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Abstract -The minimum complexity or minimum descrip- 
tion-length criterion developed by Kolmogorov, Rissanen, 
Wallace, Sorkin, and others leads to consistent probability den- 
sity estimators. These density estimators are defined to achieve 
the best compromise between likelihood and simplicity. A re- 
lated issue is the compromise between accuracy of approxima- 
tions and complexity relative to the sample size. An index of 
resolvability is studied which is shown to bound the statistical 
accuracy of the density estimators, as well as the information- 
theoretic redundancy. 

Index Terms -Kolmogorov complexity, minimum des- 
cription-length criterion, universal data compression, bounds on 
redundancy, resolvability of functions, model selection, density 
estimation, discovery of probability laws, consistency, statistical 
convergence rates. 

I. INTRODUCTION 

HE KOLMOGOROV theory of complexity T (Kolmogorov [l]) leads to the notion of a universal 
minimal sufficient statistic for the optimal compression of 
data as discussed in V’Yugin [2], Cover [31, [4], and Cover, 
Gacs, and Gray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] .  The Kolmogorov theory is applicable 
to arbitrary, possibly nonrandom, data sequences. Related 
notions of complexity or description length, that are 
specifically appropriate for making inferences from ran- 
dom data, arise in the work of Rissanen [6]-[ll], Wallace 
et al. [121,[131, Sorkin [141, Barron [151-[17], Cover [31, [41, 
[lS], and V’Yugin [2] and in the context of universal 
source coding as in Davisson [19]. The goal shared by 
these complexity-based principles of inference is to obtain 
accurate and parsimonious estimates of the probability 
distribution. The idea is to estimate the simplest density 
that has high likelihood by minimizing the total length of 
the description of the data. The estimated density should 
summarize the data in the sense that, given the minimal 
description of the estimated density, the remaining de- 
scription length should be close to the length of the best 
description that could be achieved if the true density were 
known. 

Minimum complexity estimators are treated in a gen- 
eral form that can be specialized to various cases by the 
choice of a set of candidate probability distributions and 
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by the choice of a description length for each of these 
distributions, subject to information-theoretic require- 
ments. An idealized form of the minimum complexity 
criterion is obtained when Kolmogorov’s theory of com- 
plexity is used to assess the description length of probabil- 
ity laws; however, our results are not restricted to this 
idealistic framework. 

For independent random variables X , ,  X,,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. ., X ,  
drawn from an unknown probability density function p ,  
the minimum complexity density estimator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj?, is defined 
as a density achieving the following minimization 

where the minimization is over a list r of candidate 
probability density functions q, and the logarithm is base 
2. As discussed in Section 111, this criterion corresponds 
to the minimization of the total length of a two-stage 
description of the data. The nonnegative numbers L(q)  
are assumed to satisfy Kraft’s inequality Eq2-L(q) I 1 and 
are interpreted to be codelengths for the descriptions of 
the densities. Although not needed for the information- 
theoretic interpretation, there is also a Bayesian interpre- 
tation of the numbers 2-L(q) as prior probabilities. In the 
Kolmogorov complexity framework, L(q)  is equal to the 
length of the shortest computer code for q as explained in 
Section IV, and the best data compression and the best 
bounds on rates of convergence are obtained in this case. 

The list r of candidate probability densities is often 
specified from a given sequence of parametric models of 
dimension d = 1,2,. . . , with the parameter values re- 
stricted to a prescribed number of bits accuracy. The 
minimum complexity criterion is then used to select the 
model and to estimate the parameters. Larger lists r 
provide better flexibility to discover accurate yet parsimo- 
nious models in the absence of true knowledge of the 
correct parametric family. In the idealistic case, r consists 
of all computable probability distributions. 

The minimum complexity criterion can discover the 
true distribution. Indeed, it is shown that if the true 
distribution happens to be on the countable list r, then 
the estimator is exactly correct, 

for all sufficiently large sample sizes, with probability one 
(Theorem 1). Consequently, the probability of error based 
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on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn samples tends to zero as n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+m. The result is most 
dramatic in the Kolmogorov complexity framework: if the 
data are governed by a computable probability law, then, 
with probability one, this law eventually will be discovered 
and thereafter never be refuted. Although the law is 
eventually discovered, one cannot be certain that the 
estimate is exactly correct for any given n. You know, but 
you do not know you know. 

Consistency of the minimum complexity estimator is 
shown to hold even if the true density is not on the given 
countable list, provided the true density is approximated 
by sequences of densities on the list in the relative en- 
tropy sense. Theorems 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3,  respectively, establish 
almost sure consistency of the estimated distribution and 
(under somewhat stronger assumptions) L’ consistency of 
the estimated density. These results, which were an- 
nounced in [15], [16], are the first general consistency 
results for the minimum description-length principle in a 
setting that does not require the true distribution to be a 
member of a finite-dimensional parametric family. 

The main contribution of this paper is the introduction 
of an index of resolvability, 

that is proved to bound the rate of convergence of mini- 
mum complexity density estimators as well as the infor- 
mation-theoretic redundancy of the corresponding total 
description length. Here D(pllq) denotes the relative 
entropy. The resolvability of a density function is deter- 
mined by how accurately it can be approximated in the 
relative entropy sense by densities of moderate complex- 
ity relative to the sample size. Theorem 4 and its corollary 
state conditions under which the minimum complexity 
density estimator converges in squared Hellinger distance 
d i ( p ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb,,) = I(& - a)’ with rate bounded by the in- 
dex of resolvability, i.e., 

d L ( p , b , )  s O ( R , ( p ) )  in probability. (1.4) 

Also the complexity of the estimate relative to the sample 
size, L,( j ,) /n is shown to be not greater than O(R, (p ) )  
in probability. 

The results on the index of resolvability demonstrate 
the statistical effectiveness of the minimum description- 
length principle as a method of inference. Indeed, with 
high probability, the estimation error d i ( p , b , )  plus the 
complexity per sample size L,(b,)/n, which are achieved 
by the minimum complexity estimator, are as small as can 
be expected from an examination of the optimal tradeoff 
between the approximation error D(pllq) and the com- 
plexity L(q ) /n ,  as achieved by the index of resolvability. 

It is shown that the index of resolvability R, (p )  is of 
order l / n  if the density is on the list; order (logn)/n in 
parametric cases; order ( l / n I Y  or ((logn)/n)Y in some 
nonparametric cases, with 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy < 1; and order o(1) in 
general, provided infqEr D(pllq) = 0. 

It need not be known in advance which class of densi- 
ties is correct. With minimum complexity estimation, we 
are free to consider as many models as are plausible and 

practical. (In contrast, the method of maximum likelihood 
density estimation fails without constraints on the class of 
densities.) The minimum complexity estimator converges 
to the true density nearly as fast as an estimator based on 
prior knowledge of the true subclass of densities. 

The minimum complexity estimator may also be de- 
fined for lists of joint densities q ( X , ,  X,; . -, X,) that 
allow for dependent random variables, instead of inde- 
pendence n:=,q(X,)  as required in (1.1). Indeed, the 
assumption of stationarity and ergodicity is sufficient for 
the result on the discovery of the true distribution in the 
computable case, as shown in [16]. The assumption of 
independence, however, appears to be critical to our 
method of obtaining bounds on the rate of convergence of 
the density estimators in terms of the index of resolvabil- 
ity. 

In some regression and classification contexts, a com- 
plexity penalty may be added to a squared error or other 
distortion criterion that does not correspond to the length 
of an efficient description of the data. Bounds on the 
statistical risk in those contexts have recently been devel- 
oped in Barron [17] using inequalities of Bernstein and 
Hoeffding instead of the Chernoff inequalities used here. 

Interpretations and basic properties of minimum com- 
plexity estimators are discussed in Sections 11-IV. Moti- 
vation for the index of resolvability is given in Section V 
followed by examples of the resolvability for various mod- 
els in Section VI. The main statistical convergence results 
are given in Section VI1 followed by the proofs in Section 
VIII. Some regression and classification problems that 
can be examined from the minimum description-length 
framework are discussed in Section IX. 

11. AN INFORMAL EXAMPLE 

The minimum description-length criterion for density 
estimation is illustrated by the following example. Let 
X , ,  X,, . . . , X ,  be independent and identically distributed 
according to an unknown probability density p ( x ) .  Sup- 
pose it happens that this density is normal with mean p 
and variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU *  = a. In this example, p is some fixed 
uncomputable real number, whereas fi is computable. 
(Computability means that a fixed-length program exists 
that can take any integer b as an input and compute the 
number to accuracy 2-h.) 

The minimum description-length idea is to choose a 
simple density q that yields high likelihood on the data. If 
L(q) is the number of bits needed to describe q and 
logl /q(X,,- .  ., X,) is the number of bits in the Shannon 
code (relative to q )  for the data, then 

is the minimum two-stage description length of the data. 
(The actual Shannon code has length equal to the integer 
part of the logarithm of the reciprocal of the probability 
of discretized values of the data; the use of the density is 
a convenient simplification.) 

For the Gaussian example, we may expect the proce- 
dure to work as follows. For small sample sizes compared 
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to the complexity of the normal family (say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< lo), we 
would estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfin to be one of a few very simple densi- 
ties, such as a uniform density over a simple range that 
includes the sample. For moderate sample sizes (perhaps 
n = 100) we begin to use the normal family. Parameter 
estimates and associated description lengths that achieve 
approximately the best tradeoff between complexity and 
likelihood are derived in [71, [121, [131 and [16, Section 4.21 
(see also Section VI where related description lengths are 
given that optimize the index of resolvability in paramet- 
ric cases). In particular, we take the maximum likelihood 
estimates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x,, = (1 /n )CX,  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,' = (l/n)C(X, - X,,),) 
rounded off to the simjlest numbers b and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, in the 
confidence intervals X,, + 1 / 6  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1 / 6 .  
These numbers are described using roughly (1/2)log ncl 
and (1/2)log ncz bits. Here cI  = l/S,' and c, = 1/(2S,4) 
are the empirical Fisher informations, for p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu2 
respectively, evaluated at the maximum likelihood.' See 
[7], [121, [13] for relevant discussion on the appropriate 
constants. In the present example, for which the variance 
is a relatively simple number, the enumeration of the bits 
of the estimate is preferred only for sample sizes with 
(1/2)log nc, less than the length of the description of a. 

Then when we have enough data to determine the first 
10 or so bits of the unknown variance ( n  = lOOOOOO), we 
begin to believe that the density estimate is normal with 
variance equal to a. We have guessed correctly that 
u 2  =a, and this guess results in a shorter description. 
The estimated mean b,, is x,, rounded to an accuracy of 
U/&; this requires roughly (1/2)log nc, bits where c, = 

l /u2. For any constant c, no simple number is found in 
the interval x + c / &  for large n. We must content 
ourselves with 6, = normal(b,, a). 

Note that the complexity of the best density estimate b,, 
grows at first like n, then like (1/2)log nc, +(1/2)log nc,, 
and finally like (1/2)log ncl. For large n ,  we have discov- 
ered that the true density function is Gaussian, that its 
variance is exactly a, and that its mean is approximately 
x,, fa/&. From the data alone, it becomes apparent 
that the structure of the underlying probability law con- 
sists of its Gaussian shape and its special variance. Its 
mean, however, has no special properties. 

Even if the true density is not a member of any of the 
usual parametric families, the minimum description-length 
criterion may select a family to provide an adequate 
approximation for a certain range of sample sizes. Addi- 
tional samples will then throw doubt on the tentative 
choice. With the aid of the criterion, we are then free to 

' I t happens in this Gaussian example that the Fisher information 
matrix is diagonal. For parametric families with nondiagonal informa- 
tion matrices, approximately the best tradeoff is achieved with an 
estimated parameter vector in an elliptical confidence region centered at 
the MLE. Such estimates are described in a locally rotated and scaled 
coordinate system, using about !(1/2)lognc, + . . . +(1/2)logncd bits, 
which reduces to (1/2)logdet(nl), where c,; . ' , c d  are the eigenvalues 
of the empirical Fisher information I and d is the dimension of the 
parameter space, see [16, Sect. 4.21. Thus (d/2)logn is the dominant 
term in the description of the parameters and the (1/2)logdet(f) term 
accounts for the local curvature of likelihood function. 

jump to some other family (and proceed with the estima- 
tion of any parameters in this family). The question is 
whether this disorderly jumping around from procedure 
to procedure on the basis of some peeking at the data will 
still allow convergence. We show that indeed convergence 
does occur for densities estimated by the minimum com- 
plexity or minimum description-length criterion. 

The formulation of the minimum description-length 
principle as in [61, [71, [12], [13] leads to a restriction on 
the parameter estimates in each family to a grid of points 
spaced at width of order 1 / 6  and the optimization of a 
criterion for which the dominant terms are 

d 

2 
- log n +log l /&(  X"), (2.2) 

where d is the number of parameters and is the 
maximum likelihood estimate of the parameter vector 
0 E Rd,  truncated to (1/2)log n bits per parameter. 
Rissanen [8], [9] shows that for most parameter points this 
criterion yields asymptotically the best data compression. 
Indeed, he shows in [9] that the redundancy of order 
(d/2)logn cannot be beaten except for a set of parame- 
ter points of measure zero. The theory we develop shows 
that the minimum description-length criterion for model 
selection is also justified on the grounds that it produces 
statistically accurate estimates of the density. 

The Gaussian example illustrates an advantage of devi- 
ating in some cases from the minimum description-length 
criterion in the form (2.2), by not necessarily restricting 
the parameter estimates to a grid of preassigned widths of 
order 1/&. By allowing the search to include simpler 
parameter values, in particular to include maximum likeli- 
hood estimates truncated to fewer than (1/2)log n bits 
and nearby numbers of low complexity (such as in the 
previous example), we allow for the possibility of discov- 
ery of density functions with special parameter points, 
which in some cases may govern the distribution of the 
observed data. 

Other departures from the minimum description-length 
criterion in the form (2.2) are justified when it is not 
assumed that the density is in a finite-dimensional family. 
See Case 4 in Section VI for one such example. Neverthe- 
less, it will be seen (Case 3 in Section VI) that criteria of 
the form (2.21, using sequences of parametric families, 
continue to be effective for both data compression and 
inference in an infinite-dimensional context. 

111. SOME PRELIMINARIES 

In this section we set up some notation, define mini- 
mum complexity density estimation, and discuss some 
specializations of the general method. 

Let XI, X,, . . . , X,,, . . . be independent random vari- 
ables drawn from a (possibly unknown) probability density 
function p ( x ) .  The random variables are assumed to take 
values in a measurable space X and the density function 
is taken with respect to a known sigma-finite dominating 
measure U(&). The joint density function for X "  = 
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(X , ,X , ; . . ,X , )  is denoted by p(X" )=n := ,p (X , )  for 
n = 1,2, . . ; the probability distribution for the process is 
denoted by P. 

For each n = 1,2; . . , let r, be a countable collection 
of probability density functions q ( x )  (each taken with 
respect to the same measure v(dx)). For each q in r,, we 
let q ( X " )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn:= l q ( X , )  denote the corresponding product 
density and we let Q denote the corresponding probabil- 
ity distribution (which would make the X ,  independent 
with density 4). 

We need a notion of the length of a description of q. 
For each n, let L,(q) be nonnegative numbers defined 
for each q in r,. (For convenience, we also define 
L,(q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=CO if q is not in r,.) The following summability 
requirement, 

2--Ln(q)< 1, (3.1) 
4 E r, 

is the essential condition assumed of the numbers L,(q). 
The complexity of the data and the minimum complex- 

ity density estimate are now defined relative to the lengths 
L,(q), q E r,. The sample size n is assumed to be given. 

Definition: The complexity B ( X " )  of the data X "  rela- 
tive to L ,  and r,, is defined by 

L,( q )  +log ~ ) .  (3.2) 
4 ( X " )  

The minimum complexity estimator 6, of the density rela- 
tive to L, and r,, is defined by 

L,( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq )  +log ~ ); (3.3) 
4 X " )  

where, in the case of ties, the density I?,, is chosen for 
which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,,($,,) is shortest (and any further ties are broken 
by selecting the density with least index in r,). It will be 
seen that a minimizing 8" exists with probability one. 

There are two fundamental interpretations of the mini- 
mum complexity criterion: one from the theory of data 
compression, the other from Bayesian statistics. 

A. Coding Interpretation 

The complexity defined in (3.2) is interpreted as a 
minimal two-stage description length for X " ,  for a given 
sample size n. The terms L,(q) and logl/q(X") corre- 
spond, respectively, to the length of a description of q 
and the length of a description of X "  based on q. 

To give the precise coding interpretation, assume that 
X is discrete and that each q is a probability mass 
function (i.e., q is a density with respect to v = counting 
measure). If the numbers L,(q), q E r, are positive inte- 
gers satisfying (3.1), then L,(q) is the length of an instan- 
taneously decodable binary code for q E r,. The instanta- 
neous decodability property states that no codeword is 
the prefix of any other codeword. Since the second-stage 
description of X "  follows the code for q, the prefix 
condition is essential for decoding the two stages. The 
condition (3.1) in this context is Kraft's inequality giving 

necessary and sufficient conditions for the existence of 
instantaneous binary codes of the prescribed lengths (see 

To explain the second stage of the code, observe that if 
q is given, then by rounding logl/q(X") up to the 
nearest integer, lengths L q ( X " )  = [ logl/q( X n ) l  are ob- 
tained that satisfy Kraft's inequality, Cxn2-L4(xn) < 1. 
Hence, as discovered by Shannon, if q is given, then 
[ log l /q(X") \  is the length of an instantaneous code 
that describes the sequence X" .  

On the other hand, when the density is estimated from 
the data, then in order for the Shannon code based on an 
estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFn to be uniquely decodable, the density I?, must 
first be encoded. The overall length of the code for the 
data is then (within one bit of) 

[20, pp. 45-49, 5141). 

L,( I?,) + 1% 1/6,( X " )  . (3.4) 

Thus any density estimator corresponds to a code for the 
data. The minimum complexity criterion simply chooses 
the estimator yielding the best compression. 

Coding Interpretation in the Continuous Case: If the 
space X is not discrete, then no finite-length uniquely 
decodable codes can exist. Nevertheless, quantization of 
X does lead to outcomes that are finitely describable. In 
the case of fine quantization, density functions are ap- 
proximated by ratios of measures. Indeed, if [ X I  denotes 
the quantization region that contains x ,  then q ( x ) =  
lim Q([ X I ) /  U([ x ] )  for almost every x (where the limit is 
taken for a refining sequence of quantization regions that 
generates X ) .  Consequently, log l / q ( X n )  3 log 1/ 
Q ( [ X " ] )  + log v( [X" ] )  where [X" ]  denotes the 
coordinate-wise quantization of X " .  If this approximation 
were valid uniformly for q E r,, then the minimization as 
in (3.3) would amount to choosing a density that mini- 
mizes the two-stage codelength for the quantized data, 

L,( Q )  + log 1 / Q( [ X "  I ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.5) 

For simplicity of exposition in this paper, we restrict 
attention to the minimization involving densities as in 
(3.3). Discrete random variables are then a special case 
with U equal to counting measure. Barron [16] treats the 
case in which the distribution is estimated by minimizing 
(3.5); in the theory developed there, the quantization 
regions are allowed to shrink as the sample size n + m. [It 
is seen that the estimators based on uniformly quantized 
data on the real line behave in a manner essentially 
analogous to the continuous case when the width h of the 
quantization intervals are of smaller order than l / n ,  and 
in a manner analogous to the discrete case when nh is 
large. New techniques are also developed there to handle 
the case when nh is constant.] 

B. Bayesian Inference Interpretation 

Let w,(q) be a prior probability mass function on 
q E r,, and set L J q )  = logl/w,(q) (with the convention 
that if w J q )  = 0 then L,(q) = m). Then the summability 
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condition (3.1) is satisfied since 

Cw,(q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1. (3.6) z-Ln(4) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

The minimization in (3.3) is seen to be the same as the 
maximization of 

2-Ln(4)q( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx"), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3.7) 
which is proportional (as a function of q E r,) to the 
Bayes posterior probability of q given X " .  

Consequently, the estimator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, defined in (3.3) is the 
Bayes estimator minimizing the probability of error, 
Z:,w,(q)Q{fi, # q} for a density in r,, drawn according to 

The connection between the Bayesian and coding inter- 
pretations is that if w,(q) is a prior probability function 
concentrated on a countable set of densities q ,  then 
logl/w,,(q) is the length (rounded to an integer) of a 
Shannon code for q based on w,. Conversely, if L,(q) is a 
codelength for a uniquely decodable code, then w,(q) = 

2-Lm'4)/c, defines a proper prior probability (where c, = 

C2-Ln(4) I 1 is the normalizing constant). 
Thus the minimum description-length principle pro- 

vides an information-theoretic justification of Bayes' rule. 
A Bayesian with a discrete prior w,(q), q E r,, chooses 
the estimate that achieves the minimum total description 
length L,,(F,) + log l/$,(X"). Of course, Bayesian esti- 
mation also has decision-theoretic justification. 

We emphasize the necessity of the term Ln($,) that 
involves the prior probability. Indeed, in the absence of 
this term, if 6, depends on X " ,  then, in general, 
log l /bn(Xn)  will not satisfy Kraft's inequality and hence 
there does not exist a code for X "  with lengths 
log l /bn(Xn). A consequence is that the maximum likeli- 
hood rule that selects a density to achieve the minimum 
value of log l /bn(Xn)  does not admit a description-length 
interpretation of this value. 

Some basic results for the minimum complexity estima- 
tor are a straightforward consequence of the Bayesian 
interpretation. Define 

w,(q). 

m( x") = 2-Ln(4)q( x"). (3.8) 
4 

In the Bayesian interpretation, m ( X " )  is the marginal 
density function for X " .  It is seen that m ( X " )  is finite for 
almost every X" (indeed it has integral not greater than 
one). Thus for almost every X " ,  the quantities in (3.7) are 
summable for q E r,, and, consequently, the maximum is 
achieved. (Indeed, let v > 0 be the value in (3.7) for some 
q ;  by summability there must be a finite set of q such that 
outside this set the value of 2-Lrt(4) q ( X " )  is less than v,  
and hence the overall maximum occurs on this finite set.) 
Thus the following proposition is proved. 

Proposition I :  There almost surely exists at least one 
and no more than finitely many densities achieving the 
maximum in (3.7). Thus the minimum complexity density 
estimator 6, exists with probability one. 

Next we show admissibility of the minimum complexity 
estimator of a density in the countable set r,, among 

estimators based on the data X , ,  X,,. * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  X,. By defini- 
tion, an estimator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin is inadmissible if there is another 
estimator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,(,*) such that P($;*) # p )  I P(bn f p }  for all 
p E r,, with strict inequality for some p E r,. If no such 
uniformly better estimator exists, then 6, is said to be 
admissible. The following proposition is a consequence of 
the admissibility of Bayes rules. 

Proposition 2: The minimum complexity estimator 6, is 
admissible for the estimation of a density in the countable 
set r,,. 

IV. IDEALIZED CODELENGTHS AND KOLMOGOROV 
COMPLEXITY 

Clearly, a practical requirement on the candidate prob- 
ability distributions Q is that finite length descriptions 
exist, i.e., Q must be computable.* Subject to this restric- 
tion, an idealized form of the minimum complexity crite- 
rion is obtained by choosing the descriptions of the proba- 
bilities Q to be as short as possible. 

Let U be a fixed universal computer with a domain 
consisting of finite length binary programs 4 that satisfy 
the prefix property. Specifically, no acceptable program is 
a prefix of another, so that the set of binary programs 
constitutes an instantaneous code and consequently the 
program lengths satisfy the Kraft inequality. Let r* be 
the set of all computable probability measures on X. For 
each Q E r*, let L*(Q)= L'",(Q) be the minimum length 
of programs that recursively enumerate Q, 

(4.1) min length ( 4 ) .  L*(Q) = c / ( + ) = Q  

This L*(Q) is the Kolmogorov-Solomonoff-Chaitin algo- 
rithmic complexity of Q. This measure was independently 
posed, in different levels of detail, by Kolmogorov [l], 
Solomonoff [21], and Chaitin [22]. For fundamental prop- 
erties of L*, see Chaitin [231 and Levin [24], [251. 

We mention that for any two universal computers U 
and I/ there exists a finite constant c = cU,,,  such that 

for all Q E r*. (4.2) 

Moreover, for any computable function L(Q), Q E r (on 
a domain r c r*) that satisfies the Kraft inequality, there 
exists a constant c = cL such that 

(4.3) 
In the same way, for any computable prior w ( Q ) ,  Q E r c 
r* with &w(Q) = 1, there is an constant c = c, such that 

for all Q E r, (4.4) 

2-L*cp)2 w(Q)2-', for all Q E I?. (4.5) 

It is these basic facts about the algorithmic complexity 
L*(Q) that provide its appeal as a notion of idealized 

I LG( Q) - L$( Q) I I C, 

L*( Q) s L( Q) + c, for all Q E r. 

L*(Q) 2 l og l /w(Q)  + c, 

whence 

'A probability measure Q on X is computable, relative to a countable 
collection of sets A, ,  A, ,  . . . that generates the measurable space X, if 
the set { ( r , .  r l ,  k ) :  r l  < Q ( A , )  < r 2  for r , ,  rz  rational and k = 1,2 , .  . ' 1  
is recursively enumerable. Thus Q ( A k )  can be calculated to any preas- 
signed degree of accuracy. 
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codelength for the minimum complexity estimation princi- 
ple. In particular, (4.5) gives a sense in which 2-L*(Q) is a 
universal prior, giving (essentially) at least as much mass 
to distributions as would any computable prior. 

V. AN INDEX OF RESOLVABILITY 

Minimum complexity density estimation chooses a den- 
sity that minimizes the quantity 

This quantity is a random variable depending on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,2,. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe ,  n ,  which are assumed to be independent with 
unknown density p .  In order to help explain the behavior 
of this minimization, we replace (5.1) by its expected 
value and investigate the corresponding minimization. 
This expectation is 

1 
= --L,(q) + D(pllq) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH ( P ) ,  (5.2) 

where H ( p )  = - jp(x)log p(x)u(dx) is the entropy (of p 
with respect to v)  and D(pllq) = jp(x> log (p(x>/  
q(x))v(dx) is the relative entropy or Kullback-Leibler 
distance between p and q. 

Since by the law of large numbers, the quantities in 
(5.1) are close to the expected value for large n, we 
anticipate that the behavior of the minimization of (5.1) 
will be largely determined by the minimization of (5.2). 

Definition: The index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof resolvability of p (relative to a 
list r,, codelengths L,, and sample size n )  is defined by 

An interpretation of the index of resolvability is the 
following. If we know p ,  then n H ( p )  bits are required to 
describe X"  on the average. If we do not know p ,  then 
n ( H ( p ) +  R,(p)) bits suffice to describe X"  on the aver- 
age. This is proved shortly in Proposition 4. The index of 
resolvability may be interpreted as the minimum descrip- 
tion-length principle applied on the average. The index of 
resolvability is used (in the proof of Theorem 4) to bound 
the rate of convergence of the density estimator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, that 
minimizes (5.1) in terms of a density $,, that achieves the 
minimum in (5.3). 

The density 6" minimizing L J q )  among those that 
achieve the minimum in (5.3) is regarded as the density 
that best resolves p for sample size n. A compromise is 
achieved between densities that closely approximate p 
and densities with logical simplicity. 

For example, suppose the true density p is a standard 
normal perturbed by having zero density in a small seg- 
ment accounting for about 0.001 of the mass of the 
normal curve and having density scaled up by a factor of 

remains one). Then, for sample sizes n much less than 
1000, it is unlikely for a normal density to have observa- 
tions in the perturbed segment. The true density and the 
normal density are indistinguishable in this case. Indeed, 
the relative entropy distance between the true density and 
the standard normal is log 1.001, which is approximately 
equal to 0.001 log e. If L ( p )  and L(+) are the description 
lengths of the true density and the normal density, respec- 
tively, then from definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.31, the normal density has 
better resolvability for n < 1000( L( p )  - L( +))/log e .  

The density j,, is a theoretical analog of the sample- 
based minimum complexity estimator 6,. In our analysis 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf in, we regard it as being more directly an estimator of 
6" than an estimator of p .  The total error between 6, and 
p involves contributions from the estimation of fin by 6, 
and from the approximation of p by 6,. 

Observe that in general the resolvability can be im- 
proved by increasing n ,  enlarging r,, or decreasing the 
lengths L,(q). 

In the limit as n -+CO, the index of resolvability R,(p) 
converges to zero if and only if there is a sequence of 
densities qn in r, such that D(pllq,)+ 0 and L,,(q,)/ 
n + 0. 

Definition: The information closure of r, denoted by r, 
is the set of all probability densities p for which 
inf, E r D(pllq) = 0. 

In the case of all computable probability measures on 
the real line, is shown in Barron [16] that the informa- 
tion closure r* consists of all densities p for which 
D(pllg) is finite for some computable measure Q. More- 
over, r* includes all bounded densities with finite support 
and all densities with tails or peaks bounded by a com- 
putable integrable function. 

Here we show that the information closure is the set of 
all distributions for which the resolvability tends to zero 
as n +CO. A condition is required to force regular behav- 
ior of the numbers L,(q) as a function of n. Let r = U ,,r, 
be the union of the lists of densities r,. 

Growth restriction: 

L,(q) = o ( n ) ,  for each q E r. (5.4) 

Note that this condition requires that each q E r is in r, 
for all large n. The growth restriction is automatically 
satisfied for a constant (I', = r) or increasing (r, T r) 
sequence of sets of densities with a constant (L,(q)= 
L(q))  or convergent (limn L,(q) = L(q))  sequence of 
codelengths. 

Proposition 3: If the numbers L J q )  satisfy the growth 
restriction (5.41, then 

lim R,( p )  = 0, 
n+m 

(5.5) 

if and only if p is in r, the information closure of r. 
Proof of Proposition 3: Clearly R J p )  + 0 implies 

D(pl (b, )  + 0 and hence p is in r. Suppose conversely 
1.001 on the rest of the line (so that the total area that inf,,,D(pllq)=O. Given any E > 0, choose q in r 

1 



1040 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 4, JULY 1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
< E .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThen by the growth restriction 

1 
lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,( p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs lim -Ln( q )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ D( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApllq) < E .  (5 .6)  

Now E > 0 is arbitrary, so lim R, (p )  = 0 as desired. 0 

The redundancy A J p )  of a code is defined to be the 
expected value of the difference between the actual and 
ideal codelengths divided by the sample size. For the 
minimum two-stage codelengths B ( X " )  defined as in 
(3.2) we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n + m  n-m I z  

1 

n 
A , ( p ) = - E ( B ( X " ) - l o g l / p ( X " ) ) .  (5.7) 

Here log l / p ( X " )  is interpreted as the ideal codelength: 
it can only be achieved with true knowledge of the distri- 
bution p .  Its expected length is the entropy of p .  When 
the entropy is finite, the redundancy measures the excess 
average description length beyond the entropy. The re- 
dundancy, which plays a role similar to that of a risk 
function in statistical decision theory, is the basis for 
information-theoretic notions of the efficiency of a code, 
as developed in Davisson [19].3 

Proposition 4: The redundancy of the minimum two- 
stage code is less than or equal to the index of resolvabil- 
ity, i.e., 

L A P )  I R A P ) .  (5.8) 
Proof: We have 

Taking the expected value with respect to P ,  we have 

A A P )  = E min( * )  , I minE( . )  = R , ( p ) ,  
4 

as desired. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Remarks: In nondiscrete cases, B ( X " )  and log l / p ( X " )  

are not actually codelengths. Nevertheless, the log density 
ratio log p ( X " ) / q ( X " )  in (5.9) does represent the limit, 
as the quantization regions become vanishingly small, of 
the log probability ratio log P ( [ X " ] ) / Q ( [  X" ] ) .  Ignoring 
the necessary rounding to integer lengths, this log proba- 
bility ratio is the difference between the codelength 
log 1 / Q ( [  X " ] )  and the ideal codelength log 1 / P ( [  X" ] ) .  

For quantized data, the redundancy of the minimum 
two-stage code is the expected value of ( B ( [ X " ] ) -  
log l / P ( [  X " l ) ) / n  where B([ X " ] )  is the minimum of the 
codelengths from expression (3.5). In this case, the redun- 
dancy is bounded by R c l ( p )  = min, (L , (q ) /n  + 
D['](pllq)). Here D[' ] (p l lq)  = C,P(A)log P ( A ) / Q ( A )  is 

3A referee has suggested another relevant notion of redundancy, 
namely, E,(B(X")-logl /m(X")) ,  where m ( X " )  = & - L ( 4 ) q ( x " )  

and the expectation E, is taken with respect to m(x"). This measures 
the average deficiency of the minimal two-stage description compared to 
the code that is optimal for minimizing the Bayes average description 
length with prior w ( q )  = 2-L(9'.  

the discrete relative entropy obtained by summing over 
sets in the partition formed by the quantization regions. 
As a consequence of familiar inequality D[' l(pl lq) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
D(pllq), we have RS;I(p) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI R, (p )  uniformly for all quan- 
tizations. Consequently, the index of resolvability 
R J p )  = min(L,(q)/n + D(p lJq) )  provides a bound on 
the redundancy that holds uniformly over all quantiza- 
tions. 

The key role of the resolvability for estimation by the 
minimum description length criterion will be given in 
Section VII. There it will be shown that R,(p) bounds 
the rate of convergence of the density estimator. 

VI. EXAMPLES OF RESOLVABILITY 

In this section we present bounds on the index of 
resolvability for various classes of densities. In each case 
the list r is chosen to have information closure which 
includes the desired class of densities. The bounds on 
resolvability are obtained with specific choices of L,(q). 
Nevertheless, in each case these bounds lead to bounds 
on the resolvability using L*(q) (the algorithmic complex- 
ity of 4). With L*, the best rates of convergence of the 
resolvability hold without prior knowledge of the class of 
densities. 

We show that the resolvability R,(p) is O ( l / n )  in 
computable cases, O((log n ) / n )  in smooth parametric 
cases, and O ( l / n I Y  or O(((1og n) /n )v )  in some nonpara- 
metric cases, where 0 < y < 1 .  

The bounds on resolvability in these examples are de- 
rived in anticipation of the consequences for the rates of 
convergence of the density estimator (Section VII). We 
intersperse the examples and resolvability calculations 
with remarks on the implications for parametric model 
selection. There is also opportunity to compare some 
choices of two stage codes in the parametric case using 
average and minimax criteria involving the index of re- 
solvability. 

Case 1 )  P is computable: R,(p)= L(p) /n  for all 
large n. 

Suppose L,(q) = L(q)  does not depend on n. Let fin 
be the density that achieves the best resolution in (5.3). If 
the density p is on the list r, then, for all sufficiently 
large n, 

E" = P (6 .1)  

and 

If there is more than one density on the list that is a.e. 
equal to p, then in (6.1) and (6.2) we take the one for 
which U p )  is shortest. 

To verify (6.1) and (6.2) we first note that for all n, 
0 < L(fi.,) I U p )  (because any q with L(q)  > L ( p )  re- 
sults in a higher value of L(q ) /n+D(p l l q )  than the 
value L ( p ) / n  that is achieved at q = p ) .  Now for small n 
compared to L ( p ) ,  densities q that are simpler than p 
may be preferred. However, for all n 2 L(p) /Dmi , ,  it 
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must be that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and R J p )  = L ( p ) / n  where 

Dmin= min(D(pl lq): L ( q )  < L ( P ) ) .  (6.3) 

Indeed for such n, we observe that for each q with 
L(q)  < U p ) ,  the value of L(q) /n  + D(pllq) is greater 
than Dmin and hence greater than L(p ) /n ,  which is the 
value at p ,  whence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, = p .  

Case 2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is in a d-dimensional parametric family 

R n ( p )  (d /2 ) ( logn) /n*  

For sufficiently regular parametric families {pe: 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 01, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 c Rd, there exists r,, L,  and constants co such that for 
every 8 

( d / 2 )  log n + c, + o( 1) 

n 
' , ( P o )  5 . (6.4) 

Moreover, for every r, and L, and for all 8 except in a 
set of Lebesgue measure zero, 

The lower bound (6.5) is a consequence of a bound on 
redundancy proved in Rissanen [9, Theorem 11, and the 
regularity conditions stated there are required. The upper 
bound (6.4) is closely related to a result in Rissanen [8, 
Theorem lb)] for the redundancy of two-stage codes. 
Here we derive (6.4) requiring only that 0 be an open set 
and that for each 8 the relative entropy D(p,llpe) is twice 
continuously differentiable as a function of 8 (so that the 
second order Taylor expansion (6.7) holds). For compact 
subsets of the parameter space, bounds on the minimax 
resolvability are also obtained. 

First to establish (6.41, we let r, be the set of densities 
po for which the binary expansions of the parameters 
terminate in (1/2)logn bits to the right of the decimal 
point and we set the corresponding description length to 
be 

d 
L,( P o )  = /[e] + 2 log n7 (6.6) 

for ps E r, where I[,] denotes the length of a code for the 
vector of integer parts of the components of 8. Thus r, 
corresponds to a rectangular grid of parameter values 
with cells of equal width 6 = 1 / & .  The choice of 6 of 
order 1/& is seen to optimize the resolvability, which is 
of order (-log 6) /n  + S2. For 8 E 0, the truncation of 
the binary expansion of the coordinates to (1/2)log n bits 
yields an approximation to the density with relative en- 
tropy distance of order l / n  and a codelength of /,ol.+ 
( d  / 2 )  log n. Consequently, the redundancy satisfies 
R,(p,) 5 ((d/2)log n + 0(1) ) /n .  This verifies (6.4). 

This derivation uses the fact that- the relative entropy 
satisfies D(~,IIP~) = o(ile - ell2) as e + 0 for any given 8. 
Indeed, since D(p, l (p i )  achieves a minimum at 8 = 8, it 
follows that the gradient with respect to 0 is zero at 8 and 
the second order Taylor expansion is 

1 

2 
D(~,II~,) = - (e - 6) ' io(e - 6 )  loge + ~ ( I I S  - 61t2), 

(6.7) 

where Jo is the nonnegative definite_ matrix of second 
partial derivatives (with respect to 8) of E ln(p,(X)/ 
ps (X) )  evaluated at 8=8. Although we do not need a 
further characterization of Jo here, it is known that under 
additional regularity conditions J ,  is the Fisher informa- 
tion matrix with entries - E(# In po(X>/a8,a8,). 

To optimize the constant c ,  in (6.4) according to aver- 
age or minimax resolvability criteria, r, should corre- 
spond to a nonuniform grid of points to account for the 
curvature and scaling reflected in Jo. Assume that Jo is 
positive definite. In the Appendix, it is shown that, given 
E > 0, the best covering of the parameter space (such fhat 
for every 8 there is a 8 in the net with (6 - 8)TJ,(6 - 6) I 
c 2 )  is achieved by a net having an asymptotic density of 
Ad(l/E)ddet (Jo) ' /2  points per unit volume in neighbor- 
hoods of 8, where A, is a constant (equal to the optimum 
density for the coverage of Rd by balls of unit radius). We 
set E = @, which optimizes the bound on the resolv- 
ability. We need a code for the points in the net. It is 
shown in the Appendix, that if w(8)  is a continuous and 
strictly positive prior density on 0, then the points in the 
net can be described using lengths L,(pi), p i  E r,,, such 
that for any given 8, 

d 1 
L,( p i )  = - log n + - logdet ( J,) 

2 2 

where 6 is the point in the net that best approximates 8 
and o(1) + 0 as n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+cc. Here cd = d / ( A d ) 2 1 d  is a Constant 
which is close to 27re for large d .  In (6.8) the term 
log 1/ w(8)  may be regarded as the description length per 
unit volume, for a small set that contains 8, and the 
remaining terms account for the log of the number of 
points per unit volume in this set. Sets r, and codelengths 
L,  with properties similar to (6.8) are derived in Barron 
[16] and Wallace and Freeman [13]. The principle differ- 
ence is that here the codelengths are designed to optimize 
the resolvability, which involves the expected value of the 
log-likelihood, whereas in [ 161 the codelengths are de- 
signed to optimize the total description-length based on 
the sample value. (This accounts for the use of the Fisher 
information .To in (6.8) instead of the empirical Fisher 
information J.) 

With the given choice of L, and r, and using R,(p,) I 
L,(pe)/n + D(p,llpe), we obtain the following bound on 
the resolvability, 

d 

2 
- - l o g c , / e + o ( l )  

Moreover, it is seen that this bound holds uniformly on 
compact subsets of the parameter space. For any compact 
set B c 0, the asymptotic minimax value of the right side 
of (6.9) is obtained by choosing the prior w(8)  such that 

I -  
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the bound is asymptotically independent of 0, i.e., we set 

det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJe)"2 

C J ,  B 

w ( e )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (6.10) 

where c ~ , ~  = JB det zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(J,)'/* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAde. With this choice, it is seen 
that the minimax resolvability is bounded by 

log n +log/ det ( J , ) "2dB  
B 

Corresponding to this bound is the choice of a constant 
codelengt h 

d 

2 
L , ( p , )  =-logn+logcJ,B+logc,+6,, (6.12) 

which is equal to the log of the minimum cardinality of 
nets that cover B in such a way that for every 0 E B there 
is a 8 in the net with ( e - e ) T J e ( e - e ) < ( d / n ) .  Here 
lim 6, = 0. 

Similar lower bounds on minimax resolvability can be 
obtained from known lower bounds on minimax redun- 
dancy. Indeed, it is shown in Barron and Clarke [26] (with 
uniformity on compact sets B shown in Clark [27]) that, 
under suitable regularity conditions, the code that opti- 
mizes the average redundancy, i.e., the code based on the 
density m ( X 9  = /pe(Xn)w(0) de, has asymptotic redun- 
dancy given by 

i d 

2 
- - log27re + o(1) . (6.13) 

Consequently the prior in (6.10) yields the asymptotically 
minimax redundancy as well as bounds on the minimax 
resolvability. (A similar role for this prior is given in 
Krichevsky and Trofimov [28] for the special case of the 
redundancy of codes for the multinomial family.) Note 
that the expression (6.13) for the redundancy and the 
bound (6.9) for the resolvability differ in the constant 
term, but otherwise they are the same. The prior in (6.101, 

which is defined to be proportional to the square-root of 
the determinant of the Fisher information matrix, was 
introduced by Jeffreys [29, pp. 180-1811 in another statis- 
tical context. 

Remarks: Consider the index of resolvability in a model 
selection context. We are given a list of parametric fami- 
lies from which one is to be selected from the data by the 
minimum description-length criterion. The previous anal- 
ysis applies (with slight modification) to bound the index 
of resolvability in this case. Indeed, let {p ik ) ) ,  k = 1,2, . 
be a list of families, with corresponding sets rAk) and 
codelengths Lf)(q), each of which is designed to satisfy 
(6.4). In this case r, = U ,Fk )  is taken to be the union of 
the sets of candidate densities and L$q) = Lkk)(q)+ L(k) 
for q in r', where k is the index of the family that 

contains the density q. Here L(k) is chosen to satisfy 
Ck2-L(k)  I 1 so that it is interpretable as a codelength for 
k. If k* is the,index of the family that contains the true 
density, then without prior knowledge that this is the right 
family, we obtain an index of resolvability that differs by 
only L(k*)/n when compared to the resolvability at- 
tained with true knowledge of the family. Consequently, 
the index of resolvability remains of order (logn)/n, 
when the true density is in one of the parametric families, 
even though the true family is unknown to us. 

A related criterion for the selection of parametric mod- 
els was introduced by Schwarz [30], with a Bayesian 
interpretation, and by Barron [16] and Rissanen [lo], 

with a minimum two-stage descripti2n-length interpreta- 
tion. In this method the index k, of the family is 
chosen to minimize L (k )  + log l / m k ( X n ) ,  where 
m,(X")  = /p ik) (X")w,(0)  de is the marginal density of 
X" obtained by integrating with respect to a given prior 
density w J 0 )  for the kth family. Schwarz [301. and 
Rissanen [ 101 have obtained approximations to the crite- 
rion showing that it amounts to the minimization of 
(d, /2)log n +log l /p ik ) (X")  as in the minimum descrip- 
tion-length criterion. Here d ,  is the dimension of the kth 
family. A more detailed analysis as in [16], applying 
Laplace's method to approximate the integral defining 
m,(X"), yields exact asymptotics, including terms involv- 
ing the prior density and the determinant of the empirical 
Fisher information matrix. This analysis is the basis for 
(6.13) as derived in [26]. Moreover, examination of the 
approximation to the criterion shows that it is very similar 
to minimum complexity estimation with codelengths 
L,(pik))  approximated as in (6.8). 

Case 3) Sequences of parametric families: 

What if the true density is not in any of the finite- 
dimensional families? We show that for a large non- 
parametric class of densities, a sequences of parametric 
families continues to yield a resolvability of order 
(dn/2)( Iogn)/n,  except that now the best dimension d, 
grows with the sample size. 

Consider the class of all densities p(x) with 0 < x < 1 

for which the smoothness condition 

is satisfied for some r 2 1. We find sequences of paramet- 
ric families with the property that for every such density, 
the resolvability satisfies 

Moreover, this rate is achieved by minimum complexity 
density estimation without prior knowledge of the degree 
of smoothness r .  
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Consider sequences of exponential families of the form 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$,(e) = log /d exp(C,d, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,O,+,(x)> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw, 6 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR d ,  and 
l,+l(x),. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' , 6 d ( X )  are orthonormal functions on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL2[0, 11 
that are chosen to form a basis for polynomials (of degree 
d), splines (of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 2 l  with m equally spaced knots 
and d = m + s - l), or trigonometric series (with a maxi- 
mal frequency of d /2). We focus on the polynomial and 
spline cases, since the trigonometric case requires that the 
periodic extension of log p ( x )  must also be r-times differ- 
entiable €or (6.17) below to hold. 

In Barron and Sheu, bounds are determined for the 
relative entropy distances D(pll pi:)) and D(p$!)II pi")), 
where 8* in Rd is chosen to minimize D(pllp$")). There 
the bounds are used to determine the rate at whjch 
D(pllp,'dn') converges to zero in probability, where 8 is 
the maximum likelihood estimator of the parameter and 
d, is a prescribed sequence of dimensions. Here we use 
the bounds on the relative entropy from Barron and Sheu 
[31] to derive bounds on the index of resolvability. This 
bound on the resolvability will le:d to the conclusion that, 
with a sequence of dimensions d, estimated by the mini- 
mum description-length criterion, the density estimator 
converges at rate bounded by ((log n ) / n ) Z r / ( 2 r + l ) .  

Let r, consist of the union for all d 2 1 of the sets of 
densities p id)  for which the binary expansion of the 
coordinates of 8 terminate in (1/2)log n bits to the right 
of the binary point. Also let w"(k,;. ., kd) = n,d_,w(k,) 
be a prior for vectors of integers that makes the coordi- 
nates independent with a probability mass function w(k), 
k = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1, f 2, . Assume, for convenience, that w(k) is 
symmetric and decreasing in Ikl. (Assume other choices 
for the prior distribution can also be shown to lead to 
bounds of the desired form.) Then set the codelengths for 
p id)  in r, to equal 

d 
L,( pi")) = 7 log n + log 1/ w"( [ e ] )  + 2 log d + c . (6.16) 

Here log1/wd([8]) is the codelength for the integer part 
of the parameter vector and 210g d + c is a codelength for 
the dimension d where c = ,d-'. (In the spline case, 
if the order s is not fixed, then we add an additional log d 
bits for the description of s I d.) 

Note that in this set up, the minimum complexity 
criterion is u:ed to automatically select a sequence of 
dimensions d, that provide parsimonious yet accurate 
density estimates. 

In order to verify (6.14) we proceed as follows. Let 8* 
in R d  be chosen to minimize D(pIlpid)), i.e., pi<)  is that 
member of the family that provides the best approxima- 
tion to p in the relative entropy sense. Set y = 

max, [log p(x) l  (which is finite as a consequence of the 
integrability of the derivative). It is shown in [31] that in 
the polynomial case and in the spline case (with r I s I d ) ,  
there exists a constant c (that depends on r ,  but does not 

depend on the density p or the dimension d )  such that 

D(pllpi '3) I c / ( D r l o g p ) z .  d2' (6.17) 

Moreover, there exists a constant y* depending on y such 
that max, Ilog p$?(x)l I y* for all large d. For simplicity 
we assume that y* is an integer. By [31, (5.311 we have for 
any parameter vector 0 that 

1 

2 
D( pi<)JJpid)) I -ev*eadllo*-'lll18* - 811' log e, (6.18) 

where ad is a sequence of order O ( d )  in the polynomial 
case and O ( 6 )  in the spline and trigonometric cases. 

Now let 8 be chosen to equal 8* with each coordinate 
truncated to (1/2)logn bits accuracy (to the right of the 
binary point). As a consequence of the inequality 
(e ;  )' + . . . + (8; ) 2  I /(log I ( y * I2 ,  it is seen that 
the integers [e,] are bounded by y* .  Consequently, from 
(6.16) the description length for this density is bounded by 

L,( Pi"') - < (d /2)  Iog n + d log 1/ w ( y * )  + 2 log d + c. 

(6.19). 

With the given choice of 8 we have 118" - 811' I d / n .  
Now we combine the bounds from (6.17) and (6.18). It 

is seen that for any constant co, there exist constants c ,  
and c2, such that for all d satisfying a : d / n I c o ,  the 
relative entropy distance satisfies 

D( PIIPid') = D( PIIP$1') + D( P;9)11pid') 

2 r  d 
sc1($) +c,-. ( 6.20) 

The first identity in (6.20) is a Pythagorean-like identity 
from [31, Lemma 31 that is valid when the family is of the 
exponential form. As a consequence of this bound, if a 
sequence of dimensions d = d, is chosen such that a i d / n  
is bounded, then the index of resolvability satisfies 

< O  -1ogn + O  - + 0 - . (6.21) 
- (: ) (22r (3  

This bound is optimized with d = O(n /log n)1 / (2 r+ l )  (for 
which the condition a ; d / n  I O(1) will be satisfied in the 
polynomial, spline and trigonometric cases for all r 2 11, 
which yields 

Remarks: As a consequence of this bound, using the 
results of Section VII, it is seen that the minimum com- 
plexity density estimator converges in squared Hellinger 
distance at rate ((log n) /n )z r ' ( z r+ l ) .  Moreover, as previ- 
ously noted, the minimum complexity criterion automati- 
cally chooses an appropriate sequence of dimensions d 
from the data without knowledge of the degree of 
smoothness r .  In contrast, the rates of convergence of 
order n-2r/(2rt1) obtained in [31] are for density estima- 



1044 IEEE TRANSACllONS ON INFORMATION THEORY, VOL. 37, NO. 4, JULY 1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tors in families with a sequence of dimensions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd of order 
n1 / (2 r+1 ) ,  is preselected with knowledge of the degree of 
smoothness r .  

Therefore, with minimum complexity estimation, we 
converge at a rate within a logarithmic factor of the rate 
obtainable with knowledge of the smoothness class of the 
density. This remains true whether the true density is in a 
finite- or infinite-dimensional class. 

In related contexts of model selection (in particular in 
the context of selecting the order of a polynomial regres- 
sion), Shibata [32] and Li [331 have shown that criteria 
closely related to criteria proposed by Akaike [34] are 
asymptotically optimal (in the sense that the risk of the 
estimated model is asymptotically equivalent to the risk 
achievable by knowledge of the sequence of model dimen- 
sions that minimize the risk), provided the true distribu- 
tion is not in any of the finite-dimensional families; 
whereas this asymptotic optimality fails for other criteria 
including the minimum description-length criterion. How- 
ever, to achieve this optimality property in infinite-dimen- 
sional cases, the criteria used by Shibata and Li sacrifices 
strong consistency in finite-dimensional cases. It is 
reasonable to conjecture that results Similar to those 
obtained by Shibata carry over to the case of density 
estimation with sequences of exponential families. Unfor- 
tunately, the methodology used by Shibata and Li relies 
heavily on linearity properties of the models that limit the 
validity of the criteria. 

In contrast, the minimum complexity criterion does not 
require the candidate parametric models to be approxi- 
mately linear. We are free to add to the list densities 
having arbitrary and possibly irregular form, in hopes of 
obtaining better estimates in some cases, without hurting 
the bounds on the rates of convergence in the best under- 
stood cases. 

Concerning splines, we remark that ideally the mini- 
mum description-length criterion should be used to select 
the order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. If instead we fix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, then the above analysis 
holds only for r I s. With splines of a fixed order, it is not 
possible to take advantage of smoothness of order r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> s 
to get the faster rates of convergence that are possible 
with polynomials or variable-order splines. 

Histograms, which are piecewise constant density esti- 
mators, are a special case of spline models in which the 
order of the spline is fixed at s = 1. Therefore, the results 
of this section apply to histograms in the case that the 
minimum description-length criterion is used to select the 
number of cells. The index of resolvability converges to 
zero at rate ( ( l o g n ) / n ) 2 / 3  for log-densities with at least 
one square-integrable derivative. Other results that in- 
volve the stochastic complexity and the relative entropy in 
the histogram setting may be found in Hall and Hannon 
[351, Yu and Speed [36], and Barron, Gyorfi, and van der 
Meulen [421. In particular, Yu and Speed [36] demon- 
strate that the redundancy is c((1og n)/n)'I3(l+ &)) 
and explicitly identify the constant c, for a class of univer- 
sal codes that (as they point out) are closely related to the 
two-part codes we consider here. A slightly faster conver- 

gence rate of order n P 2 I 3  is possible for the relative 
entropy and the redundancy, as shown in 1311, [361, and 
[54] using other histogram-based methods with a prede- 
termined sequence of number of bins. Yu and Speed [36, 
Theorem 3.11 demonstrate that .-'I3 is the optimal re- 
dundancy in a minimax setting involving first derivative 
assumptions on the density function. 

Minimum complexity criteria may also be used to select 
the boundaries of the cells (or more generally to select 
the locations of the knots for the spline models), leading 
to improved resolvability in some cases. Nevertheless, 
equal-spaced boundaries are sufficient to obtain the indi- 
cated bounds on the index of resolvability. 

Case 4)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFully nonparametric: 

We show that by a special selection of the set r,, that 
does not involve the use of a sequence of smooth para- 
metric families, a resolvability of 0((1/ n)2r / (2r t  ')) in- 
stead of O((1og n)/n)2r/(2r+1) can be attained using as- 
sumptions on derivatives of the density up to order r. 
Moreover, it is shown that O(n-2r/(2r+1)) is asymptoti- 
cally the minimax resolvability as well as being the mini- 
max rate of convergence of density estimators. 

First consider the class of density functions p on the 
unit interval for which the log-density f ( x )  = log p(x) is 
in the Sobolev ball, 

7 4 ,  

where y is an arbitrary positive constant. 
The Kolmogorov €-entropy H, of a set of functions W 

is the log of the cardinality of the smallest net of func-- 
tions f such that for every function f in W there is an f 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf(x)- f(x)l < E for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (Kolmogorov and 
Tihomirov [37]). In Birman and Solomjak [38], it is shown 
that for all sufficiently small E ,  the €-entropy of the 
Sobolev ball is bounded by c ( l / ~ ) ' / ~  where c is a con- 
stant depending only on y and r. 

Fix an €-net with log-cardinality satisfying H, I 
c ( l / ~ ) ' / ~ .  We- let r, consist of the densities proportional 
to ef(y) for f in the net. (Here E will be chosen as a 
function of n.) Thus each q in r, is of the form q(x)= 

e f (x ) - c f  where c f  = log /,'ef(")&. Now by [31, Lemma 11, 
if 1 1 . 1 1  denotes the supremum norm, we have 

( 6.23) 

which is less than (1/2)e'e2 by the choice of f: Setting 

1 
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L,(q) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHe,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwe obtain the following bound on the resolv- 
ability 

1 1 

n 2  
R,( p )  I -He + -e'E2 

which holds uniformly for all log-densities in the Sobolev 
ball. Noting that e' tends to one for small E, it is readily 
seen that choosing E, = O(n-r / (2r+1)  ) gives the best rate 
in (6.24). With such a choice we have resolvability bounded 
by 

R,(p)  = O ( n - 2 r / ( 2 r + l )  ), (6.25) 

uniformly for all log-densities in the Sobolev ball, for all 
large n. 

By adding description-length terms for r and for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  we 
may use the minimum complexity criterion to automati- 
cally select a suitable Sobolev ball from the data. The 
indicated rate on the index of resolvability will hold 
without prior knowledge of the best smoothness class. 

Similar results for the index of resolvability can be 
obtained in the case of Sobolev conditions imposed on the 
density itself (instead of the log-density), assuming that 
the density function is bounded away from zero. Indeed, 
let W i +  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{f E W;: f (x )2  l/y}, y > 1, for which the 
€-entropy must have the same bound H, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI c ( l / ~ ) ' / ~ ,  let 
r, b_e the set-of probability density functions proportional 
to f(x1 for f in the E-net of W$+, and let L,(q) be the 
log of the car_dinality of this net. Each q i n  r, is of the 
form q ( x )  = f(x)/cf where now c f  = / , ' f (x )dx I y and 
q(x) 2 1/ y2.  Using inequalities between the relative en- 
tropy and Chi-square distance (D(pllq) I J ( p  - q I 2 / q  s 
J ( p  - cq) ' /q  for c > O), which may be deduced as in [31, 
Section 31, it follows that for probability density functions 
~ ( x )  = f (x> in W$+, we have D(pIlq) I y*/,'<f(x>-- 
f ( ~ ) ) ~ d x ,  which is less than y2eZ by suitable choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 
in the €-net. As in the previous case it follows that the 
index of resolvability satisfies 

1 
R,( p )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI -He + y2e2, 

andoptimizing thechoice of€ yieldsR,(p) = 0 ( n - 2 r / ( 2 r + ' )  1 
as before. 

As a consequence of this bound on the index of resolv- 
ability (and by application of Theorem 4, Section VII), we 
see that the minimum complexity density estimator, spe- 
cialized to the current case, converges to the true density 
in squared Hellinger distance at rate n-2r / (2 r+1) ,  uni- 
formly for all densities in the Sobolev class W$+. Now 
when both p and q are bounded and bounded away from 
zero (here l / y  I p(x) I y and l / y 2  5 q ( x )  5 7') the 
squared Hellinger distance, the relative entropy and the 
integrated squared error are equivalent to within a con- 
stant factor: indeed, /(fi - f i I 2  I D(pl lq)  s / < p  - s)*/ 
9 2 y 2 / ( p  - 4)' I 4y4J(fi - h)'. It follows that the 
density estimator also converges in relative entropy and 
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integrated squared error at rate n - 2 r / ( 2 r + 1 )  uniformly for 
densities in the Sobolev class. Now this rate is known to 
be asymptotically minimax for the integrated squared 
error for densities in W i +  (see Bretagnolle and Huber 
[4O], Efroimovich and Pinsker [41]); also, it is the minimax 
rate for the redundancy (formulated as a cumulative 
relative entropy) as recently shown in Yu and Speed [36]. 
It follows therefore that n - 2 r / ( 2 r + 1 )  is also the minimax 
rate for the index of resolvability of densities in this 
space. (Indeed, any faster uniform convergence of the 
resolvability would yield a faster convergence of the den- 
sity estimator resulting in a contradiction.) 

Other classes of functions may be considered for which 
if the density functions in the class are bounded away 
from zero by an amount y ,  then the metric entropy H, is 
known. By the same argument, the resolvability of densi- 
ties in the class by densities in the E-net automatically 
satisfies 

(6.26) 

For each such class of functions, optimization of the 
choice E leads to a rate of convergence for the index of 
resolvability. 

Minimum complexity estimation with the E-net of func- 
tions is analogous to Grenander's method of sieve estima- 
tion [39]. The important difference is that with minimum 
complexity estimation we can automatically estimate the 
sieve of the best granularity. Moreover, with the index of 
resolvability we have bounds on the rate of convergence 
of the sieve estimator. 

The Kolmogorov metric entropy has also been used by 
Yatracos [42] to obtain rates of convergence in L' for a 
different class of density estimators. However, it is not 
known to us whether the metric entropy has previously 
been used to give bounds on redundancy for universal 
codes. The new ideas here are the relationships between 
redundancy, resolvability, and rates of convergence of 
minimum complexity estimators. 

Remarks: In the Examples 2, 3, and 4, we permitted 
the lengths L,(q) to depend on the given sample size. 
Nevertheless, by paying a price of order (loglog n>/n, 
comparable resolvability can be achieved using lengths 
L'(q) which do not depend on n. The advantage is that 
the growth and domination conditions (7.31, (7.41, and 
(7.6) which are used in Theorems 1, 2, and 3 will then be 
satisfied. To construct such an assignment of description 
lengths L'(q), we first note that positive integers k can be 
encoded using 210gk + c bits where c is a constant. 
Given r, and L J q )  for n = 1,2; . ., define a new list 
r'= U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk r 2 k  to be the union of the sets for indices equal 
to powers of two and define, for q E r', 

L' (q)  =Lnk(q)+210g lognk+c,  (6.27) 

with nk = 2k, where k is the first index such that q E r 2 k .  

It is seen that L' satisfies Kraft's inequality on r'. With L' 
in place of L, we achieve resolvability satisfying R',(p) 5 
( ( d  /2) log n + 2 log log n + 0(11)/ n in the parametric 
case. In general, since between the powers of two the 
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resolvability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR’,(p) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= min(L’(q)/n + D(pllq)) is never 
more than twice the resolvability at the next power of two, 
we conclude that R’,(p) I U(R,.(p) +(loglog n’)/n’), 
where n’ = 2llogn1. In particular, when R,(p) is of larger 
order than (loglog n ) / n ,  the overall rate is unaffected by 
the addition of the (loglogn)/n term, so it follows that 
R’,(p) = O(rJp) ) .  

For practical estimation of a density function, we are 
more inclined to use sequences of parametric families as 
in Case 3, instead of using the “fully nonparametric” 
estimators as in Case 4, despite the fact that for a large 
class of functions the index resolvability tends to zero at a 
slightly faster rate in Case 3. There are two reasons for 
this. Firstly, the metric entropy theory does not provide 
an explicit choice for the net of density functions with 
which we can compute. Secondly, with sequences of para- 
metric families, while converging at a nearly optimal rate 
even in the infinite-dimensional case, we retain the possi- 
bility of delight in the discovery of the correct family in 
the finite-dimensional case. 

VII. THE CONVERGENCE RESULTS 

In this section we present our main theorems establish- 
ing convergence of the sequence of minimum complexity 
density estimators. The first three theorems concern the 
statistical consistency of the estimators. Bounds on rates 
of convergence are given in Theorem 4 and its corollary. 

Conditions: For each of the results, one or more of the 
following conditions are assumed. Given a sequence of 
lists r, and numbers L,(q) for densities q in r,, let 
r = U ,r,. Set L,(q) = m  for g not in r,. 

Summability: There exists a constant b > 0 such that 

(7.1) 2 - L n ( q ) ~  b,  for all n.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g E r, 

Light tails: There exist constants 0 < a < 1 and b’ such 
that 

2--uLn(q) - < b’, for all n.  (7.2) 
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE r, 

Growth restriction: 
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Nondivergence: 
limsupL,(q) <m, for every q E r. (7.4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 

Nondegeneracy : 

L n (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ‘7 

for all q E r, and all n , for some constant I > 0. (7.5) 

Domination: There exists L(q) ,  q E r and a constant c 

2-L(q) I 1. 

such that 

L( q )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI t,( q )  + c ,  for all q and all II and 
4 

(7.6) 

Remarks Concerning the Conditions: The main condi- 
tion for all of our results is the summability condition 
(7.1). It is implied by Kraft’s inequality in the data com- 
pression framework or it is implied by the requirement of 
a proper prior in the Bayesian framework. This condition 
(or the closely related condition (7.6)) is used to obtain 
the results of Theorems 1 and 2 on the consistency of the 
estimator of the distribution. The somewhat more strin- 
gent assumption (7.2) is used to get the rate of con- 
vergence results for the estimator of the density. The 
Corollary to Theorem 4 shows how this more stringent 
condition can be circumvented by restricting the mini- 
mization to densities that are not excessively complex. 

Either the growth restriction (7.3) or the boundedness 
(7.4) is used with the almost sure results (Theorems 1, 2, 
3), but they are not needed for the main result (Theorem 
4) on the rate of convergence in probability. For condition 
(7.51, the constant 1 can be taken to equal 1 when the 
lengths L,(q) are positive integers. 

For given L ( q )  and r that do not depend on n,  if 
Cq2-L(q) I 1 and if r contains more than one point, then 
all of these conditions are satisfied except perhaps for the 
tail condition (7.2). A modified criterion with AL(q) used 
in place of L(q),  where A > 1 is a constant, is seen to 
satisfy all of the conditions, provided C q 2 - L ( q ) ~  1. In 
particular (7.2) will hold with a = l / A .  Note that this 
modification will not increase the index of resolvability by 
more than the factor A.  In particular R,(p) will have the 
same rates of convergence. 

For the case of complexity constrained maximum likeli- 
hood estimators in Cover [HI, the density estimate 8, is 
selected by maximizing the likelihood in r,, where 
r,, r,, . . - is an increasing sequence of collections of 
densities. This is a special case of minimum complexity 
density estimation with L J q )  set to a constant on r,. We 
impose the cardinality restriction log IlI‘,ll= o h ) .  In this 
case we set L,(q) = 210g Ilr,ll for q E r, and 03 otherwise. 
Then conditions (7.11, (7.21, (7.3), and (7.5) are satisfied, 
so all of the convergence results except Theorem 1 hold 
in this case. Even if the collections r,, are not increasing, 
the conditions are still satisfied for Theorem 4. The 
proofs of the theorems are in Section VIII. 

Let X , ,  X,, . * be independent and identically dis- 
tributed with probability density function p ( x ) .  Let 8, be 
the minimum complexity density estimate defined by (3.3). 
Thus 8, achieves 

min ( L , ( q )  +l0gl/q(Xfl)).  (7.7) 
4 E r, 

Theorem 1 (Discovery of the true density): Assume L ,  
satisfies the nondivergence condition (7.4) and the domi- 
nation condition (7.6). If 

then 

for all sufficiently Iarge n,  with probability one. 

Thus, in the important case that r = r*, if the data are 
governed by a computable law then this law eventually 

P E r l  (7.8) 

B, = P ,  (7.9) 
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will be discovered and thereafter never be refuted. How- 
ever, although the estimator eventually will be precisely 
correct, it is never known for any given sample size 
whether the true density has been discovered. 

Next we present convergence properties that do not 
require that the true density be in r. It is assumed to be 
an information limit of such densities. The next result 
establishes convergence of the estimated distributions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 2 (Consistency of the minimum complexity esti- 
mator of the distribution): Assume L, satisfies the 
summability condition (7.1) and the growth restriction 
(7.3). If p E r, then for each measurable set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ,  

with probability one. (7.10) 

Assuming that X is a separable Bore1 space, it follows 
that, with probability one, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F,, 3 P (7.11) 

' 

lim p,( S )  = P( S )  
n+m 

in the sense of weak convergence. 

In Barron [431 a technique is developed that shows 
convergence of a sequence of distance functions stronger 
than distances corresponding to weak convergence but 
not as strong as convergence in total variation. See the 
remark following the proof in Section VIII. 

The next two results show convergence of the density 
estimates in L' and hence convergence of the distribu- 
tions in total variation. However, the stronger summabil- 
ity condition (7.2) is required. 

Theorem 3 (Consistency of the minimum complexity esti- 
mator of the density): Assume L, satisfies the tail-condi- 
tion (7.2) and the growth restriction (7.3). If p E I', then 
with probability one, 

lim Ip-I;,I=O (7.12) 
n+m ! 

and 

(7.13) 

Let d&(p,  4 )  = j(fi - f i I 2  denote the Hellinger dis- 
tance. Convergence of densities in L' distance and con- 
vergence in the Hellinger distance are equivalent as is 
evident from the following equalities (Pitman [44, p. 71) 

The Hellinger distance is also related to the entropy 
distance. Indeed d&(p ,q)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI j p l n p / g  and if p ( x ) / q ( x )  
-+ 1 in sup norm, then 

(7.15) 

in the sense that the ratio of the two sides converges to 
one. 

For sequences of positive random variables Y,, the 
notation Y, 5 R,, in probability is used to denote conver- 
gence in probability at the indicated rate. This means that 
the ratio Y , / R ,  is bounded in probability, i.e., for every 

E > 0, there is a c > 0, such that P{Y,, / R ,  > c} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI E for all 
large n. 

The following result relates the accuracy of the density 
estimator to the idormation-theoretic resolvability. It is 
this result that demonstrates the importance of the index 
of resolvability for statistical estimation by the minimum- 
description length principle. 

Theorem 4 (Convergence rates bounded by the index of 
resolvability): Assume L, satisfies the tail condition (7.2) 
and the nondegeneracy condition (7.5). If lim R, (p )  = 0, 
then I;,, converges to p in Hellinger distance with rate 
bounded by the resolvability R,(p), i.e., 

d&( p,I;,) 5 R,( p )  in probability. (7.16) 

Moreover, 

5 R,( p )  in probability. 
Ln( I;,) 

n 
(7.17) 

Remarks: The conclusion (7.16) has recently been 
strengthened in [ 171 (building on the proof technique 
developed here in Section VIII), to yield that for all n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1, 

where c is a constant. A bound on the constant obtained 
in [17] is (2+4(1+(b + e - ' ) / l ) / ( l -  a))/loge. 

A consequence of Theorem 4 for the classes of densi- 
ties considered in Section VI, is that the minimum com- 
plexity density estimators converge at rate l / n ,  (log n ) / n ,  
((log n)/n)2r'(2r+1) or n-2r / (2 r+1) ,  respectively. To obtain 
these rates, the lengths L,(q) used in Section VI are 
replaced by AL,(q) where A > 1, so that the tail condition 
(7.2) is satisfied, or we use the modification indicated 
below. 

If weights 2--Ln(q) are summable but do not satisfy the 
tail condition, we show how a slight modification results 
in a convergent density estipator. Fix A > 1 (in particular, 
we suggest A = 2), and let Ly) be the value of L,(q) for a 
density that achieves min,(AL,(q)+ logl/q(X")). Now 
define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, to be the density that achieves the minimum of 
L,(q) + log l /q(X")  subject to the constraint that 
L J q )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 2 L',"). Thus 

b,=arg min (L , (q )+ log l /q (X" ) ) ,  (7.18) 
q :  L, (q )<  z i y ,  

where ties are broken in the same way as for I;, (by 
choosing a minimizing density with least L,,(q)). Here the 
constant 2 could be replaced by any constant c > 1. 

Observe that if the minimum complexity density esti- 
mate I;, has length L,(I;,) less thap 2Ly), then the 
resulting estimate is unchanged, i.e., I;, = I;,,. The inten- 
tion of the modification is to change the estimate only 
when unconstrained use of the criterion would result in a 
density with complexity L,(I;,,) much larger than the 
complexity of densities that optimize the resolvability. 

Corollary to Theorem 4: Suppose L, satisfies the 
summability co?dition (7.1) and the nondegeneracy condi- 
tion (7.5). Let I;, be defined by (7.18). Then 

d i (  p , j , )  5 R,( p )  in probability. (7.19) 

1 
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Moreover, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'"('") zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 R,( p )  in probability. (7.20) 

VIII. PROOFS 

The minimization of L J q )  + log l / q ( X n )  is the same 
as the maximization of q(X")2-Ln(4). We shall find it 
mathematically convenient to treat the problems from the 
perspective of maximizing q ( ~ " ) 2 - ~ n ( q ) .  

A tool we will use repeatedly in the proofs is Markov's 
inequality applied as in Chernoff [451 to yield the follow- 
ing inequalities: 

P{ p (  X " )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcq( X " )  and X "  E B )  

i cQ( p (  X " )  i cq( X " )  and X "  E B } ,  (8.1) 

for any measurable set B in X" and any constant c > 0, 
in particular 

P( p (  X " )  I cq( X " ) )  I c ,  (8 .2 )  
and, in the same manner, 

P { P ( X " )  - q ( X " ) }  

p"c1/2 

= P{ ( p(  X " ) )  l l 2  I c'/2( q( xn) ) ' l2 )  

(8.3) < - 2-ndz(p,4)PC1/2, 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = / ( p q ) ' / 2  and d ( p , q )  is defined to be a multi- 
ple of the Hellinger distance 

d2(  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ?  4) = I( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 - h ) 2 1 0 g  e. (8.4) 

The inequality log p i  -d2 /2  follows from ( 1 / 2 ) / ( f i -  
fi)2 = 1 - p and log p i ( p  - 1)log e. The factor of log e 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8.4) is chosen for convenience so that all exponents in 
(8.3) are base 2. 

We note here that these inequalities are applied in 
each case with c proportional to 2-Lm(q). The summability 
of the resulting bounds in (8.1) and (8.21, summing over q 
in r,, is key, to the proof of consistency of the minimum 
complexity estimator. The presence of the fractional power 
of c in the bound (8.3) forces more stringent summability 
hypotheses to be imposed to get the rate of convergence 
results. 

Proof of Theorem I :  We are to show that 

P{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, z p infinitely often} = 0. (8 .5)  

For a decreasing sequence of sets, the probability of the 
limit is the limit of the probabilities. Thus 

P{ 6, z p infinitely often) 

= lim P{ 6, # p for some n 2 k )  . (8.6) 

For 6, to not equal p ,  it is necessary that p(X")2-Ln(P) I 
q(X")2-Ln(4) for some q f p .  Consequently, by the union 

k +m 

of events bound, 

P{ B,, # p for some n 2 k )  

I C P { p ( X " ) 2 - L ~ ( p ) i q ( X n ) 2 - L n ( q ) f o r ~ o m e  n z k }  
4 

= CP(A',4 ' ) ,  (8.7) 
4 

where the sum is for q in r with q # p .  Here A?) is the 
event that p(X")2-Ln(P) i q(X")2-La(4) for some n 2 k .  
We will show that the probabilities P ( A y ) )  are domi- 
nated by a summable bound 2-L(q)+c+c, and that they 
converge to zero as k --fm for each q. 

First we show the domination. To exclude small n for 
which L J p )  may be infinite, we use condition (7.4) to 
assert that given p there exists c, and k ,  such that 
L , (p )  I c, for all n 2 k,. Consider k 2 k,. Momentarily 
fix q. The event A$,?: is a disjoint union of the events 
A,& that P ( X " ) ~ - ~ . ( P ) I  q ( ~ " ) 2 - ~ J q )  occurs for the 
first time at n (i.e., the opposite inequality obtains for 
k ,  5 n' < n). Then, by inequality (8.1) and condition (7.6), 

P(  Ap)) I P(  A g )  
m 

= P ( A n , k u )  
n = k, 

W 

I Q( A,,k,)2-Ln(q)+Ln(P) 
n = k, 

m 

I Q( An,k , , )2 -L (q )+C+C~ 
n = k ,  

(8-8) - < 2-L(4)2c+cu. 

This bound is summable for q in r, so it gives the desired 
domination. 

Now we show convergence of the probabilities P(A',4)) 
to zero as k + m .  By inequality (8.3), the event 
{ p( X")2-Ln(p) I q( Xn)2-Ln(q)} has probability bounded 
by 2-nd2(p3q)2c~~/2  that is exponentially small. Whence by 
the Borel-Cantelli Lemma, P(A',4)) tends to zero for 
each q # p .  

By the dominated convergence theorem, as k +m,  the 
limit of the sum in (8.7) is the same as the sum of the 
limits. Consequently, 

P{ b,, z p infinitely often} = 0. 
This completes the proof of Theorem 1. U 

Remark: Two other proofs of this theorem can be 
found in Barron [ 161, based on martingale convergence 
theory. The present proof shares the greatest commonal- 
ity with the developments forthcoming. 

For the proofs of Theorems 2 and 3 we will use the 
following. 

Lemma I :  ?uppose L,  satisfies the growth restriction 
(7.3). If p E r then for any E > 0, if jj E r satisfies 
D(pIIfi> < E ,  then 

2-Ln(B)jj( X " )  2 p (  X")2-" ' ,  for all large n ,  (8.9) 

with probability one. Moreover, for any positive sequence 
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c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor which lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, the left side of (8.9) exceeds 
the right side by at least the factor 2'n, for all large n, 
with probability one. 

Proof of Lemma I :  Taking the logarithm and dividing 
by n, the desired inequality (8.9) is seen to be the same as 

with probability one. This is true by application of (7.3) 
and the strong law of large numbers. The second claim 
follows in the same way. U 

Remark: We note that the left side of (8.10) is an upper 
bound to the pointwise redundancy per sample defined by 
(B(X")-log l / p ( X " ) ) / n  (compare with 5.7). Thus a 
consequence of the Lemma is the following. 

Corollary to Lemma 1: If (7.3) is satisfied and if p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE r, 
then the pointwise redundancy per sample ( B ( X " )  - 
log l / p ( X " ) ) / n  converges to zero with probability one. 

Proof of Theorem 2: We are to show that if p E r, 
then 

lim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,( S )  = P(  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS )  with probability one, 
n + m  

for arbitrary measurable subsets S in,X. Toward this end, 
given any 6 > 0, choose 0 < E < 6 / 2  and choose- j E r 
such that D ( p l l j )  < ( 1 / 2 k 2  log e. Then IP(S)- P(S)I < 
(1/2)j'lp - 61 < ( 1 / 2 ) ~ .  From Lemma 1 we have 

2 - L ~ ( f i ) f i ( ~ n )  > p ( X n ) e - " e 2 / 2 ,  for all large n ,  
(8.11) 

with probability one. 
be the number of observa- 

tions in S. Then N(S,  X " )  has a binomial ( n ,  P ( S ) )  distri- 
bution when the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, are independent with distribution P ,  
whereas it would have a binomial (n ,  Q(S) )  distribution if 
the X ,  were independent with distribution Q. Define the 
set 

Let N(S, X") = Cy= Il{x, E 

Then the Hoeffding [46] or by standard type-counting 
arguments in information theory, P(B,") 5 2e-,*'* and 
Q(B,) 5 e - n ( s - E ) 2 / 2  uniformly for all Q with lQ(S)- 
P(S)J 2 6, where B," denotes the complement of the event 
B,. (Thus (8.12) defines the acceptance region of a test 
for P versus {Q: lQ(S)- P(S)I 2 6) that has uniformly 
exponentially small probabilities of error, [431.) 

We want to show that with high probability 

p (  X n ) e - n e 2 / 2  > max q( X")2-Ln(4), (8.13) 

where the maximum is for all q in r, with lQ(S>- 
P(S)I 2 6. Let A ,  be the event that (8.13) does not occur: 
this is a union of the events A y )  defined by 

A$)= { p (  X n ) e - n E 2 / 2  5 q( X")2-Ln(q)}. (8.14) 

To bound the probability of A ,  we use the union of 

4 

events bound and (8.1) to obtain 

P(  A , )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI P(  A ,  n B,) + P (  B;) 

I zP(Aj f )nB,)+P(B, ' )  
4 

- < C 2-Ln(q)ens2/'~( A?) n B,) + P( 
4 

- < 2 - ~ , , ( q ) p ~ / 2 ~ - n ( 6  / 2  + P ( B 3  
4 

7 (8.15) < be-"' + e - n s z / 2  - 

where the sum is for all q in I', with lQ(S>- P(S)12 6.  
Here r = ((6 - - e2) /2 ,  which is strictly positive by 
the choice of E .  Thus P(A , )  is exponentially small. Using 
the Borel-Cantelli lemma and combining (8.11) with (8.13) 
we have 

2-Ln(fi)fi( x,) > max q(xn)2pLn(q),  for all large n ,  
4 

(8.16) 

with probability one, where the maximum is for all q in r, 
with lQ(S)- P(S)I 2 6. Thus there exists densities in r, 
with lQ(S)- P ( S ) (  < 6 that have a larger value for 
q(X")2-Ln(4) than all q with lQ(S)- P(S)I 2 6. Conse- 
quently, the minimum complexity estimator, which is de- 
fined to achieve the overall maximum, must satisfy 

for all large n ,  (8.17) 

with probability one. Since 6 > 0 is arbitrary, it follows 
that, with probability one, 

lim P,(s)  = P ( s ) ,  

for any measurable set S in X .  Consequently, for any 
countable collection G of sets, we have 

P l imP,(S)=P(S) , fora l l  S E G  = l .  (8.18) 

Assuming that X is a separable Borel space (e.g., the real 
line), it follows that there exists a countable collection of 
sets that generates the Borel sigma-field. Applying (8.18) 
to this countable collection, it follows that 

P{P, * P }  = 1, (8.19) 

0 

Remark: A similar proof using more elaborate hypoth- 

I p,,( S )  - P( S )  1 < 6, 

n + m  

{ n - + c o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

where * denotes weak convergence. 

esis tests, as in Barron [43], shows that 

z 1 P,( S )  - P(  S )  I = 0 lim with probability one, 
s E rr, n + f f i  

(8.20) 

for any sequence of partitions .rr, of X for which the 
effective cardinality is of order O(n). 

Proof of Theorem 3: Here we show almost sure con- 
vergence of the minimum complexity density estimate, in 
Hellinger distance, and almost sure convergence of 
L,($,)/n, for weights 2-Ln(q) that satisfy the tail condi- 
tion (7.2). 

I 



1050 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 37, NO. 4, JULY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Note that since C2-aLfl(4) is decreasing in a, condition 

(7.2) is unchanged if it is assumed that 1/2  I a < 1. Given 
6 > 0  and 1 / 2 1 a < 1 ,  set O < ~ < 6 ( 1 - a ) .  For 
there exists a density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ~ r  with D ( p l I j ) < ~  so that 
d 2 ( p , j )  < E < 6. Then by Lemma 1, 

for all large n ,  (8.21) 

with probability one. Consequently, to show that 
d2(p ,& )  < 6 and L,($,) < n6, it is enough to show that 

2-Ln(q j (  X.) > p (  X y - " E  , 

p (  ~ " ) 2 - ' ~  > maxq( ~ " ) 2 - ~ n ( q ) ,  for all large n ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

(8.22) 

with probability one, where the maximum is for all q with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d2(q ,  p )  2 6 or L,(q) 2 n6. Using the Borel-Cantelli 
lemma and the union of events bound, it is enough to 
show that the following sum is exponentially small: 

(8.23) 

where the sum is for all q with d2(q ,  p )  2 6 or L,(q) 2 n6. 
For the terms in the sum with L J q )  2 n6 we use the 
upper bound from (8.2): 

. (8.24) 2-Ln(4)2nc < 2-aL,(4)2-n(8(1 -a)-€) 

These terms have a sum less than b2-n(S(1-a)-e) , which is 
exponentially small by the choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE. For the terms in 
the sum with d 2 ( p ,  q )  2 6 we use (8.2) and (8.3) to obtain 
the upper bound: 

P{ p(  X")2-"' I q( Xn)2-nLn(q)} ,  
4 

- 

min { 2-Ln(q)2,€, 2-Ln(q)/22pn(S-~)/2 

I2 ( l  - a) 
- < (2-~,(4)2ne 

= 2-aLn(q)2-n(S(1 -a)--Ea) 

- ' ( 2  -~,(4)/22--n(6 - e ) / 2  

, (8.25) 
where we have used the fact that min{c,, c2}  I C ~ C ; - ~  for 
0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp I 1 and any positive c1,  c2. This bound also has a 
sum less than b'2-,('(l -a)--E) that is exponentially small. 

Therefore, (8.22) is established. From (8.21) and (8.22) 
we deduce that all maximizers j3, of q(X" )2-LJ4)  must 
satisfy 

d 2 ( f i , , p )  < 6  and L,(B,) < 6, for all large n ,  

(8.26) 

with probability one. Here 6 > 0 is arbitrary. Conse- 
quently, 

4l(AJ 0, l i m d 2 ( B , , p ) = 0  and lim -= 

with probability one. U (8.27) 

Remark: If c, > 0 is any sequence with lim c, / n  = 0, 
then by the same reasoning, with the second claim of 
Lemma 1 used in place of (8.211, it is seen that the value 
of q(X")2-Ln(4' at j will exceed the maximum value for 
all q with d2(q ,p )  2 6 or L,(q) 2 n6 by at least the 
factor 2'n for all large n, with probability one. Conse- 
quently, every density that achieves within c, of the 
minimum two-stage description, will simultaneously sat- 
isfy (8.26) for all large n, with probability one. That is, 
they are all close to the true density p ,  and none of them 
has complexity larger than n6. 

n-m n + m  n 

The following result will be useful in the proof of 
Theorem 4. 

Lemma 2: Let p and q be any two probability density 
functions on X and let X I , .  . . , X ,  be independent ran- 
dom variables with density p or q. Then 

D(pllq) 1 loge 
P{ X "  E B )  IQ{ X "  E B)2" '+ ~ +--, 

nr e 
(8.28) 

for all measurable subsets B of X",  all r > 0 and all n. 

Proof: The inequality is trivial if L)(pllq) is infinite. 
Now suppose D(pllq) is finite. Let A ,  = { p ( X " )  I 
q(X")2"')  and B, = { X "  E B } ,  then as in (8.1), 

P(  B,)  5 P(  A ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn B,) + P(  A;)  

- < Q( B,)2"'+ P(  A ; ) .  (8.29) 

Now by Markov's inequality, 

P( A:) = P( log p (  X " ) / q (  Xn)  > nr) 

< E,(logfYX")/q(X"))+ 
- 

nr 

- < , (8.30) 
nD(pllq) + ( loge)/e 

nr 
where we have used the fact that the expectation with 
respect to P of the negative part of logp(X")/q(X") is 
the expectation with respect to Q of ( p ( X " ) / q ( X " ) )  
.(log p ( X n ) / q ( X n ) ) -  that is bounded by (l/e)log e. To- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o 

Proof of Theorem 4: We show that if the weights 
2-Ln(q) satisfy the tail condition (7.2) and if the resolvabil- 
ity R,(p)  tends to zero, then the minimum complexity 
density estimate 6, converges in squared Hellinger dis- 
tance with rate bounded by R,(p)  in probability. Also 
L,(B,>/n converges with rate bounded by R,(p). 

Choose Ffi to achieve the best resolution R,(p)= 
L,(fi,J/n + D(pIIF,). Let 1/2  I a < 1 be such that con- 
dition (7.2) is satisfied. For c > 1, let 

Bn={d*(p,B,)  > 4 c ~ , ( p ) / ( l - a )  or 

gether (8.29) and (8.30) prove the lemma. 

L( B,) /n  > C R , ( P ) / ( l -  a ) } .  (8.31) 

The factor of 1 - a in the denominators is for conve- 
nience in the proof. Given E > 0, we show that P(B,) has 
limit less than E for c sufficiently large. Applying Lemma 
2 with r = ( c  - l )R , (p ) /2  and Q = P, and using R J p )  2 

D(pIlj,), we have 
2 

c - 1  
P(  B,) 5 P,( Bn)2(C-l),Rn(P)/2 + - 
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For the event zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB, to occur there must be some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq with event of probability less than b'2-(C-1-C0)1/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 
( 2 / ( c  - 1 - c,,)Xl +(log e)/el), for c - 1 > c,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0. 
Consequently, except in this event of small probabil- 
ity, all densities that achieve values of L,(q)+ 
logl/q(X") that are within c,nR,(p) of the mini- 

d2(b,,q) > cR,(p)/(I  - a )  or ~ , ( q ) / n  > c ~ , ( p ) / ( l -  a )  
for which the value of 2-Ln'q)q(X") is at least as large as 
the value achieved at 9,. Thus by the union of events 
bound 

mum will satisfy d 2 ( p ,  q )  I 4cR,(p)/(l- a )  and 
L,(q)/n I cR,(p)/(l- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). 

Remarks: 

a) From (8.37) we'have a bound on the probability of 
interest that holds uniformly for all densities p ,  for 
all sample sizes n, for all L,, and for all 1/2 < a < 1 
satisfying Cq2-olLn(q) I b' and L J q )  2 E;namely, 

p{d2 (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ ~ 8 , )  > 4 c ~ , ( ~ ) / ( l -  a )  or 

L,( f i , ) / n  > CR,(P)/(l- 4} 

(8.38) 

b) If the tail condition C2-anLn(q) I b' holds for some 
sequence a,  = 1 - l /cn,  where e,  -+w, and c,R,(p) 
+ O ,  then d2(p,p^,) and L,,(c,)/n converge in 
probability at rate bounded by c,R,(p). 

c) A consequence of the previous remark is that if 
2-Ln(q) arc weights that satisfy the summability con- 
dition (7.1) but not the tail condition (7.21, then by 
replacing L,(q) with (1 + l /c,)L,(q), new weights 
arc obtained for which the minimum complexity 
estimator will converge at rate bounded by c, R,( p) .  

d) With a slight modification of the proof of Theorem 
4, it is seen that the value of 2-L~1(4)q(X") at fin will 
exceed the maximum value for all densities with 
d2(C,,4)> cR,(p)/(l- a )  or L,(q)/n > cR,(p)/ 
(1 - a )  by at least the factor 2cll"Rn(P), except in an 

The first event on the right is included in the event that 
d 2 ( p , q )  > cR,(p) for some density that achieves within 
c,,nR,(p) of the minimum of AL,(q)+logl/q(X"); by 
Remark d), this event has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa probability that is made 
arbitrarily small by the choice of c sufficiently large. Also, 
the second event on the right has small probability for c 
large, by direct application of Theorem 4. This completes 

0 the proof of the corollary. 

IX. REMARKS ON REGRESSION AND CLASSIFICATION 

The results in this paper have been developed in the 
context of density estimation. Nevertheless, it is possible 
to apply the convergence results to problems in nonpara- 
metric regression and classification. For instance, in re- 
gression it might be assumed that the data is of the form 
X, = (U,,Y,), i = 1;. . ,n, where the input random vari- 
ables V,  are drawn from a design density p(u) and the 
output random variables arc conditionally distributed 
as Normal( f(u), a 2 )  given that U, = U. Suppose the error 
variance a2 is known. The conditional mean f(u) is the 
unknown function that we wish to estimate. Assigning 
complexities L(g) Lo a countable set of candidate func- 
tions g ,  we select f, to minimize 

I n  

This zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, is the minimum complexity regression estimator. 
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The index of resolvability in this context equals 

i- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:/If - g11210g e 

where I l f  - 811’ = / ( f ( u ) -  g(u)>*p(u)du (here the rela- 
tive entropy reduces to a multiple of the L2 distance). 
Using results for the L2 approximation rates for smooth 
functions, as in Cox [47], bounds on the index of resolv- 
ability can be obtained that yield the same rates of 
convergence as we have given for density estimation. For 
instance, consider least squares polynomial regression with 
the degree of the polynomial automatically determined by 
the minimum complexity criterion. If p ( u )  is bounded and 
has bounded support on the real line and if the rth 
derivative of f is square integrable then R , ( f ) s  

By Theorem 4, the squared Hellinger distance be;ween 
the densities that have conditional mean functions f n  and 
f converges to zero in probability with rate bounded by 
R,( f )  (provided L(q)  is chosen such that C2-aL(g) is 
finite for some 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa < 1). The squared Hellinger distance 
in this context is seen to equal /(1- e( fn (u) - f (u ) ) ’ /8u ’ )p (~)  
from whi:h it is straightforward to obtain the lower bound 
c/min((f,(u)- f (u ) )2 ,8a2>p(u)du ,  where c = (1; e-’),’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
80’. Consequently, the squared distance / min((f, - f) ’ ,  
8a2) converges to zero in probability with rate bounded 
by the index of resolvability. 

Similar results hold for classification problems. Con- 
sider for instance the two-class case with class labels 
Y E {O, l}. Here (U,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx), i = 1,2, * . , n are independent 
copies of the random pair (U ,  Y ). The conditional proba- 
bility f ( u >  = P{Y = 1IU = U) denotes the optimal discrimi- 
nant function that we wish to estimate. Suppose complexi- 
ties L ( g )  are assigned to a countable set of functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g(u> each with range restricted to Os g 51. (For in- 
stance, these functions may be obtained by logistic 
transformations of linear models, g ( u )  = 1/(1 + 
exp( - CO,!= l+,(u)), where the 4, are polynomial or spline 
basis functions and the 0, are restricted to (1/2)log n bits 
accuracy. The dimension d is automatically selected by 
the minimum complexity criterion.) It *is seen that the 
minimum complexity estimator selects f ,  to minimize 

O(((Iog n ) / n ) 2 r / ( 2 r +  ’) 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n 1 n 1 

(9.3) 

The index of resolvability in this classification context is 

Rates of convergence for R J f )  can be obtained in the 
same manner as for density estimation. For instance, in 
the case of the, logistic models with polynomial basis 
functions, if p ( u )  is bounded and has bounded support on 
the real line and if the r th derivatives of logf(u) and 

log (1 - f(u)) are square integrable, then R n ( f )  5 

By Theorem 4, the square of the Hellinger distance, 
:nd hence also the square of the L’ distance /p (u ) l f (u>-  
fn(u)l, converges at rate bounded by the index of resolv- 
ability R,(f).  From accurate estimates of the discriminate 
function, good classification rules are obtained. Indeed, 
let P, be the Bayes optimal probability of error, which 
corresponds to the classification rule that decides class 1 
if and only if f ( U )  2 1/2, and let Pen) be the probability 
9f error for the rule that decides class 1 if and only if 
f , (U)  2 ? / 2 .  It can be shown that IP;”) - Pel 5 

2/p(u)lfn(u) - f(u)l. Consequently, P;,) converges to the 
optimal probability of error at rate bounded by d m .  

The convergence results for minimum complexity re- 
gression and classification estimators are particularly use- 
ful for problems involving complicated multidimensional 
models, such as multilayered artificial neural networks, 
see [17], [48], [49]. The minimum complexity criterion is 
used to automatically select a network structure of appro- 
priate complexity. 

O(((l0g n ) / n ) 2 r / @ r +  l )  >. 

X. CONCLUSION 

The minimum complexity or minimum description- 
length principle, which is motivated by information-theo- 
retic considerations, provides a versatile criterion for sta- 
tistical estimation and model selection. If the true density 
is finitely complex, then it is exactly discovered for all 
sufficiently large sample sizes. For large classes of in- 
finitely complex densities, the sequence of minimum com- 
plexity estimators is strongly consistent. An index of 
resolvability has been introduced and characterized in 
parametric and nonparametric settings. It has been shown 
that the rate of convergence of minimum complexity 
density estimators is bounded by the index of resolvabil- 
ity. 

APPENDIX 
DETAILS ON RESOLVABILITY 

IN  THE PARAMETRIC CASE 

Here we verify bounds on the optimum resolvability in 
parametric cases that are stated in Section VI. 

Let w ( e )  be a continuous and positive prior density 
function on the parameter space and suppose that the 
matrix J8 (obtained from second-order derivatives of the 
relative entropy) is continuous and positive definite. We 
are to establish the existence of rn and L,  satisfying the 
properties indicated in Section VI (Case 2). In particular 
rn is to corre_spond to a net of points, such that for every 
0 there is a 0 in the net satisfying 

and 

L,( pb) = log(A,( n/d),/’det ( 

+log l /w(O)+o( l ) .  (A.2) 
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The set r, is obtained in the following way. First, the 

parameter space is partitioned into disjoint rectangles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
within which the prior density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw(0) and the matrix Je are 
nearly constant. Then in each set A ,  an €-net of pqints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 
is chcsen such-that for every 0 in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, there is a 6 with 
( 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- e)TJA(e - 0 )  I E'. The minimal such net requires 
N&A) points, where for small E, 

Ne( A )  - A d (  I /€) ,  VOl( A ) (  det JA)'12 (A.3)  

and A, is a constant (see Lorentz [50, p. 1531). This 
amounts to taking the rotated and scaled parameter vec- 
tors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 = Jj120 and finding economical coverings of the 
parallelograms (J j / 'O: 8 E A), using Euclidean balls of 
radius E. The constant A, is the optimal density (in points 
per unit volume) for the coverage of Rd using balls of 
unit radius. Now for large d ,  it is seen that A$Id/d - 
1/27-re. [This asymptotic density is found by combining 
the bounds of Rogers [Sl] and Coxeter, Few, and Rogers 
[52] for the thickness of the optimal covering with the 
Stirling approximation to the volume of the unit ball, see 
Conway and Sloane [53, ch. 1, (18) and ch. 2, (2) and (19)l. 

Consequently, the constants c, = d/A$Id are bounded 
independently of d.  

We let r, consist of the densities pe for 6 in the E-nets 
of the rectangles. The bound on resolvability will depend 
on E through the terms -(d/n)log E +(1/2)c2 log e for 
which the optimum E is seen to equal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJd/n, so we now 
set E = @ accordingly. 

Now we define the codelengths L,(p,). Let W ( A )  
denote the prior probability of the rectangles A .  For 
p e  E r, set 

for 6 in A ,  for each A in the partition. Clearly, 

L,( P6)  = log I /  W( A )  +log Ne( A )  9 

C2-We)= 1. 

(A.4)  

The matrices JA are chosen such that JA is positive 
definite and det JA /det J ,  is arbitrarily close to one for 
all 0 in A. This can be done by a choice of sufficient- 
ly small rectangles A because of the assumed continuity 
and positive definiteness of J,. In the same way 
w(8)vol ( A ) /  W ( A )  is arbitrarily close to one, uniformly 
for 0 in A. Moreover, by uniform continuity, these ap- 
proximations are valid uniformly for all rectangles in a 
compact subset of the parameter space. Then from (A.31, 

(A.41, and the Taylor expansion of D, we have that for 
any given 6 > 0 and any compact set B CO, there exists 
set r(s*B), codelengths Lc,fivB)(q) and such that for all 
n 2 n S , B ,  

I L,( P e )  -log( A d (  n/d),12(det Jo) ' / ' /w(  e ) )  I < 6 ,  

(A.5)  

and 

uniformly for all 0 E B, where 6 is the point in the net 
that minimizes the left side of (A.6). 

Now let 6, be a sequence decreasing to zero and let B, 
be a sequence of compact sets increasing to 0. Without 
loss of generality risk, Bk is an increasing sequence diverg- 
ing to infinity as k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+W.  For each n 2 1, let k ,  be the last 
index such that ng,,Bk I n. Then lim k ,  = m. Setting r, = 

r ( ' k " , % )  and L,(q)= L ( , S k n , B k n ) ( q )  we have that for all n, 
(A.S)-(A.7) are satisfied with S k n  in place of 6, uniformly 
on B,,. Since any compact subset of 0 is eventually 
contained in B,,, this establishes the existence of a single 
set I', and length function L,  for which (A.1) and (A.2) 
are satisfied uniformly on compacts. 

Finally, from (AS) and (A.7) it follows that the index of 
resolvability satisfies 

1 

n 
I - ( (d/2) logn/c,  +log(det(Je)'/'/w(0)) 

+ ( d /2) log e + .( 1)) , (A-8)  

where o(1) tends to zero uniformly on compacts. 
The minimax bound on resolvability now follows as in 

Section VI, upon taking w ( e )  to be proportional to 
det(J,)'/'. In particular, for each compact set B c 0, 

logn +log/ det( J,) ' / 'de 
r,,, L,O E B 

In this analysis, we used a minimal net of points for 
covering the parameter space to a prescribed covering 
radius for a locally specified metric, so as to bound the 
minimax resolvability. If nets based on other coverings are 
used (such as cubes in the locally transformed parameter 
t) ,  similar terms still appear involving the Fisher informa- 
tion and the prior density, but somewhat worse constants 
are obtained in the minimax bound. 

As pointed out by a referee, a different net can yield 
improved bounds for the average resolvability, 

/ W ( W , ( P e )  de. 

To bound the average resolvability, it is sugge_sted that 
optimal quantization regions (with centroids 0 )  be se- 
lected subject fo  a constraint on the average value for 
(6' - e)TJA(e - 0 )  (instead of a constraint on the maximum 
value). Indeed, suppose we constrain the average value to 
equal E'. Using optimum quantization results as in [53], it 
is seen by an analysis similar to that previously given that 
the minimum number of quantization points in each set 
A is the same as in (A.3) but with (dG,)d/2 in place of 
A d ,  where G, is the coefficient of optimum mean-square 
quantization as characterized in [53, pp. 58-59]. In partic- 
ular, from a result of Zador, G, - 1 / 2 5 ~ e  for large d.  
This yields codelengths L,(p,) that are the same as 
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before, but with c& = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl / G d  in place of C-. Both cd and C> 

are close to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2Te,  for large d .  Thus for large dimensions, 
there is not much difference in the codelengths designed 
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