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ABSTRACT

The time-limited nonnegative data windows that minimize the bias in auto- and cross-
spectral estimation of stationary random processes by means of overlapped Fast
Fourier Transform (FFT) processing are derived for a variety of constraints. We con-
strain the time duration of the data window, or constrain the bandwidth in various ways,
such as the equivalent-noise bandwidth, the half-power bandwidth, or the root-mean-square
bandwidth. In the three bandwidth-constrained cases, the window duration is adjusted to
meed the constraint.

We find that the Hanning window is a reasonable compromise for achieving minimum
bias, because in addition to being the optimum for one bandwidth constraint, it is very
close to the optima for two other bandwidth constraints. The relative merits of the spec-
tral characteristics of the windows are also discussed.
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ABSTRACT

The time-limited nonnegative data windows that minimize the
bias in auto- and cross-spectral estimation of stationary random
processes by means of overlapped Fast Fourier Transform (FFT)
processing are derived for a variety of constraints. When the time
duration L of the data window is constrained, the optimum data
window is (2/L)1/2 cos (rt/L), |t| s L/2; when the equivalent-
noise bandwidth is constrained, the optimum data window is
(8/3L)1/2 ¢os? (rt/L), which is the Hanning window; when the hali-
power bandwidth is constrained, the optimum data window is

[1 682 + 4.261 cos (4.434 t/L) -4.337 cos (3.552 t/L)],
Whlch is very similar to the Hanning window; and when the root-
mean-square bandw-dth is constrained, the optimum data window is
4/(5L)1/2 cos® @rt/L). In the three bandwidth-constrained cases,

e window duration L is adjusted to meet the constraint.

The Hanning window is a reasonable compromise for achieving
minimum bias, because in addition to being the optimum for one
bandwidth constraint, it is very close to the optima for two other
bandwidth constraints. The relative merits of the spectral charac-
teristics of the windows are also discussed.
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MINIMUM-BIAS WINDOWS FOR
SPECTRAL ESTIMATION BY MEANS OF
OVERLAPPED FAST FOURIER TRANSFORM PROCESSING

INTRODUCTION

The selection of good data windows in spectral estimation of stationary
random processes, to minimize leakage, is an important consideration and has
received much attention [1-8]. In [6], a thorough investigation of four good data
windows revealed virtually the same variance-reduction capabilities of over-
lapped Fast Fourier Transform (FFT) processing when the proper overlap was
used for each window. The ultimate variance reduction of this direct procedure
was also demonstrated to be identical to that attained by the older (indirect)
analysis procedure in [4].

In this report, aitention is focused on the bias in the estimation of power
density spectra by means of overlapped FFT processing. Specifically, the bias
is minimized by the choice of data windows that are restricted to be time-limited
and nonnegative and are subject to either a time-duration constraint or a band-
width constraint. These results complement and extend those of [8] for the in-
direct approach to spectral estimation.

PROBLEM DEFINITION

The overlapped FFT method for spectral estimation and the reasons for its
use are documented in [6]. The mean of the spectral estimate is given by [6,
eq. (5)] for auto-spectral estimation, and by [7, eq. (4A)] for cross-spectral
estimation. In both cases, the mean takes the form*

E {G®} = Jav G-v) |Ww |2, )
where a(f) is the estimate of the true (auto or cross) spectrum G(f), and
W(f) = /dt exp(-i2nft) w(t), @)

*Integrals without limits are over the range of nonzero integrand.
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where w(t) is the data window multiplied in the time domain by the available
} data. It is assumed that the data window is time-limited and nonnegative:
=0 for |t| >L/2
wilt) [20 for ItI SL/2J° (3)
) where L is the window duration. The restriction to nonnegative data windows

' guarantees that the spectral window W(i) peaks at the origin. It should be noted
E that (1) is true with no restriction on the available record length T and with no
restricticn on the statistics of the random processes involved, except that the

l processes must be stationary; they need not be Gaussian for (1) to apply.

The desired value of (1) is the true value G(f); therefore thebias inestima-
tion is defined as

We approximate this bias by expanding G(f-») in (1) according to

G(f-v) = G(f) -vG'(f) + 1/2 G"'(f)v2 - 1/6 G"()v3 + 1/24 G(f)v4, (5)
b where the prime denotes a derivative. Substitution of (5) and (1) into (4) yields
B(f) = 1/2 G"(f) fAv v2|W(v) |2 + 1/24 G"(f) fdv vi|W(v)| 2, (6)
} ‘ where we have assumed (without loss of generality) that

Saviww)|2 = fat w2y = 1, (7)

and that |W(v)| 2 is even about the origin; that is, w{(t) is a unit-energy real
waveform.

We express (6) as

| B(f) = 1/2 G"(f) Dy + 1/24 G""(f) D3 = By (f) + By (f), (6)
where window constants

D; =ﬁivv2 | W(v)|2,
Dy =fav V! [w(v) )2, @

o o e —— e A st

B(f) = E {G(f)} - G(f). @)




are independent of the true spectrum G(f). To minimize the bias, we must
therefore minimize D; and/or Dg, subject to (3) and (7). To this aim, it is
useful to express (9) in terms of the time domain. There follows, by use of (2),

Dy = (2m)~2 fdt [w'(t)])2 (10)

and
Dy = (2m~4 fat [w"(t))2. (11)

Strictly, the approximation (8) to the bias is due only to local variations in
true spectrum G(f) about the frequency point f of interest; equation (5) is not
necessarily a good approximationfor larger v. Thus, peaks in th~ true spectrum
that are distant from the point f under investigation are not accounted for by (5).
To minimize the effects of remote snectral peaks on bias, we must also require
that the spectral window W(f) decay sufficiently rapidly for large |f|. Thus
the results of the following optimizations :re not final, but must be investigated
to see if they also meet the requirement of sufficiently rapid decay with frequency.

In addition to constraints (3) and (7), we shall be interested in constraining
the bandwidth of the window; this is in keeping with the philosophy of requesting
a specified frequenzy resolution for spectral estimation, and letting the window
duration L and overlap be whatever is necessary to meet this requirement [6].

It should also be noted that constraints on bandwidth tend to equalize the
variance-reduction capabilities of the windows. This may be seen iromn [6,
eq. (22)], where the equivalent number of degrees of freedom is given approxi-
mately by

2TBg¢ for T»L, (12)

where Bgq is the statistical bandwidth [9, p. 278] of the window. Thus, if all
windows were constrained to have the same statistical bandwidth, they would all
have the same variance-reduction capabilities, and we could minimize the bias
subject to this constraint. However, this constraint is not mathematically trac-
table. * Therefore, we resort toconstraints on other, more tractable, bandwidth
measures, with confidence that they too will yield comparable variance in spec-
tral estimation (see [6, table 1]).

*We have not been able to express the time-domain constraint (3) directly in the
frequency domain, nor have we been able to express the requirement that
é,,(T) be a legal correlation function directly in the time demain; sce (6,
eqs. (7) and (17)-(21)].
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PROBLEM SOLUTION :

Four different constrained problems will be addressed in this section: con-
strained window duration L ; constrained equivalent-noise bandwidth; constrained
half-power bandwidth;and constrained root-mean-square (rms)bandwidth. Tke win-
dowduration L is adjustedto meetthe bandwidth constraint inthe latter three cases.

DURATION CONSTRAINT

Here we wirh to minimize Dj in (10), subject to constraints (3) and (7) and
a fixed value of window duration L. In order that (10) be finite, w(t) must be
continuous; therefore w(tL/2) = 0 from (3). When we use a calculus-of-variations
approach, the optimum window wg(t) must satisfy the differential equation

wg(t) + N wo(t) =0, [t| < L/2, (13)

where \ is a constant (Lagrange multiplier). The solution of (13) that satisfies

the boundary conditions and (7), and has minimum Dl’ is

wo(t) = (%)1/2 coé(frt/L), It] s L/2. (14)

The corresponding value of (19) is

Dy =— - (15)

Several windows are compared in table 1. It is seen that the Hanning window
has 33 percent greater bias, as measured by Bl(f), than the optimum window,
urder a luration constraint.

Table 1. Window Bias Constants D

Data Window 412D,
Optimum, (14) 1
Parabola '10/"2 =1,01
Triangle 12/n% = 1.22
Hanning 4/3 = 1.33
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The spectral window corresponding to the optimum data window, (14), is

W (f) =2 (21)1/2 Los(mli) (16)
(o]
" 1-41.2¢2

The decay for large frequencies is only as £=2. The sidelobes of this and the
following windows will be discussed later.

EQUIVALENT-NOISE-BANDWIDTH CONSTRAINT

The equivalent-noise bandwidth Bg of spectral window W(f) is defined as

s o Jlwel2 1
wol?  [fatwo)?

where we have used (7) and (2). The quantity B, can be interpreted physically
as the bandwidth of an ideal rectangular filter that would pass the same amount

of power as a filter W(f), when subjected to white noise; see figure 1. The peak
of lW(f)I occurs at the origin, since data window w(t) is nonnegative.

(17)

—Be,f'?
Figure 1. Equivalent-Noise- Bandwidth Interpretation

The problem here is to miniinize Dj in (10), subject to constraints (3), (7),

and (17). Tl.is problem is solved in appendix A, with the result that the optimum
data window is

1/2
wo(t)=<£J> cos?t/L), |t| s L/2. (18)
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This is the familiar Hanning window. The window duration L must be chosen as

31
L=3 %, - (19)

according to (17). The minimum value of D, is

4
Dy el =—B§' ) (20)
312 27

The specified equivalent-noise bandwidth dictates the window duration L and
the minimum attuinable bias constant D;. The spectral window corresponding |

to (18) is L2
W) - ( 2L > sin(rLf) @1

3 aLE(1-L2%)

where L must be determined from (19). The decay for large frequencies varies
¥ as £-3,

HALF-POWER-BANDWIDTH CONSTRAINT

The half-power bandwidth By, of spectral window W(f) is defined as

2
+
WEB/2)" 1 (22)
w(0) 2
We desire to minimize D; in (10), subject to constraints (3), (7), and (22). {
Converting (22) into the time domain and restricting w(t) tobeeven, * constraint
(22) takes a desirable integral form: ’
fat wt)cos(nByt) - 271/2] = 0. (23)

The solution to this minimization problem is presentedin appendix B. The optimum
data window is

wo(t) = 1-1/2 [1.682 + 4. 261 cos(4.434t/L)
- 4.337 cos(3.552t/L)], |t| s L/2. (24)

*An odd component in w(t) increases the rate of variation and therefore
increaces Dj.
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The window duration L must be chosen as

1.411
L= —]-3?- " (25)

according to (23). The minimum value of Dy is

Dy =0.1604 BY . (26)

The spectral window corresponding to (24) is obtained by employing (2); this will
be discussed in the next section. It is shown in appendix B that w§ (tL/2) = 0;
therefore the decay of the spectral window is according to f-3.

For comparison, if the time duration of the Hanning window is adjusted to
realize the specified half-power bandwidth, namely L = 1.441/By, [6, eq. (33)
and table 1], it follows that Dj = 0.1606 Bf;. Thus the Hanning window has
virtually the same bias as the optimum window under a half-power-bandwidth
constraint. Further comparisons are made in the next section.

ROOT-MEAN-SQUARE- BANDWIDTH CONSTRAINT

The rms bandwidth B, of spectral window W(f) is defined as

o2 Jat 2 |wep|2 ”7
r~ 5 (27)
Jas lwe)|

Inspection of (7) and (9) immediately reveals that

D; = Br. (28)
Thus if the rms bandwidth is constrained, bias constant D; is fixed. In this
case, it is reasonable to resort to minimization of the second bias constant D,

in (9) or (11). Thus, we wish to minimize (11), subject to constraints (3), (7),
and

Jatw®)]? = 2nB)2 . (29)

The solution to this problem is presented in appendix C. The optimumdata win-
dow is

wo(t) = cos3(mt/L), |t| sL/2. (30)
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The window duration L must be chosen as
3 1
L —

- T T (31)
285 By

according to (29). The minimum value of Doy is

=229

2 9 T

D

The soectral window corresponding to (30) is

cos(wLf)

W (f) = — (51)1/2 ,
15n (1-41.2£2)(1-412f2/9) (33)

where4 L is determined from (31). Thedecay for large frequencies is according
to £77%,

For comparison, let the time duration of the Hanning window be adjusted to
realize the specified rms bandwidth B,. Then employing (18) in (29), we find
L = 1/(N3 By), and (11) yields Dy = 3 B% . Thus the Hanning window has
8 percent more bias than the optimum window under an rms bandwidth constraint,
as measured by bias constant Ds.

COMPARISON OF WINDOW CHARACTERISTICS

In figure 2, one-half of the symmetric optimum data windows for the three i
bandwidth-constrained cases are drawn for a common time duration of L =1,
The equivalent-noise-bandwidth data window (Hanning) and the half-power-band-
width data window are virtually identical and are continuous in value and deriv-

ative at 0.5. The rms-bandwidth data window is more peaked, and goes to zero
in value, in derivative, and in second derivative at 0.5. Thus the last window
would require groater overlap than the first two, in order to realize the same
variance reduction; see [6].

In order to deduce the required overlap for the rms bandwidth data window,
the quadratic and cubic data windows [6, pp. 10-18] are superposed in figure 3.
Over most of the range, the quadratic and rms-bandwidth windows are very close.
Near the end of the range, however, the taper of the rms-bandwidth window ap-
proaches that of the cubic; in fact, both are continuous in second derivative at

0.5. Thus, it is anticipated from earlier results [6, table 4 ] that slightly over
65 percent overlap would be required for the rms bandwidth data window to realize

99 percent of its maximum equivalent degrees of freedom [4, p. 22 1
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2.0_r-
ﬂ_MS
EN
i ey RMS:  ROOT-MEAN-SQUARE-BANDWIDTH DATA WINDOW
S, EM:  EQUIVALENT-NOISE-BANDWIDTH DATA WINDOW
: HP:  HALF-POWER-BANDWIDTH DATA WINDOW
w {1} E
=]
o,
\\ .,
N
v ENT HP
] — — e
0.0 = 0.5
Figure 2. Three Bandwidth-Constrained Data Windows;
L =1, Unit Energy
2.0 -
[ cus
L aMs S
-
ﬂ'-'*ﬁ“H\ RMS:  ROOT-MEAN-SQUARE-BANDWIDTH DATA WINDOW
QUAD: QUADRATIC DATA WINDOW
CUBIC: CUBIC DATA WINDOW
w {1}
o
V| S
0.0 i 0.5

Figure 3. Comparison of RMS~Bandwidth Data Window with
Quadratiic and Cubic Data Windows; L. = 1, Unit Energy
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The spectral characteristics of the four windows derived in this report are
presented in figures 4 through 7. The abscissas on every plot are in units of the
half-power bandwidth; thus all the curves go through half-power (-3.01 dB) at
f/Bl1 = 0.5. The duration-limited window, (14), is plotted in figure 4 and ex-
hibits relatively slow decay with frequency, since the data window is discontin-
uous in derivative at its edge. The equivalent-noise-bandwidth (Hanning) and
half-power-bandwidth spectral windows, plotted in figures 5 and 6, are virtually
identical and have good decay wiith frequency, since the data windows are con-
tinuous in derivative at their edges. The spectral window for the rms-bandwidth
data window is plotted in figure 7 and exhibits very rapid decay with frequency.
However, as noted above, by virtue of requiring greater overlap for maximum
variance reduction, this window will require somewhat greater-size FFTs than
do the other windows.

CONCLUSIONS

The Hanning window is optimum under an equivalent-noise-bandwidth con-
straint, asfar as minimization of bias constant D, is concerned. Furthermore,
it is near the optima for two other bandwidth constraints. Its spectral decay is
also sufficient for most cases that the bias is relatively unaffected by distant
spectral peaks. And with 50 percentoverlap, it realizes 92 percent of the max-
imum number of equivalent degrees of freedom [6, table 6]. Thus, the Hanning
window is a reasonable compromise to utilize in spectral estimation of random
stationary data.

10
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Appendix A

DERIVATION OF THE OPTIMUM DATA WINDOW FOR AN
EQUIVALENT-NOISE-BANDWIDTH CONSTRAINT

We wish to minimize (10) (from the main text), subject to constraints (3),
(7), and (17). Equations (7) and (17) are integral constraints and are in a con-
venient form for a calculus-of-variations approach. The way we handle (3) is to
first ignore the nonnegative limitation; then, out of the class of allowable sol-
utions, we restrict attention only to the nonnegative solutions and pick the best.

In order that (10) be finite, w(t) must be continuous. Using (3), we see that
this means that

w(xL/2) = 0. (A-1)
A calculus-of-variations approach tells us to minimize the quantity

Q =f&i‘[W'H'ﬂz-\n S‘d{- wiib) +2>\,_ fdt’ wié), (A-2)

where A, and A, are Lagrange multipliers; the resulting differential equation
for the optimum window is

w.”“_) + \l'wok) = Xz ) )‘H< L/Z. (A-3)

We employed (A-1) on the allowed variations in deriving (A-3).

The general solution of (A-3) is

A cos(at)+ B sin @) + C

OR
w ) =< A cosh(at)+ Bsinh(a) + C ) Il < L/2, (A-4)
oR

A + Bt

where @& is real and positive. The third alternative in (A-4) yiclds the trivial
solution when (A-1) is imposed.

15
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The second alternative reduces to

W= A[Cos\v(«fe - C”“(“L/z)], It < L/Z' o)

Since A can be chosen tosatisfy the energy constraint (7), and L can be chosen
to satisfy the bandwidth consiraint (17), there is left only the variable @ in
(A-5) to vary; w, ) is certainly nonnegative by the choice of proper polarity
for A. In order to find the best value of & for this second alternative of (A-4),
we compute P, in (10) versus «& and pick the minimum.

To accomplish this goal, we define

L) = w(ew) = A A, Jul < (A-6)
where
1}(“) = coshlau) - coshl), lulsl (A-T)
and
= aL /2. "

The bandwidth constraint (17) then becomes

A'tz"" Ky = Be.yt

y (A-9)
where
\ .
K, = {l du Jdu). (A-10)
The energy constraint (7) becomes
2L (A-11)
A 2 K‘L = ‘)
where

Vo
K, = L du AW, (A-12)

The window constant (10) becomes

D .,_.I.._ A-Ku

(A-13)

16
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where
| a
= A-14
K. * S' du [}’Iu)] . ( )
If we eliminate A and L by using (A-9) and (A-11), then (A-13) becomes

4
1KoK p? A-15
Dl 41‘,3 K: B. S ( )

The quantities necessary in (A--15) follow from (A-7), (A-10), (A-12), and (A-14):

2| coshla) — ﬁ%@l] ;

al sinh(2) _
K = 2« ‘] 3 (A-18)

- ‘ 2 A
2[i+ 4 (o) 3 2320

Pl
n

»
"

When (A-16) is substituted in (A-15), D, is found to increase monotonically with
increasing & ; the limit as o{-» &+ is

125 2 _ 2 (A-17)
_'2“:. Be - |1que .

The first alternative in (A-4), when subjected to boundary condition (A-1),
breaks into two subcases. In the first, if Sin(«) = O, then P isarbitra-y.

Then o =Kw, k2| . The function with smallest D, corresponds to Kat,
and yields a
w i) = A[cos et/) + 1] + B sin(2mt/L), b] S 1/2. (A-18)

However, we must have B = O ; otherwise w,(t) would go negative somewhere.
Imposition of the energy constraint (7) and bandwidth constraint (17) yields

w, [ =e81-)yz cos*(wt/i), i = Y2, (A-19)
where
L= 3 1. (A-20)

Z‘B‘
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The corresponding value of D‘ is

_ .._l_.zig‘ (A-21)
(T 27 &)

which is smaller than (A-17).

The second subcase occurs if Sin{x) % 0 . Then B in (A-4) must be
zero, and we get

W, (t) = A[ch(at) - cos(x)l M= L2 (A-22)

where « #* KT . The comments and method immediately below (A-5) apply
equally well here. Therefore we define

.Mu) = cos(-(u) - cos(q’), Jul<t, x# K, (A-23)
and find _ _
a s r ’S‘m h’) et J
ho = 4‘. =7 &o:s\'() ,
sin(2)
K' = a("[\“ oW ) o

i wn(2e)
K, = ~2l_‘+l2-cos(2«()-%—’—i£§— .

When (A-24) is substituted in (A-15), I, is found to decrease monotonically with
increasing . , at least for ¢ up to W. However, when &>, j(u) becomes
negative somewhere; this may be seen by noting that K‘(1) = ~ o< sin () is
positive if « >™, Thus the limiting member of this subclass, which is (A-19), is
the cutimum window.

18

A me—— = e —
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Appendix B

DERIVATION OF THE OPTIMUM DATA WINDOW FOR A
HALF-POWER-BANDWIDTH CONSTRAINT

Here we will minimize (10), subject to constraints (3), (7), and (23). In
order that (10) be finite, (A-1) must again be true. A calculus-of-variations
approach tells us to minimize

Q = ot [W ] - b wh + 2, [dt wie) <, (B-1)
where "
cl) = coslwt)- &, w=TB,, & =2y, (B-2)

and M\ and ), are Lagrange multipliers; the resulting differential equation for
the optimum window is

W, i)+ A W) = N, o), 1 < L2, (B-3)

If A, is negative, the form for W, {t) includes sinh and cosh terms, which
lead to a progressively larger value of D, as \, becomes more negative,
similar to the result of appendix A. If ), is zero, the only solution to (B-3)
and (A-1) is the trivial solution. If \,is positive, the general solution to (B-3)
is

A c0s (%) + Bim V) + 52 coswt) - 3 &, h#0
i " Lok <O
A ws(wt) + Boin(@t), A=

We discard tbz odd solutions for the reason given in the footnote to (23).

If we attempt to use the second alternative in (B-4), we can eliminate A
by means of energy constraint (7). However, the bandwidth constraint (23) can
not be satisfied for any value of wL # 0 . Therefore, we must discard the
second alternative.

To handle the fir alternative in (B-4) conveniently, we define a function

5.,[\4) EW, ({Lu) =A ws(y(")+%;/£cos(«u) = % Gr, lu] <1, (B-5)




T
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where N wl r
125‘#') X;T:‘ZBhL' (B-6)

Imposition of (A-1) forces (B-5) into the form

«w) cosbou)+ 6(17) <
Yylw) = C[C::ST() - f;’j cos(n()-rﬁ'(:t’)] = CAW, =1, (B-7)

where C is a constant, The energy constraint (7) yields

2 Y2
C = (m) , (B-8)
where we have used (B-5) and (B-7), and defined
Ko = Ic’u Al(“). (B-9)
Satisfaction of bandwidth constraint (23) demands that
0= Jdu [cos@u) - GEU(U), (B-10)

where we employed (B-6) and (B~7). Substitution of the detailed form for .Alu),
(B-7), into (B-10) yields the relation

asbeq) 265 - 267+ 3] 14267+ 52 - 46560}
= [icoskhe(l-f)][s (0(1+ x) + S’\a.’ft- ..(>-23.5Q,$)]) B-11)

where ol
sSm(x)
S(x = = (B-12)
For a given value of ¢, (B-11) must be solved for the smallest value of « ; &
is a known specified constant. In order to find the best value of , we com-

pute D, versus 9, and pick the minimum, always being careful that A)remain
nonnegative for all lulg i, The quantity

D, = ;:TTU(&[W,' )] = ;,J;r? -E-Sdu[n,’ (u)T

(B-13)

S, K _ K, B:
2 )

B o Ko B 4x" Ko
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using (B-5), (B-7), (B-8), (B-6), and defining
2
K. & Jdu[j'(“)] . (B-14)

The quantities K, and K, are available upon substitution of (B-7) in (B-9) and
(B-14). There follows, upon use of (23),

K, = C2[1+ S(a9)] + 2C36[q* Sr) + &(1-9)]
+ G C,[z&('z—f)s('(g)-w-q:Skv«)Jr 1’3(-(1- ~)1 (B-15)
K= ¢ [ Seq) + § €71~ S(20]
+ 4G c,{S(«q,- o) - S(-(1,+ -f)}], (B-16)
Wheré, = Eos(.q,)]" , G = -[tfcos(r) + Gr(l-f)]-'. (B-17)

The numerical approach may now be summarized as follows. A value of
is picked, and (B-11) is solved for « , Then (B-17) is computed and sub-
stituted in (B-15) and (B-16), thereby enabling evaluation of D, in (B-13) for
that choice of . (Up to this point, & could be any desired constant; we now
restrict & = ). When this approach is tried, it is found that D,
increases monotonically with increasing q. On the other hand, when 9§, is
made too small, Mu) becomes negative near us|. The optimum value of
is realized when K'(1) =0. From (B-7) and (B-17), this requirement is

& 5\»6’(1) + G 9 sinkq) = 0. (B-18)

The simultaneous solution of (B~11) and (B-18), with smallest « , is then given
by

1=.ton 1996 , o« = 2.217 059§, (B-19)
The optimum value of D, then follows from (B-13) as
D, =.1604 4830 By, , (B-20)
and the segment length follows from (B-6) as
- iX_ | _ 4049231 .
L=5%"% ° B (B-21)

Finally, the optimum window w ¥ follows from (B-5) as
w (6 = ™ [ea 631 + 4,260 0617 cos(4.434 191 4/L)

- 433733 cos (3,52 2613 L)), 1 s L2,

(B-22)

21/22
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Appendix C

DERIVATION OF THE OPTIMUM DATA WINDOW FOR AN RMS-
BANDWIDTH CONSTRAINT

The problem here is to minimize (11), subject to constraints (3), (7), and
(29). In order that (11) be finite, w'[f) must be continuous. Using (3), this means

that
w(tL/) =0, w(tL/2)=0. (C-1)
A calculus-of-variations approach tells us to minimize the quantity
Q =(dt ]’ + 2 (dt[w )’ +)&fdt w'ih, (C-2)

where N and p are Lagrange multipliers; the resulting differential equation for
the optimum window is

W) - At w8 = 0, I < L2, (C-3)
We employed (C-1) on the allowed variations in deriving (C-3).

To solve (C-3), we assume a form exp(sﬂ for wy#), Substitution in (C-2)
requires that s be chosen to satisfy

s‘-\s’q- p=0; S {“D‘ + (a*- 4}‘7“]- (=D

At this point, several alternatives are possible. The first case we pursue
is a negative discriminant in (C-4). Then the four values for $§ in (C-4) can be

expressed as A *
s=2,2,-%-~2, (C-5)

where 2 is a complex constant with nonzero imaginary part. For distinct roots
(i.e., ® not purely real), the optimum window is

W, &) = A exp(zt) +B exp(2™t) + C exr(-z-f:)-r D exp(-2"t). (C-6)

In order that (C-1) be satisfied with a nontrivial solution, it is necessary that

the determinant & N
E E Y Ve

Ve Y&t £ £
£ 26 -zt -
ir 2 e LE
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equal zero, where E s exr(&L/Z) . This requires that
' 4 4 )
(Z +i)(z—i‘XE -DE™-) = 0. (C-8)

But none of the factors in (C-8) can be zero without double roots resulting for s,
in which case the form (C-6) is not appropriate. Therefore, the negative-
discriminant case is self-destroying.

The second case corresponds to a zero discriminant in (C-4). Then we have
three subcases:

oK g
5= ia, ia, ~ia,-ia ; a real and positive, (C-9)
OR

For subcase 1, the form for wy(t) is
W, 1) = A cosh(at) + B sinh(at) +CE coshfat) + Dt sinh(at). (C-10)
Imposition of (C-1) requires that

smhlal) =2 al (C-11)

for a nontrivial solution, But (C-11) has no solutions for positive real q .
For subcase 2 in (C-9), the iorm for wi)is
w = A cosat) +B sin(at) + Ct ws(at) + Dt sinfat), (C-i2)

Imposition of (C-1) requires that
' sm(al) = 2 al (C-13)
for a nontrivial solution, Again this is disallowed.

For subcase 3 in (C-9), the form is
s 2 3
Witi=A+Bt+Ct +Dt. (C-14)
Imposition of (C-1) yields only the trivial solution.

The third, and last, case we must now consider is a positive discriminantin
(C-4). Then we have three subcases:




W

e r——
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£q b

$={ *axib}, a and b real, (C-15)
tio, xib

For subcase 1, we have
w,1t) = A osh(at) + B sinh(at) + C cosh(bt) + D sinh(bY). (C-16)

Imposition of (C-1) requires that

& banh(x) = ‘Bfuul\(f) or ﬁ::(w) = b;"@) (C-17)

where

<= alf2, f= bL/2. (C-18)

The only solutions of (C-17) are o =ﬂ ; that is, & = b . However, these have
been considered already in (C-10) and found inadequate.

For subcase 2 in (C-15), we have
w, 1) = A «shlat) + B sih(at) + C sbt) +D sin(bt). (C-19)

Satisfaction of (C-1) demands that

. o " ton
-« tanh{x =pbn(p) or ta :k) = P(L) (C-20)

The second alternative in (C-20) leads to odd solutions only, in (C-19), and they
must be discarded because of their higher variation rate. The first alternative
in (C-20) leads to

w, = C [ ::::((:){-L - cz}(b;) ] <+, (C-21)

which is a legal nontrivial solution. The values of o and § are related as shown
in figure C-1. To handle this alternative conveniently, we define a function

3 ) =
Yolu) = Wo('!i'“) = C[ :s:t)u) ) céi((pfl] = Lﬁ(q), ul= 1. (C-22)
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x tan (x)
X
Figure C-1. Relationship of @ and B in (C-20)
Then
9o (v = 5‘% (5w, 4 () = (Tz')‘ (C-23)
The energy constraint (7) requires that
2 2
2 —— (0'24)
C (LK. )
where
Wy
of {(Ju [J( (“)] _ (C-25)
The bandwidth constraint (29) requires that
. K (C-26)
L=+ (5L .

where we have employed (C-23), (C-24), and (C-25). Then we use (C-23) through
(C-26) to determine the bias constant P, as

v )2 K,
D, = (';5"5&[% Hf?] = )S:-\-T.B: : (C-27)

For the current example in (C-22), we evaluate

K = RO+ 1430

0 = m’rm COSI(P)
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<o R0 -1 ’,[_«tm(o) law(ni+‘9 ———5’139-;

cosh' &)
' ‘ + R 1+5() |
! K,= « + C-28
where we have employed the first alternative in (C-20), and defined
Sinh ~pa - _Smix)
Rix) = ———,‘—(x)—, SW= =" (C-29)
For an arbitrary of , we solve the first alternative in (C-20) for s
and then compute D, , by means of (C-27) and (C-28). It is found that D,
increases monotonically with o¢ ., The minimum is realized when o =0 ,
namely
4+
! :Dz = 3_5'.' (C-30)

The third subcase in (C-15) yields the form

| Nol8) = A cos(at) + B sin(at) + C oas(pt) +D 3in (b8). (C-31)
The boundary conditions (C~1) demand that
r tan tom
o ton () = 4 ton(9) or «(‘() = /ew ' (o8

However, the second alternative in (C-32) yields odd solutions and is discarded.

The first alternative yields - (B o 9
C0sia cos3 L r
W.H=C[ wl) ws(p) ];H“z"""*z' (C-33)

The values of o and ( are related as shown in figure C-2. As above,

/ x tan(x)

-

Figure C-2. Relationship of @ and f in (C-32)

o
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we define a function

o) = W, (5w) = CAly) - C[c—;l‘g}z‘ - 8. (€5
We can now employ (C-25) through (C-27) immediately. We evaluate
K = 12502 _, Skap)+St-p) 1+ 5(2p)
. c0s' b cos by) cas(a) cos¥(p)
1S g Skp)-Std) | e |-Shp) 3

K —1 cgsz(«) "f COS(V) s (p) f} CO&J(P> (6=39)
41+5() 522 SHHDSk-p |, 4 1+ 529
Koz~ 2f cos k) cs(g) A cos*(p)

For an arbitrary X ( #w/2) , we solvethe first alternative in (C-32) for
dd , and then compute J), using (C-27) and (C-35). It is found that D,
ecreases monotonically with increasing « , at least for o¢ upto w2, the

, A1) goes

» (C-32) is not an

However, when of > /2
For o = /2

limit being 25/9 at « = ™f2 -
negative somewhere and is unacceptable,

adequate form; we note instead that f5 = 3w/2 from (C-31), andthen
() = Acos (Tu) - Beos(33-). (-39
The boundary conditions (C-1) force A =-3B , giving
by = cos®(Tw). (C=37)
We then find '
4
5 _ 4t - 45T
Ko = 3’ K, = 32 K, ize ' (C-38)
yielding | = I s
2yr~‘)= Br
e (C-39)
Dl = ';qi Br )

Thus (C-37) is the optimum window. (Notice that

which is smaller than (C-30).

Xw=0)

28




e -~ ——————

TR 4513

LIST OF REFERENCES

M. S. Bartlett, An Introduction to Stochastic Processes, Cambridge
University Press, New York, 1955.

E. Parzen, "On Consistent Estimates of the Spectrum of a Stationary Time
Series, ' Annals of Mathematical Statistics, vol. 28, 1957, pp. 329-348,

U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time
Series, John Wiley and Sons, Inc., New York, 1957,

R. B. Blackman and J. W. Tukey, The Measurement oi Power Spectra,
Dover Publications, New York, 1959,

G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications,
Holden-Day Inc., San Francisco, 1968.

A. H. Nuttall, Spectral Estimation by Means of Overlapped Fast Fourier
Transform Processing of Windowed Data, NUSC Report 4169, 13 October
1971,

A. H. Nuttall, "Estimation of Cross-Spectravia Overlapped FFT Processing, "
NUSC Technical Memorandum TC-83-72, 18 April 1972,

A. Papoulis, '"Minimum-Bias Windows for High-Resolution Spectral
Estimates, ' IEEE Transactions on Information Theory, vol. IT-9, no. 1,
January 1973, pp. 9-12.

J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement
Procedures, John Wiley and Sons, Inc., New York, 1971,

29/30
REVERSE BLANK




