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ABSTRACT 

The time-limited nonnegative data windows that minimize the 
bias in auto- and cross-spectral estimation of stationary random 
processes by means of overlapped Fast Fourier Transform(FFT) 
processing are derived for a variety of constraints. When the time 
duration L of the data window is constrained, the optimum data 
window is (2/L)1/2 cos (ir t/L), |t| S L/2; when the equivalent- 
noise bandwidth is constrained, the optimum data window is 
(8/3L)^'2 cos (rrt/L), which is the Harming window; when the half- 
power bandwidth is constrained, the optimum data window is 
L"1/2 [1.682 + 4.261 cos (4.434 t/L)-4.337 cos (3.552 t/L)], 
which is very similar to the Manning window; and when the root- 
mean-square bandwidth is constrained, the optimum data window is 
4/(5L)l/2 cosJ (nt/L). In the three bandwidth-constrained cases, 
'ie window duration L is adjusted to meet the constraint. 

The Harming window is a reasonable compromise for achieving 
minimum bias, because in addition to being the optimum for one 
bandwidth constraint, it is very close to the optima for two other 
bandwidth constraints. The relative merits of the spectral charac- 
teristics of the windows are also discussed. 
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MINIMUM-BIAS WINDOWS FOR 
SPECTRAL ESTIMATION BY MEANS OF 

OVERLAPPED FAST FOURIER TRANSFORM PROCESSING 

INTRODUCTION 

The selection of good data windows in spectral estimation of stationary 
random processes,   to minimize leakage,   is an important consideration and has 
received much attention [1-8]. In [6], a thorough investigation of fourgood data 
windows revealed virtually the same variance-reduction capabilities of over- 
lapped Fast Fourier Transform (FFT) processing when the proper overlap was 
used for each window.  The ultimate variance reduction of this direct procedure 
was also demonstrated to be identical to that attained by the  older  (indirect) 
analysis procedure in [4j. 

In this report, attention is focused on the bias in the estimation of power 
density spectra by means of overlapped FFT processing. Specifically, the bias 
is minimized by the choice of data windows that are restricted to be time-limited 
and nonnegative and are subject to either a time-duration constraint or a band- 
width constraint. These results complement and extend those of [8] for the in- 
direct approach to spectral estimation. 

PROBLEM DEFINITION 

The overlapped FFT method for spectral estimation and the reasons for its 
use are documented in [6]. The mean of the spectral estimate is given by [6, 
eq. (5)] for auto-spectral estimation,  and by [7, eq. (4A)] for cross-spectral 
estimation. In both cases, the mean takes the form* 

E  {G(f)}  =/dvG(f-v) |W(v)|2f (1) 

where  G(f)  is the estimate of the true (auto or cross) spectrum  G(f),   and 

W(f) = /dt exp(-i2iTft) w(t), (2) 

'"Integrals without limits are over the range of nonzero integrand. 

mM 
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where  w(t)  is the data window multiplied in the time domain by the available 
data.   It is assumed that the data window is time-limited  and nonnegative: 

m     f=0for |t| >L/2 | 
W(t)     Uofor It| <L/2|' (3) 

where   L  is the window duration.   The restriction to nonnegative data windows 
guarantees that the spectral window  W(r)  peaks at the origin.   It should be noted 
that (1) is true with no restriction on the available record length  T  and with no 
restriction on the statistics of the random processes involved, except that the 
processes must be stationary; they need not be Gaussian for (1) to apply. 

The desired value of (1) is the true value G(f); therefore the bias in estima- 
tion is defined as 

B(f) = E{G(f)}-G(f). (4) 

We approximate this bias by expanding G(f-i»)  in (1) according to 

G(f-v) S G(f) -vG'(f) + 1/2 G"(f)v2 - 1/6 G'"(f)v3 + 1/24 G,m(f)v4, (5) 

where the prime denotes a derivative.   Substitution of (5) and (1) into (4) yields 

B(f) 5 1/2 G"(f)fdv v2 |W(v) I2 + 1/24 G""(f)fiv v4|W(v)| 2, (6) 

where we have assumed (without loss of generality) that 

/dv |W(v)|2 =/dt w2(t) = 1, (7) 

and that |W(v)|   is even about the origin; that is,   w(t)  is a unit-energy real 
waveform. 

We express (6) as 

B(f) S 1/2 G"(f) Di + 1/24 G""(f) D2 = Bi (f) + B2 (f), 

where window constants 

(8) 

Ü! =fdvv2 |W(v)|2, 

Dg^dv^jW^)!2, (9) 

•  -■■ 
L- 
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are independent of the true spectrum   G(f).   To minimize the bias,   we must 
therefore minimize  Dj   and/or  D2,   subject to (3) and (7).   To this aim, it is 
useful to express (9) in terms of the time domain.   There follows, by use of (2), 

Di = (2it)-
2
 fdt [w'(t;i]2 (10) 

and 
D2 = (2ir)-4/dt [w"(t)]2. (11) 

Strictly, the approximation (8) to the bias is due only to local variations in 
true spectrum  G(f)  about the frequency point  f  of interest; equation (5) is not 
necessarily a good approximation for larger v. Thus, peaks in th'i true spectrum 
that are distant from the point  f under investigation are not accounted for by (5). 
To minimize the effects of remote snectral peaks on bias, we must also require 
that the spectral window  W(f)  decay sufficiently rapidly for large |f |.   Thus 
the results of the following optimizations :.re not final, but must be investigated 
to see if they also meet the requirement of sufficiently rapid decay with frequency. 

In addition to constraints (3) and (7), we shall be interested in constraining 
the bandwidth of the window; this is in keeping with the philosophy of requesting 
a specified frequency resolution for spectral estimation, and letting the window 
duration   L  and overlap be whatever is necessary to meet this requirement [6]. 

It should also be noted that constraints on bandwidth tend to equalize the 
variance-reduction capabilities of the windows.   This may be seen froin [6 , 
eq. (22)], where the equivalent number of degrees of freedom is given approxi- 
mately by 

2TBgt   for   T»L , (12) 

where   Bst  is the statistical bandwidth [9, p. 278] of the window. Thus, if all 
windows were constrained to have the same statistical bandwidth, they would all 
have the same variance-reduction capabilities, and we could minimize the bias 
subject to this constraint. However, this constraint is not mathematically trac- 
table. * Therefore, we resort toconstraints on other, more tractable, bandwidth 
measures, with confidence that they too will yield comparable variance in spec- 
tral estimation (see [6, table 1]). 

*We have not been able to express the time-domain constraint (3) directly in the 
frequency domain, nor have we been able to express the requirement that 
♦w(T) ^e a legal correlation function directly in the time domain;  see [6, 
eqs. (7) and (17)-(21)]. 

m^Biz^m* 
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PROBLEM SOLUTION 

Four different constrained problems will be addressed in this section: con- 
strained window duration   L ; constrainedequivalent-noise bandwidth; constrained 
half-power bandwidth;and constrained root-mean-square (rms)bandwidth. The win- 
dow duration L is adjusted to meet the bandwidth constraint in the latter three cases. 

DURATION CONSTRAINT 

Here we wif h to minimize   Dj   In (10), subject to constraints (3) and (7) and 
a fixed value of window duration   L.   In order that (10) be finite,   w(t)  must be 
continuous; therefore w(±L/2) = 0 from(3). Whenweuseacalculus-of-variations 
approach, the optimum window w0(t)  must satisfy the differential equation 

w^t) + X w0(t) = 0,   |t| < L/2, (13) 

where X. is a constant (Lagrangc multiplier). Thesolution of (13) that satisfies 
the boundary conditions and (7),  and has minimum   D.,  is 

w0(t) = [-Jj       cos(irt/L),   |t| S L/2. (14) 

The corresponding value of (10) is 

1     4L2 
(15) 

Several windows are compared in table 1. It is seen that the Hanning window 
has 33 percent greater bias, as measured by Bj(f), than the optimum window, 
urder a luration constraint. 

Table 1. Window Bias Constants Dj 

Data Window 4L2Di 

Optimum, (14) 

Parabola 

Triangle 

Hanning 

1 

10/tr
2 = 1.01 

12/ir2 =  1.22 

4/3    =  1.33 
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The spectral window corresponding to the optimum data window,  (14), is 

W 0(f) ^ (2L)l/2 ÄÜ 
l-4L2f2 

(16) 

r-2 The decay for large frequencies is only as   f    .   The sidelobes of this and the 
following windows will be discussed later. 

EQUIVALENT-NOISE-BANDWIDTH CONSTRAINT 

The equivalent-noise bandwidth   Be   of spectral window  W(f)  is defined as 

/if |w(f)|2 1 
B„ 

|W(0)| [fit w(t)]J 
(17) 

where we have used (7) and (2).   The quantity  Be  can be interpreted physically 
as the bandwidth of an ideal rectangular filter that would pass the same amount 
of power as a filter   W(f), when subjected to white noise; see figure 1. ThepeaK 
of   |W(f)|     occurs at the origin, since data window  w(t)  is nonnegative. 

Figure 1.   Equivalent-Noise-Bandwidth Interpretation 

The problem here is to minimize Di in (10), subject to constraints (3), (7), 
and (17). TMs problem is solved in appendix A, with the result that the optimum 
data w indow is 

1/2 
w0(t) =^j       cos>t/L)f   |t| S L/2 (18) 

• 

^flM* 
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f 

This is the familiar Manning window. The window duration  L must be chosen as 

(19) 
2   B« 

according to (17).   The minimum value of D,   is 

1 
D, 

3L 
„   '"Be 2       oi 

(20) 

The specified equivalent-noise bandwidth dictates the window duration  L  and 
the minimum attainable bias constant  D,.    The spectral window corresponding 
to (18) is 

Wo(f) = if) 
1/2 sin(TrLf) 

TLfa-L2!2) 
(21) 

where  L must be determined from (19).   The decay for large frequencies varies 
as f ~3. 

HALF-POWER-BANDWIDTH CONSTRAINT 

The half-power bandwidth  B^  of spectral window W(f)  is defined as 

2 W(±Bh/2) 

W(0) 

1 

2 
(22) 

We desire to minimize  Dj   in (10), subject to constraints (3),  (7),   and (22). 
Converting (22) into the time domain and restricting w(t) to be even, * constraint 
(22) takes a desirable integral form: 

fit wftJfcosfirBjjt) - 2"1/2] = 0 (23) 

The solution to this minimization problem is presented in appendix B. The optimum 
data window is 

0(t) = IT1
^

2
 f 1.682 + 4.261 cos(4.434t/L) 

- 4.337 cos(3. 552t/L)J,   |t| S L/2 . (24) 

* An odd component in w(t)  increases the rate of variation and therefore 
increases   Dj. 

*mm m 
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The window duration   L  must be chosen as 

L-l^l. ,25, 
Bh 

according to (23).   The minimum value of  D^   is 

D1 = 0.1604 B^ . (26) 

The spectral window corresponding to (24) is obtained by employing (2); this will 
be discussed in the next section.   It is shown in appendix B that w^(fL/2) = 0; 
therefore the decay of the spectral window is according to f"3. 

For comparison, if the time duration of the Hanning window is adjusted to 
realize the specified half-power bandwidth, namely  L = 1.441/Bij [6, eq. (33) 
and table l], it follows that Di = 0.1606 Bfi.   Thus the Hanning window has 
virtually the same bias as the optimum window under a half-power-bandwidth 
constraint.   Further comparisons are made in the next section. 

ROOT-MEAN-SQUARE-BANDWIDTH CONSTRAINT 

The  rms  bandwidth  Br   of spectral window  W(f)  is defined as 

2 _/dff2|w(f)|2 
Br r „     • (27) 

7df|W(f)r 

Inspection of (7) and (9) immediately reveals that 

Dj = BJ . (28) 

Thus if the rms bandwidth is constrained, bias constant  D}  is fixed.   In this 
case, it is reasonable to resort to minimization of the second bias constant D2 
in (9) or (11).   Thus, we wish to minimize (11), subject to constraints (3),  (7), 
and 

fdt[w'(t)]
2
 = (2itBr)

2
 . (29) 

The solution to this problem is presented in appendix C.   The optimum data win- 
dow is 

=—^— cos3(irt/L),   |t| S L/2 . w (t) =  cos0(irt/L),   |t| S L/2 . (30) 
(SL)1^ 

■"■««■„Wi. 
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The window duration   L must be chosen as 

3      1 

2«^5    B, 
(31) 

according to (29).   The minimum value of D2   is 

_    _ 25 _4 
D2 ~ ~ Br   ■ 

The sopctral window corresponding to (30) is 

W0(f) = ^(SL)1/2 COS(TrLf)  
15it (l-4L2f2)(l-4L2f2/9) 

ton\ 

(33) 

where   L  is determined from (31).   The decay for large frequencies is according 
to r4. 

For comparison, let the time duration of the Banning window be adjusted to 
realize the specified rms bandwidth   B .   Then employing (18) in (29), we find 
L = l/(*ß Br)t and (11) yields  D2 = 3 B4 .   Thus the Banning window   has 
8 percent more bias than the optimum window under an rms bandwidth constraint, 
as measured by bias constant D2. 

COMPARISON OF WINDOW CBARACTERISTICS 

In figure 2, one-half of the symmetric optimum data windows for the three 
bandwidth-constrained cases are drawn for a common time duration of  L - 1. 
The equivalent-noise-bandwidth data window (Banning) and the half-power-band- 
width data window are virtually identical and are continuous in value and deriv- 
ative at 0.5.  The rms-bandwidth data window is more peaked, and goes to zero 
in value, in derivative, and in second derivative at 0.5.   Thus the last window 
would require greater overlap than the first two, in order to realize the same 
variance reduction; see f6J. 

In order to deduce the required overlap for the rms bandwidth data window, 
the quadratic and cubic data windows [6, pp. 10-18] are superposed in figure 3. 
Over most of the range, the quadratic and rms-bandwidth windows are very close. 
Near the end of the range, however, the taper of the rms-bandwidth window ap- 
proaches that of the cubic; in fact, both are continuous in second derivative at 
0.5.   Thus, it is anticipated from earlier results [6, table 4 ] that slightly over 
65 percent overlap would be required for the rms bandwidth data window to realize 
99 percent of its maximum equivalent degrees of freedom [ 4, p. 22 ]. 

8 
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2.Or 

ROOT-MEAN-SQUARE-BANDWIDTH DATA WINDOW 
EQUIVALENT-NOISE-BANDWIDTH DATA WINDOW 
HALF-POWER-BANDWIDTH DATA WINDOW 

Figure 2. Three Bandwidth-Constrained Data Windows; 
L = 1, Unit Energy 

2.Or 

RMS.       ROOT-MEAN-SQUARE-BANDWIDTH DATA WINDOW 
QUAD:   QUADRATIC DATA WINDOW 

CUBIC:   CUBIC DATA WINDOW 

Figure 3. Comparison of RMS-Bandwidth Data Window with 
Quadratic and Cubic Data Windows; L = 1, Unit Energy 
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The spectral characteristics of the four windows derived in this report are 
presented in figures 4 through 7.   The abscissas on every plot are in units of the 
half-power bandwidth; thus all the curves go through half-power (-3.01 dB) at 
f/Bj, = 0,5.   The duration-limited window, (14),   is plotted in figure 4 and ex- 
hibits relatively slow decay with frequency, since the data window is discontin- 
uous in derivative at its edge.   The equivalent-noise-bandwidth (Hanning) and 
half-power-bandwidth spectral windows, plotted in figures 5 and 6, are virtually 
identical and have good decay with frequency, since the data windows are con- 
tinuous in derivative at their edges.   The spectral window for the rms-bandwidth 
data window is plotted in figure 7 and exhibits very rapid decay with frequency. 
However, as noted above, by virtue of requiring greater overlap for maximum 
variance reduction, this window will require somewhat greater-size FFTs than 
do the other windows. 

CONCLUSIONS 

The Hanning window is optimum under an equivalent-noise-bandwidth con- 
straint, as far as minimization of bias constant  Di   is concerned. Furthermore, 
it is near the optima for two other bandwidth constraints.   Its spectral decay is 
also sufficient for most cases that the bias is relatively unaffected by distant 
spectral peaks.   And with 50 percent overlap, it realizes 92 percent of the max- 
imum number of equivalent degrees of freedom [6, table 6].   Thus, the Hanning 
window is a reasonable compromise to utilize in spectral estimation of random 
stationary data. 

10 
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Appendix A 

DERIVATION OF THE OPTIMUM DATA WINDOW FOR AN 
EQUIVALENT-NOISE-BANDWIDTH CONSTRAINT 

We wish to minimize (10) (from the main text), subject to constraints (3), 
(7), and (17).   Equations (7) and (17) are integral constraints and are in a con- 
venient form for a calculus-of-variations approach.   The way we handle (3) is to 
first ignore the nonnegative limitation; then, out of the class of allowable sol- 
utions, we restrict attention only to the nonnegative solutions and pick the best. 

In order that (10) be finite, w(t)  must be continuous.   Using (3), we see that 
this means that 

w(±L/2) = 0. (A-l) 

A calculus-of-variations approach tells us to minimize the quantity 

Q =[«H-[w'(fD3-\ j> w*it) *2Xj<Hr*fc), (A-2) 

where \ and \a are Lagrange multipliers; the resulting differential equation 
for the optimum window is 

^fe-^X.w.ft)  = )sa>W<L/2. (A-3) 

We employed (A-l) on the allowed variations in deriving (A-3). 

The general solution of (A-3) is 

Aca5(at)+B*in(a-t)   4-   C 

OR 

A4-Bt 

(A-4) 

where a  is real and positive.   The third alternative in (A-4) yiolds the trivial 
solution when (A-l) is imposed. 

15 
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The second alternative reduces to 

y^ltt = AfcwkM- «5^0)^  /t) S   L/2. (A-5) 

Since A can be chosen to satisfy the energy constraint (7), and L  can be chosen 
to satisfy the bandwidth constraint (17), there is left only the variable Q.  in 
(A-5) to vary; w% \tf    is certainly nonnegative by the choice of proper polarity 
for A.   In order to find the best value of ft for this second alternative of (A-4), 
we compute P,  in (10) versus iX  and pick the minimum. 

To accomplish this goal, we define 

(A-6) 

where 

and 

${u)   = cosKW«) - Cosh W; N^ I 

* ~ at/a. 
The bandwidth constraint (17) then becomes 

^ 2    • ^     » 
where 

K.sf'^iw. 
-1 

The energy constraint (7) becomes 

where 

K, 5 I'd» i». 
-I 

The window constant (10) becomes 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-ll) 

(A-12) 

(A-13) 

16 
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where 

K.« I'du^r. 
(A-14) 

If we eliminate A   and L  by using (A-9) and (A-ll), then (A-13> becomes 

(A-15) 

The quantities necessary in (A-15) follow from (A-7), (A-10), (A-12), and (A-14): 

(A-16) 

When (A-16) is substituted in (A-15), Ti,  is found to increase monotonically with 
increasing x ; the limit as o<-*H is 

The first alternative in (A-4), when subjected to boundary condition (A-l), 
breaks into two subcases.   In the first, if   5ih(ar) « 0,      then ^  is arbitrary. 
Then   o< a kir, k> \     .   The function with smallest D, corresponds to K»{f 

and yields 

W,|t).A[cos(2irt/L) + 7|+B^(^VO, |t|i L/2 (A-18) 

However, we must have  ß = 0 ; otherwise wjt) would go negative somewhere. 
Imposition of the energy constraint (7) and bandwidth constraint (17) yields 

Mö^fcMVVO.H^^, 
where 

L-l B. 

(A-19) 

(A-20) 

17 
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The corresponding value of fy   is 

(A-21) 

which is smaller than (A-17). 

The second subcase occurs if    Sin(«f) jt Q .   Then B in (A-4) must be 
zero, and we get 

Wo It) * A[^(«t) - cos(«c^ W - L/2> 
(A-22) 

where    •< ^ KTT .   The comments and method immediately below (A-5) apply 
equally well here.   Therefore we define 

and find 

(A-23) 

(A-24) 

When (A-24) is substituted in (A-15), P,  is found to decrease monotonically with 
increasing ^ , at least for o^  up to ir.   However, when «OH", -4/w) becomes 
negative domewhere; this may be seen by noting that j?'(i) = -o< si« (pc)        is 
positive if iOir.   Thus the limiting member of this subclass, which is (A-19), is 
the outimum window. 

18 
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Appendix B 

DERIVATION OF THE OPTIMUM DATA WINDOW FOR A 
HALF-POWER-BANDWIDTH CONSTRAINT 

Here we will minimize (10), subject to constraints (3), (7), and (23). In 
order that (10) be finite, (A-l) must again be true. A calculus-of-variations 
approach tells us to minimize 

where 
rK» 

c Hr) s C05(u)i) - Cry w 3 TT^ , Q- = 2   , (B-2) 

and \ and \ are Lagrange multipliers; the resulting differential equation for 
the optimum window is 

w;'y+\wtH:;- x.cie, w< 0. (B-3) 

If \, is negative, the form for wct)   includes  sinh and cosh  terms, which 
lead to a progressively larger value of D, as X, becomes more negative, 
similar to the result of appendix A.   If X, is zero, the only solution to (B-3) 
and (A-l) is the trivial solution.   If X, is positive, the general solution to (B-3) 
is 

>M<± 
(B-4) 

We discard tha odd solutions for the reason given in the footnote to (23). 

If we attempt to use the second alternative in (B-4), we can eliminate A 
by means of energy constraint (7).   However, the bandwidth constraint (23) can 
not be satisfied for any value of    oüLfO     ■   Therefore, we must discard the 
second alternative. 

To handle the fir    alternative in (B-4) conveniently, we define a function 

(B-5) ^WX\.,/    A      Xx »joIM) S W0(^U) =Ac«s(r)+^-co5(<«)-f ft, W < i, 

IS 
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where 

yätht'^if 
Imposition of (A-l) forces (B-5) into the form 

*
|M)

  CLT^T ' j>K)**o-f>J s Ci(^,ttl   ' 
where C  is a constant.   The energy constraint (7) yields 

c -(A)' 

(B-6) 

(B-7) 

(B-8) 

(B-9) 

(B-10) 

where we have used (B-5) and (B-7), and defined 

K, = Jduif«). 
Satisfaction of bandwidth constraint (23) demands that 

0 - Jdu[co5^u)-6-JJKu), 

where we employed (B-6) and (B-7).   Substitution of the detailed form for Jflu), 

(B-7), into (B-10) yields the relation 

(B-ll) 

where 

(B-12) 

For a given value of  0, (B-ll) must be solved for the smallest value of ^ ; fr 
is a known specified constant.   In order to find the best value of   4   , we com- 
pute D, versus <), and pick the minimum, always being careful that Jkft^remain 
nonnegative for all |u|s I.   The quantity 

^L*   K,       ^x 
K,      ^i 

(B-13) 
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• 

using (B-5),  (B-7), (B-8), (B-6), and defining 

l3 

K, = U*M (B-14) 

(B-15) 

The quantities  K,  and  K,  are available upon substitution of (B-7) in (B-9) and 
(B-14),   There follows, upon use of (23), 

The numerical approach may now be summarized as follows. A value of 
(^     is picked, and (B-U) is solved for oi .   Then (B-17) is computed and sub- 
stituted in (B-15) and (B-16), thereby enabling evaluation of D,  in (B-13) for 
that choice  of  Q .   (Up to this point,    6r   could be any desired constant; we now 
restrict   fr ■ iflr ).   When this approach is tried,  it is found that "D, 

increases monotonically with increasing   q .   On the other hand, when   «^ is 
made too small, J^jii) becomes negative near 1**1.   The optimum value of « 
is realized when  J^'(l) »0.    From (B-7) and (B-17), this requirement is 

where 
(B-16) 

(B-17) 

Cl5\*.(^)+ C^s'mk}- o. (B-18) 

The simultaneous solution of (B-U) and (B-18), with smallest V , is then given 
by 

q =,fOn W6 ,  < = 2.217 osns". 

The optimum value of P,  then follows from (B-13) as 

and the segment length follows from (B-6) as 

(B-19) 

(B-20) 

L = 
Finally, the optimum window W^lö follows from (B-5) as 

w
eW - i:yi[i.68i m + 'U6i wn 05(1.13-1 111I-t/O 

- -f. 331 3891 COS (3.551 2613 V0],  lij S tVa. 

(B-21) 

(B-22) 
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Appendix C 

DERIVATION OF THE OPTIMUM DATA WINDOW FOR AN RMS- 
BANDWIDTH CONSTRAINT 

The problem here is to minimize (11), subject to constraints (3), (7), and 
(29).   In order that (11) be finite, w'/t^ must be continuous.   Using (3), this means 
that 

w(±L/2)=0,   w'(±L/2) = 0. (C-l) 

A calculus-of-variations approach tells us to minimize the quantity 

Q = Jdt[w"lt/]V X^^Mr)]2 f/*iWlö, <c-2> 
where  X  and ^ are Lagrange multipliers; the resulting differential equation for 
the optimum window is 

vTfc) - Xvt'it) v^^(t) ~0' M* 
Llz' 

We employed (C-l) on the allowed variations in deriving (C-3). 

(C-3) 

To solve (C-3), we assume a form  eÄp(jt) for %/t).   Substitution in (C-3) 
requires that s  be chosen to satisfy 

S^XsV/^O;     'o^tlXtU1-^]. (C-4) 

At this point, several alternatives are possible.   The first case we pursue 
is a negative discriminant in (C-4).   Then the four values for 8 in (C-4) can be 
expressed as * * 

S = 2,* /-'Zv^Z > (C-5) 

where *  is a complex constant with nonzero imaginary part.   For distinct roots 
(i. e.,   S   not purely real),   the optimum window is 

In order that (C-l) be satisfied with a nontrivial solution, it is necessary that 
the determinant 

E      £■      /F     '/E' 

./,-* 

(C-7) 
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equal zero, where   E* exp(*L/2^   ,   This requires that 

(C-8) 

But none of the factors in (C-8) can be zero without double roots resulting for s, 
in which case the form (C-6) is not appropriate.   Therefore, the negative- 
discriminant case is self-destroying. 

The second case corresponds to a zero discriminant in (C-4).   Then we have 
three subcases: 

a   real and positive. (C-9) 

bcases: 

J   -    •0f- 
OR 

o, o, 0, 0 

For subcase 1, the form for W0(t) is 

%(f; = A co5l>(«t) 4-B s'iwH(«i) +Ci cosli'fit) f Dti.V.».^).      (C.10) 

Imposition of (C-l) requires that 

3inK(aL)*±aL (C-ii) 

for a nontrivial solution.   But (C-ll) has no solutions for positive real  4.  . 

For subcase 2 in (C-9), the form for «lj,|0is 

HW « A co5(«t) ^-B sin(«i)+ Ct ops^t)f J>t .«'»(at). (C-i2) 

Imposition of (C-l) requires that 

for a nontrivial solution.   Again this is disallowed. 

For subcase 3 in (C-9), the form is 

V^ivl = A + Bt + CtV D t3. (C-14) 

Imposition of (C-l) yields only the trivial solution. 

The third, and last, case we must now consider is a positive discriminant in 
(C-4).   Then we have three subcases: 

24 
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A   and b   real 

For subcase 1, we have 

W,(t) = A (osk(«i) + B«mli(ot)+Cco5Ml>^ + D»''»'«^' 

Imposition of (C-l) requires that 

oC hua(^=(öW^) or     -^~ -—p*—' 

where 

^5  äL/2,  p = \>L/z. 

(C-15) 

(C-16) 

(C-17) 

(C-18) 

The only solutions of (C-17) are    o(*S ; that is,  A =■ b    . However, these have 
been considered already in (C-10) and found inadequate. 

For subcase 2 in (C-15), we have 

W0 ^ M vM«*) + 3 5inK(«i) + C CoiM +1> Sin^t). (C.19) 

Satisfaction of (C-l) demands that 

WL^ ä i52J£L. (C.20) -^^K) *{&*$ or 

The second alternative in (C-20) leads to odd solutions only, in (C-19), and they 
must be discarded because of their higher variation rate.   The first alternative 
in (C-20) leads to 

w.w=c[^f-^-],w^ (C-21) 

which is a legal nontrivial solution.   The values of o< and 5 are related as shown 
in figure C-l.   To handle this alternative conveniently, we define a function 

y) - ^ = c[^ - -^-J - CMu), M. I.    .c-22, 

25 
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^.. -x tanh (x) 

Figure C-l. Relationship of or and ß in (C-20) 

Then 

The energy constraint (7) requires that 

where 

Kj .JJu[ig)w7 
The bandwidth constraint (29) requires that 

(C-23) 

(C-24) 

(C-25) 

(C-26) 

where we have employed (C-23), (C-24), and (C-25). Then we use (C-23) through 
(C-26) to determine the bias constant P,. as 

A ■ £rl*[<vl - *&< 
For the current example In (C-22), we evaluate 

(C-27) 

26 
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where we have employed the first alternative in (C-20), and defined 

For an arbitrary o^  , we solve the first alternative in (C-20) for    A 

and then compute      Da   , by means of (C-27) and (C-28). It is found that Da 

increases monotonically with        ©^   . The minimum is realized when «< » o 
namely 

(C-28) 

(C-29) 

3>a = 3^. (C-30) 

The third subcase in (C-15) yields the form 

W0|t)= Aco5(a^)4.B5i«k)^ Cc*sW^]>^(^)- (C-31) 

The boundary conditions (C-l) demand that 

isifcL s iaiil. (c-32) *<hx*('()*fh*if) or 

However, the second alternative in (C-32) yields odd solutions and is discarded. 
The first alternative yields    _ /   \ T 

The values of    o^    and  ä   are  related as shown in figure   C-2.   As above. 

Figure C-2. Relationship of o and ß in (C-32) 
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we define a function 

(C-34) 

(C-35) 

We can now employ (C-25) through (C-27) immediately.   We evaluate 

K s   [tätä    n   5k*f)+5k-f) l + Sty) 
0 COS1^        ^      COS W VS(p       

t
       QOSty     ' 

For an arbitrary    X ( jt TT/Z.)   , we solve the first alternative in (C-32) for 
J5      ,   and then compute T2   using (C-27) and (C-35).   It is found that 3>a 

ecreaaes monotonically with increasing  •(   , at least for Q(   up to vr/z , the 
limit being 25/9 at   V = -n/z -    .   However, when     «C > ir/2 , Jfa)   goes 
negative somewhere and is unacceptable.    For   c^ » 77-/2        , (C-32) is not an 
adequate form; we note instead that     3 = 3"n-/2 from (C-31), and then 

The boundary conditions (C-l) force      A - -3B   , giving 

We then find 

(C-36) 

(C-37) 

KP = f > K, = -ixl 
32 K = 12^ (C-38) 

yielding 

(C-39) 

which is smaller than (C-30).   Thus (C-37) is the optimum window. (Notice that 
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