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Abstract. The berth allocation problem (BAP) involves decisions on how to allocate the berth space and to

sequence maritime vessels that are to be loaded and unloaded at a container terminal involved in the maritime

logistics. As the berth is a critical resource in a container terminal, an effective use of it is highly essential to

have efficient berthing and servicing of vessels, and to optimize the associated costs. This study focuses on the

minimum cost berth allocation problem (MCBAP) at a container terminal where the maritime vessels arrive

dynamically. The objective comprises the waiting time penalty, tardiness penalty, handling cost and benefit of

early service completion of vessels. This paper proposes three computationally efficient mixed integer linear

programming (MILP) models for the MCBAP. Through numerical experiments, the proposed MILP models are

compared to an existing model in the literature to evaluate their computational performance. The computational

study with problem instances of various problem characteristics demonstrates the computational efficiency of

the proposed models.

Keywords. Maritime logistics; discrete berth allocation problem; minimum cost berth allocation problem;

mixed integer linear programming models.

1. Introduction

Maritime transportation performs the function of moving

goods or passengers between ports by sea and other

waterways. International trade and global economy is quite

dependent on maritime logistics. Nearly 80% of global

trade by volume and over 70% of global trade by value are

carried by sea, and are handled by ports worldwide [1].

UNCTAD [1] forecasts a 3.8% compound annual growth

rate between 2018 and 2023. As there has been a significant

growth in the sea-borne demand, priority is given to make

port operations more efficient by utilizing the resources

effectively.

The main function of a port terminal is to serve vessels

by loading and unloading containers as well as bulk

materials. The container terminal is segregated into quay

area, transport area, yard area and truck area. The quay area

is the one in which vessels are berthed and handled. The

area in which the containers are moved within a container

terminal is the transport area. Yard area facilitates the

storage of containers. Truck area is meant for serving

external trucks.

With the increased usage of container terminals, effi-

ciency of a container terminal is affected if sufficient berths

are not allocated to incoming vessels. Vessel and berth are

the two entities considered in making these decisions. The

container terminal operators make these decisions based on

different priorities they have and the contractual agreement

they have with vessel operators. The success of a container

terminal is influenced by short berth duration of vessels and

low cost handling (loading and unloading) of vessels [2].

The berthing and service schedules of vessels are strongly

affected by the unexpected waiting time in a container

terminal. An efficient berth planning avoids such distur-

bances in schedules and improves the service quality of

container terminals. Competition among ports continues to

increase, and therefore it is necessary to reduce costs by

efficiently utilizing resources. Since berth is considered as

the most important resource, allocating berth space to a set

of vessels for container handling is a foremost decision to

be made when vessels enter the harbour and are waiting to

be berthed.

The berth allocation problems (BAPs) are classified

based on the berth layout, temporal attribute, handling time

attribute and performance measures [3, 4]. Readers may go

through the comprehensive reviews presented by Bierwirth
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and Meisel [3, 4] for more insights into the BAPs. In this

paper, the discrete layout of berths is considered. A key

related work to this paper is the work by Hansen et al [5],

where the discrete layout BAP with dynamic arrival times

of vessels is considered with the objective of minimizing

the costs associated with vessels and berths. Hansen et al

[5] termed such a problem as an MCBAP (minimum cost

berth allocation problem). The key contribution of this

paper is the proposal of new and computationally efficient

mixed integer linear programming models (MILPs) to solve

the MCBAP.

This paper is organized as follows. Section 2 presents a

literature review on various discrete BAPs. Section 3

describes the MCBAP. Section 4 contains three new MILP

formulations for the BAP under study. A few modifications

in the existing model and implications of the present study

are presented in sections 5 and 7, respectively. Details of

the computational study to evaluate the performance of

MILP models are given in section 6, and the paper is

concluded in section 8. The terms ‘vessel’ and ‘ship’ are

used interchangeably in this paper.

2. Literature review

The main focus of this paper is the discrete BAP, and

henceforth the earlier studies on this domain are now pre-

sented. In berth allocation at a container terminal with

discrete layout, decisions are made on the allocation of an

individual berth to a vessel and the time period during

which vessels are subjected to handling operations in the

allocated berth.

Dynamic berth allocation problem (DBAP) and its for-

mulation are presented by Imai et al [6], in which the berth

space is represented as a finite set of berthing points. This

problem is characterized by the dynamic arrival of vessels

to these berthing points. It is an extension of the static berth

allocation problem (SBAP) studied by Imai et al [7], which

considers the case where all ships are assumed to arrive at

the port before the earliest available time of the berths. The

objective function minimizes the sum of waiting time for

the availability of the berth assigned to each ship, plus the

handling time it spends at the berth. Imai et al [6] proposed

a Lagrangian relaxation for the DBAP, where the sub-

problem was an assignment problem. Imai et al [8] con-

sidered service priorities of vessels in DBAP and a genetic-

algorithm-based heuristic is developed to solve the prob-

lem. Cordeau et al [9] focused on the BAP of discrete berth

layout with time windows with respect to berth availability,

and two mathematical models were proposed to minimize

the sum of service times of vessels.

Hansen et al [5] considered dynamic arrival of vessels

and discrete berth layout in their study. The objective

function included handling time cost, waiting time cost,

earliness benefit and lateness cost and is referred to as

MCBAP. They proposed an MILP; however, they did not

present the computational efficiency of their proposed

model. The authors also proposed multi-start variable

neighbourhood descent (MVND) and variable neighbour-

hood search (VNS) heuristics to solve the MCBAP

instances. In view of the computational complexity asso-

ciated with MILP models in the context of discrete BAPs,

many researchers concentrated on the development of

heuristics and meta-heuristics [10, 11], apart from Hansen

et al [5]. Liang et al [10] proposed a non-linear mixed

integer mathematical model for discrete berth layout with

the objective of minimizing the sum of handling time,

waiting time and tardiness of vessels. Kovač et al [11]

proposed meta-heuristics for the MCBAP with hybrid berth

layout.

The discrete BAP is an NP-hard problem [12, 13], and

hence heuristic procedures are proposed to solve the large-

sized problems. A survey on meta-heuristic approaches for

the BAP is given by Kovač [14]. Many studies combined

the discrete berth allocation with quay crane scheduling

(e.g., see [15, 16]). Berth planning decisions associated

with vessels having bulk materials differ from those of

container vessels. The studies of Ernst et al [17] and Pratap

et al [18] dealt with the BAP in bulk ports under various

operating conditions.

Based on the review of literature, it is seen that many

studies have adopted complex binary variable structures in

the mathematical formulations related to logistics (e.g.,

[19, 20]) and also in the mathematical formulations of the

BAP in maritime logistics (especially the work by Hansen

et al [5]). The MILP model proposed by Hansen et al [5]

was not able to solve a sample problem instance of size 5

berths and 10 ships optimally in a reasonable time, and this

limitation was specifically reported in section 2 of Hansen

et al [5]. This observation by Hansen et al [5] has provided

us the motivation for developing computationally superior

MILP models for the MCBAP. Hence, based on this

research gap, we propose three new computationally effi-

cient MILP models and compare to the existing model by

Hansen et al [5]; see [5] for more insight into the MCBAP.

The main purpose of the development of computationally

efficient MILP models is that MILP models provide opti-

mal solutions for medium-sized problem instances and for

some large-sized problem instances, and can be used to

evaluate the quality of heuristic/meta-heuristic solutions,

thereby contributing to the literature on operations research

(OR) models.

The contributions of this study are three-fold.

(i) Three new computationally efficient MILP models

for the MCBAP, which are computationally superior

to the existing model by Hansen et al [5], are

proposed.

(ii) The computational performance of the three new

MILP models and the MILP model by Hansen et al

[5] is evaluated.
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(iii) It is found that one of the assumptions (in terms of

the cost parameters at a container terminal) consid-

ered in the work of Hansen et al [5] need not be true

in all cases. The proposed models do not have such

an assumption and are more generic. We therefore

suggest modifications in the existing model [5],

thereby making the model of Hansen et al [5] more

realistic by relaxing such an assumption.

3. Problem description

The study of MCBAP in a container terminal is presented in

this section. A set of berths B, indexed by j = 1, 2, …, J, is

available at a container terminal for receiving a set of ships/

vessels V, indexed by i = 1, 2, …, N. The berths are

assumed to be discrete and can handle only one vessel at a

time. The vessels arriving in a container terminal have the

following set of deterministic attributes: expected arrival

time (Ai), scheduled departure time (di) and handling time

(ti;j). This set of attributes is communicated to the container

terminal operator. The handling time (ti;j) of a vessel i

varies according to the berth j to which it is assigned. This

problem can be termed as DBAP as the planning activity is

carried out even before the arrival of vessels, by consid-

ering their expected arrival times. The earliest time from

which each berth is available (Sj) is also taken into account

by the terminal operator for planning.

The objective function of this problem includes the ship-

dependent waiting cost ai per unit time, the benefit bi per
unit time associated with an early service completion of

vessel i before its scheduled departure time (di), the ship-

dependent lateness cost ci per unit time and the cost of

handling vessel i at berth j (ci;j). Based on the data avail-

able, a berth plan is derived by the terminal operator. The

problem necessarily aims at determining the berth to which

each vessel is to be assigned, the start time and end time of

handling of the vessels. The discrete berth planning system

pertains to two types of decisions associated with berth

allocation. One is the assignment of each vessel to one of

the berths and the other deals with sequencing of vessels

assigned to a specific berth.

4. MILPs

The MCBAP problem under study is modelled in this paper

using three newly proposed MILP models. These models

are developed and presented in this section. The following

assumptions are made as a part of the proposed

formulations.

• Each berth can serve only one vessel at a given time.

• Physical restrictions at the terminal (e.g., water depth)

are not considered.

• Handling time of a vessel depends on the berth to

which it is assigned; berths are non-identical with

respect to the associated vessel-handling infrastructure.

• There is no service interruption during vessel handling

activities.

• Information on vessel arrival in the container terminal

during the planning period is known in advance. As

deterministic scenario is considered, parameters are

known a priori.

Parameters

Sj time from which berth j is available for berthing a

vessel

Ai arrival time of vessel i

di scheduled departure of vessel i

ti;j handling time of vessel i on berth j

ai cost associated with per unit waiting time of vessel i

ci cost associated with per unit time of tardiness of

vessel i

bi benefit associated with per unit time of early service

completion of vessel i

ci;j cost associated with handling of vessel i on berth j

V set of vessels {1, 2, …, N}

B set of berths {1, …, J}

G a sufficiently large positive integer, where

G�
XN
i¼1

max
j
ðti;jÞ þmax max

i
Aið Þ;max

j
Sj
� �� �

Decision variables

fi a continuous variable that represents the time at

which the service on vessel i ends at its allotted berth

si a continuous variable that represents the time at

which vessel i begins to be handled at its allotted

berth

li a continuous variable that represents the tardiness of

ship i from its scheduled departure

wi a continuous variable that represents the waiting time

of ship i for getting berthed

ei a continuous variable that represents the earliness of

ship i from its scheduled departure

f 0i;j;k a continuous variable that represents the time at

which service on ship i ends when processed on berth

j at position k in the sequence of vessels served on

that berth

4.1 MILP model 1 (MCBAP1)

We propose a new and computationally efficient MILP for

the BAP under study by bringing in three-dimensional

precedence-based binary variables (yi0;i;j) to represent the

sequence of vessels at a given berth, and two-dimensional
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binary variables (ki;j) to represent the allocation of vessels

to a berth. This formulation is referred to as MCBAP1, or

simply M1.

Binary variables

Delj a binary variable that takes the value 1 if berth j

is engaged during the planning horizon; 0

otherwise

ki;j a binary variable that takes the value 1 if vessel i

is allocated to berth j; 0 otherwise

yi0;i;j a binary variable that takes the value 1 if vessel i

is handled immediately after vessel i0 at berth j; 0

otherwise

z0Nþj;i a binary variable that takes the value 1 if vessel i

is handled as the first vessel at berth j; 0

otherwise; N þ j is a fictitious vessel indicating

the start of the sequence of vessels at berth j

z00i;NþJþj a binary variable that takes the value 1 if vessel i is

handled as the last vessel at berth j; 0 otherwise;

N þ J þ j is a fictitious vessel indicating the end of

the sequence of vessels at berth j

wi A binary variable that restricts the

simultaneous computation of earliness and

lateness of vessel i

Objective function

Min Z ¼
XN
i¼1

aiwi þ
XN
i¼1

XJ
j¼1

ci;jki;j �
XN
i¼1

biei þ
XN
i¼1

cili

ð1Þ
subject to

XJ
j¼1

ki;j ¼ 1 8i 2 V ð2Þ

XN
i0¼1; i0 6¼i

yi0;i;j þ z0Nþj;i ¼ ki;j 8i 2 V ; 8j 2 B ð3Þ

XN
i0¼1; i0 6¼i

yi;i0;j þ z00i;NþJþj ¼ ki;j 8i 2 V ; 8j 2 B ð4Þ

XN
i¼1

z0Nþj;i �Delj 8j 2 B ð5Þ

XN
i¼1

z00i;NþJþj �Delj 8j 2 B ð6Þ

XN
i¼1

ki;j �N � Delj 8j 2 B ð7Þ

XN
i¼1

ki;j �Delj 8j 2 B ð8Þ

XN
i¼1

ki;j �N
XN
i¼1

z0Nþj;i 8j 2 B ð9Þ

XN
i¼1

ki;j �N
XN
i¼1

z00i;NþJþj 8j 2 B ð10Þ

si � fi0 � G 1�
XJ
j¼1

yi0;i;j

 !
8i 2 V ; i0 2 V and i0 6¼ i

ð11Þ
si �Ai 8i 2 V ð12Þ

si �
XJ
j¼1

Sjki;j 8i 2 V ð13Þ

fi ¼ si þ
XJ
j¼1

ti;jki;j 8i 2 V ð14Þ

li � ei ¼ fi � di 8i 2 V ð15Þ
wi � si � Ai 8i 2 V ð16Þ
li �G� wi 8i 2 V ð17Þ

ei �G 1� wið Þ 8i 2 V ð18Þ

yi0;i;j 2 0; 1f g 8j 2 B; 8i 2 V ;

8i0 2 V and i0 6¼ i; ki;j 2 0; 1f g;
z0Nþj;i 2 0; 1f g; z00i;NþJþj 2 0; 1f g 8j 2 B;

8i 2 V ; wi 2 0; 1f g 8i 2 V

and all other variables are � 0:

ð19Þ

Objective function (1) minimizes the sum of costs

associated with the waiting time and tardiness of vessels,

and operating costs of handling vessels. The early service

completion of vessel handling attracts benefit and is

included as a part of the objective function. Constraint (2)

states that a vessel can be assigned to at most only one

berth. Equations (3) and (4) ensure that each vessel can

have at most one predecessor and one successor (including

the fictitious vessels at its respective berth) in the sequence.

Constraints (5) and (6) ensure that each berth, if engaged in

the planning horizon, can have at most one fictitious start

vessel (N þ j) and one fictitious end vessel (N þ J þ j).

Constraints (7) and (8) ensure that if at least one vessel is

assigned to berth j, then the berth is active, and that a berth

is inactive if no vessel is assigned to it. Constraints (9) and

(10) ensure the allocation of fictitious vessels to a berth if

any of the vessels is assigned to that berth. Constraint (11)

states that the start time of a vessel is greater than or equal

to the completion time of its predecessor in the sequence.

Constraint (12) makes the start time of a vessel greater than

or equal to its arrival time. Constraint (13) makes the start
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time of a vessel assigned to a berth to be greater than or

equal to the time at which the berth is available for service.

Equation (14) calculates the completion time of a vessel as

the sum of the respective start time and its handling time.

Expression (15) determines the earliness and lateness of all

vessels. Expression (16) determines the waiting time for

each vessel especially when earliness reward is greater than

the tardiness penalty with respect to a given vessel. Con-

straints (17) and (18) restrict the simultaneous computation

of earliness and lateness of a vessel. Finally, expression

(19) defines all the binary variables and continuous vari-

ables. Note that the binary variable wi is introduced because

service completion can be either early or late but not both

for a vessel.

4.2 MILP model 2 (MCBAP2)

Our second MILP model for the MCBAP is presented in

this section. A two-dimensional precedence-based binary

variable (zi0;i) is used in this formulation to represent the

sequence of vessels and a two-dimensional binary variable

(ki;j) is used to represent the allocation of a vessel to a

berth. This formulation is referred to as MCBAP2, or

simply M2.

Parameters

Apart from the parameters presented earlier, the fol-

lowing parameters are used in MCBAP2.

kNþj;j a variable that is given a value of 1 to indicate

that the fictitious vessel N þ j is allocated to

berth j; kNþj;j ¼ 1 8j 2 B

kNþJþj;j a variable that is given a value of 1 to indicate

that the fictitious vessel N þ J þ j is allocated to

berth j; kNþJþj;j ¼ 1 8j 2 B

Binary variables

Apart from the binary variables, Delj, ki;j, z0Nþj;i, z
00
i;NþJþj

and wi, presented in MCBAP1, the following binary vari-

able is used in MCBAP2.

zi0;i a binary variable that takes the value 1 if vessels i and

i0 are allocated to berth j and vessel i is handled

immediately after vessel i0 at berth j; 0 otherwise; this

binary variable necessarily equals 0 if vessels i and i0

are allotted to different berths, and hence the number

of zi0;i active variables is reduced

Objective function

Min Z ¼
XN
i¼1

aiwi þ
XN
i¼1

XJ
j¼1

ci;jki;j �
XN
i¼1

biei þ
XN
i¼1

cili

ð20Þ
subject to

XJ
j¼1

ki;j ¼ 1 8i 2 V ð21Þ

ki;j � ki0;j � 1� zi;i0 8j 2 B; 8i 2 V; i0 2 V and i0 6¼ i

ð22Þ

kNþj;j � ki;j � 1� z0Nþj;i 8j 2 B; 8i 2 V ð23Þ

kNþJþj;j � ki;j � 1� z00i;NþJþj 8j 2 B; 8i 2 V ð24Þ

XN
i0¼1;i0 6¼i

zi;i0 þ
XJ
j¼1

z00i;NþJþj ¼ 1 8i 2 V ð25Þ

XN
i0¼1;i0 6¼i

zi0;i þ
XJ
j¼1

z0Nþj;i ¼ 1 8i 2 V ð26Þ

zi;i0 þ zi0;i � 1

i ¼ 1; 2; . . .;N � 1 and i0 ¼ iþ 1; iþ 2; . . .;N
ð27Þ

XN
i¼1

z0Nþj;i ¼ Delj 8j 2 B ð28Þ

XN
i¼1

z0Nþj;i �
XN
i¼1

ki;j 8j 2 B ð29Þ

XN
i¼1

ki;j �N
XN
i¼1

z0Nþj;i 8j 2 B ð30Þ

XN
i¼1

z00i;NþJþj ¼ Delj 8j 2 B ð31Þ

XN
i¼1

z00i;NþJþj �
XN
i¼1

ki;j 8j 2 B ð32Þ

XN
i¼1

ki;j �N
XN
i¼1

z00i;NþJþj 8j 2 B ð33Þ

Delj � ki;j 8i 2 V; j 2 B ð34Þ

fi �Ai þ
XJ
j¼1

ti;jki;j 8i 2 V ð35Þ

fi � fi0 þ
XJ
j¼1

ti;jki;j � G 1� zi0;i
� �

8i 2 V; i0 2 V and i0 6¼ i

ð36Þ

fi � Sjki;j þ ti;jki;j � G 1� z0Nþj;i

� �
8i 2 V; j 2 B ð37Þ

li � ei ¼ fi � di 8i 2 V ð38Þ
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wi � fi �
XJ
j¼1

ti;jki;j � Ai 8i 2 V ð39Þ

li �G� wi 8i 2 V ð40Þ
ei �G 1� wið Þ 8i 2 V ð41Þ

zi0;i 2 0; 1f g 8i 2 V; 8i0 2 V and i0 6¼ i;

wi 2 0; 1f g 8i 2 V;

z0Nþj;i 2 0; 1f g; z00i;NþJþj 2 0; 1f g; ki;j 2 0; 1f g
8j 2 B; 8i 2 V;

and all other variables are � 0:

ð42Þ

The objective function (20) is similar to the previous

formulation MCBAP1. Constraint (21) directs the assign-

ment of a vessel to not more than one berth. Constraint (22)

states that zi0;i equals zero when vessels i and i0 are allotted
to different berths. In addition, when vessels i and i0 are
allotted to berth j, zi0;i is either 0 or 1, depending, respec-

tively, on whether immediate precedence is absent or pre-

sent. Constraint (23) states that z0Nþj;i equals zero if vessel i

is not allotted to berth j. In addition z0Nþj;i is either 1 or 0

depending, respectively, on whether vessel i is the first in

the sequence or not. Similarly constraint (24) states that

z0i;NþJþj equals zero if vessel i is not allotted to berth j. In

addition z0i;NþJþj is either 1 or 0 depending on whether

vessel i is the last in the sequence or not. Constraint (25) is

to make sure that there is exactly one successor for vessel i,

including the fictitious vessel N þ j. Constraint (26) makes

exactly one predecessor for vessel i, including the fictitious

vessel N þ J þ j. A vessel can have only one type of

sequence relationship with another vessel. Either a vessel

can precede or succeed another vessel. This condition is

enforced by constraint set (27). Constraints (28)–(30)

ensure that fictitious vessel N þ j with respect to berth j is

active only if at least one vessel is assigned to berth j.

Constraints (31)–(33) ensure that fictitious vessel N þ J þ j

with respect to berth j is active only if at least one vessel is

assigned to berth j. Constraint (34) introduces a berth-ori-

ented binary variable to take the value of 1, if at least one

vessel is assigned to a berth. The variables fi, wi, ei and li
are calculated in a similar way as those in MCBAP1 and are

given as constraints (35)–(41). Finally expression (42)

defines all the binary variables and continuous variables.

4.3 MILP model 3 (MCBAP3)

Our third MILP model for the MCBAP is presented in this

section. A three-dimensional position-based binary variable

(xi;j;k) is used in this formulation to represent the allocation

of vessels to a berth and its sequence. This formulation is

referred to as MCBAP3, or simply M3.

Binary variable

xi;j;k a binary variable that takes the value 1 if ship i is

processed on berth j at position k in the sequence of

vessels served on berth j; 0 otherwise

Objective function

Min Z ¼
XN
i¼1

aiwi þ
XN
i¼1

XJ
j¼1

XN
k¼1

ci;jxi;j;k �
XN
i¼1

biei

þ
XN
i¼1

cili ð43Þ

subject to

XJ
j¼1

XN
k¼1

xi;j;k ¼ 1 8i 2 V ð44Þ

XN
i¼1

xi;j;k � 1 8j 2 B; k ¼ 1; 2; . . .;N ð45Þ

XN
i¼1

xi;j;k �
XN
i¼1

xi;j;kþ1 8j 2 B and k ¼ 1; 2; . . .; N � 1ð Þ

ð46Þ

f 0i;j;k �G� xi;j;k 8i 2 V; 8j 2 B and k ¼ 1; 2; . . .;N ð47Þ

f 0i;j;k �
XN

i0¼1;i0 6¼i

f 0i0;j;k�1 þ ti;j � G 1� xi;j;k
� � 8i 2 V; 8j

2 B and k ¼ 2; . . .;N ð48Þ

fi ¼
XJ
j¼1

XN
k¼1

f 0i;j;k 8i 2 V ð49Þ

fi �Ai þ
XJ
j¼1

ti;j �
XN
k¼1

xi;j;k

 !
8i 2 V ð50Þ

fi �
XJ
j¼1

Sj �
XN
k¼1

xi;j;k

 ! !
þ
XJ
j¼1

ti;j �
XN
k¼1

xi;j;k

 !

8 i 2 V

ð51Þ

li � ei ¼ fi � di 8i 2 V ð52Þ

wi � fi �
XJ
j¼1

ti;j �
XN
k¼1

xi;j;k

 !
� Ai 8i 2 V ð53Þ

li �G� wi 8i 2 V ð54Þ
ei �G 1� wið Þ 8i 2 V ð55Þ

xi;j;k 2 0; 1f g; wi 2 0; 1f g; 8i 2 V ;

8j 2 B and k ¼ 1; 2. . .;N;

and all other variables are � 0:

ð56Þ
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The objective function (43) is similar to the previous

formulations. In the constraints, Eq. (44) states that a vessel

can be assigned only to a single berth and in only one

position. Capacity constraint (45) states that a given posi-

tion on a berth can accommodate at most one vessel.

Compression constraint (46) restricts the occurrence of any

position left unoccupied (in between the occupied positions

in the sequence of vessels) with respect to a berth. Con-

straint (47) sets f 0i;j;k equal to zero, where vessel i is not

assigned to berth j in position k of the sequence of vessels at

berth j. Constraint (48) defines the completion time of a

vessel handled at a specific position on a berth, being

related to the sum of its processing time and the completion

time of the vessel preceding immediately. Constraint (49)

defines the completion time of a vessel. The variables fi, wi,

ei and li are calculated in a similar way as that in M1, and

are given as constraints (50)–(55). Finally, expression (56)

defines all the binary variables and continuous variables.

4.4 A comparison of the MILP formulations

under evaluation

Table 1 shows the number of binary variables and the

number of constraints of the MILP formulations for all the

proposed models as well as the benchmark model proposed

by Hansen et al [5]. In the rest of this paper, the benchmark

model is referred to as M4. The non-negative condition

imposed on variables is not considered in determining the

number of constraints. The comparison is made based on

the parameters N and J, where N and J denote the number

of vessels (i.e., Vj j) and the number of berths (i.e., Bj j),
respectively. It is noteworthy that the proposed models

have less number of constraints and comparable number of

binary variables in comparison to the existing model,

thereby leading to more computational efficiency.

The proposed three models have three different approa-

ches in terms of defining the key binary variables related to

the sequence of processing vessels on a given berth. The

associated novelties and contributions are presented here.

• MCBAP1 defines a three-dimensional binary variable

yi0;i;j that is related to the precedence of vessel i0 with
respect to vessel i on berth j, if they are allotted to the

same berth. The allocation of vessel i to berth j is

indicated by the binary variable ki;j. In addition, we

introduce fictitious vessels with respect to every berth

j, denoted by N þ j and N þ J þ j, respectively, to

denote the start and finish of sequence of vessels

serviced by berth j. Constraints such as (3)–(6) and

(9)–(11) make our precedence-based MILP formula-

tion unique and distinct, and hence computationally

superior.

• MCBAP2 also proposes a precedence-based binary

variable zi0;i with respect to vessels i0 and i; however,

this binary variable (zi0;i) is unique and proposed for the

first time in the context of MCBAP. This binary

variable reduces the dimensional complexity of

MCBAP2. However, this reduction in the dimensional

complexity is associated with an increase in the

number of constraints (see table 1 for details).

• MCBAP3 makes use of a position-based binary

variable ðxi;j;kÞ that is related to the possible place-

ment of vessel i in position k of the sequence of

vessels allotted to berth j. While the model by Hansen

et al [5] also presents a similar position-based binary

variable, our MCBAP3 results in a less number of

total constraints due to the use of constraints (52)–

(55). They make our proposed MCBAP3 computa-

tionally superior to the formulation by Hansen et al

[5].

5. Modifications in the existing model of Hansen
et al [5]

5.1 Redefining the Big M values

Hansen et al [5] defined four Big M coefficients in their

formulation, denoted by Mik, M
0
ik;M

00
ik and M000

ik . Our com-

putational experiments have identified the inadequacy of

the Big M coefficients in their formulation. For some

problems, Big M calculated is too small such that the

optimum solution is not achieved. Hence, this study rede-

fines the Big-M coefficients as follows:

Mik is the sum of the k largest tij, plus the largest of the

maximum arrival time of the ships and the time when

berth i becomes available

M0
ik is equal to the largest aj multiplied by Mik

M00
ik is equal to the largest bj multiplied by Mik

M000
ik is equal to the largest cj multiplied by Mik

It is to be noted that in the existing formulation, index i

denotes the berths, index j denotes the vessels and index k

denotes the position in the sequence of vessels at a berth. A

sample problem instance that enforces the redefinition of

Big M values is given in the link \http://dx.doi.org/10.

17632/z4sh59w8sw.2#file-ebccb3a9-6076-44fe-ab40-2e90

70b7527b[.

Table 1. A comparison of the sizes of MILP formulations under

evaluation.

MILP

models

Number of binary

variables Number of constraints

M1 N2J ? 2NJ ? N? J N2 ? 2NJ ? 7N ? 6J

M2 N2 ? 3NJ ? J N2(J ? 3/2) ? 3NJ ? (13/

2)N ? 6J

M3 N2J ? N 2N2J ? NJ ? 8N - J

M4 N2J ? NJ 3N2J ? 4NJ ? N

Sådhanå (2019) 44:149 Page 7 of 12 149



5.2 Modification of the relation between earliness

premium and lateness penalty

In the existing model, Hansen et al [5] assumed that the

ship-dependent premium per unit of earliness time of ser-

vice is less than the ship-dependent penalty per unit of time

of lateness of service i:e:; bi � cið Þ. It need not be true in all
cases. Our proposed formulations do not have such an

assumption and are more realistic. The following additional

constraints are proposed in the existing model for over-

coming such a restriction:

lik �G� wik 8i 2 B; k ¼ 1; 2; . . .N ð57Þ
eik �G 1� wikð Þ 8i 2 B; k ¼ 1; 2; . . .N and ð58Þ

wik 2 0; 1f g 8i 2 B; k ¼ 1; 2. . .;N ð59Þ
Constraints (57) and (58), and the binary variable wi, are

introduced to prevent the simultaneous presence or com-

putation of earliness and tardiness of vessels when bi � ci.
We also tested the performance of the M4 with additional

constraints (57)–(59), and could not observe any

notable difference in the computational performance in

terms of the average CPU time.

6. Computational experimentation

The computational performance of the proposed MILP

models is evaluated using a large number of randomly

generated problem instances with different sizes with

respect to various numbers of vessels and berths and by

varying parameters, following the existing literature. Since

benchmark instances are not available in the literature,

problems are generated randomly as suggested by earlier

researchers, especially by Hansen and Oguz [21] and

Hansen et al [5]. We first explain how the problem

instances are generated, and then present the computational

performance evaluation of the various models.

6.1 Generation of problem instances

Similar to the study of Hansen et al [5], two sets of problem

instances are generated for studying the MCBAP problem

with three different number of berths Bj j 2{5, 10, 20}. The
first set represents the extended version of instances from

Hansen and Oguz [21] and Imai et al [6], and is now

described. The arrival time of the vessel (AiÞ is an integer

value obtained from a uniform distribution in the range of

[1, (7000/60) 9 ( Vj j/ Bj j)] where Bj j denotes the number of

berths and Vj j denotes the number of vessels. Handling

time of vessel i on berth j is obtained by ti;j ¼ 2uijþ
�

1:5Þ � 2000=60, where uij is a uniformly distributed ran-

dom number between 0 and 1. Earliest available time of the

berths (SjÞ is set for each instance equal to a given fraction

fr of the time interval between the first and last arriving

ships. Imai et al [6] defined four different instance groups

(IGs) with fr equal to 1=2; 3=5; 5=8 and 7=8, and that are

indexed by 1, 2, 3 and 4, respectively, as shown in tables 2

and 3. The DBAP with all the ships arriving before the

earliest available time of the berths ðSjÞ reduces to the

SBAP, and hence such occurrence is restricted by consid-

ering fr\1. The per-unit cost associated with waiting time

of vessel i (aiÞ is an integer number generated randomly

from a uniform distribution in the interval [1, 10]. The

values of ci and bi for vessels are all set equal to 1. Due date
di is set to Ai þ Tmax � Tminð Þ � r, where Tmax and Tmin are

maximum and minimum elements of matrix (ti;j), respec-

tively, and r is a random number from the interval [0, 1].

Costs for handling vessels are generated as

ci;j ¼ 10� ti;j þ r � ti;j, where r is a random number in the

interval [0, 1]. The first set of instances contains the gen-

erated problem instances for berth size Bj j = {5, 10} and

number of vessels Vj j = {10, 15, 20, 25, 30, 35, 40, 45, 50}

with varying parameters of Sj (i.e., fr ¼
f1=2; 3=5; 5=8; 7=8g). For each combination of Vj j and Sj,

three instances are generated. Therefore, a total of 216

problem instances are thus generated in the first set.

The second set of generated problem instances is now

described. Availability times of the berths Sj
� �

, arrival

times of the vessels (AiÞ and handling times of the vessels

ti;j
� �

are integer numbers generated from a uniform distri-

bution in the intervals [0, 10], [10, 20] and [1, 11],

respectively, for berths and vessels. All other input values

are generated as in the case of the first set of instances. The

second set of instances contains the generated problem

instances for berth size Bj j = 20 and number of vessels Vj j =
{20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,

150}. For each Vj j, five instances are generated. Therefore

a total of 70 instances are thus generated. All the details of

problem instances generated for this study are given in the

link\http://dx.doi.org/10.17632/z4sh59w8sw.2[.

All the proposed MILP models and the benchmark model

(M4) are implemented using IBM Cplex 12.7.1 with default

settings, and on a systemwith 64-bit Intel i5 3.2 GHz Processor

and 8.0 GB of RAM. A time limit of 3600 s is imposed for

running theMILPmodels, similar tomost previous researchers.

The randomly generated problem instances in the first set are

tested with all the MILP models to study the computational

efficiency of the proposed formulations. Further, the randomly

generated problem instances in the second set are tested with

MCBAP1 to study the computational efficiency/robustness of

theproposedmodelMCBAP1 in large-sizedproblem instances.

6.2 Computational performance evaluation

of MILP models

The performance analysis of the proposed formulations

(M1, M2 and M3) and the existing formulation by Hansen
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et al [5], referred to as M4 in this paper, for the MCBAP is

presented in this section. For each problem instance and for

each MILP formulation, the objective function value and

the computational time within which the optimal solution is

obtained and the optimality gap for the instances that could

not be solved within 3600 s are observed. The formulations

are compared based on the average computational time

taken to solve the problems optimally, based on the average

percentage optimality gap and based on the number of test

instances solved to optimality within the given time limit of

3600 s for the problem instances with similar parameters

(i.e., for the given set of Bj j, Vj j and fr in tables 2 and 3 and

for the given set of Bj j and Vj j in table 4). The experimental

results are compiled and presented in tables 2–4. Table 3 in

this paper follows the same settings as in table 3 of Hansen

et al [5], used for the heuristics evaluation in that paper.

Similarly table 4 follows similar settings as in table 4 of the

paper just cited. In tables 2–4, the average CPU time is

shown as ‘–’ when none of the problem instances converges

to optimality in the given time limit of 3600 s. With respect

to tables 2 and 3, when, for less than 3 problem instances,

the optimal solution has been obtained, the average opti-

mality gap over 3 problem instances (when executed up to

3600 s) is computed and reported. The CPU times corre-

sponding to problem instances that attained optimal solu-

tions (within the time limit of 3600 s) are averaged and

Table 2. Computational performance of MILP models (B = 5).

Bj j9 Vj j IG

Average optimality gapa (%) Average CPU timeb (s) Number of optimal solutionsc

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

5910 1 0 0 0 9.82 1.18 7.74 32.09 1628 3 3 3 1

2 0 0 0 18.73 0.94 7.33 20.35 – 3 3 3 0

3 0 0 0 34.41 1.41 20.39 45.60 2730 3 3 3 1

4 0 0 0 35.39 5.72 89.31 126.69 – 3 3 3 0

5915 1 0 3.05 10.87 100 623.1 2201 – – 3 1 0 0

2 2.26 5.68 9.43 100 151.1 945.6 – – 2 2 0 0

3 2.65 14.94 12.44 100 647.1 – – – 1 0 0 0

4 6.79 31.93 12.57 100 – – – – 0 0 0 0

5920 1 10.08 18.58 16.85 100 – – – – 0 0 0 0

2 11.12 35.75 16.86 100 – – – – 0 0 0 0

3 9.53 32.07 14.91 100 – – – – 0 0 0 0

4 11.67 54.53 15.61 100 – – – – 0 0 0 0

5925 1 15.46 37.78 20.44 100 – – – – 0 0 0 0

2 15.99 48.24 20.02 100 – – – – 0 0 0 0

3 15.04 49.46 18.88 100 – – – – 0 0 0 0

4 16.87 68.38 19.54 100 – – – – 0 0 0 0

5930 1 16.46 44.49 20.15 100 – – – – 0 0 0 0

2 17.94 54.00 21.28 100 – – – – 0 0 0 0

3 19.77 57.15 22.52 100 – – – – 0 0 0 0

4 18.75 72.97 20.69 100 – – – – 0 0 0 0

5935 1 20.47 52.33 24.09 100 – – – – 0 0 0 0

2 20.30 60.13 22.12 100 – – – – 0 0 0 0

3 22.38 63.25 25.21 100 – – – – 0 0 0 0

4 19.51 77.08 21.16 100 – – – – 0 0 0 0

5940 1 23.24 63.19 25.64 100 – – – – 0 0 0 0

2 23.79 67.79 25.38 100 – – – – 0 0 0 0

3 23.66 69.37 25.32 100 – – – – 0 0 0 0

4 22.85 81.58 23.81 100 – – – – 0 0 0 0

5945 1 23.42 62.08 24.59 100 – – – – 0 0 0 0

2 26.71 71.34 28.45 100 – – – – 0 0 0 0

3 26.78 71.65 28.17 100 – – – – 0 0 0 0

4 23.44 81.25 24.43 100 – – – – 0 0 0 0

5950 1 25.91 68.15 27.71 100 – – – – 0 0 0 0

2 26.64 74.58 28.38 100 – – – – 0 0 0 0

3 27.38 74.69 29.03 100 – – – – 0 0 0 0

4 24.06 84.47 25.09 100 – – – – 0 0 0 0

aOptimality gap (%) is computed as 100 9 (objective function value – current MILP best bound)/ objective function value, and is reported by the solver

during termination.
bAverage CPU time taken for problem instances where optimum solutions have been reached within 3600 s.
cNumber of problem instances solved optimally within 3600 s in a set of 3 problem instances with similar parameters.
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reported. Similarly, in table 4, 5 problem instances are

considered in each row for the computation of average

optimality gap and average CPU time.

In the first set of instances (i.e., Bj j = {5, 10}) for number

of vessels Vj j = 10, all the proposed models are capable of

finding the optimum solution in all the test instances within

a few seconds, where M4 is able to find optimality in not

more than 2 out of 12 test instances. When the problem size

is increased (i.e., Vj j =15), all the proposed models have

either attained optimality or been terminated with a small

optimality gap after the given execution time limit, where

M4 started showing large optimality gap in all the test

instances. For other test instances with the number of

vessels more than 20, all the proposed models maintain

their computational performance with less optimality gap,

compared with the existing model (M4). Within the pro-

posed models it is observed that M1 always shows better

computational performance than those by M2 and M3. In

addition to the size of vessels, the parameter fr also affects

the computational performance of all the models. Lower the

value of the fraction (fr), test instances are relatively easy to

solve for all models (see tables 2 and 3).

In the second set of instances (i.e., Bj j=20) for number of

vessels Vj j = 20, 30, 40, 50, 60 70, 80 and 90 the proposed

model MCBAP1 is capable of finding the optimum solution

in all the test instances within the given time for execution,

where M4 is unable to reach optimality in any of the test

instances. When the problem size is increased (i.e., Vj j
=100 and 110), the proposed model M1 has either attained

optimality or been terminated with a small optimality gap.

Table 3. Computational performance of MILP models (B = 10).

Bj j9 Vj j IGa

Average optimality gap (%) Average CPU time (s) Number of optimal solutions

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

10910 1 0 0 0 12.53 0.39 5.60 4.22 – 3 3 3 0

2 0 0 0 9.52 0.50 3.92 1.45 2259 3 3 3 1

3 0 0 0 17.01 0.33 6.78 2.51 – 3 3 3 0

4 0 0 0 26.94 0.43 9.31 0.70 – 3 3 3 0

10915 1 0 0 1.28 77.44 6.09 487 1406 – 3 3 2 0

2 0 0 3.26 82.15 16.12 1164 – – 3 3 0 0

3 0 2.90 3.07 93.42 23.81 602 2184 – 3 1 1 0

4 0 7.22 3.55 93.05 34.23 – – – 3 0 0 0

10920 1 0 4.51 5.21 100 866 509 560 – 3 1 1 0

2 0 13.17 5.05 100 98.61 – – – 3 0 0 0

3 0.34 17.86 6.14 100 310 – – – 2 0 0 0

4 4.93 39.31 9.38 100 – – – – 0 0 0 0

10925 1 6.80 19.93 11.60 100 – – – – 0 0 0 0

2 7.33 28.93 12.13 100 – – – – 0 0 0 0

3 6.79 30.06 11.73 100 – – – – 0 0 0 0

4 9.82 51.57 14.01 100 – – – – 0 0 0 0

10930 1 7.93 30.31 11.72 100 – – – – 0 0 0 0

2 6.99 35.54 10.79 100 – – – – 0 0 0 0

3 7.73 37.77 11.34 100 – – – – 0 0 0 0

4 10.34 59.25 13.80 100 – – – – 0 0 0 0

10935 1 12.92 37.93 15.92 100 – – – – 0 0 0 0

2 12.96 44.21 16.44 100 – – – – 0 0 0 0

3 15.35 48.83 18.13 100 – – – – 0 0 0 0

4 14.26 64.07 17.19 100 – – – – 0 0 0 0

10940 1 11.88 45.07 15.13 100 – – – – 0 0 0 0

2 12.84 53.46 15.30 100 – – – – 0 0 0 0

3 14.72 51.73 16.88 100 – – – – 0 0 0 0

4 15.06 68.03 17.11 100 – – – – 0 0 0 0

10945 1 15.35 49.98 18.23 100 – – – – 0 0 0 0

2 17.91 58.66 21.29 100 – – – – 0 0 0 0

3 18.68 59.03 21.49 100 – – – – 0 0 0 0

4 17.29 70.90 18.70 100 – – – – 0 0 0 0

10950 1 15.94 56.32 19.00 100 – – – – 0 0 0 0

2 16.65 63.02 20.02 100 – – – – 0 0 0 0

3 18.29 63.30 21.53 100 – – – – 0 0 0 0

4 18.42 75.62 20.13 100 – – – – 0 0 0 0

aIG denotes instance group (see section 6.1).
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For other test instances with number of vessels more than

110, the proposed model M1 maintains its superior com-

putational performance with less optimality gap.

6.3 Overall findings

• Our experimental findings reveal the robustness of the

computational performance of the proposed model,

MCBAP1, in the BAP under study. The MCBAP1

model maintains its superiority of computational effi-

ciency in all problem sizes, especially in relation to the

existing formulation.

• The MCBAP2 and MCBAP3 perform better than the

existing formulation in all the test instances.

• Problem instances generated with higher values of fr

are found to be difficult to solve for all models,

resulting in large computational times or large opti-

mality gaps, due to relatively tight due-date settings.

• Following the studies of Hansen et al [5], two different

sets of data are generated with different characteristics.

In both sets our proposed model MCBAP1 maintains

its computational efficiency. The second set of

instances is found to yield optimal solutions for more

problem instances compared with the first set of

instances because of the relatively larger values of

Slacki=maxj tij
� 	

associated with each vessel, where

Slacki ¼ di � max Ai;minj Sj
� 	� 	

.

7. Managerial insights and implications

The proposed models can be used to obtain optimal solu-

tions/lower bounds on the optimal solutions, which can be

used to evaluate the quality of heuristic solutions for the

medium-sized/ large-sized problems. It is to be noted that

our proposed MILP models M1 and M3 yield solutions

with an optimality gap of less than 30% in worst case and

often much better, implying that we can obtain lower

bounds on optimal solutions even for the large-sized

problems reported in tables 2–4. Such lower bounds can be

used for evaluating heuristic solutions for the large-sized

problem instances in an absolute manner. It is also note-

worthy that the existing model [5] is associated with an

optimality gap of 100% in most of the problem instances.

Moreover, the proposed models yield upper bounds

observed by the optimality gap of less than 100%. Such

upper bound solutions, reported by the solver using the

proposed MILP models, can be used to heuristically

schedule vessels in large-sized real-life container terminals.

8. Conclusions

In this paper, three new MILP models are formulated by

considering the problem of dynamic berth allocation with

minimum cost objective (called MCBAP) in maritime

logistics. The computational performance of the proposed

MILP formulations is measured in terms of computational

time required to attain optimality, optimality gap and the

number of optimum solutions obtained within the given

time limit, and compared to the existing formulation.

Exhaustive computational experiments have been con-

ducted to analyse the effect of problem size on the per-

formance of MILP models. All the proposed models

perform better than the benchmark model. The comparison

of the proposed MILP models based on the experimental

results indicates that the proposed formulation, MCBAP1,

performs the best and is robust with increase in number of

vessels as well as increase in number of berths with huge

Table 4. Computational performance of MILP models (B = 20).

Bj j9 Vj j
Optimality gap (%) Average CPU time (s) Number of optimal solutionsa

M1 M4 M1 M4 M1 M4

20920 0 100 0.34 – 5 0

20930 0 100 0.66 – 5 0

20940 0 100 1.72 – 5 0

20950 0 100 14.32 – 5 0

20960 0 100 45.31 – 5 0

20970 0 100 70.53 – 5 0

20980 0 100 231 – 5 0

20990 0 100 494 – 5 0

209100 1.22 100 1073 – 2 0

209110 5.89 100 – – 0 0

209120 9.17 100 – – 0 0

209130 14.16 100 – – 0 0

209140 17.04 100 – – 0 0

209150 24.2 100 – – 0 0

aNumber of problem instances solved optimally within 3600 s in a set of 5 problem instances with similar parameters.
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savings in computational cost. Using this formulation, we

can achieve optimality or near-optimality in most of the

problem instances, within the time limit of 3600 s. Future

work can look at the development of efficient lower bounds

in order to evaluate heuristic solutions in the large-sized

problem instances.
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[17] Ernst A T, Oğuz C, Singh G and Taherkhani G 2017

Mathematical models for the berth allocation problem in dry

bulk terminals. J. Sched. 20: 459–473

[18] Pratap S, Nayak A, Kumar A, Cheikhrouhou N and Tiwari M

K 2017 An integrated decision support system for berth and

ship unloader allocation in bulk material handling port.

Comput. Ind. Eng. 106: 386–399

[19] Anoop K P, Panicker V V, Narayanan M and Kumar C T S

2018 A mathematical model and solution methods for rail

freight transportation planning in an Indian food grain supply
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