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ABSTRACT 
 
In this paper, a framework of minimum classification error 
(MCE) model adaptation for continuous density HMMs is 
proposed based on the approach of "super" string model. 
We show that the error rate minimization in the proposed 
approach can be formulated into maximizing a special 
ratio of two positive functions, and from that a general 
growth transform algorithm is derived for MCE based 
model adaptation. This algorithm departs from the 
generalized probability descent (GPD) algorithm, and it is 
well suited for model adaptation with a small amount of 
training data. The proposed approach is applied to linear 
regression based variance adaptation, and the close form 
solution for variance adaptation using MCE linear 
regression (MCELR) is derived. The MCELR approach is 
evaluated on large vocabulary speech recognition tasks. 
The relative performance gain is more than doubled on the 
standard (WSJ Spoke 3) database, comparing to maximum 
likelihood linear regression (MLLR) based variance 
adaptation for the same amount of adaptation data. 
 

1. INTRODUCTION 
 
Model adaptation is critical for speech recognition in 
adverse environment, and it is an active research area in 
the past ten years. Minimum classification error (MCE) 
based discriminative approach is effective in acoustic 
model training and has found various applications in 
speech recognition [1] [2]. The MCE based 
classifier/recognizer design involves finding a set of 
parameters that minimize the empirical recognition error 
rate. The reason of taking a discriminant function based 
approach to classifier design is due mainly to the fact that 
we lack complete knowledge of the form of the data 
distribution and that training data is always inadequate, 
particularly in dealing with speech and language problems.  

However, minimizing the functional form of the 
empirical error rate function in MCE based classifier 
design often presents a great challenge. The most common 
optimization method used in MCE is based on the 

generalized probability descent (GPD) algorithm that 
iteratively adapts the model parameters at an utterance-by-
utterance basis [2]. The optimality of this algorithm is its 
asymptotic convergence property, making the algorithm 
more suitable for acoustic model training with sufficient 
data, not for model adaptation where usually only a small 
amount of adaptation data is available. Another problem in 
GPD based MCE approach is the selection of the step size 
vector є. In order to improve the model performance, є 
needs to be carefully determined, and different model 
parameter requires different step size. This process is 
empirical and has a critical impact on the model 
performance. Moreover, in model adaptation, many 
parameters to be estimated are so-called hyper-parameters 
[3] [4]. These parameters are not real model parameters, 
but parameters from the added "hyper-structure", which 
generally do not have a strong physically meaningful 
interpretation. This makes the determination of є in GPD 
approach even more difficult. Because of the above-
mentioned problems, MCE approach is rarely used in 
model adaptation with sparse adaptation data.  

In this paper, we develop an efficient MCE model 
adaptation framework based on the concept of “super 
string” models and establish a growth transform based 
minimization framework for minimizing the loss function 
in MCE adaptation. This approach has a monotonic loss 
minimization property, which is critical for model 
adaptation when only a small amount of adaptation data is 
available, and when there are lots of hyper-parameters to 
estimate (e.g. regression matrices). We derived in [5] the 
growth-transform solution for mean vector adaptation in 
MCE linear regression (MCELR). In this paper, it is 
shown that MCELR variance adaptation also has a growth-
transform based solution under the proposed framework.   

 
2.  A “SUPER STRING” MODEL BASED MCE 

MODEL ADAPTATION FRAMEWORK 
 
In string model based MCE approach [2], the 
classification error count function is represented at the 
string level model matching and embedded in a smooth 
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where dc (X , Λ) is the string level misclassification 
measure. When N-best competing string models are used,  
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where  Wc is  the  correct  transcript lexical word  string,  
and {Wi | Wi ≠ Wc , i = 1,…,N}  is the set of N most 
confusing word strings that are different from Wc. These 
confusion word strings are typically identified by a 
recognizer through a N-best search. In conventional MCE 
training, the GPD algorithm is applied to minimize the 
expected loss over all training utterances. Each utterance 
is considered as an independent observation, assuming that 
there is no correlation between errors in different 
utterances. 

It is known that recognition errors often exhibit a 
strong correlation with phonetic contexts and are 
correlated across different utterances. When the amount of 
adaptation data is small, such correlation should be 
utilized in model adaptation. To improve the effect of 
MCE based model adaptation, a "super string" based 
string model is introduced. The super string X in our 
approach is constructed by concatenating the limited 
adaptation utterances into one string. The string model 
based MCE training becomes to minimize the loss 
function Lc(X,Λ) of the super string X, with the added 
constraint that the word sequence content of each 
utterance is aligned within its original start/end 
boundaries. 

 
3.  FORMULATION OF GROWTH TRANSFORM 

IN MCE MODEL ADAPTATION FRAMEWORK 
 
In the "super" string model framework, we consider 
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It is obvious that minimizing Lc(X,Λ) is equivalent to 
maximizing 
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If we set the smooth factor η = 1, it simplifies to 
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However, P(Λ) is a complicated ratio of two positive 

functions. We sketch the main steps that are used to derive 
the growth transform solution for optimizing P(Λ) in MCE 
based model adaptation. 
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Then a function can be constructed as follows 
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with D a suitable positive constant. The important property 
of F(Λ;Λ′) is that, if F(Λ;Λ′) ≥ F(Λ′;Λ′), then P(Λ) ≥ 
P(Λ′) [6]. Furthermore, if F(Λ;Λ′) can be represented in 
the form 
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increasing the value of F(Λ;Λ′) can be achieved by 
maximizing 
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where h (χ , s , Λ) is a positive function [7], and the 
integration domain χ is a space with P × T dimensions, 
given  P is the feature dimension and T is the number of 
data frames. For super string model based MCE approach, 
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where 1χ(X) is the indicator function of X, s is the state 
mixture sequence, and Λ is the set of parameters for mean 
vectors and covariance matrices in Gaussian observation 
densities of all HMMs. From HMM structure, s is formed 
by Markov chain and Gaussian mixture weights, and is 
independent of Λ. So f (X,s,W |Λ) = f (X | s,W,Λ) f (s,W |Λ) 
= f (X | s, Λ) f (s , W) for arbitrary word string W. The 
constant D in (8) is determined by ∑= s

sdD )( , where d(s) 

for each s is chosen to guarantee that h (χ, s, Λ) is positive. 
Since [ ])()( sd+Λ′Γ  is not a function of Λ, the growth 

transform is the one that maximizes 
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Divide through (12) by f (X, Wc | Λ′) and expand it, the 
maximizing objective function for continuous density 
HMMs is as follows, 
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where χt is a P-dimensional space, and  
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with γ (t, r, W) = p (st=r | X, W, Λ′) is the a posteriori 
probability of occupying the Gaussian component r at time 
t, given data X and a referenced word string W, and d′(t, r) 
is computed by ∑

=
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Eq. (13) is the EM formulations of the growth 
transform solution for MCE model adaptation. It applies to 
all model parameters or model parameter transforms in Λ. 
As an application of Eq. (13), we derive the growth 
transform for MCELR based variance transformation in 
the next section. 
 

4. MCELR VARIANCE ADAPTATION 
 
In continuous density HMMs with mixture Gaussian 
densities, the Gaussian component is characterized by its 
mean and covariance matrix and denoted generically as 
N(µr , Σr). The covariance matrix Σr is a positive definite 
matrix that can be represented in the following form: 
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where Br = Cr
-1 and Σr

-1 = CrCr
T . In the linear regression 

based model adaptation framework, all Gaussian 
components of the acoustic model are clustered into 
several regression classes through a regression tree [4]. 
For class m with R Gaussian components {λm,r | r = 
1,…,R}, a transform matrix Hm is estimated. Then for the 
mr-th Gaussian component N(µm,r,Σm,r), the adapted 
covariance is given by: 
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In MLLR based model adaptation, Hm is estimated based 
on the maximum likelihood (ML) criterion. In MCELR 
based approach, the MCE criterion is used for Hm 
estimation. In the following derivation, the subscript m is 
omitted for simplification. 

To estimate the variance transformation matrix H 
based on the MCE criterion, the optimization object 
function (13) becomes: 
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be solved through the following equation, 
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where ∑ ′=
tr rtdD ),( .  

Finally, H is adapted as follows: 
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5. EXPERIMENTS 

 
5.1. Experimental Conditions 
 
The speech recognition experiments were performed on 
the Wall Street Journal (WSJ) speaker adaptation task 
using the official 1993 Spoke 3 speaker adaptation and 
evaluation data (ET_S3). The data set includes 10 
speakers, each of which provides 40 utterances for 
adaptation and other 40~43 utterances for testing. The 
standard 5K-trigram language model specified for the 
evaluation was used. The speech feature vector is MFCC 
based with 39 dimensions (c, ∆c, ∆∆c, e, ∆e, ∆∆e). The 
speaker independent (SI) model was trained on the 
standard speaker independent WSJ SI-84 portion of the 
training corpus. Crossword triphones were used as the 
recognition units and the baseline SI model was obtained 
by using phonetic decision tree based state tying. For the 
baseline system, an average word error rate (WER) of 
27.5% was achieved over these 10 speakers. 

In our experiments, 1-best competing super-string-
model based MCE approach was implemented. 
Correspondingly, ∆γ(t , r) is 
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where We is the most confusing string different from Wc.  
In the 1-best competing super-string-model MCE 

approach, most parts of Wc and We are the same, except 
those words that correspond to recognition errors. 
Furthermore, referring to (19), many data are “neutralized” 
except those “effective data” which correspond to the 
confusing error words between Wc and We. 



Correspondingly, in MCELR, the criterion to estimate a 
transform matrix for a regression class should be based on 
the amount of “effective data” accumulated in the class.  

The constant Dr in (18) is a factor to control the 
“learning rate”. As suggested in MMI training [8], for the 
r-th Gaussian mixture, Dr is given as 
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where E is a global smoothing factor to scale the value of 
Dr, and τ is a small constant to make sure Dr is always 
positive. In our experiments, E was set to 4, τ was set to 2, 
and a 60K trigram language model was used to generate 
the competitor We. 

Two sets of experiments were conducted to evaluate 
the proposed MCELR based variance adaptation method. 
Firstly, the conventional MLLR based mean and variance 
adaptations were evaluated. Secondly, a series of 
experiments of MCELR variance adaptation plus MLLR 
mean adaptation were performed. In our experiments, the 
sample count threshold of generating a transform matrix in 
MLLR was set to 1000, and the “effective data” amount 
threshold of generating a transform matrix in MCELR was 
set to 100. The seed model for MCELR variance 
adaptation is the SI model. In adaptation, diagonal 
transformation matrices are used for variance adaptation, 
and the silence model is not adapted. 
 
5.2. Experimental Results 
 
Table 1 evaluated the additional gain of doing MLLR 
adaptation on both mean and variance parameters, 
compared with doing MLLR mean adaptation only. As 
illustrated in the table, the MLLR based mean+variance 
adaptation only provides a slight performance 
improvement over the MLLR based mean-only adaptation, 
which is consistent with results reported in other studies 
[4]. The relative error rate reduction of MLLR variance 
adaptation is around 2.8%, which is averaged over all 
adaptation conditions. 

TABLE I: WORD ERROR RATES OF MLLR BASED MODEL 
ADAPTATION METHODS (%) 

# Adpt. utter. 10 20 30 40 
MLLR mean only  19.31 16.88 15.56 14.74 
MLLR vari+mean 18.48 16.55 15.11 14.45 

The performance of the proposed MCELR variance 
adaptation was evaluated and the results were tabulated in 
Table 2. In our experiments, the iteration number of 
MCELR based variance adaptation was set to six, and a 
new competitor was generated after every other iteration. 
Compared with MLLR mean-only adaptation, a further 
error rate reduction of about 6.2% is achieved by an 
additional MCELR variance adaptation. Moreover, 
compared with the conventional MLLR variance 
adaptation, the performance gain resulted by variance 

adaptation is more than doubled (from 2.8% to 6.2%) by 
the proposed MCELR variance adaptation approach.   

TABLE II: WORD ERROR RATES OF MLLR BASED MEAN 
ADAPTATION AND MCELR BASED VARIANCE ADAPTATION 
PLUS MLLR BASED MEAN ADAPTATION (%) 

# Adpt. utter. 10 20 30 40 
MLLR mean only  19.31 16.88 15.56 14.74 

MCELR vari + 
MLLR mean 

18.53 15.85 14.40 13.71 

 
6. SUMMARY 

 
In this paper, a general framework of "super" string model 
based minimum classification error (MCE) model 
adaptation for continuous density HMMs was presented. It 
was shown that the error rate minimization in the proposed 
approach could be formulated into maximizing a special 
ratio of two positive functions. The proposed MCE model 
adaptation was applied to variance adaptation based on the 
principle of MCE linear regression (MCELR). A growth 
transform algorithm was derived for MCELR based 
variance adaptation. Experimental results on 1993 WSJ 
Spoke 3 speaker adaptation task indicated that comparing 
to MLLR, the average relative performance gain of 
variance adaptation by MCELR was more than doubled, 
under the same test condition and using the same amount 
of adaptation data. 
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