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This paper, which we dedicate to Lucien Le Cam for his seventieth birthday, has been written in the

spirit of his pioneering works on the relationships between the metric structure of the parameter space

and the rate of convergence of optimal estimators. It has been written in his honour as a contribution to

his theory. It contains further developments of the theory of minimum contrast estimators elaborated in

a previous paper. We focus on minimum contrast estimators on sieves. By a `sieve' we mean some

approximating space of the set of parameters. The sieves which are commonly used in practice are D-

dimensional linear spaces generated by some basis: piecewise polynomials, wavelets, Fourier, etc. It was

recently pointed out that nonlinear sieves should also be considered since they provide better spatial

adaptation (think of histograms built from any partition of D subintervals of [0, 1] as a typical

example). We introduce some metric assumptions which are closely related to the notion of ®nite-

dimensional metric space in the sense of Le Cam. These assumptions are satis®ed by the examples of

practical interest and allow us to compute sharp rates of convergence for minimum contrast estimators.
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1. Introduction

This paper (which originated from a question posed by Peter Bickel in the autumn of 1991) is

devoted to further developments of the theory of minimum contrast estimators elaborated in

BirgeÂ and Massart (1993). Let Z1, . . . , Z n be independent and identically distributed with

density s 2 L1([0, 1], dx), S be the linear span of some orthonormal system fj jj j � 1,

. . . , Dg and ŝ be the projection estimator of s on S, as proposed by Cencov (1962) and

de®ned by

ŝ �
XD

j�1

â̂ jj j, with â̂ j � 1

n

Xn

i�1

j j(Zi):
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From straightforward computation we obtain

E[isÿ ŝi2

2] < isÿ s� i2

2 �
D

n
isi1, (1:1)

where s� denotes the orthogonal projection of s onto S and i:i p the L p-norm with respect to

Lebesgue measure. Assuming that we have to hand a family of approximating spaces S of s,

an upper bound like (1.1) gives an idea of what should be an optimal choice for S (by

minimizing the right-hand side of (1.1)). We also notice that ŝ can be de®ned as the

minimizer of the empirical criterion ÿ2nÿ1
Pn

i�1 t(Zi)� i ti2

2 when t varies in S. In that sense

the projection estimator is our ®rst example of what we call a minimum contrast estimator on

the sieve S.

One purpose of this paper is to generalize the preceding upper bound (1.1) to further

minimum contrast estimators including maximum likelihood estimators for densities and

least-squares estimators for regression. More precisely, given n independent observations

Z1, . . . , Z n with a joint distribution depending on an unknown function s 2 L2(ì), an

approximation space S (the sieve) described by D parameters, such as some subset of a D-

dimensional linear space or a neural net, and a contrast function ã (as de®ned in BirgeÂ and

Massart 1993), we consider the minimum contrast estimator ŝ which is a minimizer over S

of the empirical criterion ãn(t) � nÿ1
Pn

i�1ã(Zi, t). We shall prove, under proper

assumptions, that, generally speaking, the behaviour of such estimators is described by

E[isÿ ŝi2

2] < Cd2(s, S)�L D=n, where d(s, S) � inf
t2S

d(s, t), (1:2)

d denoting the distance associated with the L2-norm and C being a constant depending on the

assumptions. Ideally, L should be bounded independently of n and D leading to the

traditional squared bias plus variance upper bound for the risk, but the situation is slightly

more complicated and L is either bounded or of order log n depending on the structure of

the sieve S. A large part of the hard technical work in the proofs will be devoted to a proper

control of L .

Let us now explain the need to consider minimum contrast estimators on ®nite-

dimensional sieves, which are typically chosen in order to approximate spaces of smooth

functions, rather than on compact subsets of those spaces. It has long been well known (see,

for example, Bahadur 1958) that the maximum likelihood estimator can behave very poorly

and a simple illustration of this fact in the case of a translation family on the line could be

given by the family generated by the density f (x) � (1=6)[1(0,1)(jxj)jxjÿ1=2 � 1[1,1)(jxj)xÿ2].

Such counterexamples usually involve families with unbounded likelihood ratios. More

surprising was the fact, described in BirgeÂ and Massart (1993), that even with uniformly

bounded likelihood ratios one could get suboptimal rates of convergence (as compared to

the minimax risk) for the maximum likelihood estimator when the size of the set of

parameters is too large, which essentially means that the set of realizations of the contrast

function on the set of parameters is not a Donsker class of functions in the sense of Dudley.

Solutions to the problems connected to the classical maximum likelihood estimator go

back to Le Cam (1973) (see also Le Cam 1975; 1986, Section 16.5; or Le Cam and Yang

1990, Section 6.5) and involve discretization of the parameter space or related techniques.
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Considering the example of the translation family above, one sees that maximizing the

likelihood over a ®ne discretization of the line instead of the whole line would dramatically

improve the situation. Actually most solutions to the problems connected with the

nonparametric maximum likelihood estimator are related to the so-called method of sieves.

The name and formalization of the method are due to Grenander (1981), although the idea

of replacing a complicated parameter space by a more tractable one is clearly much older:

Cencov's (1962) method of orthogonal series for density estimation is already a sieve

technique.

Another advantage of considering a ®nite-dimensional sieve rather than the whole space

of parameters in order to carry out the minimization of the contrast is that it can be more

realistic from a numerical (computational) point of view. Classical ®nite-dimensional sieves

are generated by a ®nite number of parameters and may be D-dimensional linear subspaces

of some Hilbert space of functions such as piecewise polynomials, wavelets or Fourier

expansions. More recently it was pointed out that some nonlinear sieves should also be

considered, such as ®nite linear combinations of D sigmoidal functions which are studied in

the neural network literature (see Barron 1994) or more simply histograms generated by any

partition of [0, 1] into D subintervals. In fact these sieves may behave better than linear

sieves for approximating some families of functions (Barron 1994). Other examples of

nonlinear sieve estimation (which are more sophisticated since they also involve an adaptive

choice of D within a wavelet basis) are to be found in Donoho and Johnstone (1994; 1995)

for the white-noise model and in Donoho et al. (1996) for density estimation. We shall also

deal with nonlinear sieves of the above type (including histograms). In this case the

function L in (1.2) is typically of order log (n=D) and we shall provide a lower bound for

histograms which proves that the extra logarithmic factor, as compared to the linear D-

dimensional case, is, in some sense, necessary.

Let us brie¯y review of some important results connected to sieve estimation. Many

authors have used sieves or related methods in the past years. Apart from Grenander (see

also Chow and Grenander 1985), let us ®rst mention the pioneering work of Geman (1981)

and Geman and Hwang (1982). In a series of papers starting with Stone (1990), Stone has

extensively studied log-spline density estimation and spline regression (see, in particular,

Stone 1994). Related results on regression with ®xed design are to be found in Cox (1988).

Cox (1988) and Stone (1990; 1994), working with linear sieves, obtained bounds of the type

(1.2) with a bounded L . Minimum contrast estimation on general sieves with a special

emphasis on maximum likelihood estimation on nets or in®nite-dimensional sieves has been

recently studied by Shen and Wong (1994), Wong and Shen (1995) and Van de Geer

(1995).

Our approach, as in BirgeÂ and Massart (1993), was inspired by Van de Geer (1990) and

based on the control of the ¯uctuations of the centred empirical contrast considered as a

process indexed by the set S on which the minimization of the empirical contrast is

performed. If we deal with the special case of projection estimators on linear sieves, the

process is linear and we can use a simple technique based on a very powerful inequality

due to Talagrand (1996). In general, the process is not linear and we must introduce metric-

type assumptions on S to handle the ¯uctuations of this process. The point here is that

metric properties are transformed in a controlled way when one takes the image of S by the
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contrast while the linearity of S is destroyed if the centred contrast is not linear. This means

that the use of metric properties of S does make sense even if S is linear.

Entropy with bracketing is a covering property which is classically used in the context of

empirical process theory to derive maximal inequalities (see Dudley 1978; Ossiander 1987).

This property was introduced in BirgeÂ and Massart (1993) to study global minimum

contrast estimators and is especially well suited to the study of nonparametric maximum

likelihood estimators over a set of monotone functions such as the Grenander estimator. It is

also the central tool for Shen and Wong (1994), Wong and Shen (1995) and Van de Geer

(1995).

We shall dispense with entropy with bracketing in order to take advantage of the ®nite-

dimensional structure of the sieves. We introduce a new metric property for the structure of

the sieves which involves covering numbers related to both L2- and L1-norms. This new

notion is close but not directly comparable to L2 with bracketing. The effect of using one

metric assumption or another is re¯ected in the value of L in (1.2), the main problem

being to decide whether L is bounded or of order log n. In this respect we shall see that

there is no systematic superiority of one metric property over the other. We postpone this

discussion to the conclusion of the paper.

We shall actually prove substantially more than (1.2) and also derive exponential bounds

for the ¯uctuations of the empirical criterion ãn(t). A ®rst consequence is the possibility of

bounding higher moments of isÿ ŝi2. A deeper consequence of these exponential bounds is

developed in BirgeÂ and Massart (1997) and Barron et al. (1997). Indeed, these exponential

bounds actually allow the construction and study of data-driven procedures for choosing an

optimal S among some family of possible approximation spaces leading to adaptive

procedures for nonparametric estimation and automatic methods for model selection. These

important applications do justify the emphasis we put here on deriving those exponential

bounds.

In Section 2 we explain our motivations for developing exponential bounds rather than

limiting ourselves to evaluating quadratic risks. We do this in the simplest situation of

projection estimators and show how exponential bounds, which are derived by the

application of Talagrand's inequality, allow us to construct adaptive estimators. Section 3 is

devoted to the study of various types of sieve and of their metric properties. These

properties are exploited in Section 4 to treat various applications of our general framework

to particular examples of minimum contrast estimators, namely projection and maximum

likelihood estimators for densities and least-squares and minimum-L1 estimators for

regression functions. In Section 5 we develop the more general and abstract framework

from which all our examples are obtained. Our conclusions are detailed in Section 6, as a

number of remarks and comparisons with related work. Finally Section 7 contains the most

technical proofs.

2. Motivations

In order to motivate our further developments let us concentrate on one of the simplest sieve

methods of estimation, namely projection estimation on a ®nite-dimensional Fourier
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expansion. Our purpose here is to provide a ®rst simple illustration of our approach based on

minimum contrast estimation. In particular, we want to insist on the comparison between

direct computations (which are possible here since our estimator is explicit) and indirect

computations that will later turn out to be more general and widely applicable. Moreover, we

want to motivate our emphasis on exponential bounds, by showing how these bounds allow us

to construct adaptive estimators which automatically choose the length of the expansion from

the data, and to study the performance of those estimators.

Since we shall, for the most part, not deal with precise constants (by `constant' we

always mean a quantity which does not depend on n), in order to make our inequalities

more transparent we shall from now on stick to the following convention: k, k9, k1, . . . will

denote purely numerical constants. On the other hand, C, C9, C1, . . . will denote constants

that might depend on various parameters introduced in our assumptions. To emphasize this

dependence with respect to some parameters, a and b say, we shall write C(a, b). The value

of these constants will usually be ®xed within a given computation but change each time we

start a new evaluation.

Assume that we are given n independent and identically distributed real variables

Z1, . . . , Z n with common density s with respect to Lebesgue measure on [0, 1] and that s

belongs to L2([0, 1]). Let j0 � 1[0,1], j2 j(x) � ���
2
p

cos(2ð jx) and j2 jÿ1(x) � ���
2
p

sin(2ð jx)

for j > 1. We consider the D-dimensional linear space S spanned by fjëjë 2 ËDg where

ËD is the set of integers smaller than D. The projection estimator relative to S is de®ned as

ŝ �
X
ë2ËD

â̂ëjë, with â̂ë � 1

n

Xn

i�1

jë(Zi):

Let s� be the orthogonal projection of s onto S; then, denoting by i:i the L2-norm we have

isÿ ŝi2 � isÿ s� i2 � is� ÿ ŝi2. Denoting by ín the centred empirical operator

ín(t) � 1

n

Xn

i�1

t(Zi)ÿ
�

st, for all t 2 L2([0, 1]),

we can rewrite is� ÿ ŝi2 as V 2 �Pë2ËD
[ín(jë)]

2, which yields

isÿ ŝi2 � isÿ s� i2 � V 2: (2:1)

Since E[V 2] � nÿ1
P

ë2ËD
Var (jë), the quadratic risk is bounded by

E[isÿ ŝi2] � isÿ s� i2 � E[V 2] < isÿ s� i2 � 1

n
E
X
ë2ËD

j2
ë

" #
:

Restricting ourselves, as is natural, to odd values of D, we notice that�������� X
ë2ËD

j2
ë

��������
1
� D (2:2)

and therefore E[
P

ë2ËD
j2
ë] < D. This implies that

E[isÿ ŝi2] < isÿ s� i2 � D=n, (2:3)
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and the ®rst term clearly depends on the L2 approximation properties of the Fourier basis

with respect to the unknown s. The two terms in the upper bound are respectively non-

increasing and increasing with respect to D and therefore one should choose D so as

approximately to equate those terms in order to minimize the risk. A classical way of solving

this problem is to put an a priori assumption on the smoothness of s. For instance, if

s �Pë>0âëjë belongs to the Sobolev space Wá
2 of the torus R=Z with á 2 Nÿ f0g, i.e.

is(á) i2 ,�1, then it follows from Parseval's formula that

is(á) i2 �
X
j>1

(2ð j)2á(â2
2 jÿ1 � â2

2 j):

Since

isÿ s� i2 �
X

j>(D�1)=2

(2ð j)2á(â2
2 jÿ1 � â2

2 j)(2ð j)ÿ2á,

we obtain

isÿ s� i2 < [ð(D� 1)]ÿ2á is(á) i2: (2:4)

Choosing D approximately equal to [nis(á) i2]1=(1�2á) gives

E[isÿ ŝi2] < kis(á) i2=(1�2á) nÿ2á=(1�2á) (2:5)

for some numerical constant k.

We can actually recover (2.3) (up to multiplicative constants) by an indirect method

which bene®ts from the fact that the projection estimator is a minimum contrast estimator:

more precisely, if

ãn(t) � ÿ 2

n

Xn

i�1

t(Zi)� i ti2,

one can easily check that ŝ is the minimizer of ãn on S. Starting from the identity

i t ÿ si2 � ãn(t)� 2ín(t)� isi2, we derive

i t ÿ si2 � isÿ s� i2 � ãn(t)ÿ ãn(s�)� 2ín(t ÿ s�)
and, since ãn(ŝ) < ãn(s�),

iŝÿ si2 < isÿ s� i2 � 2ín(ŝÿ s�): (2:6)

Recalling that V 2 �Pë2ËD
[ín(jë)]

2, it follows by a standard duality argument that

V 2 � sup
t2S

[ín(t ÿ s�)]2

i t ÿ s� i2
, (2:7)

and therefore, by (2.6),

iŝÿ si2 < isÿ s� i2 � 2iŝÿ s� iV < isÿ s� i2 � 1
2
iŝÿ s� i2 � 2V 2

which ®nally yields by Pyrthagoras's identity the following analogue of (2.1):
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iŝÿ si2 < isÿ s� i2 � 4V 2:

A ®rst bene®t of this indirect approach is equation (2.7) which allows us to compute

higher-order moments of V (and therefore higher-order moments of iŝÿ si) from the

second moment using a powerful isoperimetric-type inequality due to Talagrand (see

Theorem 1 below). A second bene®t of this approach is to suggest a minimizing procedure

which allows an automatic choice of D from the data.

Let us now assume that instead of one single sieve S we have at our disposal the whole

family of sieves SD corresponding to the different odd values of D. We can try to choose D

in an optimal way. Actually the main defect of the above computation of the optimal value

of D is its dependence with respect to some given Sobolev norm on the unknown density s.

One would prefer a procedure of estimation ignoring any special feature of s and leading

approximately to the same risk. Let us denote by sD the orthogonal projection of s onto SD

and by ŝD the minimum contrast estimator corresponding to SD. Then the following method

will solve this problem: we consider D̂ minimizing ãn(ŝD)� 2nÿ1 D with respect to D < n

and de®ne ~s � ŝD̂. Arguing as above, one derives that

i~sÿ si2 < isÿ sD i2 � 2ín(~sÿ sD)� 2nÿ1(Dÿ D̂) (2:8)

for all D. If D̂ were ®xed, one could again conclude by an analogue of (2.7) and take

expectations. Since D̂ can take all possible odd values between 1 and n it becomes crucial to

use exponential bounds that can be summed over all possible values of D̂. Let us ®rst recall

an important result of Talagrand (1996) (see also Ledoux 1996).

Theorem 1 (Talagrand's inequality). Let Z1, . . . , Z n be n independent and identically

distributed variables and F a countable family of functions the absolute values of which are

uniformly bounded by some constant b. Let

Ó2 � 1

n
E sup

f 2F

Xn

i�1

f 2(Zi)

" #
:

There exists a universal constant k1 such that, for any positive î,

P sup
f 2F
jín( f )j > E � î

� �
< 3 exp

ÿnk1î2

Ó2 � bî

� �
if E > E sup

f 2F
jín( f )j

� �
: (2:9)

We shall actually prove in Section 7, as a consequence of Talagrand's inequality, that, for any

D,

Xn

D9�1

Ps sup
t2SD9

ín(t ÿ sD)

i t ÿ sD i
> (2ç� 1)

D _ D9

n

� �1=2

� x���
n
p

" #
< C(ç, isi) exp ÿk (ç ^ 1)x

1� isi

� �
(2:10)

from which we shall derive, using (2.8), that, apart from a set with a probability bounded by

the right-hand side of (2.10),
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i~sÿ si2 < k9[isÿ sD i2 � nÿ1(D� x2)]: (2:11)

Finally, introducing the power q > 1 and integrating with respect to x leads, since D is

arbitrary, to

E[i~sÿ siq] < C9(isi, q) inf
D<n

[isÿ sD iq � (D=n)q=2]: (2:12)

If one wants to deal with other minimum contrast estimators like maximum likelihood

estimators then two problems occur. First, the direct approach used at the beginning of this

section is no longer possible since we do not have an explicit formula for the estimator.

Second, one needs exponential inequalities which are analogues of (2.10), and unfortunately

Talagrand's inequality is only really useful for linear contrast functions. The main purpose

of this paper is to solve those two problems by systematically developing what we called

the `indirect approach' and the relevant exponential inequalities. These inequalities will

follow from the use of two main techniques, namely entropy methods with chaining or

isoperimetric methods (Talagrand's inequality). We will use them here to derive upper

bounds for the risk of minimum contrast estimators on a given sieve. Penalized estimators

(analogues of ~s) and their adaptive properties are studied in BirgeÂ and Massart (1997) and

Barron et al. (1997), using in an essential way the exponential bounds which are proved in

the present paper.

3. The sieves

The sieves that we shall consider here are essentially the classical spaces one would use in

approximation theory, such as trigonometric polynomials, wavelet expansions, piecewise

polynomials, neural nets, etc., and these sieves are supposed to provide a good approximation

to the unknown function s to be estimated. In practice, one does not work with one single

sieve S but with a whole collection of them since one wants to adjust the choice of the sieve

to the number n of observations to hand. In order to obtain uniform results with respect to n

we shall consider collections of sieves with some uniformity properties. Therefore in the

following when we speak of a constant, we shall mean a constant which is the same for all

elements of a given collection of sieves and which is, in particular, independent of n. From

now on, we denote by |Ë| the cardinality of the set Ë.

3.1. Linear sieves

3.1.1. Two useful indices

In many situations, S is a subset of the linear D-dimensional subspace S of L2 \ L1(ì)

spanned by some orthonormal basis fjëjë 2 ËDg with jËDj � D. For a given linear sieve,

we introduce two indices, r and Ö, describing the relationships between its L2 and L1
structures. They will be involved in our upper bounds for the risk of minimum contrast

estimators on this sieve. For 1 < p <1 we shall denote by j:j p the usual l p-norm in RËD

and by i:i p the L p-norm on S. Let
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Ö � 1����
D
p sup

t2S, t 6�0

i ti1
i ti2

, rj � 1����
D
p sup

â2RËD,â 6�0

i
P

ë2ËD
âëjë i1

jâj1 (3:1)

and r be the in®mum of rj when the basis fjëjë 2 ËDg varies in the set of all possible

orthonormal bases of S. It follows from this de®nition that

Ö < r < Ö
����
D
p

: (3:2)

Moreover, we have the following lemma.

Lemma 1. Let S be a D-dimensional linear subspace of L2 \ L1(ì) with basis

fjëjë 2 ËDg; then

Ö
����
D
p
� sup

t2S, t 6�0

i ti1
i ti2

�
�������� X

ë2ËD

j2
ë

��������1=2

1
: (3:3)

Proof. The proof follows from the fact that, for any x 2 S, one has

XD

j�1

j2
j(x)

24 351=2

� sup
âë2RËD ,âë 6�0

jPë2ËD
âëjë(x)j
jâj2 : u

As we shall see later, the value of r will have some in¯uence on the value of L in (1.2),

large values of r together with large values of D (as compared to n) resulting in values of L
of order log n.

3.1.2. Examples

Trigonometric expansions. Using the trigonometric basis de®ned at the beginning of Section

2, we consider the sieve S generated by the D ®rst elements of the basis. It then follows from

(3.3) that Ö2 is bounded by (D� 1)=D < 2 and therefore that r <
�������
2D
p

.

Polynomials. Let S be the linear space of polynomials on [0, 1] with degree bounded by

Dÿ 1. It follows from Remark 1 of Barron and Sheu (1991, p. 1362) that Ö � ����
D
p

and

therefore from (3.2) that r < D.

Localized bases. The orthonormal system fj j �
����
D
p

1[( jÿ1)=D, j=D)g1< j<D that generates

regular histograms on [0, 1] is typical of this case. For the linear span of fj jg1< j<D one

can immediately check that r < 1. This means, in particular, that r remains uniformly

bounded over the class of all regular histograms. This property is shared by further related

families of sieves. For piecewise polynomials on [0, 1] with regular partitions and degree

bounded by m, using the Legendre basis on each piece of the partition, one can check that

r < 2m� 1. We can alternatively consider an orthonormal wavelet system of L2(R, dx) :

fö j,ë � 2 j=2ö(2 jxÿ ë)j j > 0, ë 2 Zg, where ö is a compactly supported wavelet (for details,

see Meyer 1990), and consider the linear sieve S generated by the family fö j,ëjë 2 ËDg,
where ËD is the set of indices ë such that the intersection between the support of ö(2 jxÿ ë)
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and (0, 1) is non-empty. In this case M2 j > D � jËDj > M92 j for some constants M , M9
depending on the size of the support of ö. It comes from Bernstein's inequality (see

Meyer 1990, Chapter 2, Lemma 8) that if t �Pë2ËD
âëö j,ë then i ti1 <

C(ö)2 j=2jâj1 < C9(ö)
����
D
p jâj1, where the constant C9 depends only on the wavelet ö.

This shows that in this case again r < C9(ö) is bounded independently of j or D.

3.1.3. Metric interpretation

Apart from the special situation of projection estimators on linear sieves, we shall need for

our proofs some metric properties of the sieve, instead of its linear features. In this case we

therefore have to interpret the linear dimension and the index r in terms of metric

characteristics of the sieve. We ®rst recall the de®nition of a net:

De®nition 1. Given a set B and a distance d on some metric space containing B , we say

that a subset T of this metric space is an å-net for B (with å. 0) if for any point u 2 B one

can ®nd a point t 2 T such that d(u, t) < å. We say that the å-entropy of B is bounded by

H(å) if one can ®nd an å-net T for B with cardinality bounded by e H(å).

Proposition 1. Let S be a D-dimensional linear subspace of L2 \ L1 with its index r de®ned

above. Let B be any ball of radius ó in S and 0 , ä, ó=5. Then there exists a ®nite set

T � B which is simultaneously a ä-net for B with respect to the L2-norm and an rä-net

with respect to the L1-norm and such that jT j < (6ó=ä)D.

The proof is based on the following lemma:

Lemma 2. In RD, the maximal number of disjoint cubes of vertices ä9=
����
D
p

that intersect a

ball of radius ó is bounded by (2ðe)D=2(1� ó=ä9)D.

Proof. An elementary computation using the exact formula for the volume of Euclidean balls

and Stirling's formula with correction (see Feller 1968, p. 54) shows that the volume of a D-

dimensional ball of radius ó is bounded by (2ðe=D)D=2(ðD)ÿ1=2ó D. The result follows

easily. u

Proof of Proposition 1. Let fjëjë 2 ËDg be an orthonormal basis for S such that rj < 1:1r.

We shall repeatedly use the natural isometry between S with its basis fjëjë 2 ËDg and RD

with its canonical basis. If we consider in RD the Euclidean ball B 9 of radius ó isometric to

B , we can cover it with cubes of vertices ä=(1:1
����
D
p

) and build a net T 9 � B 9 choosing one

point in each cube. T 9 will be a ä-net for the Euclidean metric, a [ä=(1:1
����
D
p

)]-net for the

sup-norm metric and its cardinality can be bounded using Lemma 2. Then T is de®ned from

T 9 through the isometry and it is both a ä-net for the L2 metric and an rä-net for the L1
metric in B . The result follows since

(2ðe)1=2 1� 1:1
ó

ä

� �
� (2ðe)1=2 ó

ä
1:1� ä

ó

� �
, 1:3(2ðe)1=2 ó

ä
, 6

ó

ä
: u

338 L. BirgeÂ and P. Massart



3.2. Nonlinear sieves

3.2.1. Neural nets

We want to consider here the sieves connected with neural networks techniques as considered

by Barron (1994). One starts with a sigmoidal function j, i.e. a continuous bounded function

on the real line such that j(x)! ÿ1 when x! ÿ1 and j(x)! 1 when x! �1.

Moreover, one assumes that supx jj(x)j < v and that for all real numbers x and y,

jj(x)ÿ j(y)j < vjxÿ yj. One can now, following the notation of Barron (1994), de®ne a

sieve of functions on Rk by

S(D9, ô, G) �
XD9

j�1

g jj(ha j, xi � b j)� g0

8<:
9=;

with

a j 2 Rk , ja jj1 < ô; b j 2 R, jb jj < ô;

g j 2 R,
XD9

j�1

jg jj < G; g ÿ G < g0 < g � 5ô� G for some given g:

The approximation properties of this class are studied in Barron (1994) when the functions to

be approximated are de®ned on the cube [0, 1]k with values between g and g � 5ô. Barron

proves that the number of functions needed to obtain a ä-net in S(D9, ô, G) with respect to

the uniform distance over the cube [0, 1]k is bounded by [8vGe (1� ô)=ä]D9(k�2)�1. Of

course this net has similar approximation properties with respect to the L2 distance on

[0, 1]k .

3.2.2. Histograms with bounded support

Another very interesting class of nonlinear sieves for approximating functions on a given

compact hyperrectangle of Rk is the class of piecewise polynomials of bounded degree with

a given number of pieces. To be more precise, let us assume that k � 1. The difference with

piecewise polynomials on a ®xed partition, which are a particular case of what we called

`linear sieves with a localized basis' is the fact that the number of bins in the partition is

®xed but their lengths are arbitrary. These spaces are particularly interesting because of good

approximation properties and also because one can easily restrict oneself to the positive part

of the sieve when one wants to approximate non-negative functions such as densities, which

is clearly more dif®cult in the case of wavelet approximation, for example. The metric

structure of this inhomogeneous space is also very different from the structure of its linear

analogue. In order to make our illustrations as simple as possible, we shall be content to deal

with the case of histograms (piecewise polynomials of degree 0), the case of piecewise

polynomials of higher degree being similar but more complicated.

Without loss of generality, we shall restrict ourselves to histograms on [0, 1] with D

pieces. This motivates the introduction of the following spaces:
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H (D) �
XD

j�1

a j1[ jÿ1=D: j=D)

8<:
9=;

and, for D < N,

H N (D) �
XD

j�1

a j1[N jÿ1=N ,N j=N), 0 � N0 < N1 < � � � < N D � N , N j 2 N for all j

8<:
9=;:

To begin with it should be noticed that the metric structures of those spaces are substantially

different, as are their approximation properties. H (D) has a nicer metric structure since it is

a D-dimensional linear sieve with a localized basis but its approximation properties are poor

as compared to those of H N (D). This is readily seen from the consideration of a spatially

inhomogeneous density such as (1[0,1) � N1[0,1=N ))=2. In order to obtain a good

approximation of this density by a regular histogram we should take D � N instead of

D � 2. On the other hand, the dimensional properties of H N (D) with respect to the uniform

metric deteriorate when N becomes large since, for instance, one can ®nd f 2H N (D) with

i f i1 �
�����
N
p

i f i2. As will become obvious later, one restricts the end-points of the

underlying partition to the grid f j=Ng0< j<N in order to control the L1 properties of the

sieve. Actually, H N (D) is a union of some number of linear sieves and for each such linear

sieve r can be computed and is seen to be bounded by (N=D)1=2. Therefore the metric

properties of H N (D) can be analysed using the following lemma.

Lemma 3. Let H be a ®nite union of at most K D linear sieves, each of dimension bounded

by D with an index r bounded by r9. Let 0 , ä, ó=5 and B be any ball of radius ó in H .

Then there exists a ®nite set T � B which is simultaneously a ä-net for B with respect to

the L2-norm and an r9ä-net with respect to the L1-norm such that jT j < (6Kó=ä)D.

Proof. According to Proposition 1, each linear component of H leads to a net of cardinality

bounded by (6ó=ä)D. The union of those nets gives the required set T and its cardinality is

therefore bounded by K D(6ó=ä)D. u

It can easily be seen that the number of linear sieves (histograms built on a given partition)

needed to build H N (D) is bounded byXD

j�0

N

j

� �
,

eN

D

� �D

(see Dudley 1984, Proposition 9.1.5, for an analogous result). Therefore one can take

K � eN=D in the previous lemma and get a ä-net T for H N (D) with cardinality bounded by

[(6eN=D)(ó=ä)]D which is also an (N=D)1=2ä-net in L1 distance.

3.2.3. Metric characteristics of general sieves

We want to give a sense to the notion of dimension for a general sieve in such a way that it

340 L. BirgeÂ and P. Massart



coincides with the one we have for linear sieves. As already observed in Proposition 1, this

notion is related to some entropy counts. The basic idea is to extend the notion of dimension

related to entropy counts to nonlinear sieves. Dif®culties arise then from the fact that in some

cases (see the example of neural nets) one cannot guarantee that the entropy of a small ball is

essentially smaller than the entropy of a big one. We shall therefore consider the following

covering property which is satis®ed by all the above examples.

Covering Property M(h). Given ç. 0, we shall say that a subset S of L2 \ L1(ì) satis®es

Covering Property M(ç) if there exist positive numbers D, B9 and r9 > 1, possibly depending

on ç, such that, for any ä > ç, ó > 5ä and any ball B of radius ó with respect to L2, one

can ®nd a ®nite subset T of B which is simultaneously a ä-net of B for the L2-norm and an

r9ä-net for the L1-norm such that jT j < (B9ó=ä)D.

Covering Property M. We shall say that a subset S of L2 \ L1(ì) satis®es Covering Property

M if it satis®es Covering Property M(ç) for any positive ç with values of D, B9 and r9
independent of ç.

Examples.

1. Linear sieves. If S is a D-dimensional linear subspace of L2 \ L1(ì), it follows from

Proposition 1 that S satis®es Covering Property M and B9 can be taken as 6 while r9 may

be taken as r.

2. Neural nets. Considering the sieve S(D9, ô, G) de®ned in Section 3.2.2, we see from

Barron's entropy computations that it satis®es Covering Property M(ç) with D �
D9(k � 2)� 1, B9 � 8vGe (1� ô)çÿ1=2 and r9 � 1.

3. Histograms. Let us consider the class H N (D). It follows from the computations of

Section 3.2.2 that Covering Property M is satis®ed with B9 � 6eN=D and r9 � (N=D)1=2.

4. å-nets. Assume that ì is a probability measure and consider some set of functions È
which is totally bounded for the L1 metric. Let Så be an å-net of È with minimal

cardinality which means that log (jSåj) � H(å), where H denotes the metric entropy of È.

Then Så satis®es Covering Property M with B9 � r � 1 and D � H(å).

Later we shall give several illustrations involving our ®rst three examples and shall

neglect the last one that we include here for the sake of completeness since it has been

extensively studied in the literature on sieves (see, for instance, Shen and Wong 1994;

Wong and Shen 1995; and Van de Geer 1995). We shall explain in Section 6 why we prefer

not to dwell on this example.

We conclude this section by mentioning a related notion of ®nite-dimensional metric

space. Following Le Cam (1975), let us say that a metric space (S, d) has an ç-dimension

D when any ball of radius 2ó can be covered by at most 2D sets of diameter bounded by

2ó for any ó > ç. The space is ®nite-dimensional (or D-dimensional) when one can

choose D independently of ç and in®nite-dimensional if D tends to in®nity when ç goes to

0. In the ®rst cast Le Cam has shown that, in some sense, D represents the number of

parameters (in the sense of parametric estimation) when S is a space of square roots of

densities and d is the L2 distance and that the minimax quadratic risk is then of order D=n
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for estimating the square root of a density belonging to S from n independent and

identically distributed observations. Unfortunately, the estimators designed by Le Cam

cannot be used for practical purposes. In that context, Covering Property M should be seen

as an enforcement of Le Cam's notion of dimension that allows us to analyse the

performance of a more practical estimator, namely the maximum likelihood estimator on S,

as we shall see in Section 4.2 below.

4. Some illustrated results

Let Z1, . . . , Z n be independent random variables from some measurable space (Ù, A) to the

measurable space (Z, U). The space (Ù, A) is equipped with a family of probabilities

fPsgs2S indexed by a set S of parameters which is included in L2(ì), where ì is some

positive measure (which may depend on n). We denote by Es the expectation relative to Ps,

by i:i the norm in L2(ì) and by d the associated metric. Considering some function ã de®ned

on Z 3 T where S � T � L2(ì), we set ãn(t) � nÿ1
Pn

i�1ã(Zi, t) and we say that ãn is

an empirical contrast function if

Es[ãn(t)] > Es[ãn(s)], for all t 2 T and s 2 S :

Let S be a subset of T ; a minimum contrast estimator relative to the sieve S is any

measurable minimizer ŝ(Z1, . . . , Z n) on S of the function
Pn

i�1ã(Zi, t). More generally, we

have the following de®nition.

De®nition 2. If å is non-negative, an å-minimum contrast estimator (relative to the sieve S) is

any measurable ŝ in S such that

ãn(ŝ) < inf
t2S

ãn(t)� å, where ãn(t) � 1

n

Xn

i�1

ã(Zi, t):

Since a large value of å could result in bad behaviour by the estimator, we shall from now on

assume that å < 1=n. We emphasize the fact that s does not necessarily belong to S. We

should think of S as a D-dimensional metric space (to be more precise, of S ful®lling

Covering Property M(nÿ1=2)) which may depend on n (and therefore D as well).

4.1. Projection estimators for density estimation

In this case we observe n independent and identically distributed random variables Z1,

. . . , Z n of density s with respect to ì, where s belongs to L2(ì). For any t 2 L2(ì) we de®ne

ãn(t) � ÿ 2

n

Xn

i�1

t(Zi)� i ti2:

Since Es[ãn(t)ÿ ãn(s)] � i t ÿ si2, ãn is an empirical contrast function. When S is the D-
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dimensional linear space spanned by some orthogonal system fjëjë 2 ËDg any t in S can be

written as
P

ë2ËD
áëjë and

ãn(t) �
X
ë2ËD

á2
ë ÿ

2

n

X
ë2ËD

áë

Xn

i�1

jë(Zi)

so that the minimum contrast estimator on S is simply the classical projection estimator of

Cencov (1962):

ŝ �
X
ë2ËD

â̂ëjë, with â̂ë � 1

n

Xn

i�1

jë(Zi):

The following theorem is based on the interpretation of ŝ as a minimum contrast estimator

and will be proved in Section 7 by an application of Talagrand's inequality.

Theorem 2. Let ŝ be the projection estimator on S based on n independent and identically

distributed observations of density s. Assume that S is a D-dimensional linear space and de®ne

Ö � 1����
D
p sup

t2S, t 6�0

i ti1
i ti

, d(s, S) � inf
t2S

d(s, t):

Then, for any q > 1, one has

Es[iŝÿ siq] < C(q)

"
dq(s, S)� Ö ^ isi1=2

1

� �
(D=n)1=2

� �
q

� isi���
n
p 1 _Öisiÿ1=2

1

� � !q

� Ö
����
D
p

n

� �q
#
:

Note that although this result might look obvious, as it is for q � 2, it is not that easy to

derive it from (2.1) when q . 2. We recall that we have already bounded the index Ö for

various sieves of interest in the preceding section. In particular, it is important to notice that

when isi1,�1 and D < n the in¯uence of Ö in the upper bound will not affect the rates

of convergence provided that Ö <
����
D
p

. In particular, if ì is Lebesgue measure on [0, 1] and

S is the linear space of polynomials of degree bounded by Dÿ 1 on [0, 1], one gets an upper

bound for the risk of the following form:

Es[iŝÿ siq] < C(q, isi1)[dq(s, S)� (D=n)q=2]:

Applications

1. If s belongs to the Sobolev space Wá
2 , á 2 Nÿ f0g, on the one-dimensional torus

and S is spanned by the ®rst D elements of the Fourier basis, we know from (2.4) that

d(s, S) is of order Dÿá so that choosing D of the order of n1=(1�2á) and noticing that

Ö <
���
2
p

, we obtain that

Es[iŝÿ siq] < C(q, s)nÿqá=(2á�1),

which generalizes the bound (2.5).
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2. Now let us assume that s belongs to the space Lip (á, L2), with 0 ,á < 1, of those

functions t de®ned on [0, 1] which satisfy supz . 0(zÿáù(t, z)2) � jtj(á) ,�1. Here the

modulus of continuity ù2 is given by

[ù(t, z)2]2 �
�1ÿz

0

jt(x� z)ÿ t(x)j2 dx:

Additional details are given in DeVore and Lorentz (1993, p. 51). Let S be the space of

polynomials on [0, 1] with degree bounded by Dÿ 1 > 1. It then follows from Theorem 6.3

of DeVore and Lorentz (1993, p. 220) that

d(s, S) < kù(s, (Dÿ 1)ÿ1)2 < kjsj(á)(Dÿ 1)ÿá:

Since Ö <
����
D
p

, one obtains, for the projection estimator ŝ,

Es[iŝÿ siq] < C9(q, s)[(Dÿ 1)ÿqá � (D=n))q=2]:

A choice of D of the order n1=(1�2á) leads to a risk bound of order nÿqá=(2á�1).

4.2. Maximum likelihood estimation

4.2.1. An upper bound for the risk

In this section we assume that we observe n independent and identically distributed random

variables Z1, . . . , Z n with common distribution P which is absolutely continuous with

respect to the probability measure ì and we want to estimate dP=dì. It was pointed out by

Le Cam a long time ago (see, for instance, Le Cam 1973; 1975; or 1986) that the natural

distance to use as a risk function in density estimation is Hellinger distance de®ned by

h2(u, v) � 1
2

�
(
���
u
p ÿ ���

v
p

)2. Unfortunately, if s is a density the L2 distance d(s, S) cannot be

easily transformed into the Hellinger distance h(s, S) unless likelihood ratios are uniformly

bounded as shown in Lemma 4.1 of BirgeÂ (1983). In order to avoid too restrictive

assumptions on the family of densities to hand, it is better to try to approximate in L2-norm

the root
��������������
dP=dì

p
of the true density by the set S rather than approximating dP=dì itself in

L2-norm. We therefore de®ne the parameter s as
��������������
dP=dì

p
.

Let S be a subset of L2(ì) such that any element t in S is a non-negative function with

i ti � 1. This means that S is a set of square roots of density functions with respect to ì.

Computing the maximum likelihood estimator over the set of densities corresponding to S

amounts to minimizing the empirical contrast ãn(z, t) � ÿnÿ1
Pn

i�1 log t(Zi). Since it would

be confusing to use the same notation for the square root of a density and the

corresponding distribution, we shall denote by Pt the distribution with density t2 with

respect to ì. We recall that K(P, Q) � � log (dP=dQ) dP is the Kullback±Leibler

information number between P and Q (with K(P, Q) � �1 when P is not absolutely

continuous with respect to Q). The following result will be proved in Section 7.

Theorem 3. Assume that ì is a probability measure and that S satis®es Covering Property

M(nÿ1=2), with 1 < D < n. Let ŝ be an nÿ1-maximum likelihood estimator on S, which

means that
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1

n

Xn

i�1

log [ŝ(Zi)] <
1

n

Xn

i�1

log [t(Zi)]� 1

n
,

for any t 2 S. Then one can ®nd a numerical constant k such that if K(s, S) � inf t2S K(s, t),

then

Es[isÿ ŝi2] < k[K(s, S)�L D=n], where L � 1� log [B9(1� r9)]:

Moreover,

K(s, S) < 2[1� log(is=s� i1)]isÿ s� i2, for any s� 2 S: (4:1)

Remarks. Wong and Shen (1995) and Van de Geer (1995) have obtained results which are

similar but somehow different from various points of view. First, they both use bracketing

covering assumptions instead of Covering Property M(nÿ1=2), which slightly in¯uences the

evaluations of the rate of convergence of the maximum likelihood estimator on a sieve. We

shall comment on this in Section 6.2.

We would also like to point out that neither Wong and Shen nor Van de Geer provide

integrated risk bounds but only bounds in probability. There are further differences. The

bias term in Van de Geer's bound is of order inf s�2S(isÿ s� i is=s� i1)2 instead of K(s, S).

It is clear from (4.1) that our evaluation of the bias is sharper. On the other hand, the

probability bound in Theorem 3 of Wong and Shen (1995) does not tend to zero as n goes

to in®nity if we use a ®xed ®nite-dimensional sieve such as the space of histograms with D

pieces, assuming that the true parameter belongs to the sieve. Moreover, their probability

bound involves quantities of the form inf s�2S

�
[log(s=s�)]2s2=K(s, S) which can be very

large.

Let us now see how one can use (4.1) to bound K(s, S) in some particular cases.

Bracketed approximation. When S is de®ned as the subset of elements of norm 1 of some

cone S� of non-negative functions in L2(ì) and there exists an element s� in S� such that

s� > s and isÿ s� i < ä, we de®ne s� 2 S by (s�)2 � (s�)2=[
�

(s�)2 dì]. Then (7.7) shows

that isÿ s� i < ä and that the ratio (s=s�)2 is bounded by 3 provided that ä < 1=
���
2
p

. This

means that in this case we can bound K(s, S) by 3 inf s�2S� ,s�>s isÿ s� i2. This situation will

be illustrated below by the case of approximation by histograms.

Modi®cation of the sieve. If ì is a probability measure, one can always modify the sieve S in

the following way: change each t in S into t, with t2 � [t2 � 1=(2n)]=[1� 1=(2n)]. Then, by

(7.1), i t ÿ ti < nÿ1=2. If we denote by S the corresponding modi®cation of S we can check

that S still satis®es Covering Property M(nÿ1=2). Moreover, if isi1 is ®nite,

is=ti2

1 < (1� 2n)isi2

1 and, by (4.1),

K(s, S) < 4(1� log[(1� 2n)isi1])(d2(s, S)� nÿ1):

This shows that, up to a small modi®cation of the sieve, one can always control K(s, S) by

(log n)(d2(s, S)� nÿ1). Such a result could not be derived from Van de Geer (1995) since the
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ratio is=ti1 would appear as a multiplicative factor in her computations, introducing an extra

factor n instead of our log n.

4.2.2. Application to histograms

Regular histograms. Let s be an element of the HoÈlder class H (á)([0, 1]) (where

0 ,á < 1) with seminorm

jsjá � sup
0<x, y<1

js(x)ÿ s(y)j
(yÿ x)á

,�1:

Consider the sieve H (D) of regular histograms introduced in Section 3.2.2. One can de®ne

an upper approximation s� of s in H (D) by

s� �
XD

j�1

sup
( jÿ1)=D<x, j=D

s(x)
� �

1[( jÿ1)=D, j=D):

It follows that is� ÿ si < is� ÿ si1 < jsjáDÿá. Let S be the subset of positive elements of

norm 1 of H (D) then it follows from the above remark about bracketed approximation that

K(s, S) < 3jsj2áDÿ2á. It then follows from Proposition 1 that H (D) and therefore S satisfy

Covering Property M with B9 � 6 and r9 � r � 1 as mentioned in Section 3.1.2. We can

therefore apply Theorem 3 to derive that if ŝ is the maximum likelihood estimator on S, then

Es[isÿ ŝi2] < k[jsj2áDÿ2á � D=n],

where k is an absolute constant. Choosing D of order n1=(2á�1), we obtain a bound on the risk

of order nÿ2á=(2á�1) which is known to be the right rate of convergence for HoÈlderian

densities.

Remark. In this case it is easy to compute ŝ2 explicitly (it is the empirical histogram) and to

bound Es[is2 ÿ ŝ2 i2] by a direct computation. It is not that clear that one could easily bound

Es[isÿ ŝi2] in the same way without any restriction on s.

Irregular histograms. Let us consider a function s with bounded variation V (s) on [0, 1] and

the sieve S which is the subset of positive elements of norm 1 of H n(D). As noticed in

Section 3.2.3, S satis®es Covering Property M with B9 � 6en=D and r9 � (n=D)1=2.

Moreover it follows from Corollary 1 of Barron et al. (1997) that one can ®nd s� > s in

H n(D) such that is� ÿ si < 5V (s)=D provided that D > 3. The above arguments therefore

imply that, for a suitable absolute constant k9,

Es[isÿ ŝi2] < k9[V (s)2 Dÿ2 � (D log n)=n]:

Choosing D of order (n=log n)1=3, we obtain an upper bound for the risk of order

(n=log n)ÿ2=3.

Approximation properties of irregular histograms based on a grid. In order to apply

Theorem 3 or Theorem 2 or any similar result to the sieve H N (D) one is led to evaluate
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quantities of the form d(s, H N (D)) but the usual results of approximation theory deal with

histograms or, more generally, piecewise polynomials based on partitions with free end-points

rather than end-points restricted to a grid of the type we use here. In order to compare the

approximation properties of H N (D) with those of histograms based on partitions with free

end-points, the following elementary result might prove useful.

Lemma 4. For any element f in the set

H (D, L) �
XD

j�1

a j1[b jÿ1,b j), 0 � b0 < b1 < � � � < bD � 1, ja jj, L, for 1 < j < D

8<:
9=;

one can ®nd an element g in H N (D) with i f ÿ gi2

2 < 2DL2=N .

Proof. Assume that f �PD
j�1a j1[b jÿ1,b j) and de®ne g �PD

j�1a j1[N jÿ1=N ,N j=N ), where N j is

the integer closest to Nb j. Since jb j ÿ N j=N j < (2N )ÿ1, we obtain

i f ÿ gi2

2 <
XDÿ1

j�1

(a j ÿ a j�1)2=(2N ) < 2DL2=N : u

Remark. It is clearly not necessary to assume that ja jj < L, the condition

Dÿ1
PDÿ1

j�1 (a j ÿ a j�1)2 < 2L2 would lead to the same conclusion.

The meaning of this result is that when one replaces d(s, H (D, L)) by d(s, H n(D)) one

only loses a term of order (D=n)1=2. Therefore since the bounds for the risk which appear

in our theorems are of the form C[d(s, H n(D))� (D=n)1=2]q, one could change

d(s, H n(D)) into d(s, H (D, L)) (which can be derived from classical results in

approximation theory) without changing the order of magnitude of the bound but only

the constant C.

4.2.3. Some lower bounds

Regular histograms. Let S be the subset of non-negative elements of norm 1 in H (D) and

assume that s 2 S. It follows from Theorem 3 and our above evaluations of B9 and r9 (B9 � 6

and r9 � 1) that the maximal risk for s 2 S of the maximum likelihood estimator is bounded

by k9D=n. It follows from classical lower bounds methods (see, for instance, Assouad 1983;

or BirgeÂ 1986) that the minimax risk over S is bounded from below by k 0D=n, which means

that the maximum likelihood estimator is minimax on S, up to constants.

Irregular histograms. Let S be the subset of non-negative elements of norm 1 in H 2n(D)

and s 2 S. It follows from Theorem 3 and our above evaluations of B9 and r9 (B9 � 12en=D

and r9 � (2n=D)1=2) that the maximal risk for s 2 S of the maximum likelihood estimator is

bounded by k9(D=n) log (1� n=D). One might wonder whether the log (n=D) factor in the

preceding bound is actually necessary or not. However, the presence of an extra log (n=D)

factor is in some sense necessary when the sieve H 2n(D) is used, as shown by the following

proposition to be proved in Section 7.
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Proposition 2. Assume that D > 9, n > 5D, N > 1:4n and let H be the set of square roots of

those densities in H N (D) which are bounded by 2. For any estimator ŝn based on n independent

and identically distributed observations from some density s2 with s 2H , one has

sup
s2H

Ps isÿ ŝn i2 . k1

D

n
log

n

D

� �� �
. k2, (4:2)

where k1 and k2 are absolute constants.

Remark. The same result also holds if in (4.2) one replaces isÿ ŝn i by is2 ÿ ŝ2
n i, which is

the L2 distance between the densities themselves.

4.3. Regression framework

In this case we observe pairs (X i, Yi) � Zi with Yi � s(X i)� Wi and the underlying

variables (X i, Wi) are independent with respective distributions Ri 
 Qi. The X is are

supposed to take values on a compact subset X of some Euclidean space and we denote by ë
the Lebesgue probability measure on X . We assume here that all the functions involved, i.e.

s and the elements of S, belong to the Hilbert space L2(ì), where ì is the average

distribution of the X is (ì � nÿ1
Pn

i�1 Ri) and that the norm i:i is the norm in L2(ì). We also

need the additional (and rather unpleasant) restriction that the sieve S is included in some L1
ball around s: there exists a constant H such that, for all u 2 S, isÿ ui1 < H . We introduce

here two empirical contrast functions: nÿ1
Pn

i�1[Yi ÿ t(X i)]
2, which corresponds to least-

squares regression; and nÿ1
Pn

i�1jYi ÿ t(X i)j, which corresponds to minimum-L1 regression.

We denote by ŝ1 and ŝ2 the corresponding minimum contrast estimators on S, i.e. ŝ1 is the

least-squares estimator on S and ŝ2 is the minimum-L1 estimator on S. We can then prove the

following theorem.

Theorem 4. Assume that the sieve S satis®es Covering Property M(nÿ1=2) and that there

exists a constant H such that, for all u 2 S, isÿ ui1 < H . Let L � 1 �
log B9� log (1� r9(D=n)1=2).

(i) Assume that the errors Wi are centred random variables such that Es[expájWij] < Ã
for all i and suitable positive constants á and Ã. Then

Es[iŝ1 ÿ siq] < C(H , q, á, Ã)[dq(s, S)� (L D=n)q=2]: (4:3)

(ii) Assume that the errors Wi are independent and identically distributed with common

distribution V with derivative v, that 0 is the medium of the distribution V and v is

continuous and positive at 0. Then

Es[iŝ2 ÿ siq] < C(H , q, v)[dq(s, S)� (L D=n)q=2]: (4:4)

Remarks.

1. The moment condition that we have used in case (i) (exponential moments for the

Wis) is clearly too strong, at least in the case of a linear sieve, and could be
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weakened, but at the price of a lot of additional technicalities that we do not wish to

include here.

2. As in Nemirovskii et al. (1984) or BirgeÂ and Massart (1993), one could introduce

more general contrast functions and de®ne

ãn(t) � 1

n

Xn

i�1

F[Yi ÿ t(X i)],

where F is a function satisfying conditions (Ca), (Cc), (Cd), (Ce) of BirgeÂ and

Massart (1993, p. 125). Under such assumptions, one could derive from the general

results of the next section an analogue of Theorem 4 for the corresponding minimum

contrast estimator.

3. Checking Covering Property M(nÿ1=2) amounts to checking some entropy properties of

the sieve S with respect to the metric induced by the norm in L2(ì). The problem will

then be quite different if this norm is equivalent to the usual L2(ë)-norm or not. In the

case of a random design, if ì and ë are mutually absolutely continuous with bounded

densities, the two norms will be equivalent and classical approximation theory will

generally do the job. For ®xed design, ì is a discrete measure and it might be much

more complicated to study the entropy properties of the classical spaces of

approximation theory with respect to the norm in L2(ì) (for related problems, see

Van de Geer 1990).

We now consider some applications.

Neural nets. Assume that S is the neural net S(D9, ô, G) described in Section 3.2.1. It

follows that this sieve is a bounded subset of L1(ì). If s itself belongs to L1(ì) the

boundedness property required in the above theorem is satis®ed with a suitable constant H. It

follows from Section 3.2.3 that Covering Property M(nÿ1=2) is also satis®ed with r9 � 1 and

B9(nÿ1=2) � C1 n1=2. Therefore, if the errors Wi do satisfy the properties required in part (i)

of the theorem, one obtains

Es[iŝ1 ÿ siq] < C[dq(s, S)� (D9log n=n)q=2]:

A similar bound holds for ŝ2 if the errors satisfy the properties required in part (ii) of the

theorem.

Trigonometric polynomials. Let us de®ne S to be the linear span of the ®rst D elements of

the Fourier basis and assume that isi1 is bounded by a known constant H. Let S be the

intersection of S and the L1 ball of radius 2H centred at zero and ð(s) be the orthogonal

projection of s onto S. If we assume that s belongs to the Sobolev space Wá
2 of the one-

dimensional torus for á 2 Nÿ f0g, which means that
�

[s(á)(x)]2 dx ,1, then it follows from

(7.12) and Theorem 2.3 of DeVore and Lorentz (1993, pp. 46, 205) that

isÿ ð(s)i < C1 is(á) i Dÿá. Using Theorem 3.4 of DeVore and Lorentz (1993, p. 181) we

derive that
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inf
t2S

isÿ ti1 < C2 is(á) iDÿá�1=2:

Using Lebesgue's lemma (DeVore and Lorentz 1993, p. 30), together with the fact that the

norm of the operator ð is bounded by the L1-norm of the Dirichlet kernel which is itself not

larger than C3 log D, we ®nally obtain

isÿ ð(s)i1 < C4 is(á) iDÿá�1=2 log D:

Therefore for large D, isÿ ð(s)i1 < H , ð(s) 2 S and d(s, S) < C1 is(á) i Dÿá. It follows

from Sections 3.2.3 and 3.1.2 that in such a linear sieve case one can take B9 as a numerical

constant and r9 as (2D)1=2. Let us then choose D � n1=(2á�1). Since á. 1=2, L is bounded

and the estimator converges at a rate which is at least of order nÿ2á=(2á�1). This improves on

Example 3 of Shen and Wong (1994, p. 593). They actually use weaker moment conditions

on the Wis but do not obtain the right rates of convergence. The improvement we obtain is

due to the introduction of the factor r9 which relates L2 and L1 approximations for nets.

5. A general approach leading to exponential inequalities

Let us recall that we observe n independent random variables Zi, 1 < i < n, within the

statistical framework described at the beginning of Section 4. The purpose here is to establish

exponential bounds for the ¯uctuations of the centred empirical measure ín � Pn ÿ Es � Pn

acting on some class of functions ã(:, t), t 2 T , in order to analyse the behaviour of a

minimum contrast estimator on a sieve S � T , relative to some empirical contrast ãn. A

simple connection between ã and ãn turns out to be

ín[ã(:, t)] � ãn(t)ÿ Es[ãn(t)], for any t 2 T and s 2 S : (5:1)

Recalling that ãn(t) � nÿ1
Pn

i�1ã(Zi, t) this clearly occurs whenever ã(:, t) � ã(:, t) or

ã(:, t) � ã(:, t)ÿ Es[ãn(t)]. But, in order to deal with maximum likelihood estimation, it is

useful to introduce more ¯exibility in the choice of ã.

We consider two sets of assumptions on the family fã(:, t)g t2S. The ®rst says roughly

that ã(:, t), as a function of t, behaves as a bounded Lipschitz function. The second tends

to express that the metric structure of the sieve S is similar to the structure of the Euclidean

space RD.

Assumption M1. The observed random variables Z1, . . . , Z n can be written as

Zi � f (s, X i, Wi) for some function f and independent random variables X1, . . . ,

X n 2 X and W1, . . . , W n 2 W . Moreover one can ®nd positive numbers A, B, am, bm

and non-negative functions M(w) and Ä(x, u, v) de®ned on W and X respectively such that,

for each pair (u, v) 2 S2,

jã(z, u)ÿ ã(z, v)j < M(w)Ä(x, u, v)

and, for all m > 2,

Es[M m(Wi)] < am Am, for all i � 1, . . . , n, (5:2)
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1

n

Xn

i�1

Es[Ä
m(X i, u, v)] < bm iuÿ vi2 Bmÿ2, (5:3)

with either am � 1, bm � m!=2, for all m > 2, or bm � 1, am � m!=2, for all m > 2.

Remarks. It is useful to notice that:

(i) if, for any i, M(Wi) � M is not random, then A � M and am � 1;

(ii) we obtain (5.2) with am � m!=2 if we assume that, for all i � 1, . . . , n,

Es[exp(Aÿ1 M(Wi))] < 3=2� Es[Aÿ1 M(Wi)];

(iii) we obtain (5.3) with either bm � 1 and B � B1 or bm � m!=2 and B � B1=3 if

1

n

Xn

i�1

Es[Ä
2(X i, u, v)] < iuÿ vi2 and iÄ(:, u, v)i1 < B1, for all u, v 2 S: (5:4)

Assumption M2. There exist two constants B9 and r such that, for any ó > (D=n)1=2 and

0 , ä, ó=5, one can ®nd for any ball B � S of radius ó a ®nite ä-net T � B (which

means that there exists a mapping ð � ð(ä, ó ) from B to T such that d(u, ðu) < ä, for all

u in B ) with

jT j < (B9ó=ä)D, for some D > 1, B9 > 1, (5:5)

and

sup
u2ðÿ1( t)

iÄ(:, u, t)i1 < rä, for all t 2 T : (5:6)

One can use Assumptions M1 and M2 to control the ¯uctuations of the centred empirical

process ín[ã(:, t)] in the following way.

Theorem 5. Assume that M1 and M2 are satis®ed and that we have ®xed some positive

number ô. De®ne L , r(ô) and ó D by

L � 10e

2eÿ 1
[log B9� log (4

���
5
p
� 5)� log (1� r(D=n)1=2)], (5:7)

r(ô) � A

ô
1� 1� Bô

2A

� �1=2
" #

, ó 2
D �

D

n
r2 3ô

4

� �
L

� �
_ 1

� �
:

Then one obtains, for any s� in S,

Ps sup
u2S

ín[ã(:, s�)ÿ ã(:, u)]

d2(s�, u) _ ó 2
. ô

" #
, 3:03 exp ÿ 2nó 2

5r2(3ô=4)

" #
, for any ó > ó D: (5:8)

The proof being rather technical, it will be deferred to Section 7.

We will now explain how Theorem 5 can be used to build risk bounds for minimum
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contrast estimators. Let us recall that the minimum contrast estimator ŝ which minimizes

(up to nÿ1) ãn(t) � nÿ1
Pn

i�1ã(Zi, t) over S satis®es

nÿ1
Xn

i�1

ã(Zi, ŝ) <
Xn

i�1

nÿ1ã(Zi, t)� nÿ1, for all t 2 S:

Setting l (s, t) � Es[ãn(t)ÿ ãn(s)], we see that

l (s, ŝ) < l (s, t)� ín[ã(:, t)ÿ ã(:, ŝ)]� nÿ1: (5:9)

If either ã or its centred version satis®es Assumptions M1 and M2, then (5.1) holds with

ã � ã (or the centred version) and we can combine (5.9) with (5.8) provided that one can

®nd a suitable relation between l and d. This motivates the introduction of the following

assumption.

Assumption C9. There exist two positive constants, k and k9, such that

kd2(s, t) < Es[ãn(t)ÿ ãn(s)] < k9d2(s, t), for any t 2 S and s 2 S :

Unfortunately it can happen that neither the function ã nor its centred version satis®es

Assumptions M1 and M2, which means that we have to consider more general functions ã.

But still some analogue of (5.9) is needed with ã replacing ã. Such a connection is forced by

our next assumption.

Assumption C. For any s 2 S one can ®nd some point s� 2 S (depending on s), a non-

negative random variable U (s, s�, Z1, . . . , Z n) with ®nite second moment such that if t in S

satis®es ãn(t) < ãn(s�)� nÿ1 then

ín[ã(:, s�)ÿ ã(:, t)] > kd2(s, t)ÿ U 2, (5:10)

where k is some positive constant.

Remarks. One should think of s� as minimizing the distance from s to S, i.e.

isÿ s� i � d(s, S) although formally s� could be any point in S.

We can be precise as to the sense in which Assumption C extends C9. If ã is of the form

ã(z, t) � ã(z, t)� ø1(t)� ø2(z), then ín[ã(:, t)ÿ ã(:, u)] � ín[ã(:, t)ÿ ã(:, u)] for every t

and u in S. This means that (5.9) holds with ã instead of ã, and therefore if C9 holds then

C is also satis®ed for that choice of ã and any point s� 2 S by setting U 2 � k9d2(s, s�).

We now have all the necessary tools to compute the performance of our estimators. The

results of Theorem 5, together with Assumption C, lead to various forms of control of the

random term of the estimation error, while the bias term d(s, s�) is entirely taken care of

by the approximation properties of the sieve S. In order to translate such results, which are

given for ®xed values of n and D, in terms of the usual `rates of convergence', one must

think of a sequence of such problems with choices of S and D depending on n in such a

way that we achieve a balance between the bias and random terms. The resulting moment

bounds can then be derived from the following corollary.
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Corollary 1. Assume that M1, M2 and C hold with E[U q] ,1, for some integer q > 1;

then

Es[d
q(ŝ, s)] < C(q)[dq(s, s�)� (K(DL =n)1=2)q � kÿq=2 Es[U

q]], (5:11)

where

L � k[1� log[B9(1� r(D=n)1=2)]], K � 16A

3k
1� 1� 3Bk

32A

� �1=2
 !" #

_ 1:

When M1, M2 and C9 hold, then

Es[d
q(ŝ, s)] < C9(q, k, k9, A, B)[dq(s, s�)� (DL =n)q=2]:

Proof. Let us denote by 1ÿ p(ó ) the probability that ín[ã(:, s�)ÿ ã(:, t)] <
(k=4)(d2(s�, t) _ ó 2) for all t 2 S and by Ŝ the subset of elements t in S such that

ãn(t) < ãn(s�)� nÿ1. Then ŝ belongs to Ŝ and it follows from Assumption C that with

probability at least 1ÿ p(ó ), for all t in Ŝ,

(k=4)[2d2(s, t)� 2d2(s, s�)� ó 2] > ín[ã(:, s�)ÿ ã(:, t)] > kd2(s, t)ÿ U 2:

Then with probability at least 1ÿ p(ó ),

d2(s, t) < d2(s, s�)� (ó 2=2)� (2U 2=k)

and

dq(s, t) < C1(q)[dq(s, s�)� ó q � (kÿ1U 2)q=2]:

Let

V � dq(s, t)

C1(q)
ÿ dq(s, s�)ÿ U 2

k

� �q=2

;

then Ps[V . ó q] < p(ó ) with p(ó ) < 1, for ó < ó D, and p(ó ) is bounded by the right-hand

side of (5.8) with ô � k=4 otherwise. It follows that

Es[V ] �
�1

0

Ps[V . t] dt <

�1
0

p(t1=q) dt �
�1

0

qxqÿ1 p(x) dx:

Using the upper bounds for p we can conclude, since L > L > 1 for a suitable constant k,

that

Es[V ] < ó q
D � C2(q)

r(3k=16)���
n
p

� �q

< r2 3k

16

� �
_ 1

� �
L D

n

� �q=2

�C2(q)
r(3k=16)���

n
p

� �q

and (5.11) follows since K � r(3k=16) _ 1. When Assumption C9 holds, U 2 �
k9d2(s, s�)� 1=n and the bound follows. u

In the case of projection estimators on a linear sieve, the results of Theorem 5 can be

improved thanks to the deep isoperimetric inequality due to Talagrand which is contained in
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Theorem 1. The advantage of this approach is that it allows us to work with unbounded

parameter sets when there exists a good connection between L2- and L1-norms on S.

Proposition 3. Assume that the observations Z1, . . . , Z n are independent and identically

distributed with density s, that the sieve S is a subset of some D-dimensional linear subspace

SD of L2(ì) \ L1(ì) and that there exists a positive constant Ö such that i ti1 < Ö
����
D
p

i ti
for all t 2 SD. Let ô be some positive number and

ó D � (3=ô)(Ö ^ isi1=2

1 )(D=n)1=2:

There exists a universal constant k such that, for any ó > ó D, we have

Ps sup
u2S

jín(u)j
iui2 _ ó 2

. ô

" #
< 3 exp ÿkn

ó 2ô2

(Ö
����
D
p

isi) ^ isi1
^ óô

Ö
����
D
p

 !" #
: (5:12)

The proof relies on Lemma 1 and on the following consequence of Theorem 1.

Corollary 2. Let Z1, . . . , Z n be n independent and identically distributed variables and F a

countable family of functions that are uniformly bounded by some constant b. Let

v � sup f 2F E[ f 2(Z1)]. There exists a universal constant k9 such that, for any positive ç
and ë,

P sup
f2F
jín( f )j > (1� ç)E � ë

� �
< 3 exp ÿnk9

ë2

v
^ (ç ^ 1)ë

b

� �� �
(5:13)

if E > E[sup f2F jín( f )j].

Proof. Starting from (2.9) of Theorem 1 applied to î � ë� çE, we obtain from the

inequality Ó2 < v� 8bE given in Ledoux (1996, p. 78) that

î2

Ó2 � bî
>

ë2 � 2çëE

v� 8bE � bë� bçE
>

1

3

ë2

v
^ 2ëç

b(8� ç)
^ ë2

bë

" #
>

1

3

ë2

v
^ 2(ç ^ 1)ë

9b

� �
,

since ç=(8� ç) > (ç ^ 1)=9. Bound (5.13) follows immediately. u

Proof of Proposition 3. Let j1, . . . , jD be an orthonormal basis of SD. We want to apply

Corollary 2 to the family F � f f uju 2 Sg, where f u � u=(iui _ ó )2. In principle, Corollary

2 only applies to countable families, but in our case u belongs to a ®nite-dimensional space

which implies that the function u 7! ín( f u) is continuous and therefore the value of

sup f 2F jín( f )j will not change if we restrict ourselves to a countable and dense subset of S.

Since j f uj < juj=(ó iui) the Cauchy±Schwarz inequality leads to

Xn

i�1

( f u(Zi)ÿ Es[ f u(Zi)])

" #2

<
iui
ó iui

 !2XD

j�1

Xn

i�1

(j j(Zi)ÿ Es[j j(Zi)])

" #2

:

The variables j j(Zi)ÿ Es[j j(Zi)] being independent and centred, we obtain by Lemma 1
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Es[sup
u2S

jín( f u)j2� < 1

nó 2

XD

j�1

Es[j2
j(Z1)] <

(Ö2 ^ isi1)D

nó 2

and by Jensen's inequality Es[sup f 2F jín( f )j] < E � [(Ö ^ isi1=2

1 )=ó ](D=n)1=2. Therefore

2E � ô=3 < ô provided that ó > ó D and we can bound the left-hand side of (5.12) by means

of Corollary 2 with ç � 1 and ë � ô=3. The value of b derives from the fact that

i f u i1 < Ö
����
D
p

=ó . Finally,

v < sup
u2S

Es[u
2]

ó 2 iui2
< sup

u2S

iui1Es[juj]
ó 2 iui2

<
1

ó 2
isiÖ

����
D
p

,

which can be improved to v < ó ÿ2 isi1 when isi1,�1. The result follows. u

6. Conclusion

6.1. Why ®nite-dimensional sieves?

The basic idea of the method of sieves is to replace a complicated function space S , to which

the true parameter is supposed to belong, by a simpler space Sn (depending on the number n

of observations) which is supposed to have good approximation properties with respect to S .

The choice of Sn is typically determined by two main constraints:

· There should be an optimal balance between the distance from Sn to S (bias) and the

risk of the minimum contrast estimator on Sn. If this balance is suitably achieved one

can hope that the estimator will achieve approximately the optimal rate of convergence

on S . More details about the connection between approximation theory and estimation

rates are given in BirgeÂ (1983).

· In order to obtain an effective estimation procedure the space Sn should be de®ned in

such a way that the optimization procedure of the empirical contrast on Sn could be

performed in practice.

In BirgeÂ and Massart (1993) we studied the particular case Sn � S . The rates of

convergence of the resulting global minimum contrast estimators are computed there and

expressed in terms of the metric entropy with bracketing of S . When this entropy is too

large these rates can be suboptimal. Moreover, apart from some particular cases (maximum

likelihood on the space of monotone functions, for instance), the required global

optimization procedures are in general unrealistic from the practical point of view.

Replacing S by an approximating net or an in®nite-dimensional sieve might look attractive

from a theoretical point of view since it apparently provides more ¯exibility than

considering only ®nite-dimensional sieves. Unfortunately, it leads to similar problems of

optimization and therefore will not add much, from a practical point of view, to what is

already known from Le Cam (1975) or BirgeÂ (1983) who, by the way, also proposed

impractical estimators but which typically achieve the optimal rates of convergence. On the

other hand, a close look at classical references in approximation theory such as Birman and
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Solomjak (1967), DeVore and Lorentz (1993) or DeVore et al. (1992) shows that many of

the classical spaces used in approximation theory are ®nite-dimensional linear spaces or

®nite unions of such spaces. A typical example is provided by various collections of

piecewise polynomials based on dyadic partitions. As a matter of fact it is often very

dif®cult to exhibit explicit nets even if it is possible to bound their cardinality ± see, for

instance, the delicate constructions of Birman and Solomjak (1967). Moreover, when one is

able to build such nets, these nets are, in all the cases we know, de®ned as unions of nets in

®nite-dimensional approximating spaces.

In fact classical linear approximation methods are based on a single linear approximating

space of a given dimension (piecewise polynomials based on a regular partition,

trigonometric polynomials, etc.) while more recent nonlinear approximation methods such

as thresholding of wavelet-type expansions are based on approximation by unions of ®nite-

dimensional linear spaces of bounded dimension.

6.2. L2 brackets versus simultaneous L2 and L1 coverings

The notion of L2 entropy with bracketing that we borrowed from the theory of empirical

processes to study global minimum contrast estimators in BirgeÂ and Massart (1993) is

especially well suited for in®nite-dimensional spaces and more speci®cally for the space of

monotone functions for which L1 entropy does not exist. Of course the same notion with the

same method of proof can be used to extend these results to minimum contrast estimation on

sieves, as is done in Shen and Wong (1994) and Van de Geer (1995).

The point here is that we essentially want to focus on sieves which are ®nite-

dimensional linear spaces (or unions of such spaces). It turns out that since all sensible

®nite-dimensional approximation spaces are embedded in L1 one can always compute the

L1 entropy of bounded sets of such spaces. The key point of the discussion is the

comparison between L2 entropy, L2 entropy with bracketing and L1 entropy. When L2

and L1 entropy are of the same order (with respect to the dimension D of the space),

methods involving L2 entropy with bracketing or L1 entropy are equivalent. Covering

Property M, introduced in this paper, is a new covering notion. It is especially relevant

when L2 and L1 entropies are not of the same order. We now provide some simple

examples showing that L2 entropy with bracketing and Covering Property M are not

directly comparable although one can derive a crude upper bound for L2 entropy with

bracketing from Covering Property M. To make the comparison easier we introduce the

analogue of the Covering Property M for bracketing.

Covering Property B. We shall say that a subset S of L2(ì) satis®es Covering Property B if

there exist numbers D > 1 and B 0 > 1 such that, for any ä. 0, ó > 5ä and any ball B of

radius ó with respect to L2, we can ®nd a ®nite set I of indices and pairs of functions

tÿi < t�i 2 L2(ì) with i t�i ÿ tÿi i < ä, for each i 2 I and such that for any element t 2 B
one can ®nd i 2 I with tÿi < t < t�i . Moreover, the cardinality of I is bounded by

[B 0ó=ä]D.
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6.2.1. Examples

Histograms based on a partition of [0, 1]. The following result is to be proved in Section 7.

Proposition 4. Let P be a partition of [0, 1] by D intervals and H(P ) the D-dimensional

linear space of piecewise constant functions on P . Then:

(i) H(P ) satis®es Covering Property M with r9 � 1 and

B9 � 5 exp ÿ(2D)ÿ1
X
I2P

log (DjI j)
" #

;

(ii) for any ä, ó, 0 , ä, ó=5, the number of brackets with L2 diameter smaller than ä
needed to cover an L2 ball of radius ó is bounded by (5ó=ä)D.

When we consider the regular partition with D elements we get B9 � 5. When we consider

irregular partitions, B9 may become arbitrarily large while the L2 entropy with bracketing is

not affected. This means that L2 entropy with bracketing is preferable to Covering Property

M for very irregular histograms, but we shall see later what are the consequences for rates of

estimation.

Trigonometric polynomials. If S is the linear space generated by the ®rst D elements of the

Fourier basis, we have already seen that Covering Property M is satis®ed with B9 � 6 and

r9 � �������
2D
p

. As far as we know, the only way of computing the L2 entropy with bracketing in

this case is to bound it crudely by the L1 entropy. This implies that the number of brackets

with L2 diameter smaller than ä needed to cover an L2 ball of radius ó is bounded by

k(
�������
2D
p

ó=ä)D, which is much larger than the number given by Covering Property M.

6.2.2. Logarithmic factors in the risk

We will now discuss the presence of some logarithmic factors that appear in the upper bounds

for the risk of minimum contrast estimators. Our concern is to discuss the effect of the

assumptions (Covering Property B or Covering Property M) on the existence of these

logarithmic factors and also to understand to what extent they are necessary or not.

Let us ®rst observe that, whatever the method to be used, the quadratic risk (say, to be

speci®c) can be split into two terms: a bias term which is proportional to the square of the

distance between the sieve and the parameter; and a random term which is connected to the

number of observations and the metric properties of the sieve. For a good choice of sieve

the two terms are balanced, which means that the bias term should not be larger than the

random term. On the other hand, the random term cannot be smaller than it is when the

parameter belongs to the sieve (no bias term). Since the assumptions used only in¯uence

the random term, the main point is to discuss the effect of those assumptions on the risk

when the parameter belongs to the sieve. We shall hereafter distinguish between two

different situations: maximum likelihood estimation and regression.

In the former situation, following Theorem 3, we see (assuming that s belongs to the

sieve) that the quadratic risk is bounded by k[1� log[B9(1� r9)]](D=n). On the other hand,
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using Covering Property B would lead to a bound of order (1� log B 0)D=n. Let us

concentrate here on the particular example of histograms. Assume ®rst that S is the linear

sieve H(P ) of histograms generated by a given partition P . Proposition 4 implies that the

risk is always under better control if we use Covering Property B rather than Covering

Property M. Let us discuss how much better it can be. If the partition P is regular or close

enough to regular, r9 and B9 are bounded (by Proposition 4) and therefore both assumptions

lead to equivalent results. Otherwise if we set Ä � inf I2P jI j, then log B9 <
ÿ1

2
log[ÄD]� log 5. Typically Ä will be of order 1=n in the worse case and we will not

lose more than a log(n=D) factor.

If we use as S the space H N (D) of all histograms with D pieces with end-points on a

regular grid of mesh 1=N introduced in Section 3.2.2, we have seen that one can take

r9 � �����������
N=D

p
and B9 � 6eN=D. This leads to a bound on the risk of order

[log(N=D)� 1](D=n) which is optimal in the minimax sense if, for instance, N � 2n

(see Proposition 2). This means that in this case one does not improve the bound by

introducing Covering Property B.

In the case of least-squares regression, Theorem 4 implies that the quadratic risk is

bounded by

C[1� log B9� log(1� r9(D=n)1=2)](D=n)

while Covering Property B would lead to a bound of order (1� log B 0)D=n as before. The

two bounds are not directly comparable in general but one can always bound B 0 by B9r9. It

may happen that the best bound for B 0 that one is able to derive is actually of order B9r9. In

such a case Covering Property M leads to a better bound. A good example of such a situation

is provided by the trigonometric polynomials for which B9 � 6, r9 � �������
2D
p

and B 0 � k
�������
2D
p

.

Then Covering Property B leads to an extra log D factor in the risk which does not appear

when one uses Covering Property M and D <
���
n
p

. If D is much larger than
���
n
p

then both

bounds become equivalent and we do not know in that case whether the extra log D factor is

actually necessary or not.

From the study of a few typical examples we see that it is not at all clear which type of

assumptions ± L2 entropy with bracketing as in Covering Property B or simultaneous L2

and L1 coverings as in Covering Property M ± is to be preferred even if the latter property

leads to simpler proofs for deriving maximal inequalities. In particular, it avoids the use of

adaptive truncation in the chaining arguments. There is no systematic superiority of one

property over the other and the choice of appropriate assumptions clearly depends on the

particular situation to hand. In any case, for all interesting examples we know about, the

differences only involve log n factors. One could even imagine that other covering

properties could lead to similar maximal inequalities. One such example (involving L1

entropy with bracketing) is given in Barron et al. (1997).

6.3. The importance of Talagrand's inequality and exponential bounds

In Section 4.1 we have given a separate treatment of the case of projection estimators on

linear sieves with a proof which is based on Talagrand's inequality rather than on covering
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assumptions as our Theorem 5. The reason is that Theorem 5, for the contrast of projection,

could be applied only for uniformly bounded sieves which de®nitely exclude linear sieves. Of

course, as explained in Section 2, the proof of Theorem 2 is straightforward when q � 2 and

the interest in using Talagrand's inequality is actually twofold: ®rst, it allows us to deal with

q . 2; second, it leads to exponential inequalities which are essential for penalization

methods as shown in Section 2. More generally, the exponential bounds that we have derived

in the present paper are crucial tools for both de®ning and studying penalized minimum

contrast estimators which we use in Barron et al. (1997) for model selection. We emphasize

the fact that the structure of those exponential bounds directly in¯uences the size of the

penalty terms involved in those methods. In particular, it is of a special interest to use

Talagrand's inequality in the case of projection estimators since it leads to explicit values for

the penalty terms. An illustration of this idea was given in Section 2.

7. Proofs

7.1. Proof of (2.10) and (2.11)

The proof of (2.10) is based on an application of Corollary 2 with F � f f tjt 2 SD9g, where

f t � (t ÿ sD)=i t ÿ sD i. As we have already mentioned in the proof of Proposition 3, the fact

that F is not countable does not create any problem since, by continuity, one could restrict

the de®nition to those t belonging to a dense countable subset of SD9. We obtain by the

Cauchy±Schwarz inequality

Es( f 2
t ) �

�
(t ÿ sD)2s

i t ÿ sD i2
<

i t ÿ sD i1 i t ÿ sD i isi
i t ÿ sD i2

:

Let D 0 � D _ D9. Then t ÿ sD can be written as
P

ë2ËD 0
aëjë and it follows from the

Cauchy±Schwarz inequality and (2.2) that

i t ÿ sD i1 �
�������� X

ë2ËD 0

aëjë

��������
1

< i t ÿ sD i
�������� X

ë2ËD 0

j2
ë

��������1=2

1
< i t ÿ sD i

������
D 0
p

:

It follows that Es( f 2
t ) < isi

������
D 0
p

, which implies that one can choose v � isi
������
D 0
p

. The same

computation shows that one can take b � ������
D 0
p

in Corollary 2. Let us now look for an upper

bound on E.

sup
t2SD9

jín( f t)j < sup
t2SD 0

jín( f t)j � sup
a2R D 0

jPë2ËD 0
aëín(jë)j
jaj �

X
ë2ËD 0

í2
n(jë)

" #1=2

:

One then obtains by Jensen's inequality
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Es sup
t2SD9

jín( f t)j
� �

< Es

X
ë2ËD 0

í2
n(jë)

" #" #1=2

� 1���
n
p

X
ë2ËD 0

Vars (j j)

" #1=2

<
1���
n
p

� X
ë2ËD 0

j2
j

 !
s

" #1=2

<
1���
n
p

�������� X
ë2ËD 0

j2
j

��������1=2

1
� D 0

n

� �1=2

,

and we can choose E � (D 0=n)1=2. Let us now take ë � (1=
���
n
p

)(ç
������
D 0
p � x) in (5.13). It

follows that

ë2

v
>

1

nv
[ç2 D 0� 2xç

������
D 0
p

] � 1

nisi
[ç2

������
D 0
p

� 2xç] >
1

nisi
[ç2

������
D9
p

� 2xç]

and

ë

b
� 1���

n
p

b
[ç

������
D 0
p

� x] � 1���
n
p ç� x������

D 0
p

� �
>

1

n
[ç

������
D9
p

� x],

since D9 < D 0 < n. Then

nk
ë2

v
^ (n ^ 1)ë

b

� �
> k

ç ^ 1

1� isi
(ç

������
D9
p

� x):

Finally,

Xn

D9�1

Ps sup
t2SD9

jín( f t)j > (1� 2ç)
D _ D9

n

� �1=2

� x���
n
p

24 35
<
Xn

D9�1

exp ÿk ç ^ 1

1� isi
(ç

������
D9
p

� x)

� �
< C(ç, isi) exp ÿk ç ^ 1

1� isi
x

� �
:

Now, since the bound in (2.10) is valid for all D9 simultaneously and all t 2 SD9 we can

apply it with D9 � D̂ and t � ~s which shows that, apart from a set of probability bounded

by the right-hand side of (2.10), we have

2ín(~sÿ sD) < 2[i~sÿ si � isÿ sD i] (2ç� 1)
D _ D̂

n

� �1=2

� x���
n
p

" #

<
2(2ç� 1)2

3
(1� ç)i~sÿ si2 � 1� 1

ç

� �
isÿ sD i2

� �

� 3

2(2ç� 1)2

4

3
(2ç� 1)2 D _ D̂

n
� 4

x2

n

� �
:

Combining this with (2.8) for ç small enough, we ®nally obtain (2.11). u

360 L. BirgeÂ and P. Massart



7.2. Proof of Theorem 2

Let s� be the orthogonal projection of s onto S; then d(s, S) � isÿ s� i. As already shown in

(2.6), iŝÿ si2 < isÿ s� i2 � 2ín(ŝÿ s�). Using Proposition 3 we see that, up to a

probability bounded by the right-hand side of (5.12), one obtains, for ó > ó D, using

Pythagoras's inequality

iŝÿ si2 < isÿ s� i2 � 2ô(iŝÿ s� i _ ó )2 < isÿ s� i2 � 2ôiŝÿ si2 � 2ôó 2:

Choosing ô � 1=4 we then get iŝÿ si2 < 2isÿ s� i2 � ó 2. Denote by p(ó ) the right-hand

side of (5.12) when ó > ó D and set p(ó ) � 1 otherwise; then

Ps[iŝÿ siq . C1(q)(isÿ s� iq � ó q)] < p(ó ),

from which one derives that

Es[iŝÿ siq] < C1(q) isÿ s� iq �
�1

0

qxqÿ1 p(x) dx

� �
:

It remains for us to bound the integral, which can be done in the following way since

ó D � 12(Ö ^ isi1=2

1 )
���������
D=n

p
:�1

0

xqÿ1 p(x) dx < ó q
D � 3

�1
ó D

xqÿ1 exp ÿ k2 nx2

Ö
����
D
p

isi

 !
dx�

�1
0

xqÿ1 exp ÿ k3 nx

Ö
����
D
p

� �
dx

" #

< 12(Ö ^ isi1=2

1 )
D

n

� �1=2
" #q

�3nÿq=2 isiq 1 _ Ö

isi1=2

1

 !q�1
12a

aq yqÿ1 eÿk2 y2

dy

� C2(q)
Ö

����
D
p

n

� �q

, where a2 � (Ö2 ^ isi1)
����
D
p

Öisi
,

and the result follows since the last integral is bounded with respect to a. u

7.3. Some inequalities relating Hellinger distance and Kullback±Leibler

information

Recalling that the Hellinger distance h(P, Q) between two positive measures P and Q is

de®ned by h(P, Q) � 1
2

�
(
������
dP
p ÿ �������

dQ
p

)2, we shall summarize a number of useful results and

inequalities involving Hellinger distance and Kullback±Leibler information numbers in the

following lemma.

Lemma 5. Let P, Q, R be three probability measures and ë 2 [0, 1]. Then the following

inequalities are valid:

h2(P, ëQ� (1ÿ ë)R) < ëh2(P, Q)� (1ÿ ë)h2(P, R); (7:1)
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h P,
P� Q

2

� �
. 0:29h(P, Q); (7:2)

h2(ëP� (1ÿ ë)R, ëQ� (1ÿ ë)R) < ëh2(P, Q); (7:3)

K(P, ëQ� (1ÿ ë)R) < ëK(P, Q)� (1ÿ ë)K(P, R); (7:4)

2h2(P, Q) < K(P, Q): (7:5)

Finally, if idP=dQi1,�1, then

K(P, Q)

h2(P, Q)
< K

�������� dP

dQ

��������
1

 !
, with K (x) � x(log xÿ 1)� 1

(x� 1)=2ÿ ���
x
p < 4� 2 log x: (7:6)

Moreover, if P� is a ®nite positive measure which dominates P and such that dP=dP� < 1,�
dP� � 1� á and h(P, P�) � h, de®ning the probability Q by dQ � dP�=(1� á) we

obtain

h2(P, Q) � h2 ÿ v(á)

(1� á)1=2
and á < vÿ1(h2), where v(x) � 1� x

2
ÿ (1� x)1=2: (7:7)

Proof. Inequality (7.1) derives from convexity as well as (7.4), which is classical, while (7.2)

is proved in Lemma 1 of BirgeÂ and Massart (1993). Expressions (7.5) and (7.6) derive from

the proof of Lemma 4.4 in BirgeÂ (1983) and elementary calculus. As to (7.3), it is proved as

follows using the fact that dP� dQ > 2
�������������
dP dQ
p

:�
[(ë dP� (1ÿ ë) dR)(ë dQ� (1ÿ ë) dR)]1=2 >

�
[ë2 dP dQ� 2ë(1ÿ ë) dR

�������������
dP dQ

p
� (1ÿ ë)2 dR2]1=2

� ë

� �������������
dP dQ

p
� (1ÿ ë):

Finally, (7.7) follows from Lemma 10 of Wong and Shen (1992) and Jensen's inequality.

u

7.4. Proof of Theorem 3

The proof derives from two auxiliary results, the ®rst of which is elementary.

Lemma 6. For all a > 0 and b > b0 . 0, one has

log
(a� ä)2 � b2

a2 � b2
< 2 log 1� ä

b0

� �
<

2ä

b0

: (7:8)

Proof. The left-hand side of (7.8) is decreasing with respect to b and its maximum with
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respect to a is obtained for a � [(ä2 � 4b2)1=2 ÿ ä]=2 which leads to the maximum value

log
((ä2 � 4b2

0)1=2 � ä)2 � 4b2
0

((ä2 � 4b2
0)1=2 ÿ ä)2 � 4b2

0

� log
(ä2 � 4b2

0)1=2 � ä

(ä2 � 4b2
0)1=2 ÿ ä

� 2 log
(ä2 � 4b2

0)1=2 � ä

2b0

< 2 log
2ä� 2b0

2b0

: u

The next result is a two-sided version of the inequality given in Lemma 3.4 of Van de Geer

(1995) which can be proved in the same way.

Lemma 7. Let f, ~f , g1, g2 be densities with respect to some measure ì and P1 � g1:ì,

P2 � g2:ì; then

E f

����12 log
~f � g1

~f � g2

����m
" #

<
m!

2
h2(P1, P2)

�������� f

~f

��������
1

, for all m > 2:

Proof of Theorem 3. Let s be the square root of the true density dP=dì, s� a given point in

S, and ŝ a (1=n)-maximum likelihood estimator on S. Set P� � Ps� and P̂ � Pŝ. Since ì is a

probability measure, one can de®ne ç by
�

(s2 _ ç) dì � 1� D=n and d~P=dì �
~s2 � (s2 _ ç)=(1� D=n). Using the fact that D < n, one can easily check that ç > D=n,

inf x ~s2(x) > ç=2,

h2(P, ~P) � 1
2

�
(
������
dP
p

ÿ
������
d~P

p
)2 <

D

2n
(7:9)

and �������� s

~s

��������2
1

< 1� D

n
< 2: (7:10)

We want to show that maximum likelihood estimation ®ts in with our general framework and

apply Corollary 1. We therefore have to check Assumptions M1, M2 and C. Let us ®rst recall

that iuÿ vi2 � 2h2(Pu, Pv). Since we cannot directly work with the function ã(z, t) we have

to introduce here the function ã(z, t) � ÿlog[(~s2 � t2)=2](z) which is a slight modi®cation of

the one we used in our treatment of general maximum likelihood estimation (BirgeÂ and

Massart 1993). Taking x � z, we obtain jã(z, t)ÿ ã(z, u)j � MÄ(x, t, u) with

Ä(x, t, u) � 1

2

����log
~s2(x)� t2(x)

~s2(x)� u2(x)

����
and M � A � 2, from which we get (5.2). Bound (5.6) follows from Lemma 6 and the lower

bound ~s >
��������
ç=2

p
. Indeed, if i t ÿ ui1 < r9ä, iÄ(:, t, u)i1 <

���
2
p

r9ä=
���
ç
p

and (5.6) holds

with

r �
���
2
p

r9���
ç
p < r9

2n

D

� �1=2

: (7:11)

Minimum contrast estimators on sieves 363



Finally, Lemma 7 and (7.10) imply (5.3) with B � 1. Assumptions M1 and M2 are therefore

satis®ed.

It only remains to check Assumption C. Assuming that ãn(t) < ãn(s�)� 1=n, we see thatP
i log t(Zi) >

P
i log s�(Zi)ÿ 1, which implies by convexityXn

i�1

log
t2 � ~s2

2

� �
(Zi) >

Xn

i�1

log[~s(Zi)s
�(Zi)]ÿ 1

and therefore, since by (7.10) log ~s > log sÿ D=(2n),

ín[ã(:, s�)ÿ ã(:, t)] > Pn log
2~ss�

~s2 � (s�)2

" #
ÿ 1

n

ÿ Es log
~s2(Z1)� t2(Z1)

2s2(Z1)
ÿ log

~s2(Z1)� (s�)2(Z1)

2s2(Z1)

" #

> Pn log
2s2

~s2 � (s�)2

" #
ÿ 1

2
Pn log

s2

(s�)2

" #
ÿ D� 2

2n

� K P,
~P� Pt

2

� �
ÿ K P,

~P� P�
2

� �
:

In order to conclude we use inequalities (7.2) and (7.3) from Lemma 5 to obtain

0:29h(P, Pt) , h P,
P� Pt

2

� �
< h P,

~P� Pt

2

� �
� h

P� Pt

2
,

~P� Pt

2

� �

< h P,
~P� Pt

2

� �
� 1���

2
p h(P, ~P)

and therefore

[0:29h(P, Pt)]
2 < 2h2 P,

~P� Pt

2

� �
� h2(P, ~P)

and by (7.5)

K P,
~P� Pt

2

� �
> 2h2 P,

~P� Pt

2

� �
> 0:292 h2(P, Pt)ÿ h2(P, ~P):

Then (7.10) and (7.6) imply that K(P, ~P) , 4:6h2(P, ~P) and by (7.4)

K P,
~P� P�

2

� �
<

1

2
K(P, ~P)� 1

2
K(P, P�) , 2:3h2(P, ~P)� 1

2
K(P, P�):

Finally, since K(P, Q) > 0 for any Q,
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Es

1

2
log

s2

(s�)2
(Z1)ÿ log

2s2

~s2 � (s�)2
(Z1)

" #
<

1

2
K(P, P�): (7:12)

Putting all inequalities together, we ®nally see that Assumption C will be satis®ed with

k � 0:292=2 and

U 2 � 1

2
Pn log

s2

(s�)2

" #
ÿ Pn log

2s2

~s2 � (s�)2

" #
� D� 2

2n
� 3:3h2(P, ~P)� 1

2
K(P, P�):

It then follows from (7.9) and (7.12) that

Es[U 2] <
4:3D� 2

2n
� K(P, P�)

which, together with Corollary 1, gives the bound on the quadratic risk of ŝ since s� is

arbitrary. Finally (4.1) follows from (7.6). u

Remark. The value of L in Theorem 3 is derived from the upper bound on r given in (7.11)

but it also follows from (7.11) that Theorem 3 actually holds with

L � 1� log B9� log 1� r9
2D

nç

� �1=2
" #

:

We know that ç > D=n, but it can actually be much larger than D=n. For instance, when s is

bounded away from zero ç can be chosen independently of n and L will behave as

1� log B9� log[1� r9(D=n)1=2]. Then r9 plays here the same role as r in Theorem 5. All

intermediate situations are possible according to the form of s and even if r9 is unbounded,

r9[D=(çn)]1=2 can be bounded if D=n is small enough.

7.5. Proof of Theorem 4

We again have to check Assumptions M1, M2 and C. In the case of least-squares regression,

we choose

ã(z, t) � [yÿ t(x)]2 � [s(x)� wÿ t(x)]2:

Then

jã(z, u)ÿ ã(z, v)j � ju(x)ÿ v(x)j j2w� 2s(x)ÿ [u(x)� v(x)]j
< 2ju(x)ÿ v(x)j[jwj � H]:

We can therefore take Ä(x, u, v) � ju(x)ÿ v(x)j and M(w) � 2(jwj � H). The moment

condition on the Wis implies (5.2) with A � A(á, Ã, H) and (5.3) follows with B � 2H from

the boundedness of iuÿ vi. Assumption M2 is satis®ed because of Covering Property

M(nÿ1=2). Finally, Assumption C9 follows from
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1

n

Xn

i�1

Es[ã(Zi, t)ÿ ã(Zi, s)] � 1

n

Xn

i�1

Es[(sÿ t)2(X i)] � i t ÿ si2:

In the case of minimum-L1 regression one sets

ã(z, t) � js(x)� wÿ t(x)j, Ä(x, u, v) � ju(x)ÿ v(x)j, M � 1:

Assumption M1 clearly follows as before with A � 1 and B � 2H, and M2 from Covering

Property M(nÿ1=2). It remains to check Assumption C9 and we will follow here the proofs and

notation of BirgeÂ and Massart (1993, pp. 125±127). With G de®ned in Assumption Ce of

BirgeÂ and Massart (1993), the decomposition

Es[ã(Zi, t)ÿ ã(Zi, s)] � Es[G(Wi, s(X i)ÿ t(X i))]

and the computations of BirgeÂ and Massart (1993), together with our boundedness

assumptions, show that for some constants C1 and C2

C1 isÿ ti2

2 <
1

n

Xn

i�1

Es[G(Wi, s(X i)ÿ t(X i))] < C2 isÿ ti2

2,

which gives Assumption C9. u

7.6. Bernstein's inequality

In order to obtain the relevant exponential inequalities needed for the proof of Theorem 5 we

shall repeatedly need the following version of Bernstein's inequality. This version is not

exactly standard because of its assumptions (moment controls on jZij instead of jZi ÿ E[Zi]j)
and its conclusion (unusual form of the bound exp(ÿnx)). We give here a sketch of the proof

since we were unable to ®nd it in the literature. For proofs of the classical inequalities, see

Uspensky (1937).

Lemma 8. Let Z1, . . . , Z n be independent random variables satisfying the moments

conditions

1

n

Xn

i�1

E[jZ m
i j] <

m!

2
v2cmÿ2 for all m > 2, (7:13)

for some positive constants v and c. Then, for any positive å and Sn �
Pn

i�1 Zi,

P[Sn ÿ E(Sn) > nå] < exp(ÿnx) < exp
ÿnå2=2

v2 � cå

� �
, (7:14)

where x is de®ned by the equation å � v
�����
2x
p � cx.

Proof. Let us put ìi � E(Zi) and ri � E[eëZi ]ÿ 1ÿ ëìi for ë. 0; then

log E[eë( Ziÿìi)] � ÿëìi � log(1� ëìi � ri) < ri

and the bounds (7.13) lead to
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Xn

i�1

log E[eë( Ziÿìi)] <
Xn

i�1

E[eëZi ]ÿ nÿ ëE(Sn) <
nv2ë2

2(1ÿ cë)
:

An application of the classical exponential inequality

P
Xn

i�1

Yi > nå

" #
< exp inf

y>0
ÿnyå�

Xn

i�1

log E[e yYi ]

 !" #
therefore implies that P[Sn ÿ E(Sn) > nå] < exp[ÿnh(å)], where

h(å) � sup
ë. 0

ëåÿ v2ë2

2(1ÿ cë)

( )
:

The supremum is achieved for ë � cÿ1[1ÿ v(2åc� v2)ÿ1=2], and since (1� t)ÿ1=2 < 1� t=2

we ®nd that

h(å) � å2

åc� v2 � v2(1� 2åc=v2)1=2
>

å2

2cå� 2v2
:

Moreover, it is easy to check that h(å) � x, which gives (7.14). u

7.7. Proof of Theorem 5

Let us de®ne L 9 by the implicit equation

L 9 � 5 log[B9(5� 4r(DL 9=n)1=2)], (7:15)

which clearly de®nes L 9 in a unique way. We ®rst want to prove that if B (s�, ó ) denotes the

L2 ball of centre s� and radius ó, then

Ps[ sup
u2B (s�,ó )

ín[ã(:, s�)ÿ ã(:, u)] . ôó 2] < 2:1 exp ÿ 3nó 2

10r2(ô)

" #
, 2:1 exp

ÿ12D

5

� �
(7:16)

provided that nó 2 > D(L 9r2(ô) _ 1). Let us set r � r(ô), ó � r(DL=n)1=2 with

L > L 9 _ rÿ2, è � 5� 4r(DL=n)1=2, äk � 2ÿkó=è for k 2 N, B � B (s�, ó ) and

f u � ã(:, s�)ÿ ã(:, u). Since ó 2 > D=n, by Assumption M2 we can assume the existence

of äk-nets Tk � T (äk , ó ) with respective cardinalities e H k ,

H k � D log(B9ó=äk) � D log(B92kè), (7:17)

and given some point u in B we can ®nd a sequence ft kgk>0 with t k 2 Tk such that,

according to Assumptions M1 and M2,

1

n

Xn

i�1

Es[Ä
2(X i, u, t k)] < ä2

k and iÄ(:, u, t k)i1 < räk : (7:18)

Setting f k � f t k
, we can use the decomposition f u � f 0 �

P�1
k�0( f k�1 ÿ f k), since f k

converges to f u when k goes to in®nity because of (7.18), and obtain the bound
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Ps[sup
u2B

ín( f u) . ôó 2] <
X
t02T0

Ps[ín( f 0) . Aç]�
X�1
k�0

X
t k , t k�1

Ps[ín( f k�1 ÿ f k) . Açk] � P1 � P2

provided that the (as yet not chosen) parameters ç and çk, k > 0, satisfy the relation

ç�
X�1
k�0

çk < ôó 2=A: (7:19)

Control of ín( f o). From the independence of Wi and X i, (5.2) and (5.3) with m � 2, we

obtain

Es[jã(Zi, s�)ÿ ã(Zi, t0)jm] < Es[M m(Wi)]Es[Ä
m(X i, s�, t0)] < am Am Es[Ä

m(X i, s�, t0)]

and

1

n

Xn

i�1

Es[jã(Zi, s�)ÿ ã(Zi, t0)jm] < am Ambmó
2 Bmÿ2 � m!

2
(Aó )2(AB)mÿ2:

Therefore Bernstein's inequality (7.14) implies that, if ç � ó
�����
2x
p � Bx, then

Ps[ín( f 0) . Aç] < exp(ÿnx): (7:20)

Control of ín( f k�1 ÿ f k). Since

jã(Zi, t k�1)ÿ ã(Zi, t k)j < M(Wi)[Ä(X i, u, t k)� Ä(X i, u, t k�1)],

we use (5.2) and (7.18) to obtain

Es[jã(Zi, t k�1)ÿ ã(Zi, t k)jm] < Es[M m(Wi)]Es[(Ä(X i, u, t k)� Ä(X i, u, t k�1))m]

< am Am Es[(Ä(X i, u, t k)� Ä(X i, u, t k�1))2](iÄ(:, u, t k)i1

� iÄ(:, u, t k�1)i1)mÿ2,

and

1

n

Xn

i�1

Es[jã(Zi, t k�1)ÿ ã(Zi, t k)jm] < [am Am][2(ä2
k � ä2

k�1)(räk � räk�1)mÿ2]

<
m!

2

5

2
ä2

k A2

� �
A

3räk

2

� �mÿ2

,

from which we deduce that if çk � äk(
�������
5xk

p � 1:5rxk), then

Ps[ín( f k�1 ÿ f k) . Açk] < exp(ÿnxk): (7:21)

Control of supu2B ín( f u). Since è. 5 and L > 5 log(B9è) . 8, as can easily be seen from

the de®nition of L 9, (7.17) implies that H k < D(L=5� k log 2), for all k 2 N. Therefore

(7.20), (7.21), D > 1 and DL � nó 2=r2 . 8D > 8 imply the probability bound in (7.16),

since choosing
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x � DL

2n
and xk � D

n

2L

5
� (2k � 1) log 2� 3(k � 1)L

10

� �
,

we obtain

P1 < exp(H0 ÿ nx) < exp(ÿ3DL=10) , exp(ÿ12D=5)

and

P2 <
X1
k�0

exp(H k � H k�1 ÿ nxk) <
X1
k�0

exp[ÿ3(k � 1)DL=10]

<
exp(ÿ3DL=10)

1ÿ exp(ÿ3DL=10)
, 1:1 exp(ÿ3DL=10):

Since log 2 < (L log 2)=8, nxk is bounded by (0:474k � 0:787)DL and numerical computation

leads to

X1
k�0

çk ,
ó

è
5

DL

n

� �1=2

� 4r
DL

n

" #
� ó 2

r
:

Since ç � (r� B=2)(ó 2=r2) and ôr2=A � 2r� B=2, the constraint (7.19) is satis®ed.

Let us now show that L 9 < L , where L is given by (5.7). Starting from the inequality

a� b < (a=ë) _ (b=(1ÿ ë)) for a, b > 0 and 0 , ë, 1, one derives from (7.15) that

L 9

5
< log

5B9

1ÿ ë

� �
_ log

4rB9

ë

5D

n

� �1=2
 !

� 1

2
log

L 9

5

� �" #
: (7:22)

Using the fact that log x < x=e we get that log(L 9=5) < L 9=(5e) and from (7.22) we derive

that

L 9 < 5 log
5B9

1ÿ ë

� �
_ 10e

2eÿ 1
log

4rB9

ë

5D

n

� �1=2
 !

<
10e

2eÿ 1
log B9� log

5

1ÿ ë

� �
_ log

4
���
5
p

ë

� � !
� log 1� r

D

n

� �1=2
 !24 35:

Choosing ë � 4=(4� ���
5
p

), we conclude that L 9 < L and therefore that (7.16) holds

provided that nó 2 > D[L r2(ô) _ 1].

In order to prove (5.8), let us now set ë � 4=3, r � r(ô=ë), ó0 � 0, ó 2
j � ë jó 2 for j > 1

and observe that the following is valid by (7.16) since ó > ó D >
���������
D=n

p
and nó 2=r2 > 8:

Ps sup
u2S

ín[ã(:, s�)ÿ ã(:, u)]

d2(s�, u) _ ó 2
. ô

" #
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<
X�1
j�0

Ps sup
ó j<d(s�,u),ó j�1

ín[ã(:, s�)ÿ ã(:, u)]

ó 2
j�1=ë

. ô

" #

<
X�1
j�0

Ps sup
B (s�,ó j�1)

ín[ã(:, s�)ÿ ã(:, u)] .
ô

ë
ó 2

j�1

" #
< 2:1

X�1
j�0

exp ÿ 3në j�1ó 2

10r2

" #

< 2:1 exp ÿ 3nëó 2

10r2

" #X�1
j�0

exp[ÿ2:4ë(ë j ÿ 1)] , 3:03 exp ÿ 2nó 2

5r2

" #
,

which is (5.8). u

Remark. One should notice that the assumptions of Theorem 5 warrant that the suprema of

empirical processes involved in the statement and proof of the theorem are measurable.

Indeed our L1 assumptions in M2 ensure that these empirical processes are separable.

7.8. Proof of Proposition 2

The proof relies on the following result.

Lemma 9. Let Ù be a ®nite set with M elements, ë be the counting measure on Ù, C < M=2

be a positive integer and P be the set of all subsets of cardinality C of Ù. We consider the

distance ä on P given by

ä(A, B) � 1
2

�
j1A(x)ÿ 1B(x)j dë(x), for all A, B 2 P : (7:23)

Given some integer q with 0 , q , C(M ÿ C)=M, let M be a maximal subset of P such

that

ä(A, B) . q, for all A, B 2M, A 6� B:

Then

jMj > 1ÿ q2

(C ÿ q)(M ÿ C ÿ q)

" #
M

C

� �
C

C ÿ q

� �
M ÿ C

q

� �� �ÿ1

:

Proof. Let us ®rst observe that ä(A, B) can take any integer value between 0 and C. Clearly

M exists since q , C. Since M is maximal, any element A in P nM satis®es

ä(A, M) < q and therefore M is a q-net for P . This means that P can be covered by

the balls of radius q centred on the elements of M and consequently that

jP j � M

C

� �
< jMjV , (7:24)
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where V denotes the cardinality of a ball of radius q. Now, given an element A in P , the

number of elements B such that ä(A, B) � j is given by

C

C ÿ j

� �
M ÿ C

j

� �
and

V �
Xq

j�0

C

C ÿ j

 !
M ÿ C

j

 !

<
C

C ÿ q

 !
M ÿ C

q

 !Xq

j�0

q2

(C ÿ q� 1)(M ÿ C ÿ q� 1)

" # j

< 1ÿ q2

(C ÿ q)(M ÿ C ÿ q)

" #ÿ1
C

C ÿ q

 !
M ÿ C

q

 !
since the upper bound on q implies that the bracketed terms are smaller than 1. The

conclusion then follows from (7.24). u

Proof of Proposition 2. Let us denote by Int [x] the integer part of the positive number x.

Noticing that 4 < 4D=9 < D9 , D=2, we de®ne k � Int [N log (n=D9)=(2:96n)] and

N 9 � Int [N=k]. Our assumptions imply that 1 < k , N=(6D) and therefore that

N 9 > 12D9. We denote by P the set of all subsets of f1, . . . , N 9g of cardinality D9, and

if A 2 P we denote by f A the element of H N (D) de®ned by

f A � (1ÿ ç)1[0,1) �
X
i2A

1[k(iÿ1)=N ,ki=N ), where 0 , ç � kD9

N
,

1

12
:

Clearly i f A i1, 2 for all A 2 P , and for any two sets A and B in P we have

i f A ÿ f B i2 � 2
k

N
ä(A, B), h2( f A, f B) � k

N
ä(A, B)(

�����������
2ÿ ç

p
ÿ

�����������
1ÿ ç

p
)2

and

K( f A, f B) � k

N
ä(A, B) (2ÿ ç) log

2ÿ ç

1ÿ ç
� (1ÿ ç) log

1ÿ ç

2ÿ ç

� �
� k

N
ä(A, B) log

2ÿ ç

1ÿ ç
:

It ®nally follows from the bound on ç that

h2( f A, f B) � ë
k

N
ä(A, B), with 0:171 , (

���
2
p
ÿ 1)2 < ë < 0:183, (7:25)

and

K( f A, f B) � log
2ÿ ç

1ÿ ç

� �
k

N
ä(A, B) � ë9

k

N
ä(A, B), with 0:69 , log 2 < ë9 < 0:74:
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Let us now choose an integer q such that 2D9=5 < q < D9=2, which always exists since

D9 > 4. It follows from Lemma 8 with C � D9 and M � N 9 that one can ®nd a subset M
of P such that for any pair (A, B) in M with A 6� B, ä(A, B) . q > 2D9=5 and

jMj > Ó
N 9
D9

� �
D9

D9ÿ q

� �
N 9ÿ D9

q

� �� �ÿ1

,

with

Ó � 1ÿ q2

(D9ÿ q)(N 9ÿ D9ÿ q)
> 1ÿ D92=4

(D9=2)(N 9ÿ 3D9=2)
>

20

21
,

since q < D9=2 and N 9 > 12D9. Some tedious computations involving Stirling's formula and

the fact that D9 > 4 and N 9 > 12D9 lead to

log (jMj ÿ 1) .
D9

4
1� 2 log

N 9

D9

� �� �
:

Let us now consider an estimator Â with values in M built on n independent and identically

distributed observations from an unknown distribution f A with A in M . It follows from

Fano's lemma ± see, for instance, Lemma 2.7 of BirgeÂ (1983) ± that

sup
A2M

P f A
[Â 6� A)] > 1ÿ 0:74nkD9=N � log 2

(D9=4)[1� 2 log (N 9=D9)]
> 0:883ÿ 2:96nk

N [1� 2 log (N 9=D9)]
:

Since N=k . 6D > 54, N 9 . 54N=(55k) . 2:9n=log (n=D9) and therefore

sup
A2M

P f A
ä(Â, A) .

2D9

5

� �
> 0:883ÿ log (n=D9)

1� 2 log (2:9n=D9)ÿ 2 log [log (n=D9)]
. 1

3

because the function x=(0:5� log 2:9� xÿ log x) is bounded by 1.084 for x > 1. It then

follows from (7.25) that

sup
A2M

P f A
h2( f Â, f A) . k

D

n
log

n

D

� �� �
> sup

A2M
P f A

h2( f Â, f A) .
2D9

5

ëk

N

� �
. 1

3
,

for a suitable constant k since k . N log (n=D9)=(5:92n) and D9 > 4D=9. The conclusion

then follows by standard arguments, and a similar result holds if we replace the distance h by

the L2 distance. u

7.9. Proof of Proposition 4

The proof of (i) is actually rather similar to the proof of Proposition 1. Let us consider the

canonical isomorphism between H(P ) and RD which is associated to the orthonormal basis

fj I , I 2 P g with j I � jI jÿ1=21 I . The ball B of radius ó corresponds to a ball B 9 in RD.

Introduce a covering of B 9 by hyperrectangles with side lengths jI j1=2ä and pick a point in

each hyperrectangle. Let us denote by T 9 the resulting set of points and by T its homologue

in H(P ) (using the isomorphism). Then the following properties hold: ®rst, the L2 and L1
diameters of each hypercube are both equal to ä; second, the number of hypercubes needed to
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cover B 9 is bounded by the number of such hypercubes that are contained in a ball of radius

ó � ä, which, using volume comparisons, is bounded by

2ðe

D

� �D=2

(ðD)ÿ1=2 ó � ä

ä

� �DY
I2P

jI jÿ1=2 < (2ðe)1=2 1� ä

ó

� �� �D
ó

ä

� �D Y
I2P

DjI j
 !ÿ1=2

:

Then (i) follows since (2ðe)1=2(1� ä=ó ) , 5.

To prove (ii), we consider the set T 2 H(P ) of functions of the form

(ä=
����
D
p

)
P

I2P aIj I , where aI 2 Z for all I. For any t 2 H(P ) one can ®nd a pair of

functions tÿ < t < t� with tÿ and t� 2 T, t� � tÿ � (ä=
����
D
p

)
P

I2P j I and i t� ÿ tÿ i � ä.

Using again the same isomorphism between H(P ) and RD, we see that a bracket [tÿ, t�]

corresponds to a hypercube of RD of volume (ä=
����
D
p

)D and the above argument shows that

the number of such brackets needed to cover a ball of radius ó is bounded by (5ó=ä)D. u
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