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Abstract. Connected dominating set (CDS) has a wide range of ap-
plications in mutihop wireless networks. The Minimum CDS problem
has been studied extensively in mutihop wireless networks with uniform
communication ranges. However, in practice the nodes may have different
communication ranges either because of the heterogeneity of the nodes,
or due to interference mitigation, or due to a chosen range assignment for
energy conservation. In this paper, we present a greedy approximation
algorithm for computing a Minimum CDS in multihop wireless networks
with disparate communications ranges and prove that its approximation
ratio is better than the best one known in the literature. Our analy-
sis utilizes a tighter relation between the independence number and the
connected domination number.

1 Introduction

Connected dominating set (CDS) has a wide range of applications in multi-
hop wireless networks (cf. a recent survey [2] and references therein). It plays a
very important role in routing, broadcasting, and connectivity management in
wireless ad hoc networks. Consider a multihop wireless network with undirected
communication topology G = (V, E). A CDS of G is a subset U ⊂ V satisfying
that each node in V \ U is adjacent to at least one node in U and the subgraph
of G induced by U is connected. A minimum CDS (MCDS) of G is a CDS of G
with the smallest size. The problem of computing a MCDS in a multihop wire-
less networks with uniform communications ranges has been intensively studied
in the literature. This problem is NP-hard [3], and a number of distributed al-
gorithms for constructing a small CDS in wireless ad hoc networks have been
proposed in [1,5,7,8] among others.

However, in practice the nodes may have different communication ranges ei-
ther because of the heterogeneity of the nodes, or due to interference mitigation,
or due to a chosen range assignment for energy conservation. In this paper, we
assume all the nodes V lie in an Euclidean plane, and each node v has a com-
munication radius rv. The communication topology of such a network is defined
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by a graph G = (V, E) in which there is an edge between two nodes u and v if
and only if they are within each other’s communication range. By proper scal-
ing, we assume that the smallest communication radius is one and the largest
communication radius is R. Under the assumption that G is connected, any pair
of nodes are apart by a distance of at most n − 1 and consequently we always
assume that R ≤ n − 1.

MCDS in multihop wireless networks with disparate communication ranges
have been studied in [6] and [9]. Thai et al. [6] applied the approximation algo-
rithm given in [7] for MCDS in multihop wireless networks with uniform commu-
nication ranges to compute a CDS in a multihop wireless network with disparate
communication ranges. The approximation bound of this algorithm involves the
relation between the independence number α (the size of a maximum indepen-
dent set) and connected domination number γc (the size of a minimum connected
dominating set) of the communication topology. It was shown in [6] that

α ≤ 10
⌊
logg R

⌋
γc

where g = 1+
√

5
2 is the golden ratio. With such a bound on α, an approxima-

tion bound 10
⌊
logg R

⌋
+ 2 + log

(
10

⌊
logg R

⌋)
was derived in [6]. Xing et al. [9]

targeted at obtaining a tighter approximation bound of the same approximation
algorithm. They claimed (in Theorem 3.1 in [9]) a tighter upper bound bound(
4 5

6 + 8 2
3

⌈
logg R

⌉)
γc on α. However, their proof of Theorem 3.1 in [9] contains a

critical error, which has no apparent fix. An explanation of this error is included
in the appendix of this paper. Thus, the improved approximation bound based
on the above bound of α in [9] becomes baseless.

In this paper, we first derive an improved upper bound on the number of
independent nodes in the neighborhood of any node. For any R ≥ 1, let

R∗ = 5 + 8
⌈
logg R

⌉
.

We show that the number of independent nodes in the neighborhood of any
node is at most R∗. Based on this upper bound, we then prove a tighter upper
bound (R∗ − 1) γc +1 on α. Thus, the approximation bounds of the approxima-
tion algorithms presented in [6] and [9] can be improved accordingly. We will
adapt the two-phased greedy approximation algorithm presented in [8] to multi-
hop wireless networks with disparate communication ranges, and show that its
approximation ratio is at most R∗ + ln (R∗ − 2) + 1.

The remaining of this paper is organized as follows. In Section 2, we present an
improved upper bound on the independence number α in terms of the connected
domination number γc. In Section 3, we analyze the approximation bound of a
two-phased greedy approximation algorithm for MCDS adapted from an algo-
rithm originally proposed in [8] for computing MCDS with uniform communica-
tion radii. In Section 4, we summarize the paper and discuss future studies for
potential improvements. Throughout this paper, D(u, r) denotes the closed disk
of radius r centered at u. The Euclidean distance between two nodes u and v is
denoted by ‖uv‖. The cardinality of a finite set S is denoted by |S|.
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2 Independence Number vs. Connected Domination
Number

In this section, we present an improved upper bound on the independence num-
ber α in terms of the connected domination number γc.

Theorem 1. α ≤ (R∗ − 1)γc + 1.

Theorem 1 follows from the lemma below by using the same argument as in [7].

Lemma 1. Suppose that I is an independent set of nodes adjacent to a node u.
Then |I| ≤ R∗.

The rest of this section is devoted to the proof of Lemma 1. Consider an arbitrary
node u ∈ V and an independent set I of nodes adjacent to a node u. Let I1 be
the set of nodes in I lying in the closed disk of radius g centered at u, and for
each j ≥ 2 let

Ij =
{
v ∈ I : gj−1 < ‖uv‖ ≤ gj

}
.

From [4] we have |I1| ≤ 12. The following lemma on |Ij | for j ≥ 2 was proved in [9].

Lemma 2. For any j ≥ 2, |Ij | ≤ 9.

We shall further prove the following lemma on |Ij ∪ Ij+1| for j ≥ 2.

Lemma 3. For any j ≥ 2, |Ij ∪ Ij+1| ≤ 16.

These two lemmas together imply Lemma 1 immediately. If
⌈
logg R

⌉
is odd, then

|I| =
∣
∣∣
∣
⋃�logg R	

j=1 Ij

∣
∣∣
∣ ≤ |I1| +

(�logg R	−1)/2∑

i=1

|I2i ∪ I2i+1|

≤ 12 + 16 · (⌈logg R
⌉ − 1

)
/2 = 8

⌈
logg R

⌉
+ 4 < R∗.

If
⌈
logg R

⌉
is even, then

|I| =
∣
∣
∣
∣
⋃�logg R	

j=1 Ij

∣
∣
∣
∣ ≤ |I1| + |I2| +

�logg R	/2−1∑

i=2

|I2i−1 ∪ I2i|

≤ 12 + 9 + 16
(⌈

logg R
⌉
/2 − 1

)
= 8

⌈
logg R

⌉
+ 5 = R∗.

So, Lemma 1 holds in either case.
Next, we prove Lemma 3 by using a subtle angular arguement. Fix a j ≥ 2.

We begin with the following two simple geometric lemmas, whose proofs are
omitted due to the space limitation.

Lemma 4. Suppose that v and w are two distinct nodes in Ij satisfying that
‖uv‖ ≥ ‖uw‖. Then, ∠wuv > 36 ◦. In addition, for any acute angle α,

1. if ‖uv‖ ≤ 2gj−1 cosα, then ∠wuv > α;
2. if ‖uw‖ ≥ 2gj−1 cosα, then ∠wuv > arccos g

4 cos α .
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Lemma 5. Suppose that w ∈ Ij and v ∈ Ij+1. For any acute angle α,

1. if ‖uw‖ ≥ 2gj−1 cosα, then ∠wuv > arccos g2

4 cos α ;
2. if ‖uv‖ ≤ 2gj cosα, then ∠wuv > arccos (g cosα).

By Lemma 2, |Ij | ≤ 9. We present some necessary conditions for |Ij | = 9 in the
lemma below.

Lemma 6. Suppose that Ij consists of nine nodes v1, v2, · · · , v9 sorted in the
increasing order of the distances from u. Then

1. ‖uv9‖ ≥ 2gj−1 cos 39 ◦ and ‖uv1‖ ≤ 2gj−1 cos 58.6 ◦;
2. ‖uv8‖ ≥ 2gj−1 cos 39.8 ◦ and ‖uv2‖ ≤ 2gj−1 cos 58.2 ◦;
3. ‖uv7‖ ≥ 2gj−1 cos 43.2 ◦ and ‖uv3‖ ≤ 2gj−1 cos 56.29 ◦.

Proof. We will use the following fact multiple times in this proof: Suppose that
I ′ is a subset of five nodes in Ij . Then, among five consective sectors centered at
u formed by the five nodes in I ′, at least one of them does not contain any other
node in Ij . This is because |Ij \ I ′| = 4 < 5 and hence at least one of those five
sectors does not contain any node in Ij \ I ′.

(1) We prove the first part of lemma by contradiction. Assume to the con-
trary that either ‖uv9‖ < 2gj−1 cos 39 ◦ or ‖uv1‖ > 2gj−1 cos 58.6 ◦. Then either
‖uvi‖ < 2gj−1 cos 39 ◦ for all 1 ≤ i ≤ 9 or ‖uvi‖ > 2gj−1 cos 58.6 ◦ for all
1 ≤ i ≤ 9. In either case, the angle separation of any two nodes in Ij at u is
greater than 39 ◦ by Lemma 4. If ‖uv5‖ < 2gj−1 cos 50 ◦, let vi and vk be the
two nodes in {v1, v2, · · · , v5} such that the sector �viuvk centered at u does not
contain any other node in Ij . Then by Lemma 4, ∠viuvk > 50 ◦. So, the total of
the nine consecutive angles at u formed by the nodes in Ij is greater than

8 · 39 ◦ +50 ◦ = 362 ◦ > 360 ◦,

which is a contradiction. Next we assume ‖uv5‖ ≥ 2gj−1 cos 50 ◦. Let vi and vk be
the two nodes in {v5, v6, · · · , v9} such that the sector �viuvk centered at u does
not contain any other node in Ij . Then by Lemma 4, ∠viuvk > 51 ◦. So, the total
of the nine consecutive angles at u formed by the nodes in Ij is greater than

8 · 39 ◦ +51 ◦ = 363 ◦ > 360 ◦,

which is also a contradiction. Therefore, the first part of the lemma holds.
(2) We prove the second part of the lemma by contradiction. Assume to the

contrary that either ‖uv8‖ < 2gj−1 cos 39.8 ◦ or ‖uv2‖ > 2gj−1 cos 58.2 ◦. We first
claim that there exists a node va ∈ Ij such that the angle separation of any two
nodes in Ij \ {va} at u is greater than 39.8 ◦. Indeed, if ‖uv8‖ < 2gj−1 cos 39.8 ◦,
then ‖uvi‖ < 2gj−1 cos 39.8 ◦ for all 1 ≤ i ≤ 8 and hence the claim holds for
a = 9 by Lemma 4. If ‖uv2‖ > 2gj−1 cos 58.2 ◦, then ‖uvi‖ > 2gj−1 cos 58.2 ◦ for
all 2 ≤ i ≤ 9 and hence the claim holds for a = 1 by Lemma 4. So, our claim is
true. Note that the angle separation between any two nodes in Ij is greater than
36 ◦. If ‖uv5‖ < 2gj−1 cos 50 ◦, let vi and vk be the two nodes in {v1, v2, · · · , v5}
such that the sector �viuvk centered at u does not contain any other node in Ij .
Then by Lemma 4, ∠viuvk > 50 ◦. So, the total of the nine consecutive angles
at u formed by the nodes in Ij is greater than
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2 · 36 ◦ +6 · 39.8 ◦ +50 ◦ = 360. 8 ◦ > 360 ◦,

which is a contradiction. Next we assume ‖uv5‖ ≥ 2gj−1 cos 50 ◦. Let vi and vk

be the two nodes in {v5, v6, · · · , v9} such that the sector �viuvk centered at u
does not contain any other node in Ij . Then by Lemma 4, ∠viuvk > 51 ◦, which
similarly leads to a contradiction. So, the second part of the lemma holds.

(3) We prove the third part of the lemma by contradiction. Assume to the
contrary that either ‖uv7‖ < 2gj−1 cos 43.2 ◦ or ‖uv3‖ > 2gj−1 cos 56.29 ◦ . We
claim that there exist two nodes va, vb ∈ Ij such that ∠vauvb > 58.2 ◦ and the
angle separation at u of any two nodes in I ′ = Ij \{va, vb} is greater than 43.2 ◦.
Indeed, if ‖uv7‖ < 2gj−1 cos 43.2 ◦, then ‖uvi‖ < 2gj−1 cos 43.2 ◦ for all 1 ≤ i ≤ 7
and hence the angle separation at u of any two nodes in Ij \ {v8, v9} is greater
than 43.2 ◦ by Lemma 4. By part (2), we have ‖uv8‖ ≥ 2gj−1 cos 39.8 ◦, which
implies that ∠v8uv9 > 58.2 ◦ by Lemma 4. Thus the claim holds with a = 8 and
b = 9. Similarly, if ‖uv3‖ > 2gj−1 cos 56.29 ◦, then ‖uvi‖ > 2gj−1 cos 56.29 ◦ for
all 3 ≤ i ≤ 9 and hence the angle separation at u of any two nodes in Ij \{v1, v2}
is greater than 43.2 ◦ by Lemma 4. By part (2), we have ‖uv2‖ ≤ 2gj−1 cos 58.2 ◦,
which implies ∠v1uv2 > 58.2 ◦ by Lemma 4. Thus the claim holds with a = 1 and
b = 2. Therefore, the claim holds in either case. Note that the angle separation
between any two nodes in Ij is greater than 36 ◦. If the sector �vauvb centered at
u does not contain any node in I ′, then the total of the nine consecutive angles
at u formed by the nodes in Ij is greater than

2 · 36 ◦ +6 · 43.2 ◦ +58.2 ◦ = 389. 4 ◦ > 360 ◦,

which is a contradiction. So, we assume that the sector �vauvb centered at u
contains at least one node in I ′. Then, the total of the nine consecutive angles
at u formed by the nodes in Ij is greater than

4 · 36 ◦ +5 · 43.2 ◦ = 360.0 ◦,

which is also a contradiction. So, the third part of the lemma follows. �
Now are ready to prove Lemma 3. Assume to the contrary that |Ij ∪ Ij+1| =
l ≥ 17. Let Ij ∪ Ij+1 = {vi : 1 ≤ i ≤ l} where v1, v2, · · · , vl are sorted in
the increasing order of the distances from the node u. By Lemma 2, we have
max {|Ij | , |Ij+1|} ≤ 9. Thus, max {|Ij | , |Ij+1|} = 9 and min {|Ij | , |Ij+1|} ≥ 8 as
l ≥ 17. We consider two cases:

Case 1: |Ij | = 9. Then |Ij+1| ≥ 8. By Lemma 6, we have ‖uv7‖ ≥
2gj−1 cos 43.2 ◦ . Let J = {v7, v8, v9}. Then the angle separation between any
two nodes in J at u is greater than 56.29 ◦. We further consider two subcases:

Subcase 1.1: There exist two nodes va, vb ∈ J such that the sector �vauvb cen-
tered at u does not contain any node in Ij (see Fig. 1(a)). Let vi and vk be the two
nodes in Ij+1 such that the sector �viuvk contains va and vb but does not contain
any other node in Ij+1, and vi, va, vb and vk are in the clockwise direction with
respect to u. Then min{∠vkuvb, ∠vauvi} > 26 ◦ by Lemma 5(1). Thus,

∠vkuvb + ∠vbuva + ∠vauvi > 2 · 26 ◦ +56.29 ◦ = 108.29 ◦ .
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Fig. 1. Figure for Case 1: (a) a sector �vauvb for a, b ∈ {7, 8, 9} does not contain any
node in Ij+1; (b) every sector for �vauvb for each a = 7, 8 and 9 contains a node in
Ij+1.

Hence, the total of the |Ij+1| consecutive angles at u formed by the nodes in
Ij+1 is greater than

7 · 36 ◦ +108.29 ◦ = 360. 29 ◦ > 360.0 ◦,

which is a contradiction.

Subcase 1.2: For any two nodes va, vb ∈ J , the sector �vauvb centered at u
contains at least one node in Ij+1 (see Fig. 1(b)). For each a = 7, 8 and 9, let
v′a, v′′a ∈ Ij+1 satisfying that va is the only node contained in the sector �v′auv′′a
centered at u among all the nodes in Ij+1 ∪J. Then by Lemma 5(1) and Lemma
6, we have

∠v′7uv′′7 + ∠v′8uv′′8 + ∠v′9uv′′9 > 2 · (26 ◦ +31.5 ◦ +32.5 ◦) = 180 ◦ .

Hence, the total of the |Ij+1| consecutive angles at u formed by the nodes in
Ij+1 is greater than 5 · 36 ◦ +180 ◦ = 360.0 ◦, which is a contradiction.

Case 2: |Ij | = 8. Then |Ij+1| = 9. By Lemma 6, we have ‖uv11‖ ≤ 2gj cos 56.29 ◦.
Let J = {v9, v10, v11}. By Lemma 4, the angle separation between any two nodes
in J at u is greater than 56.29 ◦ . We further consider two subcases:

Subcase 2.1: There exist two nodes va, vb ∈ J such that the sector �vauvb

centered at u does not contain any node in Ij (see Fig.2(a)). Let vi and vk be
the two nodes in Ij such that the sector �viuvk contains va and vb but does not
contain any other node in Ij , and vi, va, vb and vk are in the clockwise direction
with respect to u. Then min{∠vkuvb, ∠vauvi} > 26 ◦ by Lemma 5(2). Thus,

∠vkuvb + ∠vbuva + ∠vauvi > 2 · 26 ◦ +56.29 ◦ = 108.29 ◦ .
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va
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u11v
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Fig. 2. Figure for Case 2: (a) a sector �vauvb for a, b ∈ {9, 10, 11} does not contain
any node in Ij ; (b) every sector for �vauvb for each a = 9, 10 and 11 contains a node
in Ij .

Hence, the total of the 8 consecutive angles at u formed by the nodes in Ij is
greater than

7 · 36 ◦ +108.29 ◦ = 360. 29 ◦ > 360.0 ◦,

which is a contradiction.

Subcase 2.2: For any two nodes va, vb ∈ J , the sector �vauvb centered at u
contains at least one node in Ij (see Fig.2(b)). For each a = 9, 10 and 11, let
v′a, v′′a ∈ Ij satisfying that va is the only node contained in the sector �v′auv′′a
centered at u among all the nodes in Ij ∪ J. Then by Lemma 5(2) and Lemma
6, we have

∠v′9uv′′9 + ∠v′10uv′′10 + ∠v′11uv′′11 > 2 · (26 ◦ +31.5 ◦ +32.5 ◦) = 180 ◦ .

Hence, the total of the 8 consecutive angles at u formed by the nodes in Ij is
greater than 5 · 36 ◦ +180 ◦ = 360.0 ◦, which is a contradiction.

Thus, in every case we have reached a contradiction. So, we must have
|Ij ∪ Ij+1| ≤ 16. This completes the proof of Lemma 3. �

3 Greedy Approximation Algorithm for MCDS

In this section, we present a greedy algorithm adapted from the two-phased
greedy approximation algorithm originally proposed in [8] for computing a CDS
in a multihop wireless network with uniform communication ranges to multihop
wireless networks with disparate communication ranges. The greedy algorithm
consists of two phases. The first phase selects a maximal independent set (MIS)
I of G. Specifically, we construct an arbitrary rooted spanning tree T of G, and
select an MIS I of G in the first-fit manner in the breadth-first-search ordering
in T . The second phase selects a set C of connectors to interconnect I . For
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any subset U ⊆ V \ I, f (U) denotes the number of connected components in
G [I ∪ U ]. For any U ⊆ V \ I and any w ∈ V \ I, the gain of w with respect
to U is defined to be f (U) − f (U ∪ {w}). The second phase greedily selects
C iteratively as follows. Initially C is empty. While f (C) > 1, choose a node
w ∈ V \ (I ∪ C) with maximum gain with respect to C and add w to C. When
f (C) = 1, then I ∪ C is a CDS. Let C be the output of the second phase. We
have the following bound on |C|.

Lemma 7. |C| ≤ (ln (R∗ − 2) + 2) γc.

The proof of the above lemma is similar to that in [8] and is omitted due to the
space limitation. From Theorem 1 and Lemma 7, we obtain the following bound
on the size of the CDS output by the greedy algorithm.

Theorem 2. |I ∪ C| ≤ (R∗ + ln (R∗ − 2) + 1) γc + 1.

4 Discussion

The relation between the independence number α and the connected domination
number γc plays a key role in deriving the approximation bounds of various two-
phased greedy approximation algorithms adapted for MCDS of multihop wireless
networks with disparate communication ranges [6] [8] [9]. In this paper, we first
proved that α ≤ (R∗ − 1)γc + 1, where R∗ = 5 + 8

⌈
logg R

⌉
for any R ≥ 1.

From this relation, we then derived an approximation bound R∗ + ln (R∗ − 2)+
1 of the two-phased greedy approximation algorithm adapted from [8]. This
approximation bound is better than the known ones obtained in [6] and [9].

Tighter relation between α and γc may be derived with more sophisticated
analyses. A possible approach of obtaining tighter relation between α and γc is
to develop a tighter bound on the number of independent nodes that can be
packed in the neighborhood of a pair of adjacent nodes. An attempt along this
approach has been made in [9], but the argument in [9] contains a critical error.
However, we do believe that this approach is very promising to achieve tighter
relation between α and γc.

References

1. Alzoubi, K.M., Wan, P.-J., Frieder, O.: Message-Optimal Connected Dominating
Sets in Mobile Ad Hoc Networks. In: ACM Mobihoc (2002)

2. Blum, J., Ding, M., Cheng, X.: Applications of Connected Dominating Sets in Wire-
less Networks. In: Du, D.-Z., Pardalos, P. (eds.) Handbook of Combinatorial Opti-
mization, pp. 329–369. Kluwer Academic Publisher, Dordrecht (2004)

3. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit Disk Graphs. Discrete Mathemat-
ics 86, 165–177 (1990)

4. Fodor, F.: The densest packing of 13 congruent circles in a circle. Beitrage Algebra
Geom. 44(2), 431–440 (2003)



Minimum CDS in Multihop Wireless Networks 55

5. Li, Y.S., Thai, M.T., Wang, F., Yi, C.-W., Wan, P.-J., Du, D.-Z.: On Greedy Con-
struction of Connected Dominating Sets in Wireless Networks. Wiley Journal on
Wireless Communications and Mobile Computing 5(8), 927–932 (2005)

6. Thai, M.T., Wang, F., Liu, D., Zhu, S., Du, D.-Z.: Connected dominating sets
in wireless networks with different communication ranges. IEEE Transactions on
Mobile Computing 6(7), 721–730 (2007)

7. Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed Construction of Connected Dom-
inating Set in Wireless Ad Hoc Networks. ACM/Springer Mobile Networks and Ap-
plications 9(2), 141–149 (2004); A preliminary version of this paper appeared in
IEEE INFOCOM 2002 (2002)

8. Wan, P.-J., Wang, L., Yao, F.: Two-Phased Approximation Algorithms for Minimum
CDS in Wireless Ad Hoc Networks. In: IEEE ICDCS 2008, pp. 337–344 (2008)

9. Xing, K., Cheng, W., Park, E.K., Rotenstreich, S.: Distributed Connected Domi-
nating Set Construction in Geometric k-Disk Graphs. In: IEEE ICDCS 2008, pp.
673–680 (2008)

Appendix

In this appendix, we explain the error in the proof of Theorem 3.1 in [9] which
claimed that α ≤ (

4 5
6 + 8 2

3

⌈
logg R

⌉)
γc, where α is the independence number

and γc is the connected domination number. Let S be any maximum independent
set of G and OPT be any MCDS of G. Then |I| = α and |OPT | = γc. In the
proof of this theorem in [9], the γc nodes u1, u2, · · · , uγc in OPT are sorted in
radius-decreasing order. Let �1 denote the number of nodes that are adjacent to
u1. For any 2 ≤ j ≤ γc, let �j denote the number of nodes that are adjacent to
uj but none of nodes u1, u2, · · · , uj−1. Consider a spanning tree T of G[OPT ],
the subgraph of G induced by OPT . The nodes in OPT are classified into two
types. A node ui ∈ OPT is of the first type if and only if ui has the smallest
index among itself and all of its neighbors in T . Then, Lemma 3.2 in [9] claimed
that if a node ui ∈ OPT is of the second type, then �i ≤ 4 + 7

⌈
logg R

⌉
. The

proof of Lemma 3.2 in [9] contains a critical error in bounding the number of
independent nodes that can be packed in the neighborhood of two adjacent
nodes. For each node v and each j ≥ 2, Aj (v) denotes the annulus centered
at v of inner radius gj−1 and outer radius gj. Suppose that u and v are a pair
of adjacent nodes with ru ≥ rv = ‖uv‖. Let j ≥ 2 and Ij(v) ⊂ Aj(v) be an
independent set of nodes adjacent to v but not adjacent to u. Then Lemma 3.2
in [9] claimed that |Ij(v)| ≤ 7. This claim is incorrect. An instance illustrated in
Fig. 3 shows a packing of nine independent nodes adjacent to the node v but not
adjacent to the node u in an annulus Aj(v) with j ≥ 2. In this instance, the five
nodes v1, v2, v3, v4 and v5 lie on the circle ∂D(v, gj−1+ε) in the counterclockwise
direction satisfying that u, v and v3 are on the same line and ∠vivvi+1 = 74 ◦

for each 1 ≤ i ≤ 4 and ∠v5vv1 = 64 ◦, where ε > 0 is sufficiently small and
will be chosed later. These five nodes lie inside Aj(v) but very close to its inner
circle. For each i = 6, 7, 8 and 9, the node vi lies on the circle ∂D(v, gj − ε)
satisfying that vvi is the angle bisectors of ∠vi−5vvi−4. These four nodes lie
inside Aj(v) but very close to its outer circle. The communication radius of vi
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is ‖vvi‖ for each 1 ≤ i ≤ 9. We further assume that j ≥ 2 is small enough
such that ‖uv‖ ≥ 2gj−1. The first five nodes are independent as their mutual
angle separations at v are all greater than 60 ◦. Similarly, the last four nodes are
also independent as their angle separations at v are also all greater than 60 ◦. In
addition, choose ε sufficiently small such that each of the first five nodes and each
of the last four nodes are independent as their angle separation at v is strictly
greater than 36 ◦. Therefore, all the nine nodes are independent with each other
for sufficiently small ε. Since ‖uv‖ ≥ 2gj−1 and the five nodes v1, v2, v3, v4 and
v5 lie close to the inner circle of Aj(v), we choose ε sufficiently small such that
‖uvi‖ > ‖vvi‖ = rvi for all 1 ≤ i ≤ 5. Note that uv is the angle bisector of
∠v5vv1. Then ∠uvv1 = 32 ◦ and ∠uvv6 = 69 ◦. Thus, v6 is on the left-hand side
of the vertical line v1v5 since

‖vv6‖ cos∠uvv6 < gj cos 69 ◦ < gj−1 cos 32 ◦ < ‖vv1‖ cos∠uvv1.

Similarly, v9 is on the left-hand side of the vertical line v1v5. Therefore, ‖uvi‖ >
‖vvi‖ = rvi for all 6 ≤ i ≤ 9. Thus none of these nine neighbors of v is adjacent
to the node u. Hence, we have |Ij(v)| = 9 in this example. Therefore, the claim
|Ij(v)| ≤ 7 in Lemma 3.2 in [9] is incorrect. This error further propagates to the
proof of Theorem 3.1 in [9].
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Fig. 3. A packing of nine independent nodes adjacent to the node v but not adjacent
to the node u in an annulus Aj(v) with j ≥ 2
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