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1Boston University 2Adobe Research

Input SO AMC HS SIA HC FT Ours GT

Figure 1: Sample saliency maps of several state-of-the-art methods (SO [39], AMC [15], HS [34] and SIA [6]) and methods

with fast speed (HC [5], FT [1] and ours). Our method runs at about 80 FPS using a single thread, and produces saliency

maps of high quality. Previous methods with similar speed, like HC and FT, usually cannot handle complex images well.

Abstract

We propose a highly efficient, yet powerful, salient object

detection method based on the Minimum Barrier Distance

(MBD) Transform. The MBD transform is robust to pixel-

value fluctuation, and thus can be effectively applied on raw

pixels without region abstraction. We present an approx-

imate MBD transform algorithm with 100X speedup over

the exact algorithm. An error bound analysis is also pro-

vided. Powered by this fast MBD transform algorithm, the

proposed salient object detection method runs at 80 FPS,

and significantly outperforms previous methods with similar

speed on four large benchmark datasets, and achieves com-

parable or better performance than state-of-the-art meth-

ods. Furthermore, a technique based on color whitening is

proposed to extend our method to leverage the appearance-

based backgroundness cue. This extended version further

improves the performance, while still being one order of

magnitude faster than all the other leading methods.

1. Introduction

The goal of salient object detection is to compute a

saliency map that highlights the salient objects and sup-

presses the background in a scene. Recently, this problem

has received a lot of research interest owing to its usefulness

in many computer vision applications, e.g. object detection,

action recognition, and various image/video processing ap-

plications. Due to the emerging applications on mobile de-

vices and large scale datasets, a desirable salient object de-

tection method should not only output high quality saliency

maps, but should also be highly computationally efficient.

In this paper, we address both the quality and speed require-

ments for salient object detection.

The Image Boundary Connectivity Cue, which assumes

that background regions are usually connected to the image

borders, is shown to be effective for salient object detec-

tion [39, 33, 36, 35]. To leverage this cue, previous meth-

ods, geodesic-distance-based [33, 39] or diffusion-based

[15, 35], rely on a region abstraction step to extract super-

pixels. The superpixel representation helps remove irrele-

vant images details, and/or makes these models computa-

tionally feasible. However, this region abstraction step also

becomes a speed bottleneck for this type of methods.

To boost the speed, we propose a method to exploit the

image boundary connectivity cue without region abstrac-

tion. We use the Minimum Barrier Distance (MBD) [30, 8]

to measure a pixel’s connectivity to the image boundary.

Compared with the widely used geodesic distance, the

MBD is much more robust to pixel value fluctuation. In

contrast, the geodesic distance transform often produces a

rather fuzzy central area when applied on raw pixels, due to

the small-weight-accumulation problem observed in [33].

Since the exact algorithm for the MBD transform is not

very efficient, we present FastMBD, a fast raster-scanning

algorithm for the MBD transform, which provides a good

approximation of the MBD transform in milliseconds, be-

ing two orders of magnitude faster than the exact algorithm

[8]. Due to the non-smoothness property [11] of MBD, er-
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ror bound analysis of this kind of Dijkstra-like algorithm

was previously regarded as difficult [8]. In this work, to the

best of our knowledge, we present the first error bound anal-

ysis of a Dijkstra-like algorithm for the MBD transform.

The proposed salient object detection method runs at

about 80 FPS using a single thread, and achieves compara-

ble or better performance than the leading methods on four

benchmark datasets. Compared with methods with similar

speed, our method gives significantly better performance.

Some sample saliency maps are shown in Fig. 1.

The main contributions of this paper are twofold:

1. We present FastMBD, a fast iterative MBD transform

algorithm that is 100X faster than the exact algorithm,

together with a theoretic error bound analysis.

2. We propose a fast salient object detection algorithm

based on the MBD transform, which achieves state-of-

the-art performance at a substantially reduced compu-

tational cost.

In addition, we provide an extension of the proposed

method to leverage the appearance-based backgroundness

cue [16, 23, 19]. This extension uses a simple and effective

color space whitening technique, and it further improves the

performance of our method, while still being at least one or-

der of magnitude faster than all the other leading methods.

2. Related Work

Previous works in saliency detection indicate that

saliency emerges from several closely related concepts such

as rarity, uniqueness and local/global contrast [17, 14, 4, 2].

While saliency detection methods are often optimized for

eye fixation prediction, salient object detection aims at uni-

formly highlighting the salient regions with well defined

boundaries. Therefore, many salient object detection meth-

ods combine the contrast/uniqueness cue with other higher

level priors [5, 24, 34, 26, 6], e.g. region uniformity, spatial

compactness and centeredness.

The image boundary prior has been used for salient ob-

ject detection, assuming that most image boundary regions

are background. Salient regions can be inferred by their dis-

similarity in appearance [19, 16, 23], or their connectivity

[39, 33, 36] with respect to the image boundary regions.

Some saliency detection methods use a diffusion-based

formulation to propagate the saliency values [21, 23, 35].

Other methods formulate the problem based on low rank

matrix recovery theory [29] and Markov random walks [13].

Some recent methods [16, 20, 23, 38] have attained su-

perior performance by using machine learning techniques.

These methods require off-line training and complex fea-

ture extraction, e.g. region-level features via object proposal

generation and Convolutional Neural Networks. These

methods are often much slower than the training-free meth-

ods. Thus, they are not directly comparable with training-

free methods using simple features.

A few attempts have been made to speed up salient object

detection. One approach is to leverage the pixel-level color

contrast [1, 5], which only requires simple computation of

some global color statistics like the color mean or color his-

togram. Speedup can also be obtained by down-sampling

the input image before processing [33, 37], but this will sig-

nificantly affect the quality of the saliency maps.

The MBD transform introduced in [30, 8] is shown to

be advantageous in seeded image segmentation. An ex-

act MBD transform algorithm and two approximations are

presented in [30, 8]. However, the past papers [30, 8] did

not propose a raster-scanning algorithm to make the MBD

transform practical for fast salient object detection. More-

over, to our knowledge, we provide in this paper the first

error bound analysis of the Dijkstra-like upper-bound ap-

proximation algorithms for the MBD transform.

3. Fast Approximate MBD Transform

In this section, we present FastMBD, a fast raster scan-

ning algorithm for the MBD transform, together with a new

theoretic error bound result, which we believe should be

useful beyond the application of salient object detection,

e.g. in image/video segmentation and object proposal [18].

3.1. Background: Distance Transform

The image distance transform aims at computing a dis-

tance map with respect to a set of background seed pixels.

As a very powerful tool for geometric analysis of images, it

has been a long-studied topic in computer vision [27].

Formally, we consider a 2-D single-channel digital im-

age I. A path π = 〈π(0), · · · , π(k)〉 on image I is a se-

quence of pixels where consecutive pairs of pixels are adja-

cent. In this paper, we consider 4-adjacent paths. Given a

path cost functionF and a seed set S, the distance transform

problem entails computing a distance map D, such that for

each pixel t

D(t) = min
π∈ΠS,t

F(π), (1)

where ΠS,t is the set of all paths that connect a seed pixel

in S and t.
The definition of the path cost function F is application

dependent. In [33, 39], the geodesic distance is used for

salient object detection. Given a single-channel image I,

the geodesic path cost function ΣI is defined as

ΣI(π) =

k∑

i=1

|I(π(i− 1))− I(π(i))|. (2)

where I(·) denotes the pixel value. Recently, a new path
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Alg. 1 FastMBD

input : image I = (I, V ), seed set S, number of passes K

output : MBD map D
auxiliaries : U , L

set D(x) to 0 for ∀x ∈ S; otherwise, set D(x) to∞.

set L ← I and U ← I.

for i = 1 : K do

if mod (i, 2) = 1 then
RasterScan(D,U ,L; I).

else
InvRasterScan(D,U ,L; I).

Alg. 2 RasterScan(D,U ,L; I)

for each x, which is visited in a raster scan order do

for each y in the masked area for x do
compute βI(Py(x)) according to Eqn. 5.

if βI(Py(x)) < D(x) then
D(x)← βI(Py(x)).
U(x)← max{U(y), I(x)}.
L(x)← min{L(y), I(x)}.

cost function has been proposed in [30]:

βI(π) =
k

max
i=0
I(π(i))−

k

min
i=0
I(π(i)). (3)

The induced distance is called the Minimum Barrier Dis-

tance, and it is shown to be more robust to noise and blur

than the geodesic distance for seeded image segmentation

[30, 8]. However, the exact algorithm for the MBD trans-

form takes time complexity of O(mn log n) [8], where n is

the number of pixels in the image and m is the number of

distinct pixel values the image contains. In practice, an op-

timized implementation for the exact MBD transform can

take about half a second for a 300× 200 image [8].

3.2. Fast MBD Transform by Raster Scan

Inspired by the fast geodesic distance transform using the

raster scanning technique [10, 31], we propose FastMBD,

an approximate iterative algorithm for the MBD transform.

In practice, FastMBD usually outputs a satisfactory result

in a few iterations (see Sec. 3.3), and thus it can be regarded

as having linear complexity in the number of image pixels.

Like all raster scan algorithms, it is also cache friendly, so

it is highly efficient in practice.

Similar to the raster scan algorithm for the geodesic or

Euclidean distance transform, during a pass, we need to

visit each pixel x in a raster scan or inverse raster scan order.

Then each adjacent neighbor y in the corresponding half of

neighborhood of x (see illustration in Fig. 2) will be used to

iteratively minimize the path cost at x by

D(x)← min

{
D(x)
βI(P(y) · 〈y, x〉)

, (4)

...

Raster Scan

Inverse Raster Scan

..
.

Figure 2: Illustration of the raster scan pass and the in-

verse raster scan pass. The green pixel is the currently vis-

ited pixel, and its masked neighbor area for 4-adjacency is

shown in red.

where P(y) denotes the path currently assigned to the pixel

y, 〈y, x〉 denotes the edge from y to x, and P(y) · 〈y, x〉 is

a path for x that appends edge 〈y, x〉 to P(y).
Let Py(x) denote P(y) · 〈y, x〉. Note that

βI(Py(x)) = max{U(y), I(x)}−min{L(y), I(x)}, (5)

where U(y) and L(y) are the highest and the lowest pixel

values on P(y) respectively. Therefore, the new MBD cost

βI(Py(x)) can be computed efficiently by using two aux-

iliary maps U and L that keep track of the highest and the

lowest values on the current path for each pixel.

Given the image I and the seed set S, the initialization

of the distance map D and the auxiliary map U and L is de-

scribed in Alg. 1. Then the two subroutines, a raster scan

pass and an inverse raster scan pass, are applied alternately

to update D and the auxiliary maps, until the required num-

ber of passes is reached (see Alg. 1). The subroutine for

a raster scan is described in Alg. 2. An inverse raster scan

pass is basically the same as Alg. 2, except that it enumer-

ates the pixels in reverse order and uses different neighbor-

hood masks, as illustrated in Fig. 2.

Each iteration of Alg. 2 updates U and L accordingly

when path assignment changes. Thus, at any state of Alg. 1,

D(x) is the MBD path cost of some path that connects the

seed set S and x. It follows that D(x) is an upper bound of

the exact MBD of x at any step. Alg. 1 will converge, since

each pixel value of D is non-negative and non-increasing

during update. The converged solution will also be an upper

bound of the exact MBD for each pixel.

3.3. Approximation Error Analysis

The update rule of FastMBD (Eqn. 4) shares the same

nature with Dijkstra’s Algorithm for solving the shortest

path problem. However, it is shown in [30] that the MBD

transform cannot be exactly solved by Dijkstra-like Al-

gorithms due to the non-smoothness property [11] of the

MBD. Therefore, the converged solution of FastMBD gen-

erally does not equal the exact MBD transform. To facilitate

discussion, we first introduce the following concept.

Definition 1. For an image I, the maximum local differ-
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ence εI is the maximum absolute pixel value difference be-

tween a pair of pixels that share an edge or a corner on I.

For a lower-bound approximation algorithm to the MBD

transform [30], it has been proved that the corresponding

errors are bounded by 2εI when the seed set is singleton

[30, 8] or connected [37]. We remind the readers that 2εI is

a very loose bound, because for natural images, εI is usu-

ally above 127/255. Nevertheless, such bounds can provide

insight into the asymptotic behavior of an algorithm when

an image approaches its continuous version, e.g. an ideal-

ized image in the continuous domain R
2 [9], or a simple

up-sampled version using bilinear interpolation.

The error-bound analysis techniques presented in previ-

ous works [30, 8, 37] cannot be applied on a Dijkstra-like al-

gorithm for the MBD transform. In what follows, we show a

non-trivial sufficient condition when the converged solution

of FastMBD is exact. We first introduce a slightly modi-

fied version of FastMBD, denoted as FastMBD∗, which is

the same as FastMBD except that the input image first un-

dergoes a discretization step. In the discretization step, we

use a rounding function G(v; εI) =
⌊

v
εI

⌋
εI to map each

pixel value v to the largest integer multiples of εI below v.

Then the discretized image Ĩ is passed to Alg. 1 to obtain a

distance map for the original image I.

Lemma 1. Given an image I and a seed set S, let dβI
(x)

denote the MBD from S to the pixel x, and D denote the

converged solution of FastMBD∗. Assuming 4-adjacency,

if the seed set S is connected1, then for each pixel x,

|D(x)− dβI
(x)| < εI . (6)

The proof of Lemma 1 is provided as supplementary ma-

terial. The above error bound applies to a connected seed

set, which is more general than the assumption of a single

seed set in previous works [30, 8].

Corollary 2. Let I be an image with integer pixel values.

Assuming 4-adjacency, if the seed set is connected and εI =
1, the converged solution of FastMBD is exact.

Proof. When εI = 1, FastMBD will be the same as

FastMBD* since Ĩ = I. According to Lemma 1,D(x)
will equal dβI

(x) because |D(x) − dβI
(x)| must be an in-

teger and it is less than 1.

The condition of εI = 1 can be achieved by upsampling

an integer-valued image by bilinear interpolation. Note that

the MBD is quite robust to upsampling and blur [8], due to

its formulation in Eqn. 3. Thus, Corollary 2 can be regarded

as a theoretic guarantee that FastMBD is exact in the limit.

Aside from the worst-case error bounds, in practice,

mean errors and the convergence rates are of more impor-

tance. Therefore, we test FastMBD on the PASCAL-S

1A set S is connected if any pair of seeds are connected by a path in S.
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Figure 3: Mean absolute distance approximation error

against the number of iterations K in the presented fast al-

gorithm for the MBD transform. The pixel values of the

test images range between 0 to 255. The mean error drops

below 10/255 after three scan passes.

dataset [20] and set all of the image boundary pixels as

seeds. We convert the input images to gray-scale, and com-

pute the mean absolute approximation error of Alg. 1 w.r.t.

the exact MBD transform. The result is shown in Fig. 3.

The average mean error drops below 10/255 after three scan

passes (two forward and one backward passes), and each

pass costs only about 2ms for a 320× 240 image. The pro-

posed FastMBD using three passes is about 100X faster

than the exact algorithm proposed in [8], and over 30X

faster than the fastest approximation algorithm proposed in

[8]. In the application of salient object detection, there is

no noticeable difference between FastMBD and the exact

MBD transform in performance.

4. Minimum Barrier Salient Object Detection

In this section, we describe an implementation of a sys-

tem for salient object detection that is based on FastMBD.

Then an extension of our method is provided to further

leverage the appearance-based backgroundness cue. Lastly,

several efficient post-processing operations are introduced

to finalize the salient map computation.

4.1. MBD Transform for Salient Object Detection

Similar to [33], to capture the image boundary connec-

tivity cue, we set the pixels along the image boundary as

the seeds, and compute the MBD transform for each color

channel using FastMBD. Then the MBD maps for all color

channels are pixel-wise added together to form a combined

MBD map B, whose pixel value are further scaled so that

the maximum value is 1. We use three passes in FastMBD,

as we find empirically that increasing the number of passes

does not improve performance.

An example is given in Fig. 4 to illustrate why the

geodesic distance is less favorable than the MBD in our

case. We show the combined MBD map B (middle top) and

the combined geodesic distance map (middle bottom). The

computation of the geodesic distance map is the same as the
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Minimum Barrier Distance

Geodesic Distance

Input

Figure 4: A test image is shown on the left. In the mid-

dle, the distance maps using the Minimum Barrier Distance

(top) and geodesic distance (bottom) are displayed. The

corresponding resultant final saliency maps are shown in the

last column. The geodesic distance map has a fuzzy central

area due to its sensitivity to the pixel value fluctuation.

MBD map, except that Eqn. 2 is used for the distance trans-

form. Furthermore, as in [33], an adaptive edge weight clip-

ping method is applied on the geodesic distance map to al-

leviate the small-weight-accumulation problem [33]. How-

ever, the geodesic distance map still has a rather fuzzy cen-

tral area, due to the fact that we compute the distance trans-

form on raw pixels instead of superpixels as in [33]. The

MBD map does not suffer from this problem. As a result,

the final saliency map (right top) using the MBD suppresses

the central background area more effectively than using the

geodesic distance (right bottom).

4.2. Combination with Backgroundness Cue

We provide an extension of the proposed method by in-

tegrating the appearance-based backgroundness cue [16],

which assumes that background regions are likely to pos-

sess similar appearance to the image boundary regions. This

appearance-based cue is more robust when the salient re-

gions touch the image boundary, and it is complementary

to the geometric cue captured by the MBD map B. Instead

of using various regional appearance features as in previous

works [16, 23], we present a more efficient way to leverage

this backgroundness cue using color space whitening.

We compute an Image Boundary Contrast (IBC) Map

U to highlight regions with a high contrast in appearance

against the image boundary regions. To do this, we consider

four image boundary regions: 1) upper, 2) lower, 3) left and

4) right. Each region is r pixels wide. For such a boundary

region k ∈ {1, 2, 3, 4}, we calculate the mean color x̄k =
[x̄1, x̄2, x̄3] and the color covariance matrix Qk = [qij ]3×3

using the pixels inside this region. Then the corresponding

intermediate IBC map Uk = [uij
k ]W×H is computed based

on the Mahalanobis distance from the mean color:

uij
k =

√(
x
ij
k − x̄

)
Q−1

(
x
ij
k − x̄

)T
. (7)

Uk is then normalized by uij
k ←

u
ij

k

maxij u
ij

k

, so that its pixel

values lie in [0, 1]. The above formulation is equivalent to

measuring the color difference in a whitened color space

[28]. In a whitened color space, the Euclidean distance from

the sample mean can better represent the distinctiveness of

a pixel, because the coordinates of the whitened space are

de-correlated and normalized.

Given the computed intermediate IBC maps {Uk : k =
1, 2, 3, 4} for the four image boundary regions, the final IBC

map U = [uij ] is computed by

uij =

(
4∑

k=1

uij
k

)
−max

k
uij
k . (8)

Compared with simply summing up all the intermediate

IBC maps, the above formulation is more robust when one

of the image boundary regions is mostly occupied by the

foreground objects. Finally, we scale the values of U so that

the maximum value is 1.

To integrate the IBC map U into our system, we pixel-

wise add the MBD map B and the IBC map U together to

form an enhanced map B+ = B+U . We find that although

using U alone gives substantially worse performance than

using B, a simple linear combination of them consistently

improves the overall performance.

4.3. Post-processing

We describe a series of efficient post-processing oper-

ations to enhance the quality of the final saliency map S ,

given either S = B or S = B+. These operations do not add

much computational burden, but can effectively enhance the

performance for salient object segmentation.

Firstly, to smooth S while keeping the details of signifi-

cant boundaries, we apply a morphological smoothing step

on S , which is composed of a reconstruction-by-dilation op-

eration followed by a reconstruction-by-erosion [32]. The

marker map for reconstruction by dilation (erosion) is ob-

tained by eroding (dilating) the source image with a kernel

of width δ. To make the smoothing level scale with the size

of the salient regions, δ is adaptively determined by

δ = α
√
s, (9)

where α is a predefined constant, and s is the mean pixel

value on the map B.

Secondly, similar to many previous methods [29, 12], to

account for the center bias that is observed in many salient

object detection datasets [3], we pixel-wise multiply S with

a parameter-free centeredness map C = [cij ]W×H , which

is defined as

cij = 1−

√(
i− H

2

)2
+
(
j − W

2

)2
√(

H
2

)2
+
(
W
2

)2 . (10)
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Lastly, we scale the values of S so that its maximum

value is 1, and we apply a contrast enhancement operation

on S , which increases the contrast between foreground and

background regions using a sigmoid function:

f(x) =
1

1 + e−b(x−0.5)
, (11)

where b is a predefined parameter to control the level of

contrast.

5. Experiments

Implementation. In our implementation, input images

are first resized so that the maximum dimension is 300 pix-

els. We set α = 50 in Eqn. 9, assuming the color values

are in [0, 1]. We set b = 10 in Eqn. 11. For our extended

version, the width r of the border regions is set to 30. These

parameters are fixed in the following experiments and we

have found that, in practice, the performance of our algo-

rithm is not sensitive to these parameter settings. An exe-

cutable program of this implementation is available on our

project website2.

Datasets. To evaluate the proposed method, we use four

large benchmark datasets: MSRA10K [22, 1, 5] (10000 im-

ages), DUTOmron [35] (5168 images), ECSSD [34] (1000

images) and PASCAL-S [20] (850 images). Among these,

the PASCAL-S and DUTOmron datasets are the most chal-

lenging, and the PASCAL-S dataset is designed to avoid the

dataset design bias. Note that MSRA10K is an extension of

the ASD [1] and MSRA5K [22] datasets, which are widely

used in the previous literature.

Compared Methods. We denote our method and the ex-

tended version as MB and MB+ respectively. MB only uses

the MBD map B, and MB+ uses B+ which integrates the

appearance-based backgroundness cue. We compare our

method with several recently published methods: SO [39],

AMC [15], SIA [6], HSal [34], GS [33]3 and RC [5]. We

also include several methods with an emphasis on the speed

performance: HC [7] and FT [1].

To demonstrate the advantages of MBD over the

geodesic distance, we also evaluate a baseline method,

denoted as GD. GD is the same as MB but uses the

geodesic distance (Eqn. 2) to compute the combined dis-

tance map B with the same post-processing applied. Adap-

tive edge weight clipping [33] is applied to alleviate the

small-weight-accumulation problem. Parameters in the

post-processing function are tuned to favor GD.

5.1. Speed Performance

The speed performance of the compared methods are re-

ported in Fig. 5. FT, HC, SIA, RC and our methods are

2http://www.cs.bu.edu/groups/ivc/fastMBD/
3We use an implementation of GS provided by the authors of SO [39].

FT HC SIA RC GS HS AMC SO MB MB+
0

50

100

F
P

S

90 88

14
 4  4  2  3  4

77

47

Figure 5: Speed performance. Our methods MB and MB+

run at 77 and 47 FPS respectively. While FT and HC are a

bit faster, their accuracy is much lower (see Fig. 6 and 7).

implemented in C, and the rest use C and Matlab. The eval-

uation is conducted on a machine with 3.2GHz×2 CPU and

12GB RAM. We do not count I/O time, and do not allow

processing multiple images in parallel. The test image size

is the same as used in our methods (300 pixels in largest di-

mension) for all evaluated methods. Our method MB runs

at about 80 FPS, which is comparable with the speed of

FT and HC. Our extended version MB+ runs at 47 FPS,

which is one order of magnitude faster than the state-of-

the-art methods such as GS, HS, AMC, and SO.

5.2. Evaluation Using PR Curve

Similar to [1, 7, 15], we use Precision-Recall (PR) Curve

to evaluate the overall performance of a method regarding

its trade-off between the precision and recall rates. For a

saliency map, we generate a set of binary images by thresh-

olding at values in the range of [0, 1] with a sample step

0.05, and compute the precision and recall rates for each bi-

nary image. On a dataset, an average PR curve is computed

by averaging the precision and recall rates for different im-

ages at each threshold value.

In the top row of Fig. 6, we show the PR curves for our

methods MB and MB+, the baseline GD and the methods

with similar speed, FT and HC. MB outperforms GD, HC

and FT with a considerable margin across all datasets. The

extended version MB+ further improves the performance of

MB. On the most challenging dataset PASCAL-S, using the

backgroundness cue only slightly increases the performance

of MB+ over MB. Note that in many images in PASCAL-S,

the background is complex and the color contrast between

the foreground and background is low.

In the bottom row of Fig. 6, we show the PR curves of

our methods and the state-of-the-art methods. MB gives a

better precision rate than SIA, RC and GS over a wide range

of recall rate across all datasets. Note that GS is based on

the same image boundary connectivity cue, but it uses the

geodesic distance transform on superpixels. The superior

performance of MB compared with GS further validates the

advantage of using the MBD over the geodesic distance.

Compared with HS, AMC and SO, MB achieves similar

performance under the PR metric, while being over 25X

faster. Our extended version MB+ consistently achieves

state-of-the-art performance, and is over 10X faster than the

other leading methods, such as HS, AMC and SO.
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Figure 6: Precision-recall curves of the compared methods. Our methods MB and MB+ significantly outperform methods

that offer similar speed across all datasets (top row), and achieve state-of-the-art performance (bottom row). The PR curves of

the baseline GD using the geodesic distance are significantly worse than its MBD counterpart MB, validating the advantage

of the MBD over the geodesic distance in our application.

5.3. Evaluation Using Weighted-Fβ

To rank models, previous works use metrics like Area

Under the Curve (AUC) [16, 23], Average Precision (AP)

[23] and the Fβ-measure [1, 7, 15]. However, as noted in

[25], these metrics may not reliably evaluate the quality of a

saliency map, due to the curve interpolation flaw, improper

assumptions about the independence between pixels, and

equal importance assignment to all errors. Therefore, we

adopt the weighted-Fβ metric proposed in [25], which suf-

fers less from the aforementioned problems. We use the

code and the default setting provided by the authors of [25].

For more information about the weighted-Fβ metric, we re-

fer the readers to [25]. We also provide the AUC and Fβ

scores in our supplementary material.

The weighted-Fβ scores are shown in Fig. 7. MB

achieves significantly better scores than the methods with

similar speed (FT and HC), and it compares favorably with

SIA, RC, GS, HS and AMC across all the datasets under the

weighted-Fβ metric. MB gives similar scores as the lead-

ing method SO on the MSRA10K and DUTOmron datasets,

and it attains the best scores on the ECSSD and PASCAL

datasets. Our extended version MB+ further improves the

scores of MB, and attains the top weighted-Fβ scores on all

the datasets. The scores of the baseline method GD are sub-

stantially worse than those of MB, which is again consistent

with our observation about the disadvantage of applying the

geodesic distance on raw pixels.

To control the effect of post-processing on the ranking,

we apply all possible combinations of the proposed post-

processing steps for the other methods. The results are in-

cluded in our supplementary material due to limited space.
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Figure 7: Weighted-Fβ scores of compared methods. Our

methods MB and MB+ consistently attain comparable or

better scores than the competitors.

We find that the proposed post-processing routine substan-

tially improves the scores of FT and HC, but it does not

significantly improve or even degrade the scores of the other

compared models. Controlling for this factor does not lower

the rankings of MB and MB+ on all the datasets.

Some sample saliency maps are shown in Fig. 8. Our

methods MB and MB+ often give saliency maps with bet-

ter visual quality than the other methods. The baseline GD

tends to produce a rather fuzzy central area on the saliency

map due to the small-weight-accumulation problem. More

results are included in our supplementary material.
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Input FT HC SIA RC GS HS AMC SO MB MB+ GTGD

Figure 8: Sample saliency maps of the compared methods. The baseline using the geodesic distance (GD) often produces a

rather fuzzy central area, while our methods based on MBD (MB and MB+) do not suffer from this problem.

5.4. Limitations

A key limitation of the image boundary connectivity cue

is that it cannot handle salient objects that touch the im-

age boundary. In Fig. 9, we show two typical examples of

this case. Our method MB fails to highlight the salient re-

gions that are connected to the image boundary, because it

basically only depends on the image boundary connectivity

cue. Our extended version MB+, which further leverages

the appearance-based backgroundness prior, can help alle-

viate this issue if the foreground region has a high color

contrast against the image boundary regions (see the top

right image in Fig. 9). However, when such background-

ness prior does not hold, e.g. in the second test image in

Fig. 9, MB+ cannot fully highlight the salient region, either.

6. Conclusion

In this paper, we presented FastMBD, a raster scanning

algorithm to approximate the Minimum Barrier Distance

(MBD) transform, which achieves state-of-the-art accuracy

while being about 100X faster than the exact algorithm. A

theoretical error bound result was shown to provide insight

into the good performance of such Dijkstra-like algorithms.

Based on FastMBD, we proposed a fast salient object de-

tection method that runs at about 80 FPS. An extended ver-

Input MB MB+

Figure 9: Some failure cases where the salient objects touch

the image boundary.

sion of our method was also provided to further improve the

performance. Evaluation was conducted on four benchmark

datasets. Our method achieves state-of-the-art performance

at a substantially smaller computational cost, and signifi-

cantly outperforms the methods that offer similar speed.
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