scalars a, B > 0 and the set 'H, satisfying
the conditions of Theorem 2, be given. At each ty, k € N, given state x(ty):

1
1. Setl:=0and define Zx{é\”AC = {u € R | [:‘u] — ,8||x(tk)||oo|:i| < O}
i

2. While UM # @andl < L
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- UM = UM (e R Fe(@), u, Ty, @) < 0)

- [:=1+1
3. Ifl=Land L{IZE’IAC # (), take 1), € L{ﬁ”AC and ty ) =ty + hr
4. Or else, ifU,MAC =, take 1), € Z/{/‘j’f‘c and ty ) =t + By_1.

Remark 2 Since verifying that UMAC # ¢, for some [ € {1, ..., L}, is a feasibility test
for linear constraints, the algorithm can be efficiently implemented online using
existing solvers for linear programs.

6 Illustrative example
In this section, we illustrate the presented theory using a well-known example in the

NCS literature, see, e.g., Walsh and Ye (2001), consisting of a linearised model of a
batch reactor. The linearised batch reactor is given by Eq. 1 with

1.380 —0.208 6.715 —5.676 0 0
—0.581 —4.290 0 0.675[5.679 0

[A‘B]_ 1.067 4.273 —6.654 5.893|1.136 —3.146 |° @7)
0.048 4.273  1.343 —2.104|1.136 0

In order to solve the MAC problem, we need a suitable eCLF. To obtain such an
eCLF, we use the results from Section 4 and use an auxiliary control law of the form
of Eq. 19, with

K — [0.0360 —0.5373 —0.3344 70.0147]

1.6301 0.5716  0.8285 —0.2821 (28)

yielding that the eigenvalues A + BK are all real valued, distinct and smaller than or
equal to —2. This allows us to find a Lyapunov function of the form of Eq. 17 using
Lemma 3, with P being the inverse of the matrix consisting of the eigenvectors of
A+ BK, Q being a diagonal matrix consisting of the eigenvalues of A + BK,a@ =2
and ¢ ~ 23.9. The matrix K is only used to define the eCLF for MAC and it is not
used to compute the control signal.

Given this eCLF, we can solve the MAC problem using Algorithm 1. Before doing
so, we use the result of Theorem 2 to guarantee that the MAC law is well defined and
renders the closed-loop system GES with desired convergence rate « = 0.98& = 1.96
and desired gain ¢ = 4¢ ~ 95.7. According to Theorem 2, this convergence rate o and
this gain ¢ can be achieved by taking 8 = || K|~ =~ 3.1 and

_ _ |15 75 150 225 300 375 450 525 600 675
H= {hl’ e th}—{ 1000 1000 1000 1000 1000 1000 1000 1000 1000’ IOOO} ’ (29)

because it holds that A; < Ay (o) and that ¢(«, 8, Ap, hy) < c. Theorem 2 offers
a lot of flexibility in choosing the set . In this example, we choose L = 10 and
hy=({—-1)Ap for I € {2,...,10}, resulting that the conditions of Theorem 2 are
satisfied as long as Aj < %. To implement Algorithm 1 in MATLAB, we use the
routine polytope of the MPT-toolbox (Kvasnica et al. 2004), to create the sets
UMAC, to remove redundant constraints and to check if the set UMAC, 1 € {1,..., 10},
is nonempty.

When we simulate the response of the plant with the resulting MAC law for the
initial condition x(0) =[1 0 1 0]", we can observe that the closed-loop system is
indeed GES, see Fig. 3a, and satisfies the required convergence rate o, see Fig. 3c. To
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Fig. 3 Comparison of MAC and self-triggered control

show the effectiveness of the theory, we compare our results with the self-triggered
control strategy in the spirit of Mazo Jr et al. (2010),> however tailored to work
with co-norm-based Lyapunov functions resulting (by using the notation used in this
paper) in a control law consisting of Eq. 2 with i, = Kx(t), with K as given in Eq.
28, and tp ) =t + hi(x(tk)y where

L(x(te)) = max{L € {1, ..., L}| f(x(tx), Kx(t), by, ) <OV I e(l,....L}}. (30)

Note that the control signal of the self-triggered controller is computed from i, =
Kx(t), while this is not the case for MAC.

To illustrate that also this control strategy renders the plant GES, we show the
response of the plant to the initial condition x(0) = [1 0 1 0]" in Fig. 3b, and the decay

3In this example, we only compare our newly developed control strategy with Mazo Jr et al. (2010)
and not with Anta and Tabuada (2010), Velasco et al. (2003) and Wang and Lemmon (2009). The
reason is that this method is the most suitable one for comparison as Velasco et al. (2003) only
proposed the concept of self-triggered control and did not provide a systematic way to design the
triggering condition, Anta and Tabuada (2010) reduces to periodic control when applied to linear
systems, and Wang and Lemmon (2009) focusses on disturbance attenuation and not on achieving a
certain convergence rate « and gain c.
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of the Lyapunov function in Fig. 3c. Note that the decay of the Lyapunov function for
MAC is comparable to the decay of the Lyapunov function for self-triggered control.
However, when we compare the resulting interexecution times as depicted in Fig. 3d,
we can observe that the MAC yields much larger interexecution times. Hence, from
a communication resource utilisation point of view, the proposed MAC outperforms
the self-triggered control law.

7 Conclusions

In this paper, we proposed a novel approach to address the minimum attention
control problem for linear systems. Instrumental for our approach was a particular
extension of the notion of a control Lyapunov function and the fact that we allowed
for only a finite number of possible intervals between two subsequent executions of
the control task. By focussing on co-norm-based extended control Lyapunov function
(eCLF), we formulated the minimum attention control problem as a linear program.
We provided a technique to obtain a suitable eCLF that renders the solution to the
minimum attention control problem feasible. Moreover, this choice for the eCLF
guarantees an upper bound on the attention (i.e., a lower bound on the inter-
execution times), while guaranteeing an a priori selected performance level. We
illustrated the theory using a numerical example, which shows that the proposed
methodology outperforms a self-triggered control strategy that is available in the
literature.

Future work will focus on studying robustness of the proposed control law with
respect to model uncertainty and disturbances, on making extensions towards the
case where only output measurements are available for feedback, and on how to
optimally choose the eCLF.

Appendix: Proofs of Theorems and Lemmas

Proof (Lemma 2) Since Eq. 11 holds and since the solutions to Eq. 1 with Eq. 2
satisfy

Ry
x(te + hy) = eAh’x(tk)—f—/ e Bds i, (31
0

we have that
V(x(te + hy)) < e @1y (x(0)). (32)

forall/ € {0,..., L — 1} and for all #, k € N, with iy = 0. Now using Eq. 10, we have
that Eq. 32 implies

I+ )| < Ze @0 x(0)), (33)
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forall/ € {0,..., L — 1} and for all ¢, k € N, with g = 0. Moreover, because it holds
that ||| < Bllx(t)]l, the solutions to Eq. 1 with Eq. 2 also satisfy

t

@)1l < Nle %M flx (b + )| +/ e | ds || Bl
e+

Ap
< A x(tet-hy) | +5/ e “ds || B [|x (@) . (34)
0

for all t € [ty + Ay, tx + uy1), k€N, 1 €{0,..., L — 1}, with Ay as defined in the
hypothesis of the lemma. Substituting Eq. 33 into this expression (twice) yields

— Ah
x|l < q%(e”/‘”“ et 4 g / ellsds | B e*“fk)nxm)u, (35)
- 0

for all ¢t e [ty + Ayt + hyy1), ke N, 1 €{0,..., L —1}. Now realising that for all
tete+ M, te + i), ke N, 1 €{0,..., L —1},itholds that e=*@%+) < g—attaAn gnd
that e < e~ we have Eq. 4 with ¢ as given in the hypothesis of Lemma 2. O

Proof (Theorem 1) Using the arguments given in Section 3.3, we have that the
hypotheses of the theorem guarantee that Fyac(x) # ¥ for all x € R". By following
a similar reasoning as done in the proof of Lemma 2, we can show that the
MAC law guarantees that Eq. 35 holds for all 7 € [ty + hy, tx + Tuyy1), k€N, l e
{0, ..., L*(x(tx)) — 1}, with fig = 0, and all x € R". Again realising that for all 7 €
[tx + B, te + Bupr), k € N, 1€ {0, ..., L*(x(tx)) — 1}, it holds that e—*®+/) < g=attain
and that e < ¢ “"T*hircwy L emottehi yields Eq. 4 with gain ¢ = &, B, Ap, fir) as
in Eq. 13. O

Proof (Lemma 3) The proof follows the same line of reasoning as in Kiendl et al.
(1992) and Polanski (1995). GES of Eq. 1 with Eq. 19 with convergence rate @ and
gain ¢ = a/a is implied by the existence of a positive definite function, satisfying
Eq. 10 and

lim {(V(x(t +9) = Vx(@) < =@V x(), (36)

for all t € Ry, which follows from the Comparison Lemma, see, e.g., Khalil (1996).
Now using the fact that the solutions to Eq. 1 with Eq. 19 satisfy %x = (A + BK)x,
and using Eq. 17, we obtain that Eq. 36 is implied by

?f{)‘ SUPU + 5(A+ BK)X(D) oo = | Px(D)|o0) < =&l PX(0)loos (37)

for all t € R,. Using Eq. 20a, we have that, for all t € R, Eq. 37 implied by
lsifg AU +5D)lloo = DIPx(D) oo < =& Px(D)]loo (38)

which is, due to positivity of || Px[ls for all x #0, equivalent to limyo 1(||(/ +
5|l — 1) < —@&, which is implied by Eq. 20b. This completes the proof. O

Proof (Lemma 4) The proof is based on showing that the Lyapunov function

obtained using Lemma 3 also guarantees Eqgs. 1 and 2, with Eq. 21 and #x41 = tx + A,
k € N, to be GES with convergence rate « and gain ¢ := ¢(«, 8, h), where ¢(«, B8, h)
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as in Eq. 9, for all & < Ay, (@) as in Eq. 22. To do so, observe that the solutions of
Eqgs. 1 and 2, with Eq. 21 and x4, = tx + h, k € N, satisfy

—1y
x(t) = (efw-w + / eASBde)x(zk), (39)
0

for all ¢ € [t, tx + h), k € N. Now by following the ideas used in the proof of Lemma
2, and the candidate Lyapunov function of the form of Eq. 17, we have that GES with
convergence rate o and gain ¢ of Eqgs. 1 and 2, with Eq. 21 and t44; = tx + h, k € N,
is implied by requiring that

I Px(ty + ) lloo — e ™| Px(t) o < 0, (40)

for all #, k € N, and some well-chosen /4 > 0. Substituting Eq. 39 and defining X :=
Px, yielding x = (PT P)~! PT%, yields that Eq. 40 is implied by

h
(H Pt 4 / e BKds)(PT P)~' PT H - e’“h> 1260 e <O, (41)
0 o0

for all x(f;) € R™, which holds for all & > 0, satisfying & < hp.x (), as given in the
hypothesis of the lemma, meaning that Eq. 40 holds for all x(#x) € R™ and for all
h > 0, satisfying & < hp, (o). This completes the proof. O

Proof (Theorem 2) As a result of Lemma 4, we have that the control input given
by Eq. 21 renders the plant with ZOH, Egs. 1, 2, GES with convergence rate « and
gain ¢ := ¢(«, || K|, 1) as in Eq. 9, for any interexecution time # < hip, (o) as in
Eq. 22. To obtain a well-defined control law, we need that Fyac(x) # @, for all x €
R, which is guaranteed if and only if Eq. 14 satisfies F|(x) # @ for all x € R™, as
argued in Section 3.3. This can be achieved by choosing 8 > || K|« and choosing
the set H := {hy, ..., hr}, L € N, such that iy < Ay (@), as this yields that Fy(x) 2
{Kx} # @, if V is chosen as in Eq. 17. GES with the convergence rate o and the gain
¢ > c(a, B, Ap, hy) of Egs. 1,2 and 3, with Egs. 8, 14, 15, 16 and 17, follows directly
from Theorem 1. This completes the proof. O
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